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Abstract

Peatlands represent globally significant soil carbon stores that have been accumulating

for millennia under water-logged conditions. However, deepening water-table depths

(WTD) from climate change or human-induced drainage could stimulate decomposition

resulting in peatlands turning from carbon sinks to carbon sources. Contemporary

WTD ranges of testate amoebae (TA) are commonly used to predict past WTD in peat-

lands using quantitative transfer function models. Here we present, for the first time, a

study comparing TA-based WTD reconstructions to instrumentally monitored WTD

and hydrological model predictions using the MILLENNIA peatland model to examine

past peatland responses to climate change and land management. Although there was

very good agreement between monitored and modeled WTD, TA-reconstructed water

table was consistently deeper. Predictions from a larger European TA transfer function

data set were wetter, but the overall directional fit to observed WTD was better for a

TA transfer function based on data from northern England. We applied a regression-

based offset correction to the reconstructed WTD for the validation period (1931–

2010). We then predicted WTD using available climate records as MILLENNIA model

input and compared the offset-corrected TA reconstruction to MILLENNIA WTD pre-

dictions over an extended period (1750–1931) with available climate reconstructions.

Although the comparison revealed striking similarities in predicted overall WTD pat-

terns, particularly for a recent drier period (1965–1995), there were clear periods when

TA-based WTD predictions underestimated (i.e. drier during 1830–1930) and overesti-

mated (i.e. wetter during 1760–1830) past WTD compared to MILLENNIA model pre-

dictions. Importantly, simulated grouse moor management scenarios may explain the

drier TA WTD predictions, resulting in considerable model predicted carbon losses and

reduced methane emissions, mainly due to drainage. This study demonstrates the value

of a site-specific and combined data-model validation step toward using TA-derived

moisture conditions to understand past climate-driven peatland development and car-

bon budgets alongside modeling likely management impacts.
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1 | INTRODUCTION

Globally, peatlands contain ~30% of all soil organic carbon (SOC),

despite covering only 3% of the land surface (Parish et al., 2008).

They occur mainly in the Northern Hemisphere circumpolar region,

where low temperatures, high soil moisture and slow decay rates of

litter input via net primary production (NPP) allow peat to form (i.e.

a long-term positive balance between NPP and litter decay), often

under conditions of high water-table depth (WTD). Crucially, this

slow decay preserves an archive of peatland development (i.e. animal

and plant remains) that can be dated and used to reconstruct past

drivers of peatland growth, such as WTD and vegetation composi-

tion, providing key information on how peatlands respond to

changes in climate.

Blanket bogs are a globally rare peatland habitat with the United

Kingdom containing about 15% of this habitat (Tallis, 1998) but

mostly in a degraded state (Natural England, 2008), largely due to

past environment (e.g. N deposition) and management (e.g. drainage)

impacts. In the UK blanket bogs represent about 90% of all peat-

lands (Bain et al., 2011), which are often managed for grazing and

grouse shooting, commonly supported by draining the peat and reg-

ular burning of vegetation. The consequence is dominance of

heather (Calluna vulgaris), very low overall plant biodiversity, sup-

pressed cover of peat-forming Sphagnum mosses (Lindsay, 2010),

and often drier and eroding peat. In fact, only about 12% of pro-

tected blanket bog sites are classified as in favorable condition (Nat-

ural England, 2008). However, little is known about management

impacts on the long-term SOC accumulation and soil C emissions.

UK blanket bogs have accumulated peat since the start of the

Holocene about 11.6 k years ago under varying climate, but current

bioclimatic models highlight the threat by climate change to their

natural range (Gallego-Sala et al., 2010), suggesting that they might

start to degrade as the climate warms (Gallego-Sala & Prentice,

2013) resulting in water-table drawdown and increased decomposi-

tion. However, existing bioclimatic models do not consider extremely

important autogenic negative feedbacks within peatlands that may

actually act as a “buffer” to climate change (Swindles, Morris, Baird,

Blaauw, & Plunkett, 2012). Such feedbacks include ecohydrological

linkages between changes in WTD and shifts in vegetation commu-

nities (with different rooting depth and litter quality and thus affect-

ing SOC inputs across depth and peat decomposition rates). A better

process-level understanding of climate-peatland SOC feedbacks is

clearly needed (Davidson & Janssens, 2006) since the mineralization

of peatland soil organic matter (SOM) has the potential to release

vast amounts of previously locked-up C into the atmosphere.

Depending on the water-table level, C emissions from decomposition

are either as CO2 (oxic acrotelm) or CH4 (anoxic catotelm), the latter

particularly responsible for exacerbating climate change and affecting

the overall greenhouse gas (GHG) emissions. However, a key limiting

issue in more accurate predictions of future climate is still the inade-

quate model representation of climate – terrestrial carbon (C) cycle

feedbacks, particularly of peatland soil organic carbon (Limpens

et al., 2008). Several peatland models of varying complexity and

feedback mechanisms have been developed (Baird, Morris, & Belyea,

2012; Bauer, Gignac, & Vitt, 2003; Clymo, 1984; Frolking et al.,

2010; Gignac, Vitt, & Bayley, 1991; Heinemeyer et al., 2010), which

have often been compared to measured C stocks. However, there is

a lack of validating the C cycle underpinning hydrological model pre-

dictions against past palaeo records.

Peat archives from peat cores are also important for testing

peatland development models, which predict peat layer accumulation

and their associated chemical (e.g. carbon content) and physical (e.g.

bulk density) properties, enabling comparison between the two.

Data-model comparisons have revealed uncertainties in peat accu-

mulation processes (Clark et al., 2010), particularly considering

hydrology, vegetation and NPP. Furthermore, recent peat core stud-

ies (Charman et al., 2013) indicate increased C accumulation during

warmer periods due to increased NPP outweighing higher decompo-

sition, which contradicts most global earth system model carbon

cycle simulations (Friedlingstein et al., 2006). Moreover, those global

earth system models used by the Intergovernmental Panel on Cli-

mate Change (IPCC) do not yet adequately include peatland SOC

dynamics, limiting global predictions on future climate C-cycle feed-

backs and resulting GHG emissions. Latest attempts to include peat-

lands in global dynamic vegetation models (e.g. LPX; Spahni, Joos,

Stocker, Steinacher, & Yu, 2013) are promising, yet still show major

process-level uncertainties.

Testate amoebae (TA) are commonly used to reconstruct peat-

land hydrological changes over the Holocene, as indicator species

are aligned across a gradient of wet to dry conditions based on pre-

sent-day associations (Amesbury et al., 2016; Turner, Swindles, &

Roucoux, 2014). Peat cores provide a stratigraphic (i.e. temporal)

archive of past TA species composition, thus allowing to predict past

moisture (and likely water-table) conditions from understanding of

contemporary ecology. Quantitative transfer functions are used to

establish a relationship between present-day species composition

and hydrological data and then applied to subfossil data from cores

(Amesbury et al., 2016).

Model predictions of peat carbon stock and flux changes rely on

capturing seasonal and interannual WTD changes. Although in the

short-term site measurements can be used for model validations, val-

idation over longer-time scales relies on comparing model predic-

tions to WTD reconstructions, for example, based on TA taxa found

within the peat core. In addition to other dating tools such as radio-

carbon (Turner et al., 2014), the use of Spheroidal Carbonaceous

Particles (SCPs; Swindles, 2010) allows the generation of temporally

constrained records of palaeo-hydrological conditions in the recent

past. Together with dating tools, palaeo-reconstructions thus offer

crucial insights into peatland development, (i) understanding baseline

trajectories in peatland development, and (ii) assessing long-term

resilience and recovery rates of peatlands to climate or management

impacts (Swindles et al., 2016). TA based reconstructions of past

WTDs can then be compared to process model predictions, provid-

ing an important hydrological model validation tool. A good fit
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between TA and model predicted WTDs supports applying model

scenarios to explore past management impacts on peatland function-

ing and C storage. The MILLENNIA peatland model predicts peat

hydrological conditions (i.e. water-table depth) based on climatic

conditions and long-term peat column growth either for annual or

monthly time steps. Here, we used the annual MILLENNIA version

(Heinemeyer et al., 2010) for long-term peat accumulation during

the Holocene until 1914, and then either the annual or monthly ver-

sion (Carroll et al., 2015) until 2012. This choice of model application

reflected the availability of climate data. The WTDs predicted by the

MILLENNIA model allowed comparison to TA-based WTD recon-

structions from ca. 1760 onwards for a peat core at Moor House

National Nature Reserve (NNR) using TA transfer functions. The

WTDs from different management model scenarios were then com-

pared to the TA-based WTD, and related to C accumulation and C

emissions affecting the GHG balance.

2 | MATERIALS AND METHODS

2.1 | Site location and environmental conditions

The study site, Moor House National Nature Reserve (NNR), covers

about 75 km2 of a typical UK blanket bog with much known about

its ecology (Garnett, Ineson, Stevenson, & Howard, 2001; Heal &

Perkins, 1978) together with detailed meteorological (i.e. weather

station) and hydrological (i.e. water-table) data collected by the Envi-

ronmental Change Network (ECN). It is located in the northern Pen-

nines across an elevation range of 290–850 m (a.s.l.) and is

characterized by a subarctic–oceanic climate with an average long-

term mean annual temperature (MAT) and precipitation (MAP) at

550 m altitude of about 5.1°C (1931–1997) and around 2,000 mm

(last 20 years), respectively (cf. Garnett, 1998). Peat formation at the

study site started about 9,000 years ago (see Heinemeyer et al.,

2010 for more site information). This study focuses on a square kilo-

metre around the ECN meteorological station at 550 m (NY757328;

54°680 N, 2°370W), a site with mostly deep (>1 m) peat (histosol),

supporting dominant vegetation of Calluna vulgaris L. [Hull] and Erio-

phorum spp. with some Sphagnum spp., and classified as a Calluna

vulgaris–Eriophorum blanket mire (for more information on vegetation

and peat depth see Garnett, Ineson, & Stevenson, 2000 and Heine-

meyer et al., 2010). Typically the peatland site has a pH of generally

between 3.0 and 4.2 and a high mean annual WTD of within 5 cm

of the peat surface for >80% during the year (Evans, Burt, Holden, &

Adamson, 1999).

2.2 | Peatland model predictions

The MILLENNIA peatland model (Heinemeyer et al., 2010) predicts

peat hydrological conditions (i.e. water-table) based on climatic con-

ditions either for annual or monthly time steps. The hydrological

conditions, in connection with internal factors (e.g. litter quality) and

external modifiers (e.g. temperature and oxygen availability), then

determine decomposition rates of old and new carbon fractions (as

in Bauer, 2004) across the peat profile based on litter inputs via

NPP as a function of potential evapotranspiration (PET) based on

Lieth and Box (1972). Detailed model explanations are provided in

Heinemeyer et al. (2010; annual model) and Carroll et al. (2015;

monthly model). Here, we used the annual version for the long-term

peat accumulation during the Holocene and for the period until

1914, and either the annual or monthly version until 2012 (reflecting

model application and climate data availability). However, model out-

puts are only provided as annual averages in relation to average TA

predictions. The main model driver is climate with either monthly or

annual temperature and rainfall amounts as inputs. Both versions

consider topography (e.g. slope affecting temperature, runoff and

erosion), vegetation (e.g. affecting NPP, litter quality and transpira-

tion losses) and proceeding hydrological conditions (e.g. high water-

tables leading to higher run-off) to predict a new water-table, vege-

tation (based on the preceding 5-year average water-table) and cor-

responding changes in soil carbon fluxes (i.e. CO2 and CH4 from

decomposition), peat depth increments (i.e. accumulation) and soil C

budgets (change in soil C stock in relation to input from NPP and

losses from soil C fluxes from decomposition and erosion).

Further changes were implemented to improve hydrological and

C flux process representation by calculating water filled pore space

in the peat, bedrock drainage, plant-mediated transport and methane

oxidation (oxidation):

• The available pore space in relation to the height above the water-

table depth (WTD) was based on data by Hayward and Clymo

(1982; see Figure 4, but ignoring the short term hysteresis

effect); an exponential relationship is assumed between the dis-

tance to the water-table and the available pore space (0.2*EXP

(1.6*WTD2)), such that available space increases with distance

from the water-table. Total space is then calculated by integrating

the available pore space over the available unsaturated peat

cohorts. By combining the water entering the system with the

available space, a new WTD is calculated.

• To simulate drainage of the peat column into the bedrock, two

drainage factors are included, specific yield (SY) and hydraulic

conductivity (HC). These are set to default values of 0.02 (SY in

%) and 0.1 (HC in cm/year) reflecting average values for clay

reported by Johnson (1967) for SY (2%) and for unweathered clay

based on Bear (1972) for HC (10–5 feet/day). However, SY and

HC can be altered as a user input.

• The plant functional type (vegetation) composition of shrub, sedge,

rush, grass, herb, Sphagnum, other moss) is based on a moving

average of 5 years of previous water-tables, allowing representing

a more stable/resilient vegetation in the case of only a few very

dry or wet years.

• The anoxic ratio is set to 0.035, similar to values reported in pre-

vious literature (Bauer, 2004) ranging from 0.025 to 0.0625.

• Methane oxidation is set to 0.05 g C g�1 year�1 and reflects the

range of the very scarce data available on methane oxidation in

relation to dry peat and/or on a carbon (mass) basis, i.e. McDon-

ald, Hall, Pickup, and Murrell (1996) provided incubation values at
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20°C for UK peat of around 0.08 g C g�1 year�1, Watson, Ste-

phen, Nedwell, and Arah (1997) quoting 0.012 g C g�1 year�1

(i.e. 0.001021 mol C g�1 year�1 equal to 1.021e�3 mol C g�1

year�1), but Yrj€al€a et al. (2011) quoted only 0.0009 g C g�1 year�1

(0.2 lmol g�1 DW day�1) and Whalen and Reeburgh (2000) mea-

sured around 0.002 g C g�1 year�1.

We used available reconstructed Holocene climate data (based

on a combination of recent instrumental data and a variety of exist-

ing multiproxy climate reconstructions, see Morris, Baird, Young, &

Swindles, 2015) to model long-term peat accumulation, Met Office

5 km gridded data (Perry & Hollis, 2015) for the recent past (1914–

1991) and ECN data (ECN Data Centre: http://data.ecn.ac.uk) for

recent present periods (1992–2012). Met Office data were adjusted

for elevation for the Moor House site in order to achieve the same

long-term average temperature and rainfall amounts as the Moor

House ECN data (see Carroll et al., 2015). Model predictions of

monthly WTD could be compared to averaged ECN hourly auto-

mated dipwell data (UK grid location: NY 75072 33425; missing data

were gap-filled by interpolation of manual data) for the period of

1999–2012. Water-table depth standard deviation for a Moor House

model evaluation (see supplementary data in Carroll et al., 2015)

was predicted to within 0.32 cm (linear R2 = 0.57).

Moor House was a formal shooting estate during 1842–1951

and grouse moor management scenarios reflected available site

information (Rob Rose, CEH; personal communication), which indi-

cated a 20 year burn rotation. The associated drainage was assumed

to last from 1831, before intensification of grouse shooting (to

enable enhanced heather growth and drier access conditions for

gamekeepers), until the late 1950s. Burning was anticipated to have

started in 1851 and to reduce NPP to 1% in the burnt year (and

charcoal adding about 5% to an inert carbon pool), subsequently

recovering in a sigmoidal shape to 100% by either 5 or 10 years

after burning (based on field observations by A. Heinemeyer et al.,

unpublished data). Drainage was expected to reduce WTD on aver-

age by 5 cm, based on the field evidence of Wilson et al. (2010).

Reduced WTD were linked to enhanced decomposition and

increased the associated CO2 but decreased CH4 emissions similarly

to modeled impacts of natural WTD changes (Heinemeyer et al.,

2010). Drainage (grip) effectiveness was assumed to be at optimum

for 25 years and declining to 60% over the subsequent 15 years (re-

newed once in 1871 and then maintained at optimum until 1905,

reflecting intense grouse shooting), finally declining to 0% by 1955.

Grazing pressure was anticipated to be insignificant above 450 m

(i.e. no reduction in NPP at the modeled altitude of 550 m a.s.l.).

Further model scenarios considered a no management option (no

shoot).

2.3 | Water-table reconstructions

A Russian peat core was taken from the top 50 cm of peat beside

the Moor House ECN station (Lat. 54.695500; Lon. �2.387400) fol-

lowing De Vleeschouwer, Chambers, and Swindles (2010). The core

was returned to the laboratory and stored at 4°C before analysis.

The top 20 cm of the core was sampled at 0.5 cm resolution and TA

were prepared using the standard method of Booth, Lamentowicz,

and Charman (2010). We applied the Northern England and pan-Eur-

opean transfer functions to the subfossil TA data to reconstruct

WTD (Amesbury et al., 2016; Turner, Swindles, Charman, & Blundell,

2013). In both cases weighted-averaging tolerance downweighted

regression with inverse deshrinking was used as it yielded the best

performance statistics. The water-table reconstructions were stan-

dardized following Swindles et al. (2015). There is some variation in

predicted water-tables between the two transfer functions which is

caused by intermodel differences in WTD optima of key taxa. Some

drier taxa (e.g., Nebela militaris, Trigonopyxis arcula type) have drier

optima in the Northern England model owing to the inclusion of

some very dry peatlands affected by fire and drainage from this

region. Sample-specific standard errors for the TA transfer function

reconstructions were based on 1,000 bootstrapping cycles (Ames-

bury et al., 2016). The resulting WTD predictions could then be

paired with mean annual WTD predictions for years obtained from

the MILLENNIA model based on establishing a peat age-depth pro-

file based on a SCP profile.

2.4 | Peat core age-depth profile

SCPs have been deemed to provide reliable age information from

peatlands in Northern Britain and Ireland for the last ~150 years

(Swindles, 2010; Swindles, Blundell, Roe, & Hall, 2010; Turner et al.,

2014). Three unambiguous features can be used as age-equivalent

stratigraphic markers: (i) the start of the record (c. 1850), (ii) the

rapid increase in SCPs (c. 1950) and (iii) the peak (c. 1978). These

represent (i) the start of high temperature combustion and power

generation; (ii) the post-WW2 increase in power generation and fos-

sil fuel burning and (iii) the peak of SCP production before reliance

on other methods of power generation and the advent of clean fuel

technologies (Rose, Harlock, Appleby, & Battarbee, 1995). We used

the method of Swindles (2010) to prepare SCPs from the peat. Lin-

ear interpolation was used to generate a simple age-depth model

between the three SCP age-equivalent stratigraphic markers and the

date of core sampling (2011) as the uppermost time point; dates

before the start of the SCPs are an extrapolation based on accumu-

lation rate.

3 | RESULTS

3.1 | Water table reconstructions

The testate amoebae data from Moor House (Figure 1) along with

the SCP concentrations and water-table reconstructions show peri-

ods of changes in wetness across the peat depth profile.

The earliest part of the record (before 1850) is very wet owing

to the presence of wet-indicator species such as Amphitrema wright-

ianum and Archerella flavum. After this, the assemblage suggests

quite a dry peatland surface with the abundance of Nebela militaris,
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Cyclopyxis arcelloides type (mostly comprised of Phryganella acropo-

dia) and Heleopera petricola. All TA taxa identified in fossil samples

were present in the modern training sets of the two transfer func-

tions. The comparison of the Northern England and pan-European

modeled water-tables (Figure 2) illustrates that the WTD optima of

TA species from the wider European area are wetter than those for

Northern England (for the regression equation see Figure 2 legend).

3.2 | TA-derived vs. MILLENNIA model water-table
predictions and site records

Water-table reconstructions for the Moor House core based on the

Northern England transfer function (WTDTA_NE) showed an overall

good correlation with the MILLENNIA modeled WTD during the per-

iod of high quality climate records available for modeling (i.e. 1933–

2004; see Figure 3a) but TA-predictions were consistently drier

(WTD = 1.79*WTD, TA_NE – 39.57; r2 = 0.68). A comparison with

the EU TA transfer function (Figure 3b) indicated slightly wetter con-

ditions but with a less good fit to the measured data

(WTD = 0.714*WTDTA_EU – 10.613; r2 = 0.47). The reason behind

this difference in TA-predicted WTD likely reflects different WTD

optima of key testate amoebae species in the different geographical

areas. Therefore, we decided to use the WTDTA_NE model for subse-

quent analysis because of the better directional fit in addition to clo-

ser geographical location of the TA records.

The available ECN site climate data (1931–2010) for Moor

House were used to make comparisons between annual mean WTD

predicted by the MILLENNIA model to the paired years (�1 year)

with the offset corrected available TA-derived WTDTA_NE from the

Moor House core (Figure 4). Not only did the WTD range predicted

by the model agree with the TA-derived WTD, but it also repro-

duced the general pattern of dry vs. wet years (MILLENNIA

WTD = WTDTA_NE + 0.004; r2 = 0.68). Both WTD predictions indi-

cated that the years between 1965 and 1995 were an extended per-

iod of fairly dry conditions compared to the long-term WTD average

of 4.4 � 1.8 cm (based on annual averages of ECN dipwell data for

1995–2012).

The annual MILLENNIA model prediction of WTD during 1931–

2012 also showed very good agreement with the paired years of

available offset corrected TA-derived WTD, capturing peaks and

troughs as well as the average trend (Figure 5). Moreover, the model

predicted WTD (WTDMod) followed the available annual ECN site

WTD (WTDECN) data very well (WTDECN = WTDMod*0.813 + 0.595,

r2 = 0.57; see Carroll et al., 2015).

3.3 | Comparison of predicted water-tables for
management scenarios and site records

Use of the available long-term climate data for a nearby Northern

England peatland site (Morris et al., 2015), adjusted to the long-

term mean temperature and total rainfall for Moor House, together

F IGURE 1 Testate amoebae record (%) from the Moor House blanket bog, Northern Britain alongside the SCP concentration data with
chronological assignments marked (i.e. 1978 at ~4.5 cm; 1950 at ~9.0 cm; 1850 at ~14.0 cm). The water-table depth (WTD) reconstruction
using the transfer function of Turner et al. (2014) is illustrated with standard errors derived from bootstrapping (1,000 cycles). The
standardized water-table reconstruction in relation to z-scores (following Swindles et al., 2015) is also shown

F IGURE 2 Water-table depth (WTD) reconstructions for the
Moor House blanket bog peat core based on alternative testate
amoebae transfer functions: Europe, EU (gray) (Amesbury et al.,
2016) vs. Northern England, NE (black) (Turner et al., 2013). Note, a
lower WTD value means wetter conditions. The linear regression for
the reconstructed WTD comparison is y[NE] = 0.79x[EU] + 7.58;
r2 = 0.65
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with Moor House ECN climate data since 1931, provided a basis

for a comparison of the WTD predicted by the MILLENNIA model

over an extended time period (1750s till 2012), for which TA

WTD reconstructions were available (Figure 6). Although the gen-

eral WTD patterns agreed very well between the two predictions,

the (unadjusted) TA WTD predictions were much drier than the

MILLENNIA predictions. Whilst MILLENNIA model predictions indi-

cated mean annual WTD conditions during 1760–1830 of between

2–6 cm, the unadjusted TA predictions of WTDs were around 15

to 25 cm. Adjusting for the 1931–2004 determined TA-WTD off-

set (Figure 3a) increased the TA-based WTD predictions to above

the peat surface (�2.92 � 6.16 cm; data not shown). However,

whereas MILLENNIA model predictions of the unmanaged (no

shoot) scenario remained very wet during 1830–1940, unadjusted

TA-predictions showed much lower WTD during that period, but

overlapped again with the MILLENNIA model predictions from the

1940s onwards (Figure 6).

3.4 | Predicted impacts on soil C emissions, peat C
budgets and peat accumulation rates

The observed drier than average mean annual WTD predictions from

the MILLENNIA model during 1965–1995 (Figure 4) corresponded

to 5.2 g C m�2 year�1 lower net methane (CH4) but 13.4 g

C m�2 year�1 higher CO2 emissions (Figure 7a) than during the

remaining period of 1931–2012. This change in soil C fluxes to the

atmosphere reflected the increased aerobic decomposition processes

under a lower WTD, which resulted in near zero mean peat depth

increment (reduced by 0.041 cm/year) and a lower mean soil C bud-

get (reduced by 6.2 g C m�2 year�1) (Figure 7b) during the drier

1965–1995 period.

F IGURE 3 Linear regression of MILLENNIA model predicted
mean annual water-table depth (WTD) for 19 years during 1933–
2004 vs. the corresponding years for the two testate amoebae (TA)
reconstructions (see Figure 2) based on the (a) uncorrected transfer
function derived for northern England (NE) as in Turner et al. (2013),
and (b) the uncorrected European (EU) transfer function (Amesbury
et al., 2016). The corresponding regression equations are shown

F IGURE 4 Selected years for mean annual water-table depth (WTD) predictions (in the peat profile) between 1931 and 2004 from the
MILLENNIA model (gray line) paired with years (triangles) of available testate amoebae (TA) based predictions (black line) using the offset
regression (Figure 3a). The dashed line indicates the long-term (1995–2012) mean annual WTD at Moor House (ECN data)
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The MILLENNIA model scenario period of 1851–1950 (Figure 8)

showed a positive (C gain) annual soil C budget (Figure 8b) of

12.7 � 22.7 g C/m2 for the unmanaged scenario (with a mean WTD

of 4.7 � 1.5 cm; Figure 8a) compared to a negative (C loss) budget

of �38.6 � 110.1 g C/m2 for the grouse managed scenario with

drainage (mean WTD of 7.7 � 2.1 cm) assuming a 10-year NPP

recovery time after burning (resulting in 51.3 g C m�2 year�1 less

soil carbon gain under grouse management). The corresponding peat

depth increments predicted by the MILLENNIA model during 1851–

1950 showed a mean peat accumulation of 0.03 � 0.59 cm for the

unmanaged (no shoot) vs. a loss of �0.06 � 0.61 cm for the grouse

managed scenario (i.e. 0.09 cm/year less peat depth increment).

Moreover, the 5-year NPP regrowth scenario (data not shown)

resulted in about 45% lower mean annual soil C budget loss

(�21.6 � 93.7 g C/m2) and half the peat increment loss

(�0.03 � 0.63 cm) compared to the 10-year NPP recovery scenario.

In comparison to the default burn and drain scenario, the burn but

no drain 10-year NPP regrowth scenario (data not shown) resulted

in about 30% lower C and peat accumulation losses with a mean

annual soil C budget of �28.4 � 108.7 g C/m2 and

F IGURE 5 Annual water-table depth (WTD) predictions (in the peat profile) since 1930 from the MILLENNIA model (dark gray lines, with
4-year average as dashed line) vs. the 4-yearly predictions (black line) from testate amoebae (TA) based on the offset regression (Figure 3a)
and actual annual site WTD averages (white circles and light gray line) based on available continuous WTD data (1995–2012)

F IGURE 6 Water-table depth (WTD) predictions from the MILLENNIA model (gray lines) vs. 4-yearly testate amoebae (TA) based
predictions (black line) and actual annual site WTD averages (white circles) based on available continuous site WTD data (1995–2012). Light
dashed gray line indicates model scenario without any management, whereas dark solid gray line indicates a grouse moor management
scenario during 1842–1951 (dashed arrow) with a period of active drainage (1831–1920). Note the different y-axis scales (i.e. unadjusted TA
WTD predictions)
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�0.04 � 0.63 cm mean annual peat depth increment (with a mean

WTD of 4.8 � 1.9 cm). The burn but no drain 5-year NPP regrowth

scenario reduced this further (i.e. 80% lower soil C and peat incre-

ment losses with a mean annual soil C budget of �10.9 � 92.6 g C/

m2 and a mean annual peat depth increment of �0.01 � 0.64 cm.

During 1831–1850, the period of drainage only (i.e. no burning),

the managed scenario reduced the mean annual soil C budget by

27.8 g C/m2 to �7.2 � 15.8 g C/m2, which reflected an average

reduction in mean annual WTD by 3.9 cm to 8.3 cm (Figure 8a).

These changes in soil C budget under drainage only corresponded to

an annual peat depth increment reduction by 0.06 cm to

�0.02 � 0.63 cm compared to the unmanaged scenario (Figure 8b).

The grouse moor management (i.e. 1851–1950) not only

impacted C dynamics via reduced water-tables from drainage (Fig-

ure 8a), it also altered C inputs and thus C dynamics via reduced

NPP following burning. Overall, drained and 10-year NPP recovery

scenarios reduced both mean annual C losses from soil CO2 fluxes

(308 � 106 g C) and annual CH4 emissions (4.9 � 8.3 g C) com-

pared to the unmanaged scenario for which mean annual values

were 417 � 60 g C for CO2 and 13.2 � 20.4 g C for CH4 net emis-

sions (i.e. including methane oxidation, ebullition and plant-mediated

transfer (PMT) processes via sedge leaves and stems). However,

whereas the no drain 10-year NPP burn scenario decreased CO2

(292 � 110 g C) and increased CH4 (9.8 � 18.0 g C) emissions (Fig-

ure 8a), the 5-year NPP scenario (data not shown) increased both

CO2 fluxes (348 � 92 g C) and net CH4 emissions (11.2 � 18.8 g C)

emissions, reflecting quicker vegetation regrowth and thus NPP and

PMT recovery.

4 | DISCUSSION

This study provided novel insights into ecological applications of

using TA-derived WTD reconstructions in a site-specific model vali-

dation context. The findings highlight the value of combining palaeo-

ecological records with process level modeling to allow better under-

standing of the effects of climate and management on peat develop-

ment and C cycling. This combination shows promising potential in

allowing to understand the contributions of past environmental (e.g.

F IGURE 7 MILLENNIA model predictions (5-year running means)
of climatic impacts during 1931 to 2012 on (a) annual water-table
depth (WTD; black line) and carbon (C) fluxes of CO2 (dark gray line)
and CH4 (light gray line), and (b) annual peat depth increments (gray
line) and soil C budget (black line) with positive numbers
representing C gains

F IGURE 8 MILLENNIA model predictions (5-year running means)
of management impacts during 1825 until 1945 on (a) annual water-
table depth (WTD; black line) and carbon (C) fluxes of CO2 (dark
gray line) and CH4 (light gray line), and (b) annual peat depth
increments (gray line) and the soil C budget (black line) with positive
numbers representing net C gains. Unbroken lines represent the
unmanaged (no shoot) “natural state”, whereas dashed lines
represent predictions for grouse moor management (1842–1951)
including active drainage (1931–1920); drainage efficiency 25 years
at maximum plus 15 years reduction to 60% and 0% by 1955) and
burning (20 year cycles; with an exponential 10-year regrow period
to full net primary productivity) during 1850 till 1950
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climate) and human-induced (e.g. grouse management) changes in

peatland development over time, C stocks and corresponding C

fluxes.

Although the EU transfer function predictions (as used in Ames-

bury et al., 2016) showed wetter conditions overall (Figure 2), the

model fit to the MILLENNIA predictions was not improved, indicat-

ing a better overall fit using the geographically closer NE transfer

function, possibly applying across the wider UK context, which has

yet to be tested. Previous work comparing TA to recent short-term

monitored WTD by Amesbury et al. (2016) was based around a col-

lection of samples from several sites and did not compare TA-

derived reconstructions to site-specific long-term modeled hydrologi-

cal time series. Moreover, whereas Amesbury provided a WTD

reconstruction based on comparing two different TA transfer func-

tions, we identified and adjusted for a generic transfer function off-

set based on a site-specific validation period (Figure 3) to allow a

context-dependent (i.e. NE blanket bog at Moor House) model com-

parison over several centuries. The fairly constant offset could well

reflect a TA sample bias of summer sampling and thus drier condi-

tions overall (i.e. during contemporary sampling to obtain TA calibra-

tion data on moisture or WTD relationships); water-tables at Moor

House frequently drop to 20–30 cm during July and August (Carroll

et al., 2015). With fairly constant water-table drawdown during drier

periods (unpublished data by A. Heinemeyer et al.), a general offset

can be expected (i.e. wetter sites are always wetter and vice-versa).

Notwithstanding the overall good fit from the offset corrected

TA-derived vs. model predicted water-tables (Figure 4), some result-

ing TA-derived water-table predictions such as the very wet period

between 1730 and 1830 (as shown in Figure 6) might seem ques-

tionable. However, the predicted standing water conditions of up to

�10 cm when applying the offset adjusted TA functions (using the

offset corrected NE transfer function as shown in Figure 3a) fall

within the tolerance and optima values (i.e. Turner et al., 2013) of

two wet to aquatic TA indicator taxa (see Figure 5 in Amesbury

et al., 2016), Amphitrema wrightianum type (2 � 6 cm mean WTD)

and Archerella flavum (8 � 7 cm mean WTD). This coincides with

documented wet bog conditions across Ireland (Swindles et al.,

2013) and Northern Britain (Mauquoy, van Geel, Blaauw, & van der

Plicht, 2002) during this period (i.e. the Little Ice Age) with poten-

tially standing water for most of the year or water pools in hollows.

Such conditions of standing water are not specifically captured by

either the model or TA WTD predictions, which are relatively insen-

sitive to water-tables above the surface. Moreover, the climate data

used in the model become less reliable before the 1850s, and this

period might well have been wetter than the by Morris et al. (2015)

reconstructed climate record suggests. Therefore, MILLENNIA pre-

dicted WTD during 1730–1830 might be under predicting the WTD

in relation to uncertain climate input data.

Most interesting was the period between 1840s and 1940s, an

unexpectedly drier period based on TA predicted hydrological condi-

tions compared to the wetter conditions predicted by the MILLEN-

NIA model based on climate only (Figure 6). Moor House was a

formal shooting estate throughout exactly this period (i.e. 1842–

1951), based on grouse bags and predator control information (ECN

data provided by Rob Rose from the Centre for Ecology and Hydrol-

ogy (CEH) Lancaster, personal communication). Grazing intensity on

true blanket bogs such as Moor House is low (0.5 sheep/ha accord-

ing to Rawes & Heal, 1978), except perhaps for recently burnt areas;

historically grazing was probably low overall because farmers were

unable to grow sufficient feed to maintain their stock over the win-

ter, particularly at altitudes above 500 m. Therefore, burning in con-

nection with drainage seems to be the most likely factor explaining

the water-table lowering. The available anecdotal evidence (R. Rose

(CEH), personal communication) from some of the game keepers in

the latter part of the period suggest that an average of 250 acres

were burnt each year out of a total area of about 5,000 acres (i.e.

averaging a 20 year burn cycle) and drainage ditches were main-

tained to aid the heather management. Such intense grouse moor

management would have most likely resulted in a lowering of the

water-table by around 5 cm, as has been observed in a grip blocking

study by Wilson et al. (2010). Interestingly, the MILLENNIA scenar-

ios simulating such grouse moor management resulted in the mod-

eled WTD capturing this drier period as inferred from the TA record,

which in the model scenario was mainly a result of drainage.

Moreover, the managed model scenario indicated considerable

losses in the soil C budget and decreased peat accumulation rates.

Up-scaled to an intense grouse moor management period of

100 years these accumulated C losses (i.e. 1850–1950) relate to

around 5 kg C/m2 less soil carbon or 10 cm lower peat depth accu-

mulation than predicted for the unmanaged scenario. Notably, burn-

ing and drainage contributed equally to the carbon loss, via reduced

NPP (i.e. less litter input) and enhanced decomposition (i.e. lower

WTD). Garnett et al. (2001) indicated a carbon loss and lower peat

accumulation on burn management at Moor House (based on experi-

mental burn plots) of around 73 g C m�2 year�1, slightly higher but

very similar to our model predictions of 51 g C m�2 year�1. How-

ever, the Garnett et al. study contained some methodological uncer-

tainties in relation to calculating C stocks (Clay, Worrall, & Rose,

2010) and the MILLENNIA model did not account for any potential

charcoal impacts on hydrology and decomposition. In particular,

impacts on peat bulk density (i.e. charcoal pieces entering peat

pores) with possible changes in water holding capacity and charcoal

inputs representing an inert C pool (i.e. biomass partly by-passing

decomposition; see Clay et al., 2010) with likely additional effects on

decomposition rates (e.g. negative priming; see Lu et al., 2014) might

need to be considered in future model developments. Notably, the

Garnett et al. (2001) study has been highlighted by Evans et al.

(2014) as the only substantial study assessing burning impacts on

UK blanket bogs. Therefore, burn management implications on the

long-term peat C stock remain uncertain.

Although the estimated mean annual soil CO2 fluxes of around

300–400 g C m�2 year�1 (i.e. range of managed vs. unmanaged sce-

nario, respectively) are within the same order of magnitude as

reported for a study at Moor House (Clay et al., 2010), the CH4

emissions of around 5–10 g C m�2 year�1 were slightly higher com-

pared to published values for the Flow Country (4.3 g C m�2 year�1;
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Levey & Gray, 2015) and Moor House (3.9 g C m�2 year�1; Worrall,

Armstrong, & Adamson, 2007; and 6.4 g C m�2 year�1; Worrall,

Burt, Rowson, Warburton, & Adamson, 2009). However, the existing

data on net CH4 emissions from peatlands are very uncertain, with

many older studies using inadequate methodologies (i.e. long cham-

ber incubation periods and inaccurate analyser techniques such as

gas chromatographs). Moreover, recent data from Moor House dur-

ing two wet and warm years (2015–2016) measured much higher

than previous average annual CH4 emissions from peat decomposi-

tion of 2 to 400 g C m�2 year�1 (unpublished; pers. comm. Rob

Rose at CEH). However, the largest uncertainty for field measure-

ments is likely related to manual chamber measurements often not

capturing plant-mediated transfer rates and ebullition, bypassing

methane oxidation and thus leading to an overall underestimation of

“true” methane fluxes. As a result of both model and measurement

uncertainties, the presented CH4 emissions should thus not be taken

as real flux predictions but rather be seen as indicators of possible

differences to be assessed by future monitoring.

In conclusion, peat cores provide a valuable archive for reconstruct-

ing peat development in relation to past climate, particularly TA-based

water-table reconstructions as a driver of peat and carbon accumula-

tion. We have shown here that combining this peatland archive with

actual site measurements and model scenarios of past water-tables can

provide additional information on likely impacts of land management,

which are not easily detectable otherwise, but are crucial for explaining

observed peat accumulation not explained by climate alone.
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