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ABSTRACT

Decomposition-based algorithms have emerged as one of the most

popular classes of solvers for multi-objective optimization. Despite

their popularity, a lack of guidance exists for how to con�gure

such algorithms for real-world problems, based on the features or

contexts of those problems. One context that is important for many

real-world problems is that function evaluations are expensive, and

so algorithms need to be able to provide adequate convergence on

a limited budget (e.g. 500 evaluations). �is study contributes to

emerging guidance on algorithm con�guration by investigating

how the convergence of the popular decomposition-based optimizer

MOEA/D, over a limited budget, is a�ected by choice of component-

level con�guration. Two main aspects are considered: (1) impact

of sharing information; (2) impact of normalisation scheme. �e

empirical test framework includes detailed trajectory analysis, as

well as more conventional performance indicator analysis, to help

identify and explain the behaviour of the optimizer. Use of neigh-

bours in generating new solutions is found to be highly disruptive

for searching on a small budget, leading to be�er convergence in

some areas but far worse convergence in others. �e �ndings also

emphasise the challenge and importance of using an appropriate

normalisation scheme.
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1 INTRODUCTION

Multi-objective evolutionary algorithms (MOEAs) have come to be

used widely throughout both the scienti�c and engineering commu-

nities, and are typically classi�ed in terms of the primary selection

method used in the algorithm: Pareto-based, decomposition-based

and indicator-based [3]. Most of the methods that have been de-

veloped within each class typically assume that a large budget will

exist for evaluating candidate solutions as the optimization process

progresses. In many optimizer benchmarking studies, a budget of

tens or hundreds of thousands of evaluations is used – for example,

the CEC’09 MOEA competition permi�ed 300,000 evaluations [16].

However, solution evaluation can be an expensive procedure

for many real-world applications (RWAs), typically arising from

the use of high-�delity simulations or physical experiments. In the

case of high-�delity simulations, even if the computational costs

of running the models can be overcome (e.g. by careful exploita-

tion of high performance computing facilities) then other resource

constraints o�en still remain (e.g. availability of so�ware licenses).

In this se�ing, it is inappropriate to assume that a budget of many

thousands of evaluations will be available to the optimizer.

Faced with this issue, algorithm designers have sought to couple

surrogate modelling techniques to the optimization process [7]. In

a loose coupling, the surrogate model is estimated either before

the optimization begins, or at scheduled points during the opti-

mization process. In more tightly coupled schemes, the surrogate

model becomes a key component of the optimizer itself. �ese

la�er schemes have found particular favour for optimization on

very small budgets – typically regarded as between 100 and 500

evaluations [9]. �e algorithms, such as ParEGO [8], are typically

highly complex in nature, featuring large numbers of con�gurable

parameters. It remains unclear how these parameters should be

set for di�erent types of RWA, or how the behaviour of the overall

algorithm is related to the behaviour of the underpinning selection

method.

In the present study, we focus on the behaviour of a representa-

tive algorithm from one of the main classes of MOEA – speci�cally,

we consider the MOEA/D algorithm [14] from the decomposition-

based family of optimizers. Rather than study the algorithm as a

monolithic entity, we adopt a component-based approach that allows

the impact of di�erent aspects of the algorithm to be analysed in

detail [1, 10, 11]. �e focus is on how typical component choices

that would need to be made when con�guring an optimizer for a

RWA a�ect optimizer behaviour over a small evaluation budget.

In this way, we seek to contribute the �rst known analysis of de-

composition components for small budgets, in isolation from the

complexity of surrogate-based components – with a view to mak-

ing some preliminary recommendations for how such a targeted

decomposition-based algorithm should be con�gured.

�e paper is structured as follows. Section 2 gives an overview of

the MOEA/D algorithm, including an abstraction of its components.

Section 3 isolates the di�erent components which are examined in

the study and describes the empirical framework used. Section 4

presents the results of the experiments which are then discussed
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in Section 5. Section 6 draws conclusions and indicates future

directions for the research.

2 MOEA/D AND ITS COMPONENTS

�e Multi Objective Evolutionary Algorithm based on Decomposition

was �rst presented by Zhang and Li in 2007 [14]. �e algorithm

is based on the classical multi-objective optimization concept of

de�ning di�erent reference directions in objective-space, and then

directing the optimization process along each of these directions.

�e main innovation in MOEA/D is that information is shared

between neighbouring reference directions during a single opti-

mization run – rather than performing separate optimization runs

for each direction in turn as was used in the classical methods. �e

underlying hypothesis is that there is some kind of relationship in

the neighbourhood that makes the sharing of information useful

for the neighbours concerned.

MOEA/D has proved to be a seminal MOEA, with many variants

and alternative decomposition-based schemes now in existence. A

tightly-coupled surrogate-based addition – MOEA/D-EGO – was

proposed in 2010 [15] as an alternative to the earlier ParEGO algo-

rithm which also used decomposition-based principles [8].

A number of studies have investigated con�guration choices for

MOEA/D, o�ering alternatives to the originals proposed in [14].

Parameters examined include choice of norm in the scalarising

function [4, 6], weight vector speci�cation [12], and neighbourhood

size [17].

2.1 Components of MOEA/D

Within the implementation of MOEA/D there are four main stages

that can be abstracted as components: (1) initialisation; (2) repro-

duction; (3) improvement; (4) update. In addition to these aspects,

a further area of interest is the normalisation operation used to

enable non-commensurate objectives to be compared. An overview

of each of these components is given below.

Initialisation. �e �rst step that needs to be performed is to

initialise the various parameters present within the MOEA/D al-

gorithm. �e algorithm begins by de�ning a set of weight vectors,

which are evenly spread throughout the output space. �e next

step is to set up neighbourhoods which consists of the closest n

weight vectors to each weight vector. �e �nal aspect that needs

to be implemented within the initialisation is the creation of a set

of initial points. Within the MOEA/D algorithm, these points are

determined either randomly or through a problem-speci�c method.

Reproduction. A�er initialisation, the optimizer loops through

all of the reference directions. For each direction, the optimizer

will select two weight vectors from that direction’s neighbourhood

and use the points from those two reference directions to perform

reproduction. �e type of reproduction used by MOEA/D is simu-

lated binary crossover (SBX), during which only one o�spring is

created. �at o�spring then has polynomial mutation applied to it.

Improvement. �e improvement stage is used to apply either

a problem speci�c repair or improvement heuristic to the o�spring

point. �is stage is useful as it can ensure that the acquired solution

is feasible.

Update of neighbouring solutions. �is section of the al-

gorithm works on ensuring that newly found solutions are used

e�ectively. �e new solution is compared to all other solutions re-

lated to it through its neighbourhood. �e comparison of whether

the newly found solution is superior to existing solutions in the

neighbourhood is performed by applying the scalarisation function

associated to each neighbour’s reference direction.

Normalisation. While normalisation is not a separate stage

speci�cally stated within the MOEA/D algorithm, it is still carried

out and has an e�ect on the algorithm’s performance. In the basic

description of the algorithm in the original MOEA/D paper [14]

there was no normalisation undertaken prior to scalarisation. How-

ever, normalisation was discussed in a separate analysis within the

original paper to understand if improved performance could be

achieved when working with disparately-scaled objectives. �e

normalisation is undertaken with respect to the ideal and nadir

points. �ese points are estimated progressively from the solutions

that have be found so far: the best values achieved for each objec-

tive are taken as the current estimate of the ideal; the worst values

achieved within the current best set of solutions across all reference

directions are taken as the current estimate of the nadir.

2.2 Implementation of components

�e baseline MOEA/D algorithm within this paper has been setup

slightly di�erently to how it was described within Zhang and Li’s

original paper. �ese variations are caused by the desire to test

di�erent aspects of the optimizer. �e chosen initialisation method

implemented throughout the paper is the widely used space-�lling

Latin hypercube sampling method. While this method does require

the user to have knowledge of the limits of the input space, it

ensures that the whole of the input space is well covered. In the

baseline setup it is also assumed that the ideal and nadir points

required for performing �xed normalisation are known to be the

true values. �e improvement step simply checks whether decision

variables have moved outside of their bounds and, if so, sets them

to the closest feasible boundary. It was assumed that components

such as the neighbourhood, reproduction and updating are not

implemented unless they are the aspect speci�cally under test. A

representative trajectory plot for the baseline algorithm solving the

test problem used in this study is shown in Figure 1. �e pseudo-

code for the algorithm is given in Algorithm 1.

Algorithm 1 Component-level abstraction of MOEA/D

for 1 : Total replications do

Initialise parameters

Calculate neighbourhood

Acquire initial points using Latin Hypercube sampling

for 1 : Number of iterations do

for 1 : Number of directions do

for 1 : Number of o�spring do

Optional component: Reproduction

Perform Mutation

Improvement/Repair

Evaluation

Optional component: Apply normalisation

Optional component: Update neighbourhoods

Calculate and store performance metrics
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Figure 1: Trajectory plot for the baseline algorithm us-

ing 100 reference directions and a budget of 20,000 evalua-

tions (progress a�er 500 evaluations is shown by the circled

points). Good convergence is observed for the larger budget.

3 COMPONENT INVESTIGATION

3.1 Areas of interest

While MOEA/D has many areas of interest that could be investi-

gated, we focus on two key component choices for RWAs: the �rst

of these is how the inclusion of information sharing through neigh-

bourhoods a�ects the optimizer’s performance; the second area of

interest is how di�erent forms of normalization cause changes in

the optimizer’s behaviour.

3.1.1 Baseline optimizer. �e baseline con�guration consists

solely of a mutation component, with no reproduction, or update

of, neighbouring solutions. Due to the budget limitations, a very

modest number of reference directions has been chosen: 5 in total.

�e optimizer is run for 100 iterations, within each of which one

evaluation is used for each of the 5 reference directions, leading to

the total budget of 500 evaluations being exhausted. An elitist (µ+λ)

strategy is used for selection across all variants of the algorithm. A

(1 + 1) strategy is used in the baseline algorithm. Scalarisation is

performed using the Tchbyche� norm.

3.1.2 Impact of sharing information. �ree component con�g-

urations consider the impact of sharing information between the

di�erent subproblems present within MOEA/D - all require the

de�nition of a neighbourhood. �e neighbourhood is de�ned as

the adjacent reference directions. �e �rst approach implements

the update of neighbouring solutions component; the second im-

plements SBX reproduction, with three solutions considered (the

two parents are chosen at random from both the neighbourhood

and the reference direction). �e SBX distribution index is set to 20

as in the original MOEA/D paper [14]. �e third setup consists of

using the neighbourhood for both SBX reproduction and update

of neighbouring solutions. �is �nal con�guration provide the

greatest sharing of information between the di�erent references

directions. As with the previous setups, a neighbourhood size of

two is implemented in order to maintain consistency.

3.1.3 Impact of normalisation. One of the issues when perform-

ing decomposition-based optimization on RWAs is that the location

of the ideal point and nadir point, required for normalisation, are

generally unknown. In many studies, an assumption is made about

the points used for normalisation, such as is done in this paper dur-

ing the assessment of sharing of information. �e choice of using

�xed known points for the ideal and nadir point is reasonable as it

allows the impact of these neighbourhood features to be examined

without having to simultaneously consider the impacts of using

estimates of the ideal/nadir points. However, in order to test the

impact of normalisation on the optimizer, di�erent normalisation

methods are applied to the most e�ective information sharing setup

examined above.

�ree alternative normalisation approaches are considered. �e

�rst variation is actually not to apply normalisation at all [5]. �e

use of adaptive normalisation is the second setup, in which new

ideal and nadir estimates are obtained for each iteration of the

optimizer. �is is implemented in the same way as in the original

MOEA/D paper. �e �nal setup looks at whether using a portion

of the evaluation budget to determine an approximate value of the

ideal and nadir points could be bene�cial. In order to determine

these two points, a lexicographic optimization methodology is used

with a (1 + 1) strategy. �is �rst determines the minimum for one

of the objectives, before minimising the second objective while

maintaining the value found for the �rst.

3.2 Performance analysis

3.2.1 Test function. A modi�ed version of the DTLZ1 function,

initially presented in [2], has been chosen. It has been altered in

order to make the objectives disparately scaled so that some form of

normalisation might prove bene�cial. �e altered DTLZ1 function,

referred to here as ‘DTLZ1alt’, is de�ned as:

Minimize f1 =
1

2
x1(1 + д)

Minimize f2 = 5(1 − x1)(1 + д)

д =
[

5 +
∑

i ∈{2, ...,6}

(xi − 0.5)2 − cos(2π (xi − 0.5))
]

Where xi ∈ [0, 1], i ∈ {1, ...,n},n = 6.

(1)

�e test problem possesses a linear Pareto front, which stretches

from the point [0, 5] to [0.5, 0]. Points on the front can be generated

by se�ing x2, ...,6 = 0.5 and taking any choice for x1.

3.2.2 Performance indicator. �e performance indicator used

throughout the analysis is the inverted generational distance (IGD),

which measures the quality of a non-dominated set in terms of both

convergence and diversity simultaneously [13]. IGD calculates the

average Euclidean distance between a set of evenly space points

which lie along the Pareto front and the closest points to them from

the current non-dominated set.

In the analysis, the points along the Pareto front used for IGD

are the points where the reference directions cross it when ideal

normalization is applied. In order to gain robust insight into how
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Figure 2: Boxplot showing how the use of neighbourhoods

to share information between subproblems within the op-

timizer impacts the IGD. It is evident that the inclusion of

neighbourhoods for updating of neighbouring solutions has

a positive impact on performance.

the optimizer will perform, each setup is run 31 times. Box plots

are used to indicate the variation in performance, as well as median

levels of a�ainment. In addition to the IGD obtained a�er 500

evaluations, an integrated IGD is also considered, which considers

the sum of the IGD obtained over the iterations of an optimizer run.

�e integrated measure provides some insight into how rapidly

convergence is obtained, which is useful context if 500 is regarded

as an upper limit on the number of permissible evaluations.

3.2.3 Subproblem convergence trajectories. In addition to the

IGD metric, we also show the dynamic convergence in objective-

space of the optimizer along each of the �ve reference directions.

�e trajectories are taken from the run of the optimizer associated

with themedian IGD result. �ese trajectories provide useful insight

into the dynamic behaviour of the optimizer for di�erent choices

of information sharing or normalisation.

3.2.4 Significance testing. �e statistical signi�cance of the re-

sults (at the 0.05 level) is determined using pairwise Wilcoxon

rank-sum tests with Bonferroni correction. �e test statistic used is

the mean IGD performance for each algorithm a�er 500 evaluations.

4 RESULTS

4.1 Impact of sharing information

�e results of implementing the di�erent methods for information

sharing can be observed in Figure 2. All relative rankings of algo-

rithms implied by the lower boxplots are statistically signi�cant,

except between the independent and reproduction con�gurations,

where no di�erence in mean performance could be con�rmed.

0 50 100 150 200 250 300 350 400 450 500
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Figure 3: Plot showing how the median IGD for di�erent se-

tups progresses over iterations of the optimizer. �epositive

impact of updating is clearly visible for the majority of the

evaluation budget

When the subproblems are performed independently, the per-

formance of the optimizer appears not to be particularly good with

its �nal IGD achieving a median value of about 0.45. When the

updating of neighbouring solutions component is included, a large

positive impact on the optimizer’s performance is evident – with

the optimizer achieving a median �nal IGD of about 0.21. Another

point of interest with this setup is that the integrated IGD implies

that it was also a lot faster to reduce its IGD, and so could prove to be

a good option if there were the possibility that the optimizer would

need to stop early. �e use of reproduction without the update of

neighbouring solutions does not improve the optimizer’s perfor-

mance. While it produces an equivalent median �nal IGD when

no information sharing was used, it possesses a worse integrated

IGD. �is can be more clearly seen in Figure 3 which shows the

median runs based on the integrated IGD. �e �nal setup examined

is the one using a mix of SBX and updating neighbouring solutions.

While this setup does perform be�er than that of either using the

independent setup or SBX reproduction, it does not outperform the

setup using just the update of neighbouring solutions.

�e set of plots in Figure 4 show the trajectories of how the

subproblems progress within the objective-space. �e independent

run in which there is no passing of knowledge seen in Figure 4(a)

performs as expected when run using the Tchebyche� scalarisation

function, with each of the trajectories moving over to their respec-

tive reference direction before progressing down it towards the

Pareto front. �e large jumps induced by updating neighbouring

solutions are evident within Figure 4(b). It can be observed that

when points lie far from their reference directions or far from the

front they quickly jump to a closer point causing rapid movement

towards the front. Once near the front, the trajectories diverge with

each moving over to its relevant reference direction. What appears

to be a similar behaviour can be seen in Figure 4(c) which shows

the median run of the e�ects of using SBX. �e grouping caused

by SBX reproduction appears to be an issue when the points draw
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Figure 4: Trajectory plots of the median runs, based on the integrated IGD.�e inclusion of neighbourhoods causes clustering

and rapid initial movement.

close to the Pareto front, as they remain clustered together. Finally,

Figure 4(d) shows the e�ects of using a mixture of reproduction

and updating the neighbouring solutions. Similar to before, the

points progress down towards the Pareto front while being gath-

ered together; once they reach the front they try and spread across

it, but only have limited success.

4.2 Impact of normalisation

�e results of testing the impact of applying di�erent normalisa-

tion methods are presented within the boxplots in Figure 5. As

previously, all relative rankings of algorithms implied by the lower

boxplots are statistically signi�cant, except for the comparison

between the adaptive approach and no normalisation, where no

di�erence in mean performance could be con�rmed. �e �xed nor-

malisation that has been used throughout the paper so far shows

good performance in both the boxplot of the integrated IGD as well

as that of the �nal IGD. As well as achieving a very low IGD value,

the results for �xed normalisation have only a small amount of

variation. Using no normalisation, the second setup has a worse

performance with both the integrated and �nal IGD obtained being

much higher than that of �xed normalization. A point of interest

is that when no normalisation is used, there is also li�le variation

in performance across runs of the optimizer. When adaptive nor-

malisation is used, the median integrated IGD and �nal IGD are

similar to those obtained when using no normalisation. Adaptive

normalisation possesses a large variation in results, ranging from

similar performance to �xed optimization to being much worse

than any other method.
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Figure 5: Boxplot showing how normalisation a�ects IGD

performance. Of interest is how reserving a portion of the

budget for estimated ideal andnadir points greatly improves

performance.

�e last method considered was to pre-determine the ideal and

nadir points before commencing optimization. It was determined

that 80 evaluations were needed for each objective in order to

estimate an acceptable ideal point and a further 40 were needed

for each to get a suitable nadir point. �e median values found

for the ideal and nadir a�er the search was run are [0, 0.0683] and

[0.9134, 8.4708] respectively. During testing, it was determined that

the improvement gained with additional evaluations did not balance

the loss in performance due to fewer iterations of the optimizer.

Going back to Figure 5 it can be seen that when the predetermined

estimates for the ideal and nadir points are used, the integrated

IGD is improved while the �nal IGD was superior to that of either

adaptive normalization or when no normalization was used.

Looking at Figure 6, the trajectory plots of the median runs can

be seen. In each of the four subplots, the dashed lines indicate

the reference directions. In (a), (b) and (d) the reference directions

represent those that the optimizer is using. In (c) the reference

directions shown are the best ones that could be found, as they

change during each iteration for adaptive normalisation. Figure 6(a)

shows the �xed normalisation, with the trajectories moving down

towards the front in the same manner as seen before. In Figure

6(b), when no normalization is applied, all of the trajectories head

down towards the �rst objective axis before starting to move in

towards the Pareto front. As the reference directions are evenly

spaced across the objective space, they focus on the lower half of

the Pareto front. In Figure 6(c) all of the trajectories move together

before progressing down to the front, where they do not spread out.

�e �nal subplot, where the previously estimated ideal and nadir

point are used, shows the points moving towards the front quickly

before spreading out and managing to reach three of the reference

directions (due to the points initialising close together, it is di�cult

to see their movement within this particular plot).

4.3 Interesting variants

�ere were a selection of interesting variants discovered during

the process of testing. �e �rst of which is when �ve o�spring are

used instead of just one. When implemented, it implies running

the optimizer for only 20 iterations, so as to use the same number

of evaluations in total as before. It can be seen in Figure 7 that,

when compared to running the optimizer independently with one

o�spring, the trajectories obtained are much smoother. �e erratic

behaviour caused by the optimizer going back on itself is also

almost entirely absent. �is demonstrates how the addition of extra

o�spring allow for be�er directed convergence. When compared to

the performance of using only a single o�spring, equivalent median

IGD was achieved.

�e second interesting variant to be examined was discovered

when running the optimizer with four neighbours and SBX re-

production with no update of neighbouring solutions. Using four

neighbours meant that points from any of the subproblems had a

chance of being selected during the reproduction step. �e median

result of running this setup can be seen in Figure 8. All of the di�er-

ent trajectories are pulled together, almost to a single point, before

a�empting to spread out. �e rate at which they can separate out

is negatively impacted by the use of SBX.

5 DISCUSSION

It is evident that the sharing of information in a decomposition-

based optimizer, through the use of neighbourhoods, between the

di�erent subproblems, can have a substantial impact on the opti-

mizer’s performance. �e clearest example of this was observed

when the component for updating the neighbourhood solutions

was used. From the trajectory plot it was seen that the compo-

nent enabled rapid improvement by jumping to more advantageous

point in objective-space. Updating the neighbourhood solutions

also allowed the solutions to spread out once they were close to

the Pareto front.

While it has o�en been shown that the use of reproduction (or

recombination) can aid optimizer performance, this appears to be

invalid in the context of a small number of reference directions.

�e use of reproduction does initially seem to help in moving the

solutions down towards the Pareto front; however once they arrive

their progress comes to an almost complete stop. A likely reason for

this is that while only two neighbours are being used, this actually

constitutes a sizeable region of the Pareto front. In most problems

a much larger number of reference directions are used, such as the

150 to 250 reference directions used in the original MOEA/D study

[14]. In an exploratory analysis using a ‘limited’ evaluation budget,

the authors still used 20 reference directions and 250 iterations,

which is a total evaluation budget that is an order of magnitude

greater than that considered in this and other limited budget studies.

Where a larger budget is available, any unhelpful e�ects of SBX

reproduction are lessened due to the smaller distances between ref-

erence directions (see Figure 1). Using both SBX reproduction and

the update of neighbourhood solutions together proved to be unsat-

isfactory, producing a worse IGD than the update of neighbouring

solutions did on its own.

�e results of using the di�erent normalisation methods are also

notable. Firstly, while using �xed normalisation provides the best
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Figure 6: Trajectory plots of themedian runs using di�erent normalisationmethods, based on the integrated IGD. It is evident

that lacking good estimates of the ideal and nadir points greatly compromises the ability of a decomposition-based optimizer

to �nd the Pareto front.

performance, it is unrealistic for most RWAs as both the ideal and

nadir points are unlikely to be known in advance. �e next option

of simply using no normalisation proved to be worse for the chosen

disparately scaled test problem. �is was due to the reference

directions forcing points to one side of the front. �e option of using

adaptive normalisation, which is a more feasible option, proved

to have a poor IGD value while also possessing a high degree of

variability, which is undesirable. Using pre-estimation provided a

considerable improvement over all but �xed normalisation, even

though it reduced the subsequent number of evaluations available

to the optimizer.

While our �ndings have implications for the design and con-

�guration of decomposition-based optimizers, it is important to

acknowledge that only a single problem instance was used in the

analysis. Generalisation of �ndings to other classes of problem

should be handled cautiously pending further experimental studies.

6 CONCLUSION

�is paper has demonstrated how the selection and con�guration

of key components of decomposition-based optimizers, represented

by the seminal MOEA/D algorithm, can substantially a�ect the

performance of the optimizer when it is being run with a limited

budget of evaluations. �e sharing of knowledge through the inclu-

sion of neighbours can provide a large bene�t when the update of

neighbourhood solutions component is implemented. On the other

hand, the inclusion of SBX reproduction when only a small number

of reference directions are present, such as in the present context, is
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Figure 7: Trajectory plot when �ve o�spring are generated,

in the absence of information sharing components. Note the

smoother trajectories approaching the Pareto front, when

compared to the previous single o�spring con�gurations.
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Figure 8: Trajectory plot when four neighbours are used for

SBX and there is no update of neighbouring solutions. �e

points cluster together, a�ecting the overall ability of the

optimizer to �nd the Pareto front.

inadvisable. When considering what form of normalisation to use,

it was found that using a subset of the evaluation budget to gain

an estimate of the ideal and nadir points for normalisation proved

more e�ective than the conventional adaptive scheme, and achieved

close to the performance of the ideal, but infeasible, approach of

knowing the correct normalisation parameters in advance.

�e next stage for this work is to extend the analysis to an ex-

panded set of benchmark problems and to more complex, surrogate-

based optimizers that rely on a decomposition approach, e.g. the

seminal ParEGO algorithm [8].
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paring Decomposition-Based and Automatically Component-Wise Designed
Multi-Objective Evolutionary Algorithms. In Evolutionary Multi-Criterion Opti-
mization, EMO 2015 Part I. 396–410.

[2] Kalyanmoy Deb, Lothar �iele, Marco Laumanns, and Eckart Zitzler. 2005. Scal-
able test problems for evolutionary multiobjective optimization. Evolutionary
Multiobjective Optimization. �eoretical Advances and Applications (2005), 105–
145.

[3] Ioannis Giagkiozis, Robin C. Purshouse, and Peter J. Fleming. 2015. An overview
of population-based algorithms for multi-objective optimisation. International
Journal of Systems Science 46, 9 (2015), 1572–1599.

[4] Hisao Ishibuchi, Naoya Akedo, and Yusuke Nojima. 2013. A study on the spec-
i�cation of a scalarizing function in MOEA/D for many-objective knapsack
problems. In International Conference on Learning and Intelligent Optimization.
231–246.

[5] Hisao Ishibuchi, Ken Doi, and Yusuke Nojima. 2017. On the e�ect of normaliza-
tion in MOEA/D for multi-objective and many-objective optimization. Complex
& Intelligent Systems 3, 4 (2017), 279–294.

[6] Hisao Ishibuchi, Yuji Sakane, Noritaka Tsukamoto, and Yusuke Nojima. 2010.
Simultaneous use of di�erent scalarizing functions in MOEA/D. In Proceedings of
the 12th Annual Conference on Genetic and Evolutionary Computation. 519–526.

[7] Yaochu Jin. 2011. Surrogate-assisted evolutionary computation: Recent advances
and future challenges. Swarm and Evolutionary Computation 1, 2 (2011), 61–70.

[8] Joshua Knowles. 2006. ParEGO: a hybrid algorithm with on-line landscape
approximation for expensive multiobjective optimization problems. IEEE Trans-
actions on Evolutionary Computation 10, 1 (2006), 50–66.

[9] Joshua Knowles and Evan J. Hughes. 2005. Multiobjective optimization on a
budget of 250 evaluations. Lecture Notes in Computer Science (2005), 176–190.

[10] Marco Laumanns, Eckart Zitzler, and Lothar �iele. 2001. On the E�ects of
Archiving, Elitism, and Density Based Selection in Evolutionary Multi-Objective
Optimization. In Proceedings of the First International Conference on Evolutionary
Multi-Criterion Optimization (EMO 2001). 181–196.

[11] Robin C. Purshouse and Peter J. Fleming. 2002. Why use Elitism and Sharing
in a Multi-Objective Genetic Algorithm?. In Proceedings of the 2002 Genetic and
Evolutionary Computation Conference (GECCO 2002). 520–527.

[12] Yutao Qi, Xiaoliang Ma, Fang Liu, Licheng Jiao, Jianyong Sun, and Jianshe Wu.
2014. MOEA/D with adaptive weight adjustment. Evolutionary Computation 22,
2 (2014), 231–264.

[13] Margarita R. Sierra and Carlos A. Coello Coello. 2004. A new multi-objective
particle swarm optimizer with improved selection and diversity mechanisms.
Technical Report of CINVESTAV-IPN (2004).

[14] Qingfu Zhang and Hui Li. 2007. MOEA/D: A multiobjective evolutionary algo-
rithm based on decomposition. IEEE Transactions on Evolutionary Computation
11, 6 (2007), 712–731.

[15] Qingfu Zhang,Wudong Liu, Edward Tsang, and BotondVirginas. 2010. Expensive
multiobjective optimization by MOEA/D with Gaussian Process model. IEEE
Transactions on Evolutionary Computation 14, 3 (2010), 456–474.

[16] Qingfu Zhang, Aimin Zhou, Shizheng Zhao, Ponnuthurai N. Suganthan, Wudong
Liu, and Santosh Tiwari. 2009. Multiobjective optimization test instances for the
CEC 2009 special session and competition. Technical Report. University of Essex.

[17] Shi-Zheng Zhao, Ponnuthurai N. Suganthan, and Qingfu Zhang. 2012.
Decomposition-based multiobjective evolutionary algorithm with an ensem-
ble of neighborhood sizes. IEEE Transactions on Evolutionary Computation 16, 3
(2012), 442–446.


	Abstract
	1 Introduction
	2 MOEA/D and its components
	2.1 Components of MOEA/D
	2.2 Implementation of components

	3 Component Investigation
	3.1 Areas of interest
	3.2 Performance analysis

	4 Results
	4.1 Impact of sharing information
	4.2 Impact of normalisation
	4.3 Interesting variants

	5 Discussion
	6 Conclusion
	References

