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Abstract—Feature extraction is the key step for defect detection in Non-Destructive 

Evaluation (NDE) techniques. Conventionally, feature extraction is performed using only 

the response or output signals from a monitoring device. In the approach proposed in this 

paper, the NDE device together with the material or structure under investigation are 

viewed as a dynamic system and the system identification techniques are used to build a 

parametric dynamic model for the system using the measured system input and output 

data. The features for defect detection and characterization are then selected and 

extracted from the frequency response function (FRF) derived from the identified 

dynamic model of the system. The new approach is validated by experimental studies 

with two different types of NDE techniques and the results demonstrate the advantage 

and potential of using control engineering-based approach for feature extraction and 

quantitative NDE. The proposed approach offers a general framework for selection and 

extraction of the dynamic property-related features of structures for defect detection and 

characterization, and provides a useful alternative to the existing methods with a potential 

of improving NDE performance. 

Key Words— Defect detection; feature extraction; frequency response function; structure health 

monitoring; system identification.

1. Introduction

Active sensing-based non-destructive testing and evaluation (NDT&E) techniques using 

acoustic (e.g. ultrasonic) and electromagnetic (e.g. eddy current) effects have been widely 

used for structure health monitoring (SHM) to detect defects inside a structure [1] [2], 

and different methods have been proposed and studied as can be seen from literature 

published [3] [4] [5] [6]. A common point in the aforementioned NDT&E techniques is 

that they all use an output-only approach to perform defect detection where the measured 

response from a NDT transducer, such as piezoelectric wafer made of Lead Zirconate 

Titanate (PZT) or pulsed eddy-current (PEC) probe, is analyzed and the features 

reflecting the health status of the structure/or material under investigation are extracted 

for defect determination. The general procedure can be summarized as follows: (1) record 

a baseline/or reference response under a specified excitation, this is normally obtained 

under defect free condition; (2) measure the response from the transducer installed on the 

structure/or material to be monitored under the same excitation as used for generating the 



baseline/or reference response; (3) compare the measured response with the baseline/or 

reference response for health monitoring and defect detection. The comparison is usually 

performed by first selecting and extracting some features from both the measured 

response and the reference response, and then compare these features to determine the 

health status of the structure under investigation.

A key step for defect detection and characterization using the above approach is the 

selection and extraction of features from measurements. As can be seen, with the 

aforementioned procedure, the inspection device was treated as a signal generator where 

only the response from non-destructive transducer is utilized for feature extraction and it 

is implicitly assumed that the excitation used in the active sensing inspection is the same 

as that used for obtaining baseline/or reference response when we perform comparison. 

Hence any discrepancy between the excitation used for generating baseline response and 

that used for inspection will affect the accuracy of detection. Also, the features extracted 

for defect detection will be input-dependent and the different methods have to be 

employed to select and extract features from the measured response for different types of 

NDT technique used. 

The problem is revisited in this paper and we aim at developing a general framework for 

feature selection and extraction that can be used with different types of active sensing-

based NDT techniques. To this end, the problem is considered from a system perspective 

and the transducer, such as PZT sensor/or PEC probe, together with the structure under 

inspection will be viewed as a system (hereafter refer to as an NDT system) where the 

input to the system is the excitation signal of the NDT device and the output of the 

system is the corresponding non-destructive transducer’s response.  Instead of analyzing 

transducer response alone, we propose to use both input (excitation) and output (response) 

signals from the system for feature extraction. The proposed method is based on the well-

recognized fact that the defects (such as cracks, corrosion) in a structure can change its 

mechanical/electrical properties, hence the dynamic behavior of the NDT system. 

Consequently, the basic idea with the new NDE data analysis is to identify such changes 

in the system's dynamic behaviors with respect to defect-free situations in order to more 

effectively achieve the objectives of NDT&E. 

Based on above discussion, the dynamic property-related features are proposed to be used 

for defect detection. Specifically, the frequency response function (FRF) of the NDT 

system derived from input-output measurements is used for feature extraction in this 

paper because the FRF is less contaminated and can provide more information on defects 

to be detected. The remainder of the paper is organized as follows. Section 2 discusses 

the idea behind the new method proposed and present the development of the 

methodology. This is followed by two experimental studies with different types of NDT 

techniques in Sections 3 and 4, where a PEC-based system for crack detection and an 

ultrasonic inspection-based SHM system for corrosion detection using the new method 



developed are presented. The conclusions and some ideas for future research are 

presented in Section 5.

2. Methodology

In an active sensing-based NDT system, the system output, or more specifically, the 

response of the NDT transducer to the excitation (input) depends on both the input signal 

and the dynamic characteristics of the NDT system itself. As discussed in last section, the 

basic idea behind the defect detection method proposed in this paper is to detect the 

changes in dynamic behavior of the NDT system due to a defect. The dynamic behavior 

of a system is usually described by a parameterized mathematical model. Therefore, in 

order to capture the dynamic behavior of an NDT system, the system identification 

technique needs to be applied to identify a model from the measured input-output data for 

representing the dynamic characteristics of the NDT system under investigation. Once the 

model is obtained, the defect detection can then be achieved by monitoring the change in 

the features extracted from the identified model. The general procedure of the proposed 

method for defect detection is therefore as follows: (1) identify a dynamic model using 

input-output data obtained from the NDT system; (2) select and extract dynamic 

behavior-related features of the system derived from the identified model; (3) compare 

these features of the identified model with those extracted from a reference model 

representing defect-free conditions. Because there is no requirement for using the same 

inspecting signal as in the case with traditional NDT&E techniques, and the dynamic 

behavior-related features can reflect the inherent characteristics of the NDT system, the 

new method has potential to overcome disadvantages with traditional output only based 

data analyses and provides more effective solutions to the NDT&E problems in 

engineering practice.

To facilitate reader and communicate the idea as clearly as possible, the system 

identification technique used in this paper will be briefly explained before describing the 

new frequency domain feature extraction method for defect detection and 

characterization in this section.

2.1. System Identification

System identification is a technique dealing with the problems of constructing 

mathematical models of dynamic systems from test data. There are in general two types 

of approaches that can be used to solve this problem and they are referred to as the 

“Grey-box” modelling approach and the “Black-box” modelling approach. The “Grey-

box” modelling approach attempts to combine physical modelling with parameter 

estimation techniques where the model is constructed from the first-principles up to some 

unknown parameters and model identification then amounts to the estimation of these 

unknown parameters using the measurements. The “Black-box” modelling approach, on 



the other hand, does not assume any prior physical knowledge on the model and the 

model is identified from input-output measurements only. In this paper, as we aim at 

developing a general method for feature selection and extraction that can be used with 

different types of NDT systems based on different physical principles, the “Black-box” 

identification approach needs to be used. The identification can be performed either in the 

time domain or in the frequency domain, but for the active sensing-based NDT systems 

studied in this paper, the measurements are sampled time-domain data, and therefore our 

attention will focus on the time-domain identification method.

   Choosing a model structure is usually the first step in system identification. Clearly, 

models may come in various forms and complexity. As the identified model in this paper 

is intended to be used for defect detection, our attention will not focus on the model itself, 

but rather we are interested in the changes in some features extracted from the identified 

model which are caused by the defects to be detected. To this end, the ARX (Auto-

Regression with eXogeneous input) model structure will be chosen for model 

identification in this paper, because ARX model is not difficult to be identified, well-

suited for modelling the sampled data and can approximate any linear system arbitrarily 

well if the model order is high enough (see e.g. [7, p.336]). Let   denote the output 𝑦(𝑡)
(response) of the system at the time instant , denote the input (excitation) of the  𝑡 𝑢(𝑡) 

system, the ARX model that describes the relationship between the input and the 𝑢(𝑡) 

output  is a linear difference equation of the following form:𝑦(𝑡)𝑦(𝑡) + 𝑎1𝑦(𝑡 ‒ 1) +⋯+ 𝑎𝑛𝑦(𝑡 ‒ 𝑛) = 𝑏1𝑢(𝑡 ‒ 1) +⋯+ 𝑏𝑚𝑢(𝑡 ‒ 𝑚)          (1)

where  and  are the model parameters to be estimated. By introducing 𝑎1,⋯,𝑎𝑛 𝑏1,⋯,𝑏𝑚
vectors: 𝜽= [𝑎1 ⋯ 𝑎𝑛 𝑏1 ⋯ 𝑏𝑚]𝑇𝒑(𝑡) = [ ‒ 𝑦(𝑡 ‒ 1) ⋯ ‒ 𝑦(𝑡 ‒ 𝑛)  𝑢(𝑡 ‒ 1) ⋯ 𝑢(𝑡 ‒ 𝑚)]𝑇
Model (1) can be rewritten in a more compact form:𝑦(𝑡) = 𝒑𝑇(𝑡)𝜽          (2)

Model (2) can be viewed as a way to determine the current output value given previous 

input and output observations. Such a model structure which is linear in parameter  is 𝜽
known in statistics as linear regression. The vector  is called the regression vector 𝒑(𝑡)
and its components are the regressors. Note that,  in (2) contains previous values of 𝒑(𝑡)
the output variable , model (2) is then partly auto-regression and this is where the  𝑦(𝑡)
name of the structure stems from. Given  pairs of input-𝑁+ 𝑙,  where 𝑙= max (𝑛,𝑚),

output observations, the model parameter  can be estimated with the least squares (LS) 𝜽
method:



𝜽= [𝑷𝑇𝑷] ‒ 1𝑷𝑇𝒚           (3)

where 

𝒚= [
𝑦(1+ 𝑙)⋮𝑦(𝑁+ 𝑙)]    and    𝑷= [

𝒑𝑇(1 + 𝑙)⋮𝒑𝑇(𝑁+ 𝑙)]
Once the vector  and regression matrix  are defined with input and output 𝒚 𝑷
measurements, the solution can readily be found by modern numerical software, such as 

widespread MATLAB.  It needs to be pointed out that the model order (i.e.  𝑚 and 𝑛)
need to be selected before using LS method for model parameter estimation. In practice, 

the well-established model order selection procedures [7] for linear system identification 

which have been coded and available in MATLAB System Identification Toolbox can be 

applied. Alternatively, the orthogonal forward regression (OFR)-based model 

identification methods [8], [9] can be used.  With an OFR-based model identification 

method, the model term selection, model order determination, and model parameter 

estimation can be performed at the same time so that the model identification procedure 

can be implemented fully automatically. This will allow an automated active sensing 

NDT&E system to be established using a system identification based approach.

2.2. Input-Output Model Based Feature Selection and Extraction

   The ARX model (1) in the last subsection is a discrete time black-box input-output 

model and the features of the dynamic behaviour of the underlining system are often 

difficult to be extracted directly from such a model. This is because of the well-known 

fact that the discrete time representation of a continuous time system is not unique and 

the parameters in the discrete time ARX model are usually not physically meaningful. 

However, the frequency-domain properties, such as the frequency response function 

(FRF) of the system will remain the same whatever form the ARX model has, as long as 

the model can correctly describe the dynamic behaviors of the system. This implies that 

the frequency domain features of the ARX model can be a better system representation 

for the purpose of NDE. This motivates the development of the model frequency 

analysis-based technique for NDE in the present study. 

   The FRF can be viewed as a nonparametric model of the system and its values can be 

evaluated using system transfer function which can be derived from the identified ARX 

model (1). Once the model (1) is identified, the associated FRF can then be computed 

over a given set of frequency points as follows: 



𝐻(𝑒𝑗𝜔𝑇𝑠) =
𝑏1𝑒 ‒ 𝑗𝜔𝑇𝑠 +⋯+ 𝑏𝑚𝑒 ‒ 𝑗𝑚𝜔𝑇𝑠

1 + 𝑎1𝑒 ‒ 𝑗𝜔𝑇𝑠 +⋯+ 𝑎𝑛𝑒 ‒ 𝑗𝑛𝜔𝑇𝑠         0≤𝜔𝑇𝑠≤ 𝜋        (4)

where  is the angular frequency (radians/second) and  is the sampling period.𝜔 𝑇𝑠
Notice that the physical frequency of interest in FRF calculation is from 0 to , where  𝑓𝑠 2

(Hz) is the sampling frequency, because of the periodic and symmetrical 𝑓𝑠 = 1 𝑇𝑠
natures of the discrete FRF. If the identified ARX model (1) can well describe the 

dynamic behavior of the active sensing-based NDT system under investigation, the 

discrete FRF  computed using (4) will be a good approximation to the original 𝐻(𝑒𝑗𝜔𝑇𝑠)
continuous time FRF of the system, from which, features can be selected and extracted 

for defect detection.

Based on the idea above, the procedure to be used for defect detection with the new 

method proposed in this paper can be summarized as follows: (i) excite the NDT system 

under inspection using a broadband inspecting signal and collect both input (excitation) 

and output (response) data; (ii) identify an ARX model from the collected input-output 

data using the method introduced in last subsection; (iii) derive the transfer function of 

the system from the identified model and evaluate the associated FRF from (4); (iv) select 

and extract features from the computed FRF and compare them with those obtained from 

defect-free case for defect detection and condition monitoring. The above procedure is 

depicted in Figure 1 below, where the excitation in the figure is the input to an NDT 

system which is denoted by  in equation (1) and can be a square-wave in a PEC-𝑢(𝑡)
based NDT system or a transmit pulse in an ultrasonic inspection-based NDT system, etc; 

and the response in the figure is the output of the NDT system which is denoted by  𝑦(𝑡)
in equation (1), such as the eddy current picked up by a PEC probe in a PEC-based NDT 

system, or the acoustic reverberation signal captured by a PZT transducer etc. The Model 

Identification box in Figure 1 performs black-box input-output model identification using 

the input (excitation) and output (response) measurement data, or more specifically, 

determines the model order , and estimates the parameter  of equation (1). The m and n 𝜽
model-based FRF evaluation box in Figure 1 performs FRF computation using transfer 

function derived from the identified ARX model (1) in last step via equation (4) and the 

features for defect detection are eventually extracted from the computed FRF.



Figure 1. The procedure of system identification-based frequency domain feature extraction for 

defect detection with NDT techniques

2.3. Remarks 

System identification technique was used for PEC system modelling in [21], where it was 

mainly used for modelling PEC system itself with an aim of simplifying the numerical 

analysis of PEC systems. Similar ideas that use both input-output data and system 

identification techniques for defect detection had been proposed in [10], [22] and [23], 

and a common point of the methods proposed in the above works was that they all took 

the model parameters as the features for defect detection. As such, it was assumed that 

the models of the NDT&E system in various faulty and fault-free cases have the same 

structure (i.e. the same model order and terms), though they used different types of 

models. For example, a parametrical continuous-time transfer function model was used in 

[10] and the model parameters identified from input-output data were used as features for 

defect detection and classification. Whereas, in the method developed in this paper, this 

assumption is relaxed as features for defect detection are extracted from the 

nonparametric model FRF derived from the identified ARX model. An added benefit of 

using FRF-based features instead of model parameter-based features for defect detection 

is that we have freedom to choose a model structure that is convenient to fit the measured 

input-output data, and this makes it possible for us to use a relatively simple ARX model 

structure for the system identification. Furthermore, the substantial interaction from the 

user required for identification of a continuous-time transfer function model can be 

avoided by applying OFR-based model identification methods [8], [9] mentioned 



previously in conjunction with a discrete time ARX model structure and this will 

facilitate the identification procedure to be implemented fully automatically. 

From a signal processing point of view, the FRF evaluation via system identification as 

described above is equivalent to the autoregressive (AR) based parametrical spectral 

estimation where the signal (i.e. the response of the NDT transducer) to be analyzed is 

generated by the NDT system with a given input (excitation) rather than a white noise. In 

principle, the FRF can also be evaluated using the classical non-parametric method based 

on direct computation of the Fourier transform of the measured output and input signals 

and the FRF is obtained as the ratio between the DFT (discrete Fourier transform) of the 

output and the DFT of the input which can be implemented using FFT.  However, this 

FFT-based FRF evaluation suffers from a poor frequency resolution and a large variance 

for a short length of data record. Short data records are common in NDT practice due to 

the hardware limitations, e.g. the limited memory in NDT device, power consumption 

limitation etc. In addition, the FFT-based FRF evaluation is also subject to leakage errors 

caused by the assumption that the data outside the measurement window is repetitive, and 

the best solution to avoid leakage is thus the use of periodic excitations and 

measurements of an integer number of periods, but this is sometimes difficult to achieve 

in practice and it also reduce the flexibility for users to choose the best excitation for a 

specific application. On the other hand, the parametrical methods work well with short 

data records and require much less data than the FFT-based method for the same 

frequency resolution. Furthermore, the leakage error of the FFT-based method can be 

avoided with the proposed system identification-based parametrical method and the new 

method does not assume that the signals outside the measurement window are periodic, 

hence, the use of periodic excitation is not necessary which enhances the flexibility for 

selection of excitation. In summary, since processing short data records is the major issue 

in NDT applications and the new method is developed with the intention of being able to 

process data from the NDT systems with different types of excitations (both periodic and 

non-periodic, such as step-like or impulse-like excitations), the system identification-

based parametric method is employed for FRF evaluation in this paper.

The selection and extraction of features from FRF for defect detection will be problem-

dependent, that is, dependent on how the dynamic behaviour of the NDT system will be 

changed by the defect to be detected. The features could be selected and extracted from 

either magnitude or phase response over a certain frequency range, and these will be 

illustrated in the following experimental studies.

3. Experimental study on PEC-based NDT&E for crack detection

PEC sensing has become an important NDT&E technique and been widely used in SHM 

system for metal loss and crack detection [5], aircraft structure hidden defects detection 

and quantification [11], and steel corrosion monitoring [12] amongst others. In most of 



the previous work, the feature selection and extraction are essentially based on the 

analysis of the output (response) of the PEC-based SHM system only, and the features 

used for defect detection are extracted either from transient analysis in the time domain, 

such as rising, peak and descending points of the differential response (see e.g. [4]), or 

from spectral analysis in the frequency domain (see e.g. [2] [3]). In the sequel, an 

experimental study was carried out to detect cracks in a metal plate and the new feature 

extraction and selection procedure developed in previous section is used for data 

processing and crack detection so as to verify the idea proposed and demonstrate the 

effectiveness of the method developed. 

3.1 Experimental Setup

  The experimental test piece was 3mm thick mild steel and the test procedure are shown 

in Figure 2. The test case was considered as a simulated growing defect in the test piece, 

which is 100mm long, 0.5mm wide and 2.1mm deep. To simulate a growing defect, 

physically a 15mm diameter pancake coil was moved along the defect in 2mm steps from 

a reference with no defect to the defect length which is approximately equal to the coil 

diameter.  In practice, the sensor tag is fixed and the material under test (MUT) moves 

over time. The single coil PEC probe was used in the experimental test and this single 

coil configuration minimises the interface pins required between the sensor and 

microcontroller. The PEC excitation signal and the coil response were captured by a 

TDS2024B oscilloscope at 100MS/s. Clearly, only the transient portion of the response 

contains information about the MUT and, consequently, in practice the sensor tag only 

acquires this portion of the waveform to minimize power consumption. The complete 

description of the circuits used for sensor interfacing can be found in [24].

Figure 2. Test piece (left and centre) and experimental procedure (right)

   Figure 3 is a schematic diagram of the experimental procedure for acquiring the input-

output measurements of a PEC-based NDT system where the PEC sensing module used 

is shown in the left part of figure. The excitation signal (square wave) generated by the 

oscilloscope was applied to the PEC sensor to excite the MUT. 
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Figure 3. Schematic diagram of experimental procedure

The response of the system was also received by the oscilloscope. Both the input signal 

and output response of the PEC sensor were acquired by the oscilloscope as shown in 

Figure 3. Under the experimental set-up as described above, nine experiments were 

carried out on the test piece, among which the first experiment was for obtaining the 

reference data with crack length being 0mm (i.e. defect free condition) and the remaining 

8 experiments were for acquiring data with the crack lengths starting from 2mm, with 

incremental step being 2mm, to 16mm respectively, therefore nine sets of input-output 

data were obtained.

3.2. Feature Extraction and Experimental Data Analysis Results

   The new method as depicted in Figure 1 was used to process the input-output data 

obtained above to extract features for crack detection. Following the remark in the last 

section, the OFR algorithm [9], which can select model terms and estimate the associated 

parameters at the same time, was used for model identification so as to minimize the 

interaction from the user. An ARX model of form (1) with the maximum order  𝑛= 20

was identified for each case from the corresponding data set and the associated transfer 

function was then derived, from which the FRF was evaluated using equation (4) for each 

case, and eventually, the features for defect detection and classification was selected and 

extracted from these evaluated FRF. 

   A single-valued index is usually preferred in order to simplify the defect detection and 

classification. To this end and also to obtain reliable results, the area under the magnitude 

curve of the FRF  is selected as the single-valued index for crack detection and 𝐻(𝑒𝑗𝜔𝑇𝑠)
classification, which is defined as:



              (5)𝐼= ∫∞
0

|𝐻(𝑒𝑗𝜔𝑇𝑠)|𝑑𝜔
The values of index calculated from the nine data sets are shown in Figure 4. It can be 

seen that there exists a monotonic relationship between the index value and the crack 

length, and the index value increases as crack grows. This verifies the idea proposed and 

demonstrates the potential of the developed method for crack detection and classification.
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Figure 4. Index value as a function of the crack length

To compare the performance of the new method with existing method, the output signal-

based max-slope method had also been used to process the data obtained. Figure 5 

illustrates the basic idea behind the max-slope method (see [2], [12]) where typical PEC 

responses in half excitation period and the associated normalised differential response are 

depicted. Note that the time has been normalised to the repetition period T of the 

excitation. In Figure 5(a),  is the reference response obtained from a defect-free case; 𝐵𝑅𝐸𝐹
 is the time response from a test case. To simplify detection process and eliminate the 𝐵

lift-off effect of PEC probe [18], the differential normalised response (  in Figure Δ𝐵𝑛𝑜𝑟𝑚
5(b)) defined below is usually used, from which the features can be extracted for defect 

detection:



Δ𝐵𝑛𝑜𝑟𝑚 =
𝐵

max (𝐵) ‒ 𝐵𝑅𝐸𝐹
max (𝐵𝑅𝐸𝐹)

With the max-slope method, the peak value of  together with the time to the peak Δ𝐵𝑛𝑜𝑟𝑚
value have been used to characterize defect and the maximum slope, which is defined as 

the ratio of the peak value of  and the time to the peak value, is used as the single-Δ𝐵𝑛𝑜𝑟𝑚
valued index for defect detection. The normalized single-valued indexes from both the 

new method proposed in this paper and the max-slope method are shown in Figures 6-8 

for comparison. In addition, the output and input measurements used for model 

identification with the new method have also been used for direct computation of FRF via 

FFT as described in Section 2.3, and the single-valued frequency domain indexes defined 

by (5) and calculated with the FFT-evaluated FRFs are also shown in these figures where 

three different windows (i.e. rectangular/or no window, hamming window and hanning 

window) are applied respectively for comparison. 

Figure 5. Time domain PEC transient responses in half period

Maximum slope



 

Figure 6. Comparison of the index values calculated with the new method, FFT (without 

window)-based method and the max-slope method



Figure 7. Comparison of the index values calculated with the new method, FFT (with 

Hamming window) based method and the max-slope method



Figure 8. Comparison of the index values calculated with the new method, FFT (with 

Hanning window) based method and the max-slope method

It can be seen from these figures, the max-slope index saturates more quickly than the 

frequency domain index obtained from the new method as crack grows. The max-slope 

index value (represented by red star in Figures 6-8) will remain unchanged when crack 

length is greater than 12mm, while the frequency domain index value from the new 

method (represented by blue triangle in Figures 6-8) keeps increasing monotonically. The 

index values calculated using the FFT (without window)-evaluated FRF (represented by 

the green line in Figure 6) does not provide useful information for crack detection; while 

the index values calculated using the FFT (with window)-evaluated FRF (represented by 

the green lines in Figures 7 and 8) can provide information for detecting relative short 

crack, they cannot provide reliable information for detecting relative long crack as shown 

in Figures 7 and 8. This demonstrates the advantage of the new method over the existing 

output-only time-domain method and the direct FFT-based frequency-domain method for 

crack detection and classification.

4. Experimental study on corrosion detection using ultrasonic inspection



To test the applicability of the new method with different types of NDT techniques, an 

experimental study on corrosion detection using ultrasonic inspection is presented in this 

section. Ultrasonic inspection is a well-established NDT technique and has been widely 

used in structure health monitoring [1]. Similar to the PEC-based NDT system discussed 

in last section, the feature extraction in an ultrasonic inspection-based system is 

conventionally based on analysis of the system response signal only. The defect detection 

is traditionally performed with the features extracted from the differential signal (i.e. the 

difference between monitored response and the baseline response) [13], [14], or by 

correlation analysis where the monitored outputs are compared with the baseline (defect-

free) output directly [15]. To demonstrate the effectiveness of the new method developed 

in this paper with ultrasonic-based NDT technique for defect detection, an experimental 

study on using a PZT transducer-based ultrasonic inspection system for corrosion 

detection and classification had been carried out and the associated results obtained with 

the new method are presented in this section.

4.1. Experimental Setup

Two samples were used for evaluation in the experiment. The first sample was 20mm 

thick mild steel (S275), polished on one side and shot-blasted on the other. The second 

sample was identical in dimension and polished on one side, but has since been exposed 

in marine atmosphere for 10 months of corrosion on the shot-blasted side as shown in 

Figure 7.  The transducer is attached to the polished side and used to assess the state of 

the other side.

Figure 7. Material under test: coupling side (left) and evaluation side (right); shot-blasted 

(SB) sample (top) and corroded (C) sample (bottom)

The general arrangement of the sensor tag with a PZT payload and the hardware 

implementation of the experimental ultrasonic inspection system are shown in Figure 8. 

The microcontroller initiates a transmit pulse and a bench oscilloscope is used to capture 

the acoustic reverberation (i.e. response).  This arrangement allows the acoustic response 



to be sampled well above the Nyquist frequency. Once an acquisition has been completed, 

the acquired data is conveyed to a PC for processing.

Figure 8. PZT sensor tag consisting of transmit circuitry, sensor payload, receive circuitry 

and the overall hardware implementation of the experimental system.

The above system was used to capture the response from 5 different positions on each 

sample.  The ten pairs of the captured excitations (inputs) and responses (outputs) are 

illustrated in Figure 9. 



Figure 9. Captured input and output signals

The new method depicted in Figure 1 was used to process these data. Again, the OFR 

algorithm [9] was used for model identification so as to minimize the interaction from the 

user and ten ARX models of form (1) with the maximum order  were identified 𝑛= 20

from each of ten input-output data sets. To check the quality of the identified models for 

describing the dynamic behaviors of the underline systems, the model predicted 

responses are compared with the actual measured responses and the results are shown in 

Figure 10.



Figure 10. Results of time-domain modelling---comparison between model predicted 

outputs and the measured responses

It can be seen that the outputs predicted by the identified models fit quite well with the 

measured responses and the identified models can, therefore, be used to represent the 

systems under investigation for further analysis.

4.2. Feature Extraction and Experimental Results 

Once the models have been identified, following the procedure illustrated in Figure 1, the 

system FRFs can be derived from the identified models using equation (4), and the results 

are shown in Figures 11 and 12.

MHz100

--- C1, --- C2, --- C3, --- C4, --- C5;          ― SB1, ― SB2, ― SB3, ― SB4, ― SB5

Figure 11. Magnitude curves of the FRFs computed from the identified models



--- C1, --- C2, --- C3, --- C4, --- C5;          ― SB1, ― SB2, ― SB3, ― SB4, ― SB5

MHz100

Figure 12. Phase curves of the FRFs computed from the identified models

   In Figures 11 and 12, the dashed lines are FRFs obtained from the corroded (C) sample 

and the solid lines are those obtained from the shot-blasted (SB) samples. It can be 

observed that the magnitudes of FRFs derived from the identified models are, in general, 

not reliable indicators for the corroded/non-corroded cases as there is no obvious 

grouping between corroded/non-corroded cases using the magnitudes of the FRFs as 

shown in Figure 11. However, the variation in the phase of FRFs due to corrosion is 

apparent at low-frequency part (dashed box part of Figure 12), and this is shown in 

Figure 13 where the zoom-in of the dashed box part of Figure 12 is plotted. Hence the 

phase of the FRF derived from the identified model can be selected as the feature for 

corrosion detection with the above ultrasonic inspection-based SHM system.



--- C1, --- C2, --- C3, --- C4, --- C5;          ― SB1, ― SB2, ― SB3, ― SB4, ― SB5

MHz100

Figure 13. Low-frequency phase curves of the FRFs computed from the identified models

   To facilitate detection, the sum of phase angles of the FRF over the frequency range 

between 3MHz to 5MHz is defined as a single-valued index for corrosion detection.  The 

calculated index values of the FRFs derived from the identified models of the corroded 

and shot-blasted samples with each sample inspected at five different locations are 

summarized in Table 1 below.

Table 1. Index values for corrosion detection

sample corroded sample (C) shot-blasted sample (SB)

position C2 C3 C1 C5 C4 SB5 SB1 SB4 SB2 SB3

index value -124.01 -126.67 -127.34 -130.82 -132.12 -135.18 -135.50 -137.70 -138.22 -139.22

It can be seen from Table 1 that, in general, the phase lag from the corroded sample is 

smaller than that from the shot-blasted (i.e. non-corroded) sample and this property of the 

derived FRF can be used for corrosion detection and characterization.

5. Conclusions

   The problem of feature selection and extraction for defect detection and 

characterization using NDT techniques has been investigated and an input-output model 

based feature extraction and selection method using system identification technique has 

been developed for defect detection and characterization in this paper. The main novelty 

of the proposed solution is that we consider the problem of feature extraction from a 



system perspective and the features are extracted using both the input and output signals 

rather than output (i.e. response) signal alone. The new approach provides a general and 

flexible framework to select and extract features from the system FRF derived from an 

input-output parametric dynamical model identified using both system input and output 

data. This is in contrast with the previous methods, where the feature selection and 

extraction are based on analysis of the system output (response) only. Hence, the new 

method does not require that the excitation to be used in test is the same as that used in 

obtaining reference/or baseline response as long as the excitation to be used is 

persistently exciting of certain order (see e.g. [7]), i.e. it contains sufficiently many 

distinct frequencies that cover the relevant dynamical modes of the NDT system. This 

provides a much appreciated flexibility for users, so that the best excitation can be 

selected for a specific application. The core elements in the new method are the routines 

for ARX model identification and the associated FRF evaluation which are well-

established in control system society, and can be used in conjunction with different types 

of NDT techniques. In addition, as the FRF represents the inherent characteristics of the 

inspected system, the defect detection results obtained using the new method can 

potentially be more robust to the impacts of various disturbances including noises. The 

new method developed has been applied to process the data from two experimental 

studies for defect detection using different types of NDT techniques, which verify the 

idea behind the new method developed and demonstrate the potential of the new 

approach in NDT&E-based SHM applications. It opens research using control 

engineering-based method to improve the NDE techniques.

   It needs to be pointed out that the linear relationship between excitation and response of 

the SHM system under investigation has been assumed throughout the current study, if 

nonlinearity in this relationship is significant, the new method may not work. However, it 

is possible to extend the idea behind the new method developed to the nonlinear case and 

a potential solution to the problem is to use the NARMAX (Non-linear AutoRegressive 

Moving Average with eXogenous input) modelling method [16] [8] [9], instead of using 

an ARX model structure for model identification as described in this paper. In addition, 

the Nonlinear Output Frequency Response Function (NOFRF) [17], which can be 

evaluated from the identified NARX model, needs to be used for describing the 

frequency-domain characteristics of the nonlinear SHM system under investigation as the 

linear FRF is not adequate to define the frequency-domain properties of a nonlinear 

system. The features for defect detection and characterization will then need to be 

selected and extracted from the NOFRF derived from input-output data. Further research 

aiming to address these issues and application of the new method in combination with 

other types of NDT technique, such as radio frequency identification (RFID) sensor-

based feature extraction [19], [20], are currently being carried out by the authors.
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