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Abstract

Cyclists form the most vulnerable road user group in terms of injury from traffic accidents, as well as

exposure to traffic-related air pollution. Ironically, commuter cyclists are often motivated by improve-

ment in health and fitness. Cycleways away from traffic with lower concentrations of pollutants from

motorised vehicles sometimes result in longer distances and hence require longer travel times, while

alternative routes sharing the road with other traffic, sometimes with buses, might result in exposure

to higher pollutant concentrations. To help commuter cyclists achieve their objectives of getting to

work in the shortest possible time and maximising their health benefits, we propose a bi-objective

route choice model, with the minimisation of travel time and pollutant dose as the two objectives. A

transport network information database is first constructed with comprehensive information on link

type, lane width, gradient, link average speed, traffic volume, etc. such that both the travel time and

the pollutant dose can be estimated at a reasonable level of accuracy. In particular, the pollutant dose

will be dependent on the exercise level as well as the concentration of pollutants. Given an origin

and a destination, to be provided by a cyclist, we apply a bi-objective shortest-path algorithm to de-

termine an efficient set of routes such that neither the total travel time nor the total pollutant dose can

be reduced without worsening the other. Profiles of this route choice set in terms of other useful in-

formation, such as elevation, and pollutant concentrations along the route can also be provided. With

our model, cyclists can more easily trade off between commute time and pollutant dose. In cities with

hilly terrain, such as in Auckland, New Zealand, such information can be expected to be extremely
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valuable for current and potential cyclists.

Keywords: Commuter cycling, optimisation, air pollution exposure, route choice, bi-objective

shortest path.

1. Introduction1

Promoting the use of more sustainable modes of transport, such as active modes including walk-2

ing and cycling, has been one of the key policy instruments used to improve the sustainability of3

transportation systems. For example, the launch of Barclays Cycle Hire and Barclays Cycle Super-4

highways in 2010 in London, together with the congestion charging introduced in 2003, clearly form5

part of an integrated strategy to promote cycling as a mode of transport. In fact, even before the in-6

troduction of ‘Cycle Superhighways’, based on data collected through a set of permanent automatic7

cycle counters on selected sections by Transport for London (TfL), as shown in Transport for London8

(2010), the average flows were showing steady increases, and the average flow in 2009/10 was 1179

per cent higher than in 2000/01. A trend analysis of cycle flows on major roads in London based on10

Department for Transport (DfT) data (Transport for London, 2010, p.58, Figure 2.12) show that the11

rate of increase since the introduction of congestion pricing in 2003 has been significantly higher. The12

number of people entering central London by bicycle during the weekday morning peak increased13

by 15 per cent in 2009 and more than doubled (an increase of 123 per cent) between 2001 and 200914

(Transport for London, 2010, p.58).15

Cycling is no doubt a sustainable mode of transport for many reasons. To name a few, it does16

not consume non-renewable energy resources such as fossil fuels, it does not generate vehicle emis-17

sions that damage our environment and potentially cause negative impacts on population health, and18

it promotes health and fitness and general well-being. In fact, based on a survey conducted at the19

University of Auckland, ‘to improve health and fitness’ was identified as the primary motivator for20

existing cyclists to cycle (Wang et al., 2014). A number of review studies (de Hartog et al., 2010;21

Götschi et al., 2015; Oja et al., 2011; Mueller et al., 2015) have shown that cycling can indeed be22

part of daily life as a mode of transport and a means to improve health and fitness, with the increase23

in physical activity contributing dominant benefits. However, along with accident risk, increased ex-24

posure to air pollution is also of concern for cyclists (Wang et al., 2014). Road vehicles produce a25

range of gaseous pollutants (including carbon monoxide) and particulate matter of various size frac-26

tions, pollutants that tend to be correlated with one another when measured in roadside environments27
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(Beckerman et al., 2008). Unlike the commonly-measured gaseous pollutants, particulate matter is28

difficult to quantify as every particle is unique in its size, shape and composition. Likewise, unlike the29

major gaseous pollutants, particulate matter does not have a known maximum safe exposure limit, so30

any reductions in exposure through the careful design of cycling infrastructure can be considered to31

be of health benefit. One would also expect that air pollution dose is highly variable depending on the32

spatial characteristics of the route.33

Regional authorities typically monitor a range of different pollutants in order to assess the quality34

of the air. Traditionally, personal exposure studies have tended to use carbon monoxide (CO) as35

the marker for traffic air pollution monitoring, due to the early development of portable monitoring36

technology for this pollutant (De Bruin et al., 2004; Liu et al., 1994). In urban environments where37

there is a relatively high proportion of older petrol vehicles, CO remains a useful pollutant to measure38

(Dirks et al., 2012). Recent personal exposure studies tend to involve the measurement of multiple39

pollutants simultaneously, typically particulate matter (PM) as well as CO (Int Panis et al., 2010; Kaur40

et al., 2005). Thus, CO remains popular despite its more limited health risk at the levels typically41

observed in commuter exposure studies. In this study, we also use CO as a proxy for PM emissions,42

which are harder to measure using portable monitoring equipment.43

There has been a strong focus in the recent literature on commuting, with respect to air pollution44

exposure since people tend to spend a significant amount of their outdoor time commuting and air45

pollution levels tend to be high along road corridors (Kaur et al., 2005). Many studies compare46

exposure for different modes of commuting, (e.g. de Nazelle et al., 2012; Dirks et al., 2012; Duci47

et al., 2003; Int Panis et al., 2010). While studies have shown that the concentrations to which cyclists48

are exposed tend to be somewhat lower than for those commuting by private vehicles (Boogaard49

et al., 2009; Rank et al., 2001), when the (often) increased commute time and increased physical50

activity of cyclists during their commute are taken into account, the air pollution doses have been51

found to be significantly higher than for the motorised modes (de Nazelle et al., 2012; Dirks et al.,52

2012; Int Panis et al., 2010). For instance, experimental results from studies conducted in Auckland,53

New Zealand indicate that while the concentrations of CO experienced by a runner and a cyclist are54

lower than that experienced by a car driver, the corresponding CO doses are higher (Dirks et al.,55

2012). Similar patterns of PM2.5 concentration and doses are observed in experiments conducted in56

Barcelona (de Nazelle et al., 2012).57

This also means that switching from motorised vehicles to cycling might not necessarily bring58
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health benefits from the point of view of air pollution exposure unless carefully designed cycleways59

are provided or there is a very substantial decrease in the number of cars on the roads. This has signif-60

icant implications for the planning of cycling infrastructure such as ‘Cycle Superhighways’ and their61

connections to the existing network of cycling facilities. It is essential to ensure that the investment in62

cycling infrastructure/facilities can improve both travel time for commuters as well as creating health63

benefits for both cyclists and non-cyclists from the point of view of air pollution exposure.64

Cycleways away from traffic and on roads with lower concentrations of pollutants from motorised65

vehicles are often longer routes and hence require longer travel times, while alternative routes on66

main roads sharing the road with other traffic, sometimes with buses, might result in exposures to67

higher pollutant concentrations. One would expect that the two objectives of getting to work in a68

reasonable amount of time (relative to commuting by other modes) while retaining the health benefits69

from cycling without the adverse consequences of unnecessary air pollution exposure have to be well70

balanced.71

To assess the potential health benefits for active transport (walking and cycling), both the benefits72

from increase in physical activity and (dis)benefits from pollutant dose should be considered. How-73

ever, pollutant dose has not been considered explicitly in most of the previous studies. As shown74

in Mueller et al.’s comprehensive review, only seven out of selected 30 studies have considered the75

impact of air pollution on active travellers (Mueller et al., 2015, Table 1). For instance, Woodcock76

et al. (2014) estimate a change in daily total exposure as the time spent travelling in each mode mul-77

tiplied by that mode’s exposure (in average concentration). While travel time has been considered,78

this method covers only part of the picture. As shown in experimental studies, due to a two- to three-79

fold increase in breathing rate for active modes compared to passive travel modes, this method might80

lead to underestimation of inhaled pollutant dose. As shown in experimental results (de Nazelle et al.,81

2012), the inhaled doses of pollutants during commuting account for a high percentage of the total82

daily dose, e.g. CO intakes account for 40-65% for all modes. It is, therefore, important to assess the83

health impact of inhaled pollutant dose during commuting.84

Another aspect that is missing in the assessment is the localised (spatial) effect of changes in level85

of congestion. For instance, Woodcock et al. (2009) developed an Integrated Transport and Health86

Impact Modelling Tool (ITHIM) to estimate the health impacts from transport related physical activity87

as well as changes to air pollution. However, the effect of changes in traffic congestion on air pollution88

was not modelled in ITHIM. It is assumed that the reduction in transport-related emissions, as a result89
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of increases in walking and cycling instead of car use, led to equal proportional reduction in pollutants90

attributed to transport. Schepers et al. (2015) assess the potential health impact of investment in91

cycling infrastructure in a hypothetical city considering both the influence of changes in physical92

activity and pollutant dose. However, the assessment is based on change in mean concentration and93

the effect of travel behavioural change in terms of modal shift from driving to cycling is not modelled.94

To model the influence of traffic volume, composition and speed on the environment, there are95

numerous studies in the literature linking strategic transport planning models with air quality models,96

e.g. Affum et al. (2003); Boogaard et al. (2012); Hatzopoulou and Miller (2010); You et al. (2010);97

Lee et al. (2009). Vehicle emissions are first estimated based on link-based traffic flow, speed and98

vehicle types. Then by applying dispersion models, pollutant concentrations can also be estimated.99

In order to assess health effects of emissions, recent studies have taken one step further to assess100

individual exposure to air pollution (Shekarrizfard et al., 2015; Sider et al., 2013), where exposure101

is modelled by a proxy variable as the level of emissions occurring in a zone. Hatzopoulou et al.102

(2013) developed a web-based route planning tool to help cyclist find the ‘cleanest’ route based on103

lowest exposure in Montreal, Canada. Exposure is measured by multiplying the estimated average104

NO2 concentration of a road segment, using calibrated traffic assignment and emission models, with105

its length. This measure is effectively a proxy variable represented by a mathematical expression of106

the integrated concentration of NO2 over the entire route. Individual inhaled pollutant dose has not107

been modelled explicitly.108

In this study, we propose a bi-objective route choice model that can be used to provide informa-109

tion to help commuter cyclists achieve their objectives of getting to work efficiently while maximising110

their health benefits. From a modelling point of view, this is also a fundamental step in developing111

methodologies for the assessment of the economic, environmental and health benefits of cycling in-112

frastructure investment and cycling facility improvement projects.113

2. Problem Formulation114

To help cycling trip planning, we propose a bi-objective route choice model, which minimises115

travel time and pollutant dose, the two objectives in the bi-objective routing problem.116

2.1. Objective 1 – To minimise travel time117

In Ehrgott et al. (2012), the assumption was made that cyclists travel with fixed velocity across118

the whole network and therefore, a cyclist travel time function was adopted which is based purely119
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on distance travelled. In reality, for cities other than those that are completely flat, the speed (and120

therefore the travel time) of cyclists is affected by hills. In this paper, we make the assumption that,121

when faced with non-level terrain, a cyclist adjusts their speed so that their level of physical exertion122

remains constant, and their travel speed changes to compensate for the gradient. Hence, we introduce123

a travel time function for cyclists,124

ta =
la

v̄a
, (1)

where ta is the travel time on link a; la is the length of link a; and v̄a is the average speed travelled125

along link a, given by126

v̄a = v̄0 − θ × s̄a, (2)

where v̄0 is the average speed in a flat terrain; θ is the adjustment factor for the gradient; and s̄a is the127

average gradient of link a. We define s̄a to be negative when the commuter is travelling downhill and128

positive when the commuter is travelling uphill. In flat terrain, s̄a equals zero, hence v̄a = v̄0.129

As time is additive, the total travel time on route p is simply the sum of the travel times on the130

links along the route,131

tp =
∑

a∈p

ta. (3)

2.2. Objective 2 – To minimise pollutant dose132

We adopt a three-stage approach to modelling the pollutant dose by the cyclist during their com-133

mute. This involves: (a) modelling the emission rates for the road for each link based on the traffic134

flow, the average vehicle speed and the vehicle fleet composition; (b) modelling the air pollutant con-135

centrations from the road emission rates and the surface meteorology; and (c) modelling the cycling136

commuter dose from the air pollution concentrations and the travel time along each link in the com-137

mute. Each stage is described in turn below.138

2.2.1. Stage 1 – From traffic flow, speed and composition to vehicle emissions139

In order to estimate the road emission rates, we adopt the results from Costello et al. (2012).140

Costello et al. obtained traffic assignment outputs comprising speeds, volumes and vehicle fleet141

composition on each modelled network link from the Auckland Regional Transport Planning Model142

6



(known as ART3), provided by the former Auckland Regional Council (ARC). They combined this143

information with the Vehicle Emissions Prediction Model (VEPM), originally developed by the Uni-144

versity of Auckland for ARC (Auckland Regional Council, 2008). The VEPM predicts the emission145

rates of (single) vehicles found in the New Zealand fleet for typical road, traffic and operating con-146

ditions. Application of the VEPM to the traffic data from ART3 allowed them to estimate tailpipe147

emission rates for CO, carbon dioxide, oxides of nitrogen, particulate matter and volatile organic148

compounds for passenger cars, light duty and heavy duty vehicles. These were calculated for each149

link for three periods during the day corresponding to the AM peak (7:00am-9:00am), inter-peak150

(9:00am-3:00pm) and the PM peak (4:00pm-6:00pm) for weekdays, as modelled in ART3. From this,151

we obtained the total vehicle emission rate of pollutant x on each link, Qx
a for each of the three time152

periods of interest.153

2.2.2. Stage 2 – From vehicle emissions to pollutant concentrations154

Here we adopt the Site-Optimised Semi-Empirical (SOSE) model as described in Dirks et al.155

(2002, 2003) to predict the air pollution concentrations from the road emission rate and the average156

wind speed,157

Cx
a =

Qx
a

∆z (u+ u0)
+ Cx

B, (4)

where Cx
a is the estimated concentration of pollutant x on along link a; Qx

a is the total emission level158

of pollutant x on link a; and ∆z, u, u0, C
x
B are calibrated model parameters. The parameter ∆z is159

the ‘box height’ defined as the height of a box above the road into which pollutants are assumed to160

be uniformly mixed, u is the horizontal wind speed, u0 is the wind speed offset, included to avoid161

unrealistically high pollution concentration predictions in periods of very low wind speeds, and Cx
B is162

the background concentration.163

2.2.3. Stage 3 – From pollutant concentrations to pollutant dose164

Here we adopt the approach proposed by Dirks et al. (2012) to predict the dose of pollutants165

(relative to a passive commuter) based on the air pollution concentration along a link, the time spent166

travelling on a link and the breathing rate of the cycling commuter.167

dxa = Cx
a × ta × β̄a, (5)
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where dxa is the relative dose of pollutant x along link a; ta is the travel time on link a; and β̄a is the168

average cyclist minute ventilation along link a.169

As stated above, here we assume that the average minute ventilation β̄a is unaffected by the to-170

pography; that the cyclist simply adjusts their travel speed in such a way that their minute ventilation171

remains constant for links of differing slopes. Hence,172

β̄a = αa × β0, (6)

where αa is the adjustment factor for cycling; and β0 is the resting minute ventilation.173

Since dose is also an additive function, the total dose for route p is simply the sum of the dose on174

each link along the route,175

dxp =
∑

a∈p

dxa. (7)

3. Parameter Estimation176

3.1. Average commuting speed177

The bi-objective model requires an estimate of the average bicycle commuter speed. One of the178

most comprehensive surveys of average commuter speed was carried out by Aultman-Hall (2004)179

in which a questionnaire was administered to over 3000 commuter cyclists in Ottawa and Toronto,180

Canada, both of which are essentially flat cities, and found the average cyclist commuter speed to be181

approximately (19 ± 5) km/h and (15 ± 5) km/h in each of the cities, respectively. Based on these182

results, it is assumed here that the cyclists travel at an average speed of 17 km/h in level terrain.183

3.2. Relationship between cycle speed and road gradient184

In the bi-objective model, as stated above, it is assumed that, when faced with a slope (either185

positive or negative), a cyclist will adjust their commute speed so that their level of physical exertion186

remains constant throughout their journey. Martin et al. (1998) found that, for racing cyclists, for a187

given road gradient, the adjustment factor, θ, as defined in Equation (2), for the road gradient was 4.5188

km/h, with the average road gradient, s̄a, expressed as a percentage. These values are assumed here.189

The relationship was found to be linear for road gradients in the range of −6% to +6% (R2 > 0.99)190

(Martin et al., 1998).191
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For the present study, the road gradient is restricted to the range of −6.00% to +2.55%. A value of192

−6.00% corresponds to a travel speed of 45 km/h, a reasonable maximum speed for a cyclist travelling193

in traffic. A slope of +2.55% corresponds to a travel speed of 5 km/h, a typical walking speed. For194

any slope steeper than this, one can reasonably expect the cyclist to get off their bicycle and walk up195

the hill rather than persist on their bicycle at slower speeds.196

3.3. Box height, wind speed offset and wind speed197

An observational air quality field campaign was carried out in Auckland during the winter of198

2010 (Longley et al., 2013). Based on the data collected, the average box heights were found to be199

60m, 120m and 260m, and the average wind speeds over a period of three months were found to be200

2.1 m/s, 3.5 m/s and 2.5 m/s, for the AM peak, inter-peak and PM peak periods, respectively. The201

values are assumed to be applicable across Auckland and be representative of winter conditions. In the202

immediate vicinity of a road, it may be reasonable to assume that the contribution of the background203

to the overall concentration is negligible.204

3.4. Breathing rate205

The minute ventilation (the product of the breathing rate and the volume of air per breath) of206

cyclists is required to calculate the dose of pollutants. Studies have suggested that while commuting207

via sedentary modes, such as by car, the minute ventilation of an adult is around 12 L min−1. Studies208

have suggested that this value increases by a factor of two to four for cyclists, depending on the level209

of physical exertion (Int Panis et al., 2010; Zuurbier et al., 2009). In this study, it is assumed that210

αa = 3 and β0 = 12 in Equation (6), leading to an average minute ventilation of β̄a = 3 × 12 = 36211

L min−1, which is not dependent on the link.212

3.5. Limitations of the model formulation and parameter selection213

The average commuting speed of cyclists will vary significantly from person to person depending214

on many factors including the commuter’s level of fitness, age and gender, and will also vary from215

place to place because of cultural differences and attitudes to cycling and transport infrastructure. The216

parameter estimates suggested here are based on data collected for two Canadian cities and may not217

be representative of other cities around the world. At the present time, there is little information about218

average commuter cycling speed for Aucklanders.219
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The model assumes that the cyclists adjust their speed in response to gradients in such a way that220

their level of physical exertion remains constant throughout their commute and that their minute ven-221

tilation is three times that of a passive commuter. This is not necessarily the case; minute ventilation222

will be highly variable depending on the level of physical exertion of the cyclist. Also the slope of223

the line relating the cycling speed to the slope needed to maintain a constant level of physical exertion224

was determined using racing cyclists (travelling at approximately 40 km/h, more than twice the com-225

mute speed assumed here). More data are needed to validate the applicability of this assumption for226

commuter cyclists.227

The average box height estimates were made based on observations from a three-month-long field228

campaign carried out in Auckland during the winter. There are a number of assumptions that needed229

to be made in arriving at these estimates, including that of a uniform distribution within the air mass230

above the road, that the box heights are consistent across all of Auckland and that they apply equally231

to areas of different land use and road types. In reality, the box heights (and wind speed) estimates232

are expected to vary considerably from day to day, season to season and also to some extent from233

year to year. Further work is needed to determine the variability in these estimates, both spatially and234

temporally.235

It is also important to note that accident risk and exercise benefits also need to be taken into236

consideration when comparing the health impacts of different modes of commuting. However, neither237

of these is considered here.238

4. The Bi-objective Route Choice Model239

4.1. An overview240

The concept of the bi-objective route choice model is illustrated in Figure 1. Based on the two241

objectives as specified in Section 2: (1) minimise travel time; and (2) minimise pollutant dose, we242

apply a bi-objective shortest-path method to determine efficient routes for a given origin-destination243

pair. For example, as illustrated in Figure 1, Route 8 is dominated by Route 2 since both the travel244

time and the pollutant dose on Route 8 are higher than on Route 2. Route 6 is dominated by Route245

5 because even though both routes have the same travel time, the pollutant dose on Route 6 is higher246

than that on Route 5. In this way, the set of efficient routes will become a natural choice set for a247

cyclist, whereby neither of the two objectives can be improved without worsening the other.248

10



P
o

ll
u

ta
n

t 
d

o
s
e

Travel time

Route 1

Route 2

Route 3

Route 4

Route 5

Efficient routes

Dominated routes

Route 9
Route 8

Route 7

Route 6

Figure 1: An illustration of the bi-objective route choice model concept
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The bi-objective shortest path-problem of finding all efficient paths from an origin to a destination249

is a well-known extension of the standard shortest path problem in Operations Research literature. It250

is known that the problem is NP-hard and that, in the worst case, the number of efficient paths can251

be exponential in the number of nodes (see references in Raith and Ehrgott (2009)). Despite such252

negative theoretical results, applications of the bi-objective shortest path problem in transport show253

that, in practice, the number of efficient paths is reasonably small, even in huge networks (Müller-254

Hannemann and Weihe, 2006) and that it can be solved quickly when both objectives are additive,255

as in our model. Bi-objective label setting and label-correcting algorithms perform well in that case,256

as experiments by Raith and Ehrgott (2009) have shown. The same paper also gives an overview257

of other solution techniques. We employed the bi-objective label correcting algorithm, which is a258

straightforward extension of the standard bi-objective label correcting algorithm (Bellman, 1958).259

The main difference in the bi-objective algorithm is that label sets rather than single labels have to be260

kept at each node of the network. Initially, the source node s is labelled with set Labels(s) = {(0, 0)}.261

All labels at a particular node i are extended along all outgoing arcs (i, j). The new label set Labels(j)262

is formed by merging the extended labels from node i and the current label set at node j, taking care263

to eliminate dominated labels. Whenever the label set of a node changes, the node has to be marked264

for reconsideration. At reconsideration, the mark of the node is deleted. The algorithm terminates as265

soon as no nodes are marked for reconsideration.266

An alternative approach could be to compute only supported efficient paths to obtain an indication267

of the trade-off between travel time and pollutant dose. This can be done efficiently as shown by268

Medrano and Church (2015). If necessary further non-supported efficient paths can be found using a269

two-phase approach as indicated in Raith and Ehrgott (2009). In general, the problem of selecting a270

subset of efficient paths to present to the commuter cyclist is one that deserves further attention.271

5. A Case Study272

5.1. The study area273

We obtained two datasets from Auckland Council. As described earlier, the traffic flow, average274

speed and vehicle fleet composition were obtained from the ART3 model. In this study, we focus275

on the AM peak as modelled in ART3, which is the period from 7am to 9am. In addition to that,276

a Geographic Information System (GIS) dataset with gradient information is required in order to277

be able to derive the appropriate speed/breathing rate adjustment. While the ART3 dataset covers278
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the Auckland region, the GIS dataset includes only the Auckland City area (formerly governed by279

Auckland City Council). This area covered by both datasets becomes the study area of our case study.280

We then applied our bi-objective route choice model to two origin-destination pairs about 7 to 10281

km apart (based on the shortest route), as shown in Figure 2, to obtain the set of efficient paths for282

each O-D pair.283
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Figure 2: The chosen origin-destination pairs in Auckland
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5.2. Data preparation and manipulation284

Two main data sets are used in this analysis: The ART3 topological network assimilated to a GIS285

model and a GIS based gradient dataset derived from a digital elevation model. Some data manipula-286

tion was needed to create a usable road network in GIS. Our route choice model is based on a network287

model. The network structure is basically the road network in the traffic assignment component of the288

ART3 model, with approximately 16,000 links, which covers the whole Auckland region. Since the289

ART3 network is purely topological (non-spatial) in nature, it is necessary to assimilate its links and290

attributes with a GIS-based road network provided by Auckland Council in order to generate results291

with a spatial dimension. This was done by matching the IDs of links in ART3 with those of the292

roads. A combination of nearest node analysis and manual manipulation was used to handle links that293

were not automatically matched. The introduction of the spatial dimension is necessary for accurate294

extraction of gradient information.295

The gradient dataset is produced from a LiDAR derived digital elevation model with a resolution296

of 10m in the horizontal and 0.5m in the vertical dimensions provided by Auckland Council. Gradient297

data are retrieved along each of the routes in the road network on a per-10m basis.298

5.3. Results299

There are 20 and 17 efficient routes between O-D pairs 1 and 2, respectively. The performances300

in terms of the two objectives are plotted in Figures 3 and 4, respectively.301

Five out of the 20 and 17 efficient routes are selected for display purposes. To select these five302

paths, we divide the range of travel times among all efficient paths into equal intervals, and picked303

one from each interval.304

In this way, we guarantee that the shortest path as well as the path with lowest CO dose are305

included in the selection, along with representatives from the bigger clusters of points in Figures 3 and306

4. Figures 3 and 4 clearly illustrate the trade-offs between travel time and CO dose: Between Choice307

5 and Choice 1, travel time roughly doubles, whereas CO dose approximately halves. The elevation308

and CO concentration profiles of the selected routes are illustrated in Figures 5 to 8. These figures309

also show the commuter’s route before consideration of the bi-objective model on the maps. Based on310

the profiles, a cyclist will be able to select an appropriate route based on his/her own preferences. For311

instance, a cyclist might prefer Choice 1 over Choice 5 for OD-pair 1 to avoid going through high CO312

concentration areas, which can be identified from the CO concentration profiles illustrated in Figure313

15



6, although the travel time will be longer. Information on the corresponding vertical profiles of Choice314

1 versus Choice 5 as provided in Figure 5 might also be used to support the route choice decision.315
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Figure 5: Five selected choices and three selected elevation profiles for O-D Pair 1
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Figure 6: Five selected choices and three selected CO concentration profiles for O-D Pair 1
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Figure 7: Five selected choices and three selected elevation profiles for O-D Pair 2
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Figure 8: Five selected choices and three selected CO concentration profiles for O-D Pair 2
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6. Conclusions and Suggestions for Further Research316

We propose a new bi-objective route choice model to support the analysis of the health impact317

of route choice on cyclists. This advances the existing modelling methods to a new level. More318

specifically, this provides a first cut at estimating the route-specific relative dose of vehicle air pollution319

of individual cyclists, taking into account all of the factors (travel time, breathing rate and pollutant320

concentrations) contributing to this dose.321

The introduction of a bi-objective method enables more comprehensive information provision, as322

compared with existing single objective approaches. For instance, Hatzopoulou et al.’s web-based323

route planning tool provides two optimised routes, one being the ‘shortest’ while the other being324

‘cleanest’. Note that the two routes are generated based on either one of the two objectives: (1) min-325

imise distance; and (2) minimise exposure. With the proposed model, by applying a bi-objective326

approach, an efficient choice set can be presented to a cyclist, which will enable trade-offs between327

the two objectives to be made.328

The proposed model also enables spatial analysis of the localised effect of changes in traffic con-329

gestion, and its subsequent effect on inhaled pollutant dose. This will take the existing aggregate330

approach in health impact assessment to the next level. With further research in modelling cyclist331

route choice behaviour, e.g. with a cyclist trip assignment model, the proposed model can be applied332

to estimate cyclist route-specific pollutant dose on different cycling facilities, as a result of cycling333

infrastructure investment such as the case study in Schepers et al. (2015). Individual doses can then334

be estimated on their chosen routes, which is not possible with the current approach, i.e. based on335

average concentration and average time spent on different infrastructure.336

This model can become a building block of a decision support system to aid both policy and337

personal transport mode or route choice decisions. The relationship between transport choices and338

health needs to be studied scientifically to enable more sustainable decisions to be made. Our ultimate339

goal is to help maximise the benefits from cycling infrastructure and facility improvement investments,340

facilitating the entire system to move towards economic, environmental and health sustainability.341

Our approach is to build the linkages of strategic transport planning with air quality models, and342

subsequently assess the impact of air quality on individual cyclists at a route level such that the health343

impact, in terms of inhaled pollutant dose, can be assessed at an individual level.344

In order to see the complete picture, other modes of transport also need to be studied. With345

further research, the methodology developed in this paper can be extended to conduct analysis in a346
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multi-modal environment to assess the impact of the use of other alternatives modes or a mixture of347

different modes on population health.348

Apart from the travel time and pollutant dose, safety is another important factor affecting cy-349

clists’ route choice. The model developed in this study can be extended to a multi-objective route350

choice model by including other important factors, including safety considerations. This will, how-351

ever, increase the number of paths, as numerical studies on multi-objective shortest path problems352

have shown, see e.g. Paix̃ao and Santos (2013).353

It is important to note the limitations of the proposed model. By adopting a network approach, we354

are essentially modelling an ‘average’ case, in the sense that traffic assignment is typically performed355

for the peak periods (AM and PM peaks). In other words, this is a macro approach, where the average356

traffic flow and speed for the modelled period are considered. As a result, the estimated inhaled357

dose will also be an ‘average’ on a specific route during the modelled period. Thus, the estimates358

for different options or scenarios should be compared on a relative basis for the purpose of strategic359

analysis. Further research consisting of a sensitivity analysis of the model parameters will be useful360

in order to ensure that the level of accuracy is sufficient for meaningful analysis at a strategic level.361
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