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InAs thermophotovoltaic (TPV) cells with external quantum efficiency at the peak wavelengths 

reaching 71% at low temperature and 55% at room temperature are reported, which are the highest 

values to date for InAs. The TPV exhibited 10% power conversion efficiency at 100 K cell 

temperature. The dark and light current-voltage characteristics were measured at different cell 

temperatures (100-340 K) in response to heat sources in the range 500-800 °C. The resulting 

dependences of the output voltage and current as well as the spectral response of the InAs TPV have 

been extensively characterized for waste heat recovery applications. The performance of these cells is 

strongly determined by the dark current which increases rapidly with increasing cell temperature 

originating from bandgap narrowing, which resulted in a reduction of open circuit voltage and output 

power.  
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1. Introduction 

Large amounts of energy are lost in the form of waste heat in high energy consumption industries 

such as glass and steel manufacturing. In some processes as much as 20-50% of the waste heat can be 

lost as radiation. Clearly, a direct and convenient way of converting waste heat into electricity is 

highly desirable. TPV cells which have very similar operating principles to solar cells can absorb the 

radiation from hot sources and produce electricity [1]. In addition to energy scavenging, TPVs also 

have potentials for use in a wide variety of other applications including automotive, mobile power 

generation and military power supplies and also for space applications where TPVs operating at low 

temperature can be employed using passive cooling.  

Until recently, research work on TPVs has been focused on silicon [2], InGaAs [3], GaSb [4,5] and 

GaInAsSb alloys lattice matched on GaSb [6,7], most of which have a relatively wider bandgap, 

making them more suitable for electricity generation from heat sources at temperatures above 1000 °C. 

Among these, excellent performance has been reported from GaInAsSb TPVs lattice matched on 

GaSb substrates [6]. Such devices can produce an open circuit voltage (Voc) of ~0.3 V, a short circuit 

current density (Jsc) up to 3 A/cm2, and about 90% internal quantum efficiency (IQE) [8,9]. For higher 

temperature sources, GaSb based TPVs can achieve ~16% power conversion efficiency provided they 

are illuminated by a high intensity (tungsten) light source [10]. However, for lower temperature (< 

1000 °C) heat sources, narrow bandgap semiconductors can potentially result in TPVs with higher 

conversion efficiency [11,12], mainly because more photons emitted from the blackbody source can 

be harvested by the low bandgap material. InAs TPV cells (0.35 eV bandgap) appear to be very 

promising for waste heat recovery. However, until now, much less investigation has been carried out 

on InAs based TPVs compared with GaInAsSb and GaSb devices. Voc of ~0.06 V and Jsc of ~0.9 

A/cm2 have been obtained from InAs TPV cells illuminated by a 950 °C thermal source [13]. But 

relatively little information has been reported on the operating characteristics and potential of InAs 

TPVs. In this work, we report in detail on the characteristics of a TPV cell based on a high quality 

InAs p-i-n diode grown by metal-organic chemical vapor deposition (MOCVD) for the purpose of 

waste heat recovery and energy scavenging applications. We report on the electrical and spectral 

properties for the cell held at different temperatures (100- 340 K) when illuminated by low 

temperature thermal sources (500-1000 oC). We obtained high external quantum efficiency (EQE), 

short circuit current and approximately 3.6% power conversion efficiency using a 950 °C thermal 

source.  

2. Experiments 

The InAs p-i-n TPV devices studied in this work were grown by MOCVD on an n-type InAs (100) 

substrate. The structure comprised of a 2 ȝm n+ layer (1×1018 cm-3) followed by an 10 ȝm intrinsic 

region and then a 2 ȝm p+ layer (1×1018 cm-3). Ti/Au metal with thickness of 20/200 nm was 



 

 

deposited to form the top and bottom ohmic contacts. The top contact was in a horseshoe shape 

covering 20% of the surface area as shown in the inset of Fig. 1, which was opaque for the incident 

radiation. The TPV cells were fabricated by using phosphoric acid and hydrogen peroxide based wet 

chemical etchant, followed by a finishing etch in sulphuric acid and hydrogen peroxide based solution, 

to define mesa diodes with diameter of 400 µm. A scanning electron microscopic (SEM) image was 

taken on the etched device, as shown in Fig. 1. The deep wet etching resulted in the extension of the 

side walls by about 8 ȝm, making the actual diameter to be around 416 ȝm. The finished devices were 

mounted on TO- headers for characterization. 

The current-voltage (I-V) characteristics were measured using a Keithley 2400 source meter. Flash 

exposure tests were carried out by mounting the cells 10 cm in front of a variable temperature (500-

800 °C) blackbody thermal source with an aperture of 25 mm, without any focusing optics. The TPV 

device was loaded into a liquid nitrogen cooled continuous flow cryostat to measure the I-V 

characteristics and spectral response at different cell temperatures (Tc). The corresponding spectral 

response was measured using the same black body source, with a 0.3 m grating monochromator 

(blazed at 3.5 µm) and lock-in amplifier with a chopper frequency of 65 Hz. The EQE curves were 

obtained by dividing the spectral responses with the spectrum of the thermal source, which was 

measured by using a pyroelectric infrared detector. The EQE value of the cell at 300 K 1.55 µm was 

measured outside of the cryostat by using a 1.55 µm, 1mW fiber pigtailed laser. The values of the 

EQE curves were then scaled based on this measured EQE. 

3. Results and discussion 

The capacitance-voltage (C-V) measurements reported previously revealed a very low background n-

doping level of 6x1014 /cm3 in the intrinsic InAs region [14], which indicated that in the p-i-n structure 

the depletion region occupied the entire i-region. The top p+ layer can work as the emitter region, and 

the intrinsically n type undoped region can serve as the base for the InAs TPV. The I-V curves of the 

InAs cell under 500-800 °C thermal source radiations at cell temperatures Tc = 300 K and 100 K are 

plotted in Fig. 2 (a) and (b). The measurements were carried out when the InAs cell was mounted in 

the cryostat with a CaF2 window in front. The power density from the thermal radiation arriving on 

the cell was measured using a calibrated power meter to increase from 76 mW/cm2 at 500 °C to 318 

mW/cm2 at 800 °C. As shown in Fig. 2(a), when the InAs TPV cell was kept at 300 K, the I-V curves 

remained almost linear regardless of the source temperature, corresponding to a fill factor (FF) of 

25%. As the source temperature was increased from 500 °C to 800 °C, the short circuit current, Isc 

increased from 0.04 mA (0.03 A/cm2) to 0.29 mA (0.23 A/cm2), almost proportional to the increase in 

the number of photons from the black body source above the InAs bandgap energy (~0.35 eV). The 

Voc also increased from 5.5 mV to 17.4 mV. In contrast, when the cell temperature, Tc was cooled to 

100 K, (Fig. 2(b)) the FF substantially improved to 68.5% with the source at 500 °C and reached 70.2% 



 

 

with the source at 800 °C. Although the Isc was reduced by about 31% due to the increase in the 

bandgap of InAs at 100 K (~0.41 eV), the Voc significantly improved to 252 mV with the source at 

800 °C - more than 14 times larger than at Tc = 300 K. It is also worth noting that the Voc showed 

much less reduction when lowering the source temperature at Tc = 100 K. With the 500 °C source, the 

Voc still reached 208 mV, which was only an 18% reduction compared with the 800 °C source. The 

calculated power efficiency was 0.071 % with the 500 °C source and 0.35% with the 800 °C source 

when the InAs TPV was at room temperature. However, both values greatly increased to 4.4% and 10% 

respectively at Tc =100 K, which was predominantly due to the improvement in Voc. These high 

power conversion efficiencies at low Tc can possibly make the InAs based TPVs useful in deep space 

applications, where other sources of energy are not available. Note that the incident power in these 

experiments is quite low (76 mW/cm2 at 500 °C and 318 mW/cm2 at 800 °C) since the TPV cell was 

inside the cryostat, and that the power conversion efficiency is strongly dependent on both the 

incident power density and the blackbody emitter temperature. When concentrating the 800 °C 

radiation to about 4 W/ cm2 at room temperature, the TPV efficiency increased to 1.3%, largely due to 

the 3 times increase in Voc. Using a 950 °C blackbody source with 720 mW/cm2 power density as in 

our previous work, this InAs TPV achieved Jsc = 1.32 A/cm2 at 300 K Tc, which is about 47% higher 

than the LPE grown InAs TPV with an InAsSbP window layer [13]. The power efficiency was 

estimated around 3.6%, which is also a little higher than our previously reported value. 

The spectral responses of the InAs TPV at these two cell temperatures were shown in Fig. 2(c) and (d). 

In each case, the shape of the response showed very slight changes by varying source temperature. 

Only the intensity was increased with higher source temperatures due to more photons above the 

bandgap energy being captured. The small fluctuations in the spectra in the 1.6-1.8 µm and 2.5-2.8 

µm regions were caused by the water absorption in the atmosphere. The spectra in Fig. 2(d) all 

showed a clear cut-off once the wavelength was above 3.0 µm, indicating that very little absorption 

occurred below the InAs bandgap when the TPV cell was at 100 K. In contrast, at Tc =300 K in Fig. 

2(c), much broader tails can be observed in all the spectra between 3.5 and 4.0 µm, which can be 

attributed to the absorption by thermally activated near band edge states. In addition, by comparing 

these two plots, it is clear that at 300 K the InAs TPV cell exhibited a broader spectral response, while 

at 100 K the curves became narrower and clear peaks can be observed near the InAs bandgap.  

The dark current density-voltage (J-V) curves of the InAs TPV were measured when the TPV cell 

temperature, Tc was adjusted from 100 K up to 340 K, as shown in Fig. 3(a). The estimated ideality 

factor n remained at around 1.1 in the measured temperature range. The dark leakage current density 

J0 greatly increased by about 4 orders of magnitude when Tc was raised from 100 K to 340 K. We 

found that the dark current did not drop significantly at temperatures below 100 K. Using an 

additional metal cap made of 0.2 mm thick nickel which can block all the possible infrared light from 

the environment, the dark current drops substantially (by at least 2 orders of magnitude), indicating 



 

 

that the device is collecting the 300 K radiation from the optical window of cryostat. Hence, the dark 

current at 100 K is believed to be largely contributed by the 300 K radiation.   

The shunt resistance R0 of the InAs TPV at different temperatures was estimated from these dark J-V 

curves near zero bias. The relation between R0A and Tc is illustrated in Fig. 3(b), where A denotes the 

actual area of the TPV. From this graph, three distinct regions can be identified, as illustrated by the 

straight lines on the plot. For Tc<140 K, the R0A value was almost independent of the cell temperature, 

indicating that the 300 K background induced current was the dominant contributions to the dark 

current. For 140 K<Tc<240 K the slope of the fit was about half of that for the region Tc>240 K, 

which suggests that generation-recombination (G-R) played a major role in the dark current for 140 

K<Tc<240 K, and diffusion current was the most important contribution for Tc>240 K. 

Complete Tc dependent characterization of the InAs TPV performance was carried out between 100 K 

and 340 K under the illumination from an 800 °C thermal source at 318 mW/cm2 power intensity. Fig. 

4(a) depicts the I-V characteristics under these conditions. The FF gradually degraded from 70% at 

100 K to 33% at 280 K, and stayed constant at around 25% above 280 K. The Isc and Voc at each 

temperature taken from this graph are plotted in Fig. 4(b). With increasing Tc, the Isc slowly increased 

from 0.2 mA at 100 K to about 0.3 mA at 340 K, which is in very good agreement with the narrowing 

of InAs bandgap with increasing temperature. Using the Varshni relation the InAs bandgap reduces 

from 0.40 eV at 100 K to 0.34 eV at 340 K, corresponding to a 48% increase in the number of 

incident photons with above bandgap energy. In contrast however, the Voc dramatically dropped from 

252 mV at 100 K to 3.8 mV at 340 K, which was the main reason for the large drop of more than 100 

times in TPV output power, as shown in Fig. 4(c). Moreover, it can be noticed from Fig. 4(c) that the 

drop in output power accelerated for Tc above 240 K. As discussed before, this was also the region 

where diffusion current became the dominant dark conduction current mechanism, resulting in much 

quicker rise of J0 in this temperature range as shown in Fig. 4(a). The high J0 became the main factor 

determining the low Voc and low output power from the InAs TPV cell in the high Tc regime, which 

largely originated from the narrow bandgap of InAs. The exponential increase of J0 when reducing the 

material bandgap has been presented in [6,7]. For the more mature GaInAsSb TPV technology, a wide 

bandgap AlGaAsSb layer and a GaSb window layer were often incorporated in the structure to 

achieve better performance [7]. Such elements will need to be included in the InAs TPV design to 

improve Voc and the power efficiency in the future. 

The EQE curves for the InAs TPV cell at different Tc were extracted from the measured spectral 

responses using the 800 °C thermal source and are plotted in Fig. 5(a). (The fluctuations in the 1.6-1.8 

µm and 2.6-2.8 µm regions were caused by the water absorptions in atmosphere). Similar to the 

observations from Fig. 2(c) and (d), with higher Tc, the EQE spectra extended much more below the 

InAs bandgap. The EQE at 300 K mainly fell within the range 0.5-0.6, averaging about 0.55. Using a 



 

 

laser at 1550 nm incident on the TPV cell placed outside the cryostat, we measured a responsivity of 

0.79 A/W, corresponding to an EQE of 0.63, which is the highest room temperature EQE reported 

from InAs based TPVs. Despite its much narrower bandgap, this EQE value is as good as the highest 

EQE reported from GaSb and GaInAsSb based TPV cells (~60%) [4,6]. With improved structural 

design such as depositing an anti-reflection coating on top, it is likely that the EQE from InAs TPVs 

can be further enhanced. 

At different Tc, the peak EQE values close to the cut-off wavelengths were taken from these spectra 

and were plotted in Fig. 5(b) (red dots). At low temperatures, the EQE reached a maximum value of 

0.71, which was very near the theoretical maximum value (about 30% of the efficiency was lost due 

to surface reflection – no antireflection coating was applied to our cells). One interesting observation 

from the EQE spectra was that at shorter wavelengths the EQE first increased, then decreased with 

rising Tc. For example, the EQE at 2.0 µm was plotted in Fig. 5(b) for comparison. The different 

trends between these two curves might be caused by different absorption profiles within the InAs TPV. 

For photons with close to the bandgap energy (red dots), the smaller absorption coefficient (Į ~103 

cm-1 range) results in the photons penetrating the full depth of the InAs i-region. The photo-excited 

minority carrier (holes) need to transit across the entire depletion region to be collected by the 

contacts resulting in some reduction of EQE near the cut-off wavelength at higher Tc. One key factor 

determining this is the carrier lifetime. Previously it has been analyzed that in InAs LEDs, non-

radiative Auger recombination is the main reason for the reduced LED efficiency [15]. Similarly, in 

the InAs TPV cell, the stronger Auger process at higher Tc would significantly decrease the carrier 

lifetime, thus reducing the collection efficiency. In contrast, for higher energy photons (blue dots), Į 

becomes much larger (~104 cm-1). These photons would be absorbed mostly in top part of the 

depletion region. The photo-generated holes can be more easily collected due to their proximity to the 

p-contact. The temperature dependence of the EQE in this wavelength range is still not fully 

understood. Possible reasons might be the surface recombination mechanisms in the top p-InAs region, 

which could consume some of the carriers excited by higher energy photons.  

4. Conclusion 

We have systematically characterized the performance of InAs TPV cells with low temperature 

thermal sources at different cell temperatures Tc. It has been found that Tc has a huge impact on the Jsc, 

Voc and output power from the InAs cell. The power conversion efficiency increased by about 28 

times with an 800 °C source when the cell was cooled from 300 K to 100 K, mostly because of the 

significant enhancement of Voc at lower Tc. At 100 K Tc, 10% power conversion efficiency has been 

reported, which can make the InAs based TPVs a promising power source for deep space applications. 

Under the same illumination conditions, the Isc from the InAs TPV gradually increased by about 50% 

when the cell temperature was raised from 100 K to 340 K, largely due to the InAs bandgap 



 

 

narrowing. However, the Voc significantly decreased from 252 mV to only 3.8 mV, resulting in the 

output power being reduced by about two orders of magnitude. The quicker reduction of output power 

at higher temperatures could be related to the faster increase of J0 in the same temperature range. The 

EQE from the InAs TPV was determined to be ~55% over most of the sensitive range at room 

temperature, which is the highest value reported to date for InAs, with no anti-reflection coating. A 

peak value of 71% was achieved at 140 K. The high EQE was partly caused by the thick MOCVD 

grown i-region, so that almost all incident photons above the bandgap energy can be absorbed. The 

change in the EQE spectra with Tc showed some wavelength dependence and the limited hole lifetime 

is one reason for the reduction of EQE at higher Tc, which needs to be taken into account for the 

design of future InAs based TPV cells. With further structural improvements such as carrier blocking 

layers to reduce J0 at higher Tc, the Voc and output power can be further enhanced. Concentration of 

the incident radiation at room temperature can also greatly improve Voc and the power efficiency, due 

to the higher value of Isc. 

In addition, the extra wide spectra from lower temperature blackbodies need to be taken into account 

towards realizing applicable TPVs for waste heat recovery. In these cases, single junction TPVs will 

inevitably either have huge thermalization loss when using narrow bandgap materials, or only be able 

to collect a small fraction of the emitted energy when using wide bandgap materials. A multi-junction 

TPV system is a promising route to achieving the highest possible power efficiency, similar to the 

case of multi-junction solar cells [16]. With a bandgap of 0.35 eV, an efficient InAs TPV can serve as 

the intermediate or bottom section in the multi-junction TPV design. 
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Figure captions 

Figure 1. SEM image showing the etched side wall of the InAs TPV. The inset shows the plan view 

optical microscopic image of the device. 

Figure 2. I-V curves of the InAs TPV cell at (a) Tc = 300 K, and (b) Tc = 100 K with varying 

blackbody source temperatures, and the spectral response plots of the InAs TPV at (c) Tc = 300 K, (d)  

Tc = 100 K with varying black body source temperatures. 

Figure 3. (a) Dark J-V plot of the InAs TPV at different cell temperatures. (b) Resistance area R0A vs 

1000/Tc plot of the InAs TPV. 

Figure 4. Characteristics of the of the InAs TPV illuminated with an 800 °C thermal source with the 

device at different cell temperature Tc. (a) I-V curves, (b) short circuit current, Isc (red dots) and open 

circuit voltage, Voc (blue dots), (c) maximum output power.  

Figure 5. (a) The dependence of the EQE at different cell temperatures in response to a black body at 

800 °C, (b) the peak EQE near cut-off (red dots) and EQE at 2.0 µm (blue dots). 
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