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ABSTRACT

Precipitation is highly variable in space and time; hence, rain gauge time series generally exhibit additional

random small-scale variability compared to area averages. Therefore, differences between daily precipitation

statistics simulated by climate models and gauge observations are generally not only caused by model biases,

but also by the corresponding scale gap. Classical bias correction methods, in general, cannot bridge this gap;

they do not account for small-scale random variability and may produce artifacts. Here, stochastic model

output statistics is proposed as a bias correction framework to explicitly account for random small-scale

variability. Daily precipitation simulated by a regional climate model (RCM) is employed to predict the

probability distribution of local precipitation. The pairwise correspondence between predictor and predictand

required for calibration is ensured by driving the RCM with perfect boundary conditions. Wet day proba-

bilities are described by a logistic regression, and precipitation intensities are described by a mixture model

consisting of a gamma distribution for moderate precipitation and a generalized Pareto distribution for

extremes. The dependence of the model parameters on simulated precipitation is modeled by a vector

generalized linear model. The proposed model effectively corrects systematic biases and correctly represents

local-scale random variability for most gauges. Additionally, a simplified model is considered that disregards

the separate tail model. This computationally efficient model proves to be a feasible alternative for pre-

cipitation up to moderately extreme intensities. The approach sets a new framework for bias correction that

combines the advantages of weather generators and RCMs.

1. Introduction

Precipitation is the main source of freshwater strongly

affecting river runoff, groundwater recharge, and the

water level of lakes and reservoirs. As such, it is an in-

dispensable resource for ecosystems, agriculture, and

almost all human activities (Bates et al. 2008). Extreme

precipitation is a major hazard; according to the Munich

Re Group, global overall losses due to hydrological

events in 2011 amounted to some $64 billion (https://

www.munichre.com/touch/naturalhazards/en/homepage/

default.aspx).Anthropogenic climate change is expected

to considerably influence the hydrological cycle, leading

to shifts in global precipitation patterns and an in-

creasing magnitude of extreme precipitation over many

regions (Meehl et al. 2007; Seneviratne et al. 2012).

To quantify the often localized impacts of changing

precipitation, numerical models, such as hydrological

models, are often employed (Xu 1999). These models
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require realistic high-resolution scenarios of precipitation

change as input, which often includes a realistic repre-

sentation of intensities ranging from dry days to extreme

events; temporal variability from daily to decadal vari-

ability; and spatial variability (Maraun et al. 2010b). Yet

our knowledge of future climate change mainly stems

from global coupled atmosphere–ocean general circu-

lation models (AOGCMs). These models have a rather

coarse resolution of typically more than 100 km, and the

actual scale on which they provide reasonable skill is, in

general, even larger (Grotch and MacCracken 1991).

Therefore, AOGCMs do not directly provide infor-

mation on regional scales and do not correctly represent

localized extreme precipitation.

To bridge the scale gap between global climate sim-

ulations and the required local-scale input, different

downscaling approaches have been proposed. Dynami-

cal downscaling nests a high-resolution regional climate

model (RCM) over a limited area into the coarse global

model (Rummukainen 2010). Perfect prog (PP) statis-

tical downscaling infers a statistical link (usually as some

form of regression model) between large-scale and

local-scale weather observations and transfers this re-

lationship to a global climate simulation for future

simulations (Maraun et al. 2010b). Model output sta-

tistics (MOS) approaches, originally developed to cor-

rect systematic biases in weather forecasts (Glahn and

Lowry 1972), statistically ‘‘correct’’ climate model biases

(Maraun et al. 2010b). For a chosen climate model,

MOS infers a correction function between a simulated

and the corresponding observed variable in the present-

day climate and applies this correction function to a fu-

ture simulationwith the samemodel.Weather generators

(WGs) are statistical models that explicitly model the

temporal structure (and often intervariable rela-

tionships) on short time scales up to several days

(Maraun et al. 2010b). To represent longer-term vari-

ability and the climate change signal, WGs can be em-

ployed in a PP setting; that is, their parameters can be

conditioned on the large-scale circulation (Wilby and

Wigley 2000; Vrac and Naveau 2007). All statistical

approaches implicitly assume that the inferred statistical

relationships are valid under climate change.

Here, we propose a new stochastic framework for

MOS and implement a specific statistical model. The

framework combines the advantages of MOS and PP

weather generators. The key idea is to simultaneously

correct for systematic biases and stochastically down-

scale to station scale.

Over the last years, large projects such as the Pre-

diction of Regional Scenarios and Uncertainties for

Defining European Climate Change Risks and Effects

(PRUDENCE; Christensen and Christensen 2007) and

the Ensemble-Based Predictions of Climate Changes

and Their Impacts (ENSEMBLES; van der Linden and

Mitchell 2009) have stimulated the use of RCMs. A key

advantage of RCMs compared to purely statistical

downscaling approaches is that they explicitly resolve

mesoscale atmospheric processes and, therefore by

construction, provide spatially coherent and—to a cer-

tain degree—physically consistent output. However,

compared to observed climate, RCM simulations are, in

general, considerably biased (Christensen et al. 2008)

and therefore often cannot directly be used as input for

impact models. MOS approaches are therefore used to

postprocess model output. Most currently used MOS

approaches are calibrated in a distribution-wise setting;

that is, only long-term observational distributions (cli-

matologies) are compared with long-term simulated

distributions to derive the correction function (Maraun

et al. 2010b).

Many impact models, such as hydrological and agri-

cultural yield models, are calibrated against point data.

RCMs, however, simulate gridbox values that represent

area averages. In particular, precipitation is highly var-

iable in space and time; gridbox averages, in general,

cannot explain all subgrid variability, such as localized

high intensity events or even wet day probabilities. This

representativeness problem between grid and point

scale cannot be overcome by traditional bias correction

methods, because they are deterministic (i.e., they only

correct systematic biases but do not add random small-

scale variability). Any deterministic MOS approach

aiming to correct the simulated variability, such as vari-

ance correction or quantile mapping (Piani et al. 2010), if

used for downscaling below gridbox scale may conse-

quently produce wrong variability and trends (Maraun

2013).

For PP downscaling, von Storch (1999) suggested

randomization to add the necessary subgrid small-scale

variability to a downscaled time series. This approach,

however, requires a separation of the local-scale vari-

ability into variance explained by the predictor and

random noise. Such a separation in turn requires a re-

gressionmodel (i.e., ultimately pairwise correspondence

between the predictor and predictand). For RCMs with

boundary conditions from a free-running AOGCM,

this precondition is not fulfilled. As a simple way to

utilize RCM output but produce local random vari-

ability, change factor–adjusted WGs have been pro-

posed (e.g., Kilsby et al. 2007). Here, the WG

parameters, calibrated to observed present-day condi-

tions, are adjusted by the (long-term average) climate

change signal of the corresponding parameters derived

from an RCM simulation. Such WGs, however, are not

downscaling in a strict sense, as the day-to-day weather
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sequence is not conditioned on the RCM but only on the

future RCM climatology. Therefore, although this ap-

proach can provide potentially useful information, these

WGs are not consistent with the RCM-simulated

weather and do not produce any random variability

beyond a few days; in particular, they produce no in-

terannual or decadal variability.

A solution to ensure pairwise correspondence be-

tween observed and simulated time series is to use

perfect boundary conditions (i.e., reanalysis data) for

the RCM and additionally nudge the RCM to the

reanalysis fields at large scales (von Storch et al. 2000).

In such a setting, the simulated large-scale circulation is

in strong agreement with the observed weather, and

thus the local simulated and observed day-to-day

weather sequences are correlated. Therefore, one is

able to formulate regressionmodels between simulated

predictors and observed predictands (e.g., Widmann

et al. 2003; Themeßl et al. 2011). A pairwise MOS ap-

proach provides the basis for keeping much of the ex-

plained variability from the RCM, in particular

interannual and decadal variability, but also correcting

systematic biases and adding the required small-scale

variability.

Here, we propose a pairwise stochastic MOS approach

for correcting and downscaling climate model output.

Conceptually similar approaches have recently been

developed in weather forecasting to use MOS for

predicting continuous probability distributions (e.g.,

Gneiting et al. 2005; Friederichs 2010; Berrocal et al.

2010; Thorarinsdottir and Johnson 2012). In addition to

correcting systematic biases, this approach also down-

scales to local scales and represents the full local-scale

intensity distribution ranging from dry days to extreme

events. To model wet day probabilities, a logistic re-

gression is used. Precipitation intensities are described

by a mixture model (Frigessi et al. 2002; Vrac and

Naveau 2007); that is, moderate precipitation is mod-

eled by a gamma distribution and the extreme tail is

modeled by a generalized Pareto (GP) distribution. The

dependence of the model parameters on the simulated

RCM precipitation is modeled by a vector generalized

linear model (Yee and Wild 1996; Yee and Stephenson

2007; Maraun et al. 2010a, 2011). In its current version,

our model does not explicitly account for spatial de-

pendencies (beyond the dependency imprinted by the

RCM); that is, it is a single site model. By drawing

random numbers from the predictand time-varying

distribution, our model can be used as a precipitation

generator. It therefore sets the stage for a new frame-

work: MOS weather generators that are consistent with

the large-scale circulation simulated by the chosen nu-

merical model (be it RCM or GCM).

Section 2 gives a general overview of the approach,

and the data used in this study are described in section 3.

In section 4, the statistical model used for downscaling

precipitation occurrence and precipitation intensities is

described, along with the model selection procedure.

Finally, the goodness of fit and performance of our

stochasticMOS approach are evaluated in section 5, and

an example application is shown.

2. General approach

Gridbox values represent area averages and do not

provide information about local subgrid variability. Part

of the subgrid variability is systematic: for example,

because of elevation or rain shadow effects (i.e., in sta-

tistical terms, predicted or explained by gridbox values).

But in particular for precipitation, a considerable frac-

tion of subgrid variability is, in general, random (in the

sense that it cannot be predicted by gridbox values). For

instance, the occurrence of convective precipitation

might be well predictable by the gridbox value, but not

the exact position, let alone the exact amount at a par-

ticular location. This issue is one aspect of the repre-

sentativeness problem between gridbox and point

values (Zwiers et al. 2013).

Current variance-correctingMOS approaches, such as

quantile mapping, cannot overcome the representative-

ness problem for two reasons: First, they are deterministic

and do not add unexplained random variability. Second,

they are calibrated in a distribution-wise setting (i.e.,

calibrated on long-term distributions) and therefore

cannot even separate the local variability into a system-

atically varying fraction and an unexplained small-scale

variability that has to be modeled as random noise. In-

stead, deterministic variance corrections merely inflate

the systematic variability to match the total local vari-

ability, while also inflating other systematic features, such

as long-term trends. Furthermore, if applied tomore than

one gauge within a grid box, the predicted subgrid spatial

structure is completely deterministic. As a consequence,

the spatial extent of dry areas and extreme events might

be heavily overestimated as well (Maraun 2013).

The aim of this study, then, is to separate the

explained variance from the total local-scale variance

and explicitly model the unexplained small-scale vari-

ance. One way to achieve this is by building a regression

model. A prerequisite for any regression model is the

pairwise correspondence between predictors and pre-

dictands (i.e., in our case, temporal correspondence

between simulated and observed precipitation at the

daily scale). To distinguish such regression-based MOS

approaches from simple distribution-wise methods, we

term these approaches ‘‘pairwise MOS.’’
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To ensure the required temporal correspondence

between simulated and observed individual events, we

use an RCM driven with perfect boundary conditions

from reanalysis data and additionally spectrally nudged

within the domain to the large-scale reanalysis fields

(von Storch et al. 2000). An initial setup without

spectral nudging resulted in too much freedom of

the RCM to develop its own small-scale variability,

such that the resulting model showed predictive skill

only across specific regions. Driving the RCM with

boundary conditions from reanalysis data allows

one to correct only for RCM biases. If transferred to

AOGCM-driven RCM simulations (e.g., to bias correct

and downscale future simulations) AOGCM biases will

be preserved.

With the above setting in place, we can build a re-

gression model in a MOS context, where simulated

precipitation as predictor is bias corrected and down-

scaled. The deterministic part of the regression model

(explained variance) would correct systematic biases,

and the chosen noise model would describe the (un-

explained) small-scale variability. In this study, the re-

gression model comprises a logistic regression for wet

day probabilities and a vector generalized linear model

predicting the parameters of a mixture probability dis-

tribution for precipitation intensities. Simulating from

the logistic model and the mixture model creates se-

quences of local-scale precipitation that explicitly in-

clude random small-scale variability.

3. Data

To test and illustrate our method, we bias correct and

downscale daily precipitation simulated by the Consor-

tium for Small-Scale Modeling in Climate Mode

(COSMO-CLIM) version 4.8 RCM (Rockel et al. 2008)

to a set of rain gauges across the United Kingdom sep-

arately for winter [December–February (DJF)] and

summer [June–August (JJA)]. The simulation has been

carried out by the Helmholtz Centre Geesthacht for the

period 1961–2000 at a horizontal resolution of 0.228
(;25 km) over a rotated grid covering the European

domain (van der Linden and Mitchell 2009). At the

boundaries, the RCM is driven with the National Cen-

ters for Environmental Prediction–National Center for

Atmospheric Research (NCEP–NCAR) reanalysis

(NCEP1) data (Kalnay et al. 1996) (a so-called perfect

boundary setting). Spectral nudging (von Storch et al.

2000) was applied for large-scale wind speed compo-

nents in the upper levels.

For local-scale observations, against which the RCM is

bias corrected, we used daily precipitation data from the

Met Office Integrated Data Archive System (MIDAS)

available from the British Atmospheric Data Centre

(http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__

dataent_ukmo-midas). We selected nine gauges to rep-

resent the nine precipitation regions across the United

Kingdom (Wigley et al. 1984; Gregory et al. 1991).

Within a region, the selection was arbitrary from

a quality-checked set of gauges covering the simulation

period (Maraun et al. 2008). Figure 1 shows the locations

of these nine rain gauges.

Figures 2 and 3 show quantile–quantile (QQ) plots of

uncorrected RCM gridbox simulations against point

observations for the nine selected gauges. The discrep-

ancy between simulation and observation represents the

overall effect of model biases and the representativeness

problem. That is, in particular at the lower and upper

tails, a considerable fraction of the discrepancy is caused

by the scale mismatch between gridbox and point scale.

As an example gauge for our detailed discussions, we

FIG. 1. Example gauges: Kinlochewe (source ID 66), Balmoral

(source ID 148), Blyth Bridge (source ID 274), Belfast (source ID

16374), Anglesey (source ID 11463), Sheffield (source ID 525),

Bude (source ID 1418), Cambridge (source ID 454), and Hastings

(source ID 818). Gray lines represent borders between pre-

cipitation regions.
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consider Cambridge Botanic Garden (MetOffice source

identifier 454) throughout the whole manuscript. Ex-

treme precipitation in Cambridge has its strongest

intensities in summer with a slightly heavy-tailed dis-

tribution (Maraun et al. 2009).

Even in a perfect boundary setting, the trajectories

of simulated weather systems might—randomly and

systematically—slightly diverge from the observed

trajectories. As precipitation additionally exhibits high

spatial and temporal variability, the temporal corre-

spondence between gridbox-simulated and observed

local-scale daily precipitation is, in general, relatively

weak. To increase the agreement, we therefore average

the simulated precipitation (i.e., the predictor) across

the square of nine neighboring grid boxes centered

on the grid box containing the actual gauge.

For Cambridge, Fig. 4 demonstrates the overall good

temporal correspondence of simulated (gray) and ob-

served (black) precipitation. The wet–dry day sequences

correspond very well on a day-to-day basis. The relative

average intensities of individual wet periods also cor-

respond well, but systematic biases stand out. In

FIG. 2. Empirical QQ plots of RCM gridbox precipitation against observed precipitation for the nine example gauges for DJF.
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particular, during summer, model values are on average

much lower than observed values. Individual intensities

show considerable random differences.

4. Statistical model

The implementation of our pairwise stochastic MOS

approach is discussed in the following sections. First,

we introduce the mixture probability distribution for

modeling precipitation intensities in a stationary con-

text. Second, we present the downscaling approach:

a logistic regression model to predict wet day proba-

bilities and the vector generalized linear model to

predict precipitation intensities based on simulated

precipitation.

a. Stationary model

Classical continuous distributions like the gamma

distribution are commonly used to model precipitation

intensities (Katz 1977). These distributions are able to

model the bulk of the precipitation distribution but

do not perform as well in modeling the extreme

FIG. 3. As in Fig. 2, but for JJA.
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precipitation. The tail of the gamma distribution is, in

general, too light to model high rainfall intensities and

underestimates the extremes (e.g., Vrac and Naveau

2007; Maraun et al. 2010b). Hence, an extreme value

distribution, such as the generalized Pareto distribu-

tion, might be required when modeling the extreme

tails of the precipitation distribution above a certain

threshold.

To consider both bulk and extreme tails of the pre-

cipitation distribution, Vrac and Naveau (2007) pro-

posed the following stationary model of combining both

gamma and GP distributions. This model is a variant of

that of Frigessi et al. (2002). The distribution lu(r) of

observed precipitation r on wet days is modeled as

lu(r)5 c(u)(f[12wm,t(r)] fl,g(r)g1 [wm,t(r)gj,s(r)]),

u5 (l,g, j,s,m, t) ,

(1)

where fl,g is the probability density function (pdf) of the

gamma distribution with rate parameter l and shape

parameter g,

fl,g(r)5
lg

G(g)
rg21e2lr, l,g. 0, (2)

and gj,s is the pdf of the GP distribution:

gj,s(r)5
1

s

�
11

j(r2 u)

s

�[2(1/j)21]

when x$u . (3)

Here, s . 0 is the scale parameter and j is the shape

parameter that influences the different tail behavior of

the GP distribution: 1) for j , 0, the upper tail is

bounded; 2) for j 5 0, an (light tailed) exponential dis-

tribution is obtained; and 3) for j . 0, the upper tail is

unbounded and is heavy tailed. Here, j was constrained

to be strictly positive to ensure identifiability of the

mixture model parameters. For the United Kingdom,

this assumption is valid for most regions in general and

all selected gauges in particular (Maraun et al. 2009).

The function wm,t is a weight function that represents

the transition between the gamma and GP pdfs. It is

expressed as

wm,t(r)5
1

2
1

1

p
arctan

�r2m

t

�
, m, t. 0, (4)

with location parameter m, which denotes the location

of the center of this transition, while t affects the ra-

pidity of transition between the two distributions. The

weight function takes values in (0, 1) and is a non-

decreasing function converging to 1 as rainfall r goes

to ‘. At w5 0.5, there is an equal weight for the gamma

and GP pdfs in the mixture model Eq. (1). This corre-

sponds to the condition r 5 m. For small values of w,

there is a greater emphasis placed on the gamma dis-

tribution; this corresponds to the case where r , m.

Consequently, small rainfall values are captured pre-

dominantly by the gamma distribution. Conversely, for

high values of w, there is more emphasis on the GP

distribution; thus, heavy rainfalls are captured by theGP

distribution. To create the mixture pdf, the mixture

function must be normalized, and this is achieved by

multiplying the mixture function by a constant c(u).

In themixture pdf in Eq. (1), the threshold u in theGP

distribution is set to zero, as the location parameterm in

the weight function fulfills the purpose of a threshold in

Eq. (1). Vrac and Naveau (2007) attribute the advan-

tages of having a weight function and fixing the thresh-

old to zero to 1) solving the difficult threshold selection

problemwith an unsupervised estimation procedure and

2) avoiding a discontinuity in the pdf lu(r), which may

occur when nonzero thresholds are allowed.

FIG. 4. Daily precipitation time series (section) for Cambridge for (top)DJF and (bottom) JJA.

Observed (black) and raw RCM (gray) averaged across 3 3 3 grid boxes.
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As wet days, we consider days with precipitation above

1mmday21. As the support of the gamma distribution

comprises (0, ‘), a nonzero wet day threshold would as-

sign zero probability density to all intensities ranging

from zero to that threshold and lead to a serious misfit of

the gamma distribution for small intensities. We there-

fore account for the ignored values in (0, 1] by shifting all

precipitation events on wet days by 21mmday21 for

calibration and shifting the estimated distribution back by

11mmday21. The convincing QQ plots for low pre-

cipitation intensities above the wet day threshold (see

section 5) demonstrate that this procedure is justified.

b. Nonstationary model for downscaling

In our context, downscaling refers to predicting the

distribution of local-scale precipitation ri at time step i 5
1, . . . , nt at a certain rain gauge by using the precipitation

xi, simulated at the gridbox level by anRCM.Precipitation

downscaling on a daily time scale, in general, consists of

two steps. Given a predictor value, first the precipitation

occurrence is downscaled. Conditional on a wet day, the

precipitation intensity is downscaled in a second step.

1) DOWNSCALING PRECIPITATION OCCURRENCE

A logistic regression is often used to model the

changing probability of rainfall occurrence (Chandler

and Wheater 2002). The logistic regression model be-

longs to the class of generalized linear models (GLMs),

which are a generalization of simple linear regression:

the time-dependent expectation mi of a random variable

is linked via a monotonic link function g(�) to a linear

combination of np predictors x1,i, . . . , xp,i (Dobson 2001),

g(mi)5a01 �
n
p

j51

ajxj,i , (5)

where a0, . . . , anp are regression coefficients. In our

case, the probability pi that a day i is wet is modeled as

a function of simulated RCM precipitation xi,

g(pi)5 log

�
pi

12 pi

�
5a01a1xi , (6)

where g(�) is the so-called logit link function and a0 and

a1 are coefficients to be estimated. Hence, the proba-

bility pi of a day i being wet can be expressed as

pi 5
exp(a0 1a1xi)

11 exp(a01a1xi)
. (7)

2) DOWNSCALING PRECIPITATION INTENSITIES

To model the influence of our predictor, RCM-

simulated precipitation xi, on the parameters of the

mixture model, we employ a vector generalized linear

model (VGLM) as regressionmodel (Yee andWild 1996;

Yee and Stephenson 2007). The general idea of VGLMs

is to predict nu distribution parameters uk,i, k5 1, . . . , nu,

for each time step i,

gk(uk,i)5bk,01 �
n
p

j51

bk,jxj,i , (8)

where gk(�) represents the link functions for each dis-

tribution parameter xj,I; i 5 1, . . . , np represents the

predictors; and bk,j represents the VGLM coefficients.

In our particular case, the VGLM reads as follows:

li 5 l01 l1xi

gi 5 g01 g1xi

si 5s01s1xi

ji 5 j0

mi 5m01m1xi

ti 5 t0 . (9)

It is calibrated separately for each rain gauge. No link

function was chosen, first because predictor and predictand

are the same physical variables. Furthermore, an initial

formulation with an exponential link function, in several

cases, resulted in unrealistically high predictions for

high predictor values. In principle, this could lead to

negative parameter values and therefore a failure of

the calibration. This case, however, did not occur (even

for moderate extrapolation; see section 5b). Estimates

of the shape parameter j are often rather uncertain

because they are dominated by the most extreme and

therefore rare values. If the shape parameter is modeled

dependent on predictors, the problem is exacerbated;

the estimated regression coefficients are highly uncer-

tain and often indistinguishable from zero, but they still

might produce unphysical predictor–predictand relation-

ships. Therefore, in line with general practice, the shape

parameter is kept constant (but different for each gauge).

Initial analyses showed that the downscaling results were

insensitive to an influence of the predictor on t. There-

fore, t was also kept constant.

To obtain the distribution function of precipitationRi,

we combine the probability of wet day occurrence pi
from Eq. (7) and the mixture model distribution, which

defines our precipitation intensities, to give

Pr(Ri # r)5Pr(Ri# r jW)pi 1 (12 pi) , (10)

where Pr(Ri # r jW) is the corresponding cumulative

distribution function of the mixture model distribution.
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The parameters in Eqs. (7) and (9) are estimated using

maximum likelihood estimation (MLE).

c. Model selection

The full model given by the logistic regression Eq. (7)

and the mixture model Eq. (9) is quite complex and,

given the limited amount of calibration data, susceptible

to overfitting. Therefore, we carried out a systematic

statistical model selection to reduce the complexity of

the model to a justified degree. As potential candidate

models, we consider all simplifications of the full model

that remove the influence of the predictor on a model

parameter, including the stationary mixture. Addition-

ally we consider a simplified version of the model that

does not include the Pareto distribution for the tail and

thus does not explicitly account for extremes. This

model employs only the gamma distribution and thus

simplifies to the following:

li 5 l01 l1xi

gi 5 g01 g1xi . (11)

In the following, we refer to this model as the VGLM

gamma model. The candidate models are compared by

means of statistical model selection criteria that assess

whether the improvement in likelihood by increasing

the model complexity is justified by the increased

number of parameters. To select the optimal model

structure, different information criteria exist for dif-

ferent settings. In our case, where the set of candidate

models most likely does not include the hypothetical

true model, the Akaike information criterion (AIC;

Akaike 1973) is a suitable choice: in this case, it asymp-

totically (for an infinite number of data points) selects the

model that minimizes the mean squared error of pre-

diction (Shao 1997). The AIC is defined as 22 log(L) 1
2k, where L is the likelihood corresponding to the max-

imum likelihood estimate of the kmodel parameters. To

avoid calibrating all possible candidate models, we carry

out a backward elimination (Davison 2003). Starting

from the full VGLMmixture model Eq. (9), in each step

the parameter is omitted that minimizes the AIC until no

omission further improves the AIC. In addition, we ex-

plicitly calculate the AIC for the stationary mixture

model and the VGLM gamma.

5. Results

In this section, we first present the final selected

model structure for the nine selected gauges and assess

its goodness of fit. Second, we assess the downscaling

performance of the selected model. Within the as-

sessment, we evaluate the downscaling performance

by comparing the model’s predictive power with the

climatology. Moreover, we compare the VGLM mix-

ture model to the simpler VGLM gamma model. The

latter comparison is relevant for two reasons: 1) it

shows whether explicitly including an extreme value

model improves the representation of extreme pre-

cipitation events but 2) it also shows for what range

of values the simple and computationally efficient

VGLM gamma model provides a feasible alternative

to the complex VGLM mixture model. Finally, we

present an example application for Cambridge. Our

stochastic MOS method aims to predict local pre-

cipitation and is thus conceptually closely related to

weather forecasting. Both goodness of fit and model

performance can thus be assessed from a forecast

verification perspective. In the following sections, we

will therefore also discuss the quality of our model with

respect to the forecast verification attributes of re-

liability, resolution, and sharpness (Wilks 2006; Jolliffe

and Stephenson 2003).

a. Model selection results and goodness of fit

We carry out themodel selection separately for winter

and summer across all nine example gauges. The selec-

tion procedure is illustrated for the rain gauge at Cam-

bridge in Tables 1 and 2. The tables list AIC values for

all considered candidate models; the AIC of the finally

selected model structure is shown in boldface.

For each of the nine rain gauges, a different model

structure is chosen based on the systematic model se-

lection approach. Tables 3 and 4 show the AIC values

for the stationary mixture model Eq. (1), the VGLM

gammamodel Eq. (11), and the selectedVGLMmixture

model.

TABLE 1.Akaike information criterion values of VGLMmixture

model with different set of parameters fixed for Cambridge (source

ID 454) for DJF, 1961–2000. The AIC of the finally selected model

structure is highlighted in bold.

Parameters fixed AIC

Eq. (2) 4843

j1, t1, g1 5 0 4847

j1, t1, l1 5 0 4837

j1, t1, m1 5 0 4835

j1, t1, m1, g1 5 0 4825

j1, t1, m1, g1, l1 5 0 4848

j1, t1, m1, g1, s1 5 0 4843

j1, t1, m1, l1 5 0 4833

j1, t1, m1, s1 5 0 4836

j1, t1, s1 5 0 4845

j1, t1, s1, g1 5 0 4848

j1, t1, s1, l1 5 0 4842

j1, t1, s1, m1 5 0 4836

6948 JOURNAL OF CL IMATE VOLUME 27



Except for Balmoral in summer (where the AIC of the

stationary is slightly lower than that of the VGLM mix-

ture model), the stationary mixture model has been se-

lected for none of the gauges.1 That is, our model has

predictive power and, thus, the stochastic MOS

approach—predicting local precipitation from gridbox

precipitation—is, in principle, feasible. The simplerVGLM

gamma model seems to suffice (according to the AIC)

for all but one gauge in winter, whereas the VGLM

mixture model is required for most gauges in summer.

The reason for this difference is likely the different

processes governing extreme precipitation in different

seasons; In winter, extreme precipitation is often asso-

ciated with large-scale weather systems that are well

simulated by climate models. In summer, precipitation

extremes are often caused by subgrid convective events.

We assess the (absolute) goodness of fit of our sto-

chasticMOS downscalingmodel using residualQQplots,

where standardized empirical quantiles are plotted

against standardized theoretical quantiles. For compari-

son, we also consider the VGLM gammamodel Eq. (11).

A QQ plot should only be used for quantiles of an un-

conditional distribution. As the predicted distribution

varies from day to day with simulated precipitation, ob-

servations and model distributions have therefore been

standardized to the stationary gamma distribution (see,

e.g., Coles 2001). As the standardization shifts both

model and observation according to the strength of the

predictor for any particular event, the absolute values in

the QQ plots can only be seen as a rough guide. Figures 5

and 6 show the QQ plots of all wet days for the VGLM

gamma (blue circles) and VGLM mixture (black circles)

models for all nine rain gauges, for winter and summer

seasons, respectively. For all rain gauges in winter and

summer, both the VGLM mixture and VGLM gamma

models are capable of reproducing the observed quantiles

for the bulk of the distribution. In other words, both

models effectively correct systematic biases for low and

medium precipitation. Consistent with the AIC results

(Table 3), the VGLM gamma suffices to describe the tail

for most gauges during winter but diverges considerably

from the observations at higher quantile ranges. A par-

ticularly strong divergence of the VGLM gamma model

occurs for Kinlochewe in winter but, because of the rel-

atively poor performance of the VGLM mixture model

for medium intensity precipitation (see Fig. 5), the

gamma model produces a better AIC value. As the

standardization procedure implicitly accounts for the ef-

fect of the predictor, the QQ plots also indicate that both

models produce reliable and well-calibrated predictions

(i.e., they exhibit low conditional bias). For the mixture

model, this is also valid for heavy precipitation.

For our example gauge at the Cambridge Botanic

Garden, both models effectively describe the bulk of the

TABLE 2. As in Table 1, but for JJA.

Parameters fixed AIC

Eq. (2) 4851

j1, t1, g1 5 0 4868

j1, t1, l1 5 0 4849

j1, t1, l1, g1 5 0 4866

j1, t1, l1m1 5 0 4847
j1, t1, l1, m1, g1 5 0 4864

j1, t1, l1, m1, s1 5 0 4852

j1, t1, l1, s1 5 0 4853

j1, t1, m1 5 0 4849

j1, t1, s1 5 0 4856

j1, t1, s1, g1 5 0 4874

j1, t1, s1, l1 5 0 4853

j1, t1, s1, m1 5 0 4854

TABLE 3. Akaike information criterion for the nine example

gauges for DJF, 1961–2000. For the VGLM mixture model, for

each gauge the finally selected model structure is chosen. The op-

timal model based on the AIC value is highlighted in bold. Note

that AIC values are given, conditional on wet days, also for the

stationary model.

Station

Stationary

mixture

VGLM

gamma

VGLM

mixture

Kinlochewe 15 650 14 855 14 905

Balmoral 7786 7704 7701

Blyth

Bridge

8129 8040 8054

Belfast 7963 7792 7803

Anglesey 9024 8861 8875

Sheffield 7718 7638 7640

Bude 8958 8865 8889

Cambridge 4845 4821 4825

Hastings 6712 6605 6626

TABLE 4. As in Table 3, but for JJA.

Station

Stationary

mixture

VGLM

gamma

VGLM

mixture

Kinlochewe 10 391 10 167 10 170

Balmoral 5691 5754 5691

Blyth

Bridge

7084 7036 7038

Belfast 6211 6201 6163

Anglesey 6493 6428 6428
Sheffield 5589 5581 5549

Bude 6084 6044 6016

Cambridge 4871 4902 4847

Hastings 4700 4700 4673

1Note that AIC values are calculated for the intensity distribu-

tions conditional on wet days; that is, the AIC does not assess the

occurrence model. Thus, stationarity here refers to ‘‘constant in-

tensity distribution, given a wet day.’’
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observations in winter. While the mixture model describes

almost all observations very well, the gamma model di-

verges more strongly from the empirical distribution for

high quantiles.During summer, theVGLMmixturemodel

almost perfectly describes the observed precipitation dis-

tribution from low intensities toward extremes, whereas

theVGLMgammamodeloverestimates low intensitiesbut

considerably underestimates moderate to high intensities.

b. Performance of the stochastic MOS approach

In the context of our stochastic MOS, downscaling

refers to the prediction of local-scale precipitation from

RCM-simulated gridbox precipitation. Beyond model

selection and goodness of fit, mainly two questions are of

interest: How is the predictive power of our model

compared to the climatology? How do predictions with

the VGLMmixture model differ from predictions based

on the simpler VGLM gamma model? We assess both

questions visually by plotting the predicted distribution

conditional on simulated precipitation and quantita-

tively by means of skill scores in a cross validation.

Figures 7a and 7b show the dependence of the pre-

dicted distribution on simulated precipitation for winter

and summer, respectively, at Cambridge. Depicted is

FIG. 5. QQ plots (mmday21) for the nine example gauges for DJF. Standardized to stationary gamma distribution fitted to observed wet

day intensities. VGLM gamma model (black triangles) and VGLM mixture model (blue circles).
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a selection of quantiles from the VGLM mixture model

(solid lines) and the VGLM gamma model (dashed

lines); for comparison, the corresponding quantiles of

the stationary model (climatology; dotted lines) are also

shown. Given a simulated precipitation value, local

precipitation will fall below a certain quantile with the

corresponding (color coded) probability. The quantiles

get smaller with smaller simulated precipitation (pre-

dictor) values and are cut off below 1mmday21 by the

chosen wet day threshold.

The distribution of RCM-simulated predictor values

is indicated by selected sample quantiles (vertical

dashed–dotted lines). Obviously, the predicted distri-

bution for both winter and summer depends strongly on

simulated precipitation. For instance, in winter, the dry

day probability decreases from more than 75% for zero

simulated precipitation (blue line) to 25% for about

9mmday21 simulated precipitation (magenta line).2

Similarly, the probability of exceeding 10mmday21

changes from roughly 10% for 10mmday21 simulated

FIG. 6. As in Fig. 5, but for JJA.

2 The 75% quantile is zero for zero simulated precipitation; the

25% quantile is just zero for 9mmday21 simulated precipitation.
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precipitation (green line) to roughly 25% for 40mmday21

simulated precipitation (blue line).3

In terms of forecast attributes, our prediction has

a considerable resolution, as the predicted distribution

changes strongly with different simulated precipitation

values. In principle, the behavior with respect to reso-

lution lies between two extreme cases. The climatology

(dotted lines) is independent of any predictor. It therefore

has only little predictive power and no resolution at all.

The higher the predictive power of the model, the more

strongly the quantiles would depend on simulated pre-

cipitation (i.e., the steeper they would slope toward high

simulated values). Also, the fraction of unexplained

variance, which is basically given by the width of the

distribution, would shrink. With higher predictive

power, the individual quantiles would grow closer to-

gether and finally collapse to a single deterministic

prediction in the case of perfect local predictability. The

relative slope of and distance between the individual

quantiles should thus give a rough idea of the predictive

power of our model for these quantiles, in terms of

FIG. 7. Predicted quantiles as function of simulated precipitation at Cambridge for (top) DJF

and (bottom) JJA: VGLM mixture model (solid), VGLM gamma model (dashed), stationary

mixture model (dotted), and corresponding sample quantiles of the RCM-simulated predictor

(dashed–dotted).

3 The 10 mmday21 corresponds to the 90% quantile for

10mmday21 simulated precipitation and to the 75% quantile for

40mmday21 simulated precipitation.
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resolution and sharpness. Notably, the relative slopes

of the winter and summer quantiles are very similar

(e.g., the change of the 95th percentile from 10 to

40mmday21 simulated precipitation is roughly a fac-

tor of 2 for winter and summer), suggesting a similar

performance.

For winter, the VGLM gamma model (dashed lines)

agrees well with the VGLM mixture model for low

values of predicted precipitation, confirming the con-

clusions from the QQ plots. Divergence from the mix-

ture model occurs in two different ways. For the bulk of

simulated precipitation values, the gamma model pre-

dicts lower extremes than the mixture model: see the

99.9th percentile up to a range of about 30mmday21 of

simulated precipitation. This deviation is expected be-

cause of the light tail of the gamma distribution. Con-

sidering the deficiencies of the gamma model for high

quantiles revealed by the QQ plots, this deviation fur-

ther indicates that the gamma model should be used

with care for extrapolations beyond the range of

observed values. For high values of simulated pre-

cipitation, however, the gamma model shows a com-

pletely different behavior. In this range, the model is not

well constrained by data (see the vertical lines indicating

quantiles of simulated precipitation) and is—as a result

of its stiff parameterization—mostly determined by data

in the lower range of simulated precipitation. In these

rare cases, the conditional gamma distribution is very

broad and predicts even higher values than the mixture

distribution for basically all quantiles (for very high

quantiles, of course, the light tail of the gamma distri-

bution dominates again; not shown). The fact that the

model selection procedure favored the more flexible

VGLMmixturemodel indicates that this behavior of the

VGLM gamma model is an artifact of the too-rigid

model structure. For summer, the behavior of the

VGLM gamma model is qualitatively similar, but the

divergence from the mixture model for high simulated

precipitation sets in much later. In fact, the divergence

toward too-high predicted intensities is stronger for

lower quantiles than for high quantiles. The effect of the

light tail is clearly visible already in the 95th percentile.

This underestimation is in accordance with the results

from the QQ plots (see Fig. 6).

To quantify the predictive performance of our model,

we use skill scores developed in the context of forecast

verification (Wilks 2006; Jolliffe and Stephenson 2003).

Skill scores measure the performance of a forecast rel-

ative to a reference forecast. They are designed to range

from 1 for a perfect forecast, through 0 for one that does

not provide any improvement over the reference, and to

negative values for forecasts performing worse than the

reference. The actual evaluation is carried out as cross

validation. For this purpose, our dataset of 40 seasons is

separated into training periods of 30 seasons and testing

periods of 10 seasons. Four nonoverlapping testing pe-

riods are chosen, starting from the first 10-season period,

while the training periods are chosen accordingly. The

skill scores are calculated for the merged 40-season se-

quence of the four consecutive testing periods. Confi-

dence intervals of the skill scores were calculated by

a nonparametric bootstrap approach following Jolliffe

(2007): the cross-validated time series of predicted

quantiles and predictands were resampled 1000 times

with replacement, and 1000 skill score values were de-

rived to approximate 95% confidence intervals.

To examine the capability of our logistic model to

predict dry and wet days (defined as more than 1mm of

precipitation), we employ the Brier score (BS) (e.g.,

Wilks 2006). The Brier score measures the averaged

squared error between N pairs of probabilistic forecasts

( fi) and binary observations (oi), where fi is the pre-

dicted wet day probability pi from Eq. (7), a wet day

observed is oi 5 1, and a dry day is oi 5 0,

BS5
1

N
�
N

i51

(fi 2oi)
2 . (12)

The Brier skill score (BSS) measures the improvement

of the Brier score of the considered model relative to

that of a reference model BSref,

BSS5 12
BSlogistic

BSref
. (13)

Here we consider the climatological wet day probability

as reference model.

The resulting BSS are shown in Table 5. Consistently

positive values reflect that our model predicts the wet

and dry day sequence considerably better than the cli-

matology. This result indicates that precipitation simu-

lated by a spectrally nudged RCM driven with perfect

TABLE 5. Brier skill scores (%) of the logistic regression for wet

day probabilities against the climatological wet day probability.

The 95% confidence intervals are given in parentheses.

Station DJF JJA

Kinlochewe 38 (35, 40) 23 (21, 26)

Balmoral 12 (10, 14) 9 (7, 11)

Blyth Bridge 15 (13, 17) 10 (8, 12)

Belfast 23 (20, 25) 17 (14, 19)

Anglesey 19 (17, 21) 15 (12, 17)

Sheffield 15 (13, 17) 11 (9, 13)

Bude 22 (19, 24) 18 (15, 20)

Cambridge 13 (10, 15) 13 (11, 16)

Hastings 18 (15, 20) 15 (13, 18)

15 SEPTEMBER 2014 WONG ET AL . 6953



boundary conditions is an informative predictor for

observed local-scale wet day probabilities.

To quantify the capability of our model to predict

specific quantiles, we employ the quantile skill score

(QSS; Friederichs and Hense 2007; Friederichs and

Thorarinsdottir 2012). For a given set of observations yi
and predictors xi, where i5 1, . . . , N, the quantile score

(QS) for the predicted a-quantile qa as a function of the

predictors xi is defined as the weighted average of the

distance of each observation from thea-quantile estimate,

QSa 5 �
N

i51

ra[yi 2 qa(xi)] , (14)

where

ra(u)5

�
au for u$ 0;

(a2 1)u for u, 0.
(15)

The QS measures the resolution and reliability of

a conditional quantile forecast and thus penalizes non-

informative and biased quantile forecasts (Friederichs

2010). The quantile skill score compared to a reference

model is defined as

QSSa5 12
QSa

QSa,ref
. (16)

First we quantify the performance of our model rel-

ative to the climatology for selected quantiles at all

example gauges (see Table 6). Here, the climatology is

defined as the combination of climatological wet day

probability and either stationary mixture or gamma

model, depending on which of the two yields the better

quantile score (i.e., the best stationary model is chosen

as reference). For both winter and summer, the QSS is

consistently positive and ranges for most quantiles on

average between 12% and 20%. In general, it is highest

for medium-high intensities (75th to 90th percentile),

with slightly lower values for extremes. Interestingly, the

relative performance in predicting the median is ap-

parently weak, in particular for summer. The reason for

this behaviormight be that the (time dependent)median

is often zero and is thus well predicted also by the cli-

matological distribution, in particular for a low clima-

tological wet day probability, as in summer.

Second, we choose the VGLM gamma model as

a reference to quantify the improvement of explicitly

accounting for extremes (see Table 7). For both winter

and summer, the improvement compared to the VGLM

gamma model is negligible. This finding contrasts

considerably with the QQ plots, in which, for both

winter and summer, the 99th percentile (e.g., around

12mmday21 for winter and 20mmday21 for summer in

the QQ plot for Cambridge) is considerably under-

estimated by the gamma model yet relatively well cap-

tured by the mixture model. In other words, biases in

high quantiles are reduced by the mixture model. As

stated above, the QS rewards low biases and penalizes

TABLE 6. Quantile skill scores (%) of the VGLM mixture model for different quantiles against the best climatological model (either

stationary mixture or gamma) for (top) winter and (bottom) summer. The 95% confidence intervals are given in parentheses.

(DJF) Station 0.5 0.75 0.9 0.95 0.98

Kinlochewe 30 (28, 31) 36 (34, 38) 35 (31, 37) 32 (26, 33) 28 (18, 28)

Balmoral 8 (7, 10) 13 (12, 15) 15 (13, 19) 13 (10, 18) 12 (7, 18)

Blyth Bridge 11 (9, 12) 15 (13, 17) 13 (10, 16) 11 (9, 15) 9 (6, 16)

Belfast 18 (16, 20) 25 (23, 28) 23 (20, 26) 22 (17, 25) 17 (11, 22)

Anglesey 15 (13, 17) 19 (18, 22) 17 (14, 20) 16 (12, 20) 15 (9, 21)

Sheffield 10 (8, 11) 15 (13, 17) 14 (11, 17) 14 (9, 16) 11 (6, 16)

Bude 15 (14, 17) 19 (17, 21) 16 (13, 18) 12 (9, 15) 5 (4, 11)

Cambridge 6 (4, 8) 12 (9, 14) 11 (8, 14) 12 (7, 15) 13 (6, 19)

Hastings 11 (9, 13) 21 (18, 23) 19 (16, 22) 17 (14, 21) 11 (7, 16)

Mean 14 20 18 16 13

(JJA) Station 0.5 0.75 0.9 0.95 0.98

Kinlochewe 19 (17, 20) 23 (21, 25) 24 (21, 27) 21 (19, 26) 17 (13, 24)

Balmoral 3 (3, 4) 10 (8, 11) 11 (9, 13) 11 (8, 14) 8 (6, 13)

Blyth Bridge 4 (3, 6) 11 (9, 13) 11 (9, 14) 10 (7, 13) 9 (4, 12)

Belfast 7 (6, 9) 17 (14, 19) 15 (12, 18) 13 (8, 17) 12 (7, 17)

Anglesey 5 (4, 7) 17 (14, 20) 19 (16, 22) 18 (14, 22) 15 (9, 20)

Sheffield 3 (2, 5) 11 (9, 13) 15 (11, 17) 12 (8, 16) 11 (5, 16)

Bude 8 (6, 9) 17 (15, 20) 16 (14, 20) 14 (11, 18) 9 (3, 14)

Cambridge 3 (2, 5) 14 (11, 16) 16 (12, 19) 15 (11, 19) 10 (6, 15)

Hastings 4 (2, 6) 17 (14, 19) 15 (12, 19) 16 (11, 21) 16 (10, 23)

Mean 6 15 16 15 12
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noninformative predictions. The fact that theQSS of the

VGLM mixture relative to the VGLM gamma model is

negligible thus indicates that the gain in QSS by the

decrease in bias is outweighed by a decrease in pre-

dictive power of the model. The latter effect is likely

caused by the higher number of parameters in the

VGLMmixture model. Note that the QSS only assesses

the model performance for the range of observed values

and does not state anything about the performance

when extrapolating to unobserved extremes.

c. Example application

In this section, we present an initial application of

our stochastic MOS downscaling model to the rain

gauge data at Cambridge Botanic Garden for both

winter and summer. Based on the calibrated VGLM

mixturemodel, we use RCM-simulated precipitation to

predict the local precipitation distribution at each day.

Figure 8 shows a range of quantiles from the 50th to

95th percentile (colored lines) compared to the actual

observations (black spikes) for the winters (top) and

summers (bottom) from 1961 to 1969. Overall, our

model exhibits a considerable sharpness; it deviates

strongly from the climatology (constant quantiles) and

shows long dry spells (where the 75th percentile is small

and the median essentially zero) as well as extreme

events. In general, the predictions of dry and wet spells

are accurate compared to the actual observed spells,

consistent with the results for the Brier skill scores

(Table 5). Also, higher intensities and extreme events

are well predicted, consistent with the quantile skill

score results (Table 6).

6. Conclusions

We developed a stochastic MOS approach for bias

correcting and downscaling climate model output. The

key idea is to use RCM-simulated precipitation as

a predictor for the full local-scale intensity distribution

ranging from dry days to extreme events. To enable the

calibration of such a regression model, a pairwise cali-

bration is necessary where predictor and predictand

correspond on a day-by-day basis. In our implementa-

tion, temporal correspondence was ensured by perfect

boundary conditions for the RCM from NCEP1 data

and additional spectral nudging.

Traditional bias correctionmethods in climate research

are deterministic and therefore only correct systematic

biases but do not account for unexplained local-scale

variability (Maraun 2013). That is, these methods, by

construction, cannot overcome representativeness prob-

lems. Our approach is probabilistic and, by generating

random small-scale variability, can additionally down-

scale processes highly variable in space and time such as

precipitation from the grid scale to the point scale.

Our specific implementation employs a logistic re-

gression to model wet day probabilities, with RCM-

simulated precipitation as a predictor. A mixture model

(Frigessi et al. 2002; Vrac and Naveau 2007) is used to

TABLE 7. As in Table 6, but against VGLM gamma model.

(DJF) Station 0.5 0.75 0.9 0.95 0.98

Kinlochewe 21 (23, 0) 21 (23, 0) 22 (26, 22) 24 (211, 25) 29 (223, 29)

Balmoral 0 (0, 1) 0 (0, 1) 0 (0, 1) 21 (21, 2) 0 (23, 3)

Blyth Bridge 0 (0, 0) 0 (0, 1) 0 (0, 1) 21 (21, 1) 22 (22, 2)

Belfast 1 (0, 1) 0 (21, 1) 0 (21, 1) 21 (23, 1) 23 (29, 1)

Anglesey 0 (0, 1) 0 (0, 1) 21 (21, 0) 21 (22, 0) 23 (25, 21)

Sheffield 0 (0, 1) 0 (0, 1) 0 (21, 0) 0 (22, 1) 21 (24, 2)

Bude 0 (0, 0) 0 (21, 0) 0 (21, 0) 0 (21, 1) 22 (22, 1)

Cambridge 0 (0, 0) 0 (0, 1) 0 (21, 2) 2 (21, 4) 3 (22, 10)

Hastings 0 (0, 0) 0 (0, 1) 0 (0, 0) 0 (21, 1) 23 (25, 0)

Mean 0 0 0 21 22

(JJA) Station 0.5 0.75 0.9 0.95 0.98

Kinlochewe 1 (0, 3) 0 (0, 2) 0 (0, 2) 21 (21, 2) 23 (25, 2)

Balmoral 1 (21, 3) 21 (23, 1) 23 (25, 21) 23 (24, 21) 24 (25, 0)

Blyth Bridge 0 (0, 1) 0 (0, 1) 1 (0, 2) 2 (0, 3) 2 (22, 4)

Belfast 1 (0, 1) 0 (0, 0) 0 (0, 1) 1 (0, 1) 1 (22, 2)

Anglesey 1 (0, 2) 0 (0, 1) 1 (0, 1) 2 (0, 3) 1 (23, 3)

Sheffield 0 (0, 1) 1 (0, 1) 1 (0, 2) 1 (0, 3) 2 (0, 5)

Bude 1 (0, 1) 0 (0, 0) 21 (0, 0) 0 (0, 2) 21 (25, 1)

Cambridge 0 (0, 1) 0 (21, 0) 0 (21, 0) 2 (0, 3) 21 (23, 1)

Hastings 1 (0, 2) 0 (0, 1) 0 (21, 1) 1 (0, 3) 1 (0, 4)

Mean 1 0 0 1 0
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describe precipitation intensities; that is, moderate

precipitation is represented by a gamma distribution,

and extremes are represented by a generalized Pareto

(GP) distribution. RCM-simulated precipitation is in-

cluded as predictor for the intensities via a vector gen-

eralized linear model (VGLM) (Yee and Stephenson

2007; Maraun et al. 2010a, 2011). The specific model

structure—which model parameters are affected by the

predictor—had to be selected individually for each sea-

son and rain gauge based on the Akaike information

criterion. The proposed model can, in principle, also be

used forweather forecasting: for example, as an extension

of models describing only the bulk of a distribution (e.g.,

Thorarinsdottir and Johnson 2012) or solely extreme

events (e.g., Friederichs 2010).QQplots revealed that the

VGLM mixture model effectively corrects systematic

biases and provides a well-calibrated estimate of the local

precipitation distribution for a wide range of quantiles.

In our context, downscaling refers to predicting the

distribution of small-scale precipitation from gridbox-

simulated precipitation. We found that the predicted

quantiles of our mixture model depend strongly on the

predictor, implying a considerable forecast resolution

(predictive power) and thus downscaling capability. This

finding was further quantified by skill scores: our model

substantially improves the Brier skill score for predicting

local-scalewet and dry days compared to the climatology.

Furthermore, our model considerably improves the

quantile score for predicting a wide range of quantiles

relative to the climatology. In terms of forecast

FIG. 8. Predicted time series of quantiles at Cambridge for (top) DJF and (bottom) JJA:

observations (black spikes) and predicted quantiles of the VGLM mixture model (color).
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verification attributes, our model thus provides a well-

calibrated (with a low bias) estimate with considerable

resolution (the predicted distribution depends strongly

on simulated precipitation) of local-scale wet day

probabilities and precipitation intensities.

The calibration and model selection procedure for

the VGLM mixture model is computationally rather

expensive in the order of hours per gauge on one node of

a state-of-the-art processor. The strength of this model

therefore lies in an accurate representation of the full

precipitation distribution for a relatively small number of

gauges. For the description of a large number of rain

gauges, onemight consider using aVGLMgammamodel

(i.e., a simplified version of the mixture model where the

tail distribution is omitted). Calibration of this model

takes less than a second per gauge. For low to moderate

simulated precipitation (predictor) values, the VGLM

gammamodel predicts basically the same quantiles as the

mixture model: only very high quantiles are under-

estimated because of the light tail of the gamma distri-

bution. This effect is stronger for summer, where it is

already visible in the observed range of values. For win-

ter, it is only relevant when extrapolating to unobserved

intensities. For high simulated precipitation (predictor)

values, however, the VGLMgammamodel is not flexible

enough and predicts too broad a distribution. Here, local

precipitationwill be overestimated formost quantiles and

even for extremes (for very high return levels the light

gamma tail will lead to an underestimation again).

Comparisons based on the quantile score, however, in-

dicate that, for the range of simulated and observed

precipitation, predictions based on the VGLM gamma

model are compatiblewith those from themixturemodel.

To summarize, the VGLM gamma is a fast and feasible

alternative to the complexVGLMmixturemodel, as long

as one is not concernedwith very high extremes and a low

number of potential outliers caused by the light gamma

tail and the inflexibility of the VGLM gamma model,

respectively.

Our stochastic MOS approach sets a new framework

for bias correction to combine the advantages of pre-

cipitation generators and RCMs. Similarly, to change

factor–based weather generators, it utilizes RCMoutput

to produce a random sequence of local-scale weather.

As a key advantage, however, our approach is not only

consistent with the gridbox climate change signal of the

RCM but also with the daily precipitation sequence

produced by the RCM. Whereas change factor–based

weather generators only produce internal climate vari-

ability up to several weeks based on Markov chains, our

approach, by construction, captures all the climate var-

iability simulated by theRCM, ranging from interannual

to multidecadal fluctuations.

A further advantage results from the pairwise calibra-

tion. Traditional distribution-wise correction approaches

implicitly assume that RCM-simulated precipitation is

a realistic representation of observed precipitation. In

the (pairwise) perfect boundary setting, we are able to

assess this skill explicitly by evaluating the predictive

power of our regression model.

The requirement of perfect boundary conditions re-

stricts our approach to solely correct RCMbiases; biases

of the driving GCM will be preserved. Our MOS ap-

proach shares this property with PP approaches that are

calibrated with observational predictors and then trans-

ferred to AOGCM predictors. Yet, to our knowledge, it

is currently not clear to what extent a correction of

biases in a free-running AOGCM or RCM–AOGCM

modeling chain is justified. For instance, Eden et al.

(2012) and Eden and Widmann (2014) argue that large-

scale circulation errors in the AOGCM may not rea-

sonably be corrected by postprocessing model output.

The framework of stochasticMOS opens a completely

new research avenue in climate science, and our study

should be regarded as a first step, rather than a fully

developed tool. Time series can in principle be simu-

lated from the current version of our model, but the day-

to-day memory appeared to be slightly weaker than in

reality. Including the previous day’s predicted pre-

cipitation as predictor for wet day probabilities is ex-

pected to improve the simulation. In fact, the pairwise

calibration provides a framework to include other pre-

dictors than simulated precipitation [i.e., to extend the

simple bias correction/downscaling approach to a full

multipredictor MOS; see Themeßl et al. (2011) for an

initial study]. In a MOS context, these predictors can

represent regional-scale processes and might, therefore,

have much higher predictive power than typical large-

scale predictors of PP approaches. Furthermore one

might also transfer probabilistic multistation models

(e.g., Yang et al. 2005) to our stochastic MOS that ex-

plicitly model spatial dependence. Similarly, the ap-

proach is, in principle, extendable to a multivariate

approach. Such models would then establish a new

framework for weather generators that are consistent

with the weather sequence of a bias-corrected driving

climate model, from daily to multidecadal scales.
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