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Objectives 

The objective of the project is to develop an IP-core that provides hardware 

acceleration for common 2D rendering operations in an embedded system. 

Methods | Experiences | Results  

The requirements for graphical user interfaces (GUI) on modern display and 

touchscreen based systems are increasing steadily. Rendering complex and 

attractive GUIs requires a lot of processing power. At the same time, energy 

consumption for most of these embedded systems should decrease. Being able 

to off-load processor intensive tasks such as rendering of 2D shapes to dedicated 

hardware vastly decreases rendering time and frees a lot of processor resources 

which leads to a faster GUI and a less power consuming system. 

 

Existing solutions often work only under very strict conditions and with specific 

platforms and are not flexible enough for the demands of the µGFX library which 

has been designed to run on virtually any system. 

 

The result of the project is a ready-to-use IP-core that provides hardware 

acceleration for rendering solid rectangles in a NIOS-II based system. The design 

can be adapted to be used in any system. New hardware renderers for additional 

shapes can be added easily without modifying the rest of the design. 
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Objectif  du projet  

L'objectif du projet est de développer un coeur IP qui fournit une accélération 

matérielle pour les opérations de rendu graphique en 2D dans un système 

embarqué. 

Méthodes | Expériences | Résultats  

Les exigences pour les interfaces utilisateur graphiques (graphical user interface / 
GUI) sur l'affichage moderne des systèmes à écran tactile augmentent 
régulièrement. Le rendu visuel des interfaces graphiques complexes et 
attrayantes nécessite beaucoup de puissance de traitement. En même temps, la 
consommation d'énergie de la plupart de ces systèmes embarqués est censée 
diminuer. Le fait de pouvoir décharger les tâches intensives du processeur telles 
que le rendu des formes 2D sur un circuit dédié diminue considérablement le 
temps de dessin et libère beaucoup de ressources du processeur. Ceci nous 
conduit à une interface graphique plus rapide et à un système moins 
consommateur d'énergie. 
 
Les solutions existantes ne fonctionnent souvent que dans des conditions très 
strictes et sur des plates-formes spécifiques. Elles ne sont pas suffisamment 
souples pour répondre aux exigences de la bibliothèque μGFX qui a été conçue 
pour fonctionner sur pratiquement n'importe quel système. 
 
Le résultat du projet est un coeur IP prêt à l'emploi qui fournit une accélération 
matérielle pour le dessin de rectangles solides dans un système basé sur NIOS-
II. Le circuit peut être adapté pour être utilisé dans n'importe quel système. De 
nouveaux calculateurs matériels pour des formes supplémentaires peuvent être 
ajoutés facilement sans modifier le reste de la conception. 
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1 Preamble 
This is the official and final report for the bachelor thesis. 

 

2 Motivation 
This project has been proposed as a bachelor thesis by myself. As the author and maintainer of the 

µGFX1 library I know how many CPU resources rendering even simple shapes such as a solid rectangle 

can take. On small microcontroller systems or FPGAs with soft-cores this is usually a big problem as 

these CPUs are not only comparably slow but also need to take care of a magnitude of other things 

such as processing user events or handling wireless communication which often involve hard-realtime 

requirements. These hard-realtime requirements often require the 2D rendering tasks to be split up 

into multiple different operations which makes rendering a user interface even slower and therefore 

quickly leads to a non-smooth user interface which does not hold up to the ever-growing performance 

demands of modern graphical user interfaces. 

Being able to off-load even simple tasks such as rendering a filled rectangle to a dedicated part of the 

hardware (GPU) doesn’t only vastly increase rendering speed but also frees up a lot of CPU resources. 

Dedicated hardware to off-load rendering operations for smaller systems is nothing new. There are 

several display controllers such as the RA8875 from RAiO which provide hardware support for 

rendering basic 2D shapes. Furthermore, there are more complex systems such as the FT800 from 

FTDI which implement hardware rendering for complex shapes and widgets such as pushbuttons, 

sliders and even entire on-screen keyboards. More advanced microcontrollers that feature built-in 

display controllers also start to provide very basic hardware acceleration support for rectangle 

drawing and other basic operations such as the LTDC display controller that can be found in some of 

the higher-end STM32 microcontrollers. These existing solutions tend to be very inflexible and are 

always highly proprietary. They can almost always only be used with the matching closed-source 

software of the vendor or they come with other restrictions that vastly limit the field of use. The goal 

of this project is to develop a system that can be integrated easily into any existing and new system. 

 

3 Project goal 
The goal of this thesis is to develop an IP-core that provides 2D hardware acceleration to a system-on-

chip2 (SoC) to speed up graphical user interfaces on embedded systems. 

More specifically, the IP-core will be implemented in VHDL3 and will be optimized for the use with the 

µGFX library and the NIOS-II4 processor. 

While we will refer to this IP-core as “a GPU” (graphical processing unit) it is not to be compared to a 

traditional GPU of a desktop computer system. The goal of this project is to implement hardware 2D 

acceleration for small embedded systems that do not require fancy animations or 3D renderings. The 

                                                           
1 https://ugfx.io 
2 https://en.wikipedia.org/wiki/System_on_a_chip 
3 https://en.wikipedia.org/wiki/VHDL 
4 https://www.altera.com/products/processors/overview.html 
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GPU will be optimized to be small & simple and also easy to use for the CPU as we want to save as 

much CPU time as possible on those smaller low-performance systems. 

 

4 Document structure 
The complete bachelor thesis report consists of three separate documents: 

• The actual report itself (this document) 

• The datasheet of the developed IP-Core 

• A document that describes the problem that was faced when implementing the Avalon-MM 

master bus interface 

These three documents refer to each other were necessary. To a person unfamiliar with the project it 

is best to start with the datasheet and then moving on to reading the rest of this report. 

The reason for having a separate document regarding the problem with the Avalon-MM master bus 

interface is that the problem has not been solved yet. A workaround that is suitable to finish this thesis 

has been found and applied but solving the problem has yet to be done. 

 

5 Terms & abbreviations 
The following table gives an overview of terms and abbreviations that are commonly used 

throughout this document: 

Abbreviation Description 

2D Two dimensional 

Avalon A bus standard created by Altera for FPGA internal communication 

CPU Central processing unit 

FBI Framebuffer interface 

FIFO First-in First-out (a type of memory/buffer) 

Framebuffer A section of memory that holds the pixel data that is shown on the display 

FSM Finite state machine 

GPU Graphics processing unit 

HAL Hardware abstraction layer 

IP-Core (Intellectual property) A pre-fabricated block of something ready to be used 

Qsys Tool of the Quartus toolchain used to create a SoC 

Quartus The FPGA IDE & Toolchain by Intel 

Silizium The name of this 2D hardware acceleration IP-Core 

SoC System-on-chip 
 Table 1: Commonly used abbreviations & terms in this document 
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6 Technical advantages 
This section of the document explains the technical advantages of having dedicated hardware for 2D 

rendering operations. This is basically the technical variant of section 2 (motivation). This section 

assumes that the reader is familiar with the basic concepts of a computer system (especially the CPU). 

A CPU is usually designed to be very good at executing a broad variety of different tasks (tasks in terms 

of logical operations and bit operations which together form calculations). Just as with most other 

things, when something is designed to be usable for many different things it is usually not very good 

at one particular thing. While a CPU offers everything required to render two dimensional shapes such 

as rectangles and polygons or to copy images around, it is not really optimized for that. This section 

of the document contains two examples that will illustrate why having dedicated hardware for 2D 

rendering operations can be a huge benefit in terms of the overall application speed. 

 

6.1 Example 1: Image blitting 
Blitting (historically also known as bit blit) stands for bit block transfer and describes a technique to 

assemble a bitmap (ultimately an image) from different parts of multiple different images. In layman’s 

terms, it’s taking a region of pixels and copying to a different location. A good example is rendering an 

image: When the developer of an (embedded) GUI wants to show an image on the display said image 

needs to be loaded from memory (eg. an SD-Card). Afterwards, the image needs to be decoded 

(usually by the CPU) and gets cached (“stored temporarily”) into memory. The cached version of this 

image is somewhere in memory but not inside the framebuffer. This means that the image is fully 

rendered but simply not on the display yet. Therefore, the next operation is to create a copy of the 

cached (decoded) image in memory. Copying memory is a very inefficient task for a CPU. To copy 

memory, a CPU must read a chunk of memory and store it in its internal registers and then write it 

back to a different memory location. As those registers are usually just big enough for a few bytes (eg. 

32 to 48 bytes in a typical modern microcontroller CPU) a lot of those read-store-write transactions 

need to be executed to copy a rendered image which often takes 2 to 4 bytes of memory per pixel. 

Each of those read-store-write transactions comes with overhead and also keeps the CPU from doing 

anything else. Assuming a small icon of 64 x 64 pixels size with a color format that takes 4 bytes per 

pixel it would take a CPU with the ability to store 32 bytes in registers at once 512 of those 

transactions: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 =  
64 ∗ 64 ∗ 4 𝑏𝑦𝑡𝑒𝑠

32 𝑏𝑦𝑡𝑒𝑠
= 512 

Almost all embedded systems (such as microcontroller) which would be used to implement graphical 

user interface offer DMA5 (direct memory access) which is a part of dedicated hardware next to the 

CPU that allows copying memory without using/occupying the CPU. However, those DMAs cannot be 

used efficiently in such an application as they only support linear memory spaces. Copying a two-

dimensional object in a framebuffer requires to wrap at the end of the object and then move to a 

different starting address for the next row. Traditionally DMAs cannot do this as they only provide a 

start and end address configuration parameter and constantly increment between the two. Therefore, 

a CPU would have to setup the DMA to copy one row of the image, wait for it to finish and then 

configure it to copy the next row. 

                                                           
5 https://en.wikipedia.org/wiki/Direct_memory_access 
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A hardware blitting engine is basically a DMA that knows the concept of having two-dimensional 

information in a linear memory space (a framebuffer). Instead of a start and stop address it gets 

provided with the start address and the width and height of the object in pixels. There are two benefits 

of having dedicated hardware for this: 

• This dedicated hardware will be a lot faster at copying that memory (as it has been built 

especially for this task) 

• After configuring and starting the hardware blitting engine the CPU can occupy itself with 

other things such as reacting on user inputs or decoding the next resource (eg. image) that 

will be used 

These two benefits combined speed up the final application a lot as the operation of copying the image 

is faster and the latency to react on user input and similar decreases at the same time. 

While the latest and most high-end microcontrollers such as some of the STM32 F4 and F7 series 

microcontrollers are equipped with such a DMA2D it is still rarely the case and in all cases those two-

dimensional DMAs are only able to be used together with the built-in display controller of those 

microcontroller which in turn imply a large set of new limitations. 

 

6.2 Example 2: Area filling 
In the first example, the main argument for having a dedicated piece of hardware was that a CPU is a 

lot slower at copying memory around than dedicated hardware that has been optimized for this. As 

the dedicated hardware is a lot faster performing the same operation the time required to perform 

the copying operation drops down. However, there are also cases where the CPU itself would be fast 

enough to perform the job but having dedicated hardware still saves overall time because the CPU 

can perform other tasks in the meantime. A good & easy to understand example for this is area filling 

(rendering a filled rectangle in the framebuffer). Ultimately, the value of each pixel in the framebuffer 

needs to be modified. A (modern) CPU is not a whole not slower at this compared to dedicated 

hardware but when the CPU can off-load this task to dedicated hardware the CPU has time to perform 

other tasks. 

 

The two examples above illustrate why and how dedicated hardware for 2D rendering operations can 

vastly speed up graphical user interfaces. 
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7 Used tools 
The overall goal of this project is to develop an IP-core that can be used in any system afterwards. 

However, for the scope of this bachelor thesis project we will focus on implementing a design that 

runs on a MAX10 FPGA using the NIOS-II system. The following tools are used to achieve that goal: 

Software 

• Quartus 17.0 (Quartus Prime Version 17.0.0 Build 595 04/25/2017 SJ Standard Edition) 

• Eclipse for NIOS-II Kepler Service Revision 2, Build 20140224-0627 

• ModelSim Intel FPGA starter edition 10.5b (Revision 2016.10) 

• µGFX library v2.7 

Hardware 

• Terasic MAX10 Neek6 

 

8 QSys 
A NIOS-II based system is usually developed using a utility named QSys7 that is part of Intels FPGA 

development suite named Quartus8. QSys provides a graphical interface for designing a SoC. As the 

2D hardware acceleration IP-core would be part of the resulting SoC it is essential that the developed 

block can be added easily to a QSys project through the graphical user interface. 

 

Figure 1: QSys screenshot 

                                                           
6 https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=956 
7 https://www.altera.com/products/design-software/fpga-design/quartus-prime/features/qts-qsys.html 
8 https://en.wikipedia.org/wiki/Altera_Quartus 
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8.1 Avalon 
The IP-core that provides the hardware accelerations needs an interface through which it can 

communicate with the CPU. The NIOS-II CPU relies heavily on the Avalon bus9, specifically the Avalon 

memory mapped (Avalon-MM) bus. The Avalon-MM bus offers a master-slave topology with multi-

master capabilities. Our IP-core will have an Avalon-MM bus slave through which the CPU can send 

commands to the GPU. Furthermore, the GPU will also feature an Avalon-MM bus master that allows 

accessing the framebuffer. 

 

9 Simplifications 
Due to time limitations, the following decisions have been made to keep the design simpler: 

• No parallel rendering 

 

After identifying the resources & systems that will be used and after deciding which simplifications 

are being made for the scope of this bachelor thesis it is time to determine which functions bring the 

most benefits when implemented in hardware. 

 

10 Hardware acceleration features 
A crucial step of the project is to identify which rendering functions bring the most benefits when 

implemented in hardware. For this, Table 2 has been created that lists the basic rendering functions 

provided by the µGFX library together with a rating of their complexity (in terms of implementation) 

and how often they are used in a typical application. From those two values, a priority rating has been 

deduced from which in turn the order of implementation for this project has been deduced. 

Column description: 

• Complexity: The complexity of the existing software algorithm relative to all other rendering 

algorithms in the table. 10 is the most complex. 

• Occurrences: The number of occurrences in a practical real-world GUI implementation 

relative to all other rendering algorithms in that table. 10 is the most used one. 

• Priority: The priority in terms of order of implementation for this thesis/project. 

The complete API reference for all primitive rendering functions that the µGFX library provides can be 

found here: http://api.ugfx.io/group___g_d_i_s_p.html  

                                                           
9 https://en.wikipedia.org/wiki/Nios_II#Avalon_switch_fabric_interface 

http://api.ugfx.io/group___g_d_i_s_p.html
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Function Description Complexity Occurrences Priority 

Blend Colors Blend two colors 1 3 - 

Draw Pixel Draw a single pixel 1 10-5 - 

Draw Line Draw a line (one pixel thick) 5 8 3 

Fill Area Fill an area with a solid color 1 10 1 

Blit Area Fill an area with a given buffer (2D memory copy) 2 6 2 

Draw Box Draw an unfilled rectangle 5 6 4 

Stream (Start, Color, End) Stream pixel values 2 2 - 

Draw Circle Draw an unfilled circle 7 4 9 

Fill Circle Draw a filled circle 7 4 10 

Fill Dual Circle Draw a filled circle with border 8 1 11 

Draw Ellipse Draw an unfilled ellipse 9 2 12 

Fill Ellipse Draw a filled ellipse 9 2 13 

Draw Arc Sectors Draw one or more arc sectors 9 2 - 

Draw Thick Arc Draw a thick arc 9 3 - 

Fill Arc Draw a filled arc 9 3 - 

Vertical Scroll Scroll a certain area of the framebuffer 2 5 6 

Draw Polygon Draw an unfilled polygon 7 4 5 

Fill Convex Polygon Draw a filled (convex) polygon 7 7 7 

Draw Thick Line Draw a thick line 7 5 8 

Draw Character Draw a single character 10 10 - 

Fill Character Draw a single character and fill the background 10 10 - 

Draw String Draw a string 10 10 - 

Fill String Draw a string and fill the background 10 10 - 

Draw String Box Draw a string with justification 10 10 - 

Fill String Box Draw a string with justification and fill the backgrounds 10 10 - 

Draw Rounded Box Draw an unfilled rectangle with rounded corners 5 5 - 

Fill Rounded Box Draw a filled rectangle with rounder corners 5 5 - 
Table 2: µGFX rendering functions overview
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11 Architecture 
Initially the idea was to create one IP-core per hardware acceleration function. However, after reading 

a lot of material about QSys it became clear that the best solution is to create just one IP-core that 

internally dispatches the jobs to the different sub components. The reason for this is that all of these 

components would require the same bus interface which would result in a lot of code duplication and 

would also require the user of the IP-core to hook up each block manually which quickly becomes a 

tedious task with a growing number of renderers and also decreases readability of the overall SoC 

design. Furthermore, the QSys tool provides a nice graphical configuration dialog for each IP-core. 

Once the Silizium IP-core is completed we can create a configuration dialog where each hardware 

acceleration feature can be either enabled or disabled and further configured. Another advantage of 

having just one IP-core is that we can handle the bus arbitration internally ourselves. This allows for 

further optimizations such as running multiple different rendering jobs in parallel, optimizing for burst 

transactions and similar. 

From the end user’s perspective, there will be just one IP-core with one Avalon-MM slave and one 

Avalon-MM master interface:  

2D Hardware Acceleration

Avalon-MM Slave

Avalon-MM Master

 

 

2D Hardware Acceleration

Avalon-MM Slave

Avalon-MM Master

 

 

 

Figure 2: IP core interfaces 

The slave interface will be used to configure and control the GPU as well as issuing rendering 

commands. The master interface is used to access the framebuffer memory. 

Figure 3 shows two different use cases for the Silizium IP-core in a typical NIOS-II based SoC. It is to 

note that the Silizium block is not affected by other aspects of the systems such as the location of the 

framebuffer (eg. Internal or external memory) or the used display interface. 
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Figure 3: Typical applications / use cases
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12 Internal design 
Figure 4 gives an overview of the internal design of the Silizium IP-core. The design can be split into 

the following components: 

• Command & Control bus interface 

• Registers 

• Command FIFO 

• Dispatcher 

• Renderers 

• Framebuffer interface 

Note: The purpose of said figure is to give an overview of how things work internally. The actual 

implementation is split up into different entities. 

 

12.1 Command & Control bus interface 
The command & control bus interface (from here on referred to as “the slave interface”) is used by 

the CPU to initialize, configure and control the GPU. The interface is compliant to the Avalon-MM slave 

standard and has the following requirements: 

• Address bus width: At least 4 bits 

• Data bus width: At least 32 bits 

• Read and write operations 

The run-time configuration of the GPU usually only consists of setting the framebuffer base address 

and the framebuffer span. Other parameters such as the display size, the pixel format and similar are 

handled by generic values and therefore do not need to be changed during run-time. Once the 

configuration is completed the slave interface is usually only used to send commands to the GPU, to 

control the different enable flags (if required) and to read back the current status of the GPU (eg. busy 

flags) and the command queue status. 

 

12.2 Registers 
The GPU features different control and configuration registers. The most important ones are: 

• Status register 

• Control register 

• Framebuffer base address & span register 

These registers can be accessed directly via the slave interface. 

The documentation of the values and effects of these registers are documented in the datasheet. 

 

12.3 Command FIFO 
The CPU issues commands to the GPU such as “draw a rectangle at this position with that size and this 

color”. These commands are stocked in the internal command FIFO of the GPU. Whenever there is a 

pending command in the FIFO the dispatcher will grab it as soon as the different renderers of the GPU 

are no longer busy and handle it accordingly.
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Figure 4: Internal design overview 
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12.4 Dispatcher 
The dispatcher takes commands out of the command FIFO and dispatches them to the appropriate 

hardware rendering blocks. To fulfill that task, the dispatcher also handles the internal bus arbitration 

and parallel rendering in the future (not implemented yet). 

 

12.5 Framebuffer interface 
The framebuffer interface (FBI) is the sub-component which actually talks to the framebuffer. In this 

particular project, we’re focusing on a NIOS-II system with a framebuffer that is accessible over an 

Avalon-MM bus. However, adapting to a different system is very easy. 

Figure 5 gives a detailed overview of the architecture of the framebuffer interface. The left side is the 

communication towards the individual renderers and the right side is the communication towards the 

Avalon-MM bus. The first thing to note is that the framebuffer interface allows for bidirectional 

communication. This is due to the fact that some renderers require read-back from the framebuffer 

to fulfill their tasks. A common example is a hardware renderer for scrolling: Such a block takes a 

portion of the display contents and moves it inside the framebuffer. For this, the block needs to read 

the contents of the framebuffer first. Furthermore, read-back is also required for anti-aliasing and 

loading miscellaneous contents from other parts of the memory (off-screen memory) which is often 

used to store decoded images or complex pre-rendered shapes that just need to be copied to the on-

screen portion of the framebuffer. 

The communication towards the renderers is being buffered through two individual FIFOs: A write-

FIFO and a read-FIFO. There are two benefits of having buffers at this place: Firstly, a renderer can 

keep rendering when the bus towards the framebuffer (the Avalon-MM bus) is currently being locked 

by another bus member. Secondly, having a write queue the framebuffer interface logic (the state 

machine) can optimize bus transfers by making use of burst writes (currently not implemented). 
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Figure 5: Framebuffer interface design overview
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12.5.1 Write 
At the very basic requirements, a renderer would simply provide the framebuffer interface with an 

address inside of the framebuffer area and a matching value to write there. The framebuffer interface 

would then take care of issuing the correct write transaction on the Avalon-MM bus. There are two 

minor draw-backs with this: 

1. Each renderer would have to know the exact framebuffer location (base address) 

2. A renderer could issue invalid write transactions (outside of the framebuffer location) which 

results in memory corruption and most likely a crash of the entire system. 

Handling the former is done by using relative addresses inside of the renderers. A renderer always 

addresses the framebuffer starting at 0x00 which represents the first pixel. The framebuffer interface 

simply adds the framebuffer base address (which is being provided by the CPU via the corresponding 

configuration register) to the addresses calculated by the renderers. 

The second draw-back is handled by simply comparing the framebuffer addresses provided by the 

renderers to the framebuffer span which is also provided by the CPU via the corresponding 

configuration register. As the renderers provide all addresses relative to 0x00 this is simply a matter 

of comparing the raw relative address to the span itself prior to adding the base address. Write 

requests outside of the framebuffer address space are simply being ignored by the framebuffer 

interface. 

At this point it is worth to note that using the framebuffer span to prevent invalid write transactions 

isn’t a mechanism meant to prevent bugs in the renderers themselves (as they should be verified prior 

to using them in a critical application) but rather because writing outside of the framebuffer area can 

actual be requested by the user. There are two possible scenarios which lead to a hardware renderer 

having to render outside of the framebuffer area: 

• The user accidentally provided invalid coordinates to the hardware rendering. This can be as 

simple as a typo in a constant while developing a new GUI or just a complex run-time 

calculation that went wrong. 

• The user might want to just render a portion of a shape on the screen. 

For the latter, a good example is a hardware renderer that allows rendering polygons. The user might 

want to just render a portion of that polygon somewhere in a corner of the screen as shown in Figure 

6. In such a case, the user simply asks the hardware renderer to render the polygon with negative X 

and Y coordinates. The renderer itself doesn’t implement any clipping (this will be discussed shortly) 

so the renderer simply renders the entire polygon and the framebuffer interface will throw out any 

write transactions outside of the framebuffer area.  

Display Area

  

 

Figure 6: Partial on-screen rendering of a polygon 
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12.5.2 Read 
Disclaimer: Due to time restrictions, the read portion of the framebuffer interface could never be fully 

tested. While the design described in this section is final/complete the actual implementation will still 

need some work. 

As mentioned in the introduction of this chapter there are certain cases where a renderer needs to be 

able to read-back the current contents of the framebuffer to perform its job. Therefore, a renderer 

needs a way to ask the framebuffer interface to issue a read transaction on the bus towards the 

framebuffer memory. In the simplest form, the renderer would simply assert a read request signal and 

wait for the data to be returned by the framebuffer interface. However, that would lead to 

synchronization issues. When a hardware renderer requires the contents of a portion of the 

framebuffer that is usually in order to modify that same portion (eg. By performing a scroll operation 

or by overlying a filter). This means that the renderer needs the most recent & up-to-date version of 

the framebuffer contents in respect of the rendering commands already issued by the user. The write 

FIFO of the framebuffer interface might still contain data that is relevant for the read-back operation 

that hasn’t been written to the actual framebuffer just yet. To prevent these sorts of problem, the 

read requests of a renderer are also being passed through the same FIFO as the write request. 

However, this means that the state machine that dispatches from the write FIFO needs to be able to 

distinguish between data-to-write and commands. This is achieved by adding an additional bit to the 

FIFO element width. This bit is from here on referred to as the D/C bit (Data/Command). The bit set to 

‘1’ means that everything after that bit represents a command that needs to be interpreted by the 

framebuffer interface while the bit set to ‘0’ means that everything after that bit is the relative 

framebuffer address and the data to be written at that address. 

At the moment, the only commands that the framebuffer interface can interpret is a read request and 

modifying the clipping area (explainer later on). In fact, there are two different read commands that 

can be issued: One is for linear reads and the other one is for window wrapper reads. 

Data that was read back from the framebuffer by the framebuffer interface are stocked into the read 

FIFO from which the hardware renderers can dispatch. There are two benefits from having this FIFO: 

• If a renderer would have to do some processing that prevents it from reading the data that 

was read back from the FBI immediately this would mean that the renderer would lock up the 

Avalon bus (the FBI would have to assert the waitrequest signal which would force the 

memory controller to hold on which would in turn potentially halt the entire system (other 

components such as the CPU couldn’t access the memory either during that time). This FIFO 

allows the FBI to check whether there’s enough room to stock the data that it will request 

from the memory controller prior to actually issuing the read command. 

• The FBI can make burst reads as multiple values can be stocked in the FIFO. 

Note that the read FIFO is usually many times smaller than the write FIFO. This is due to the fact that 

a renderer that requested a pixel-readback will usually have to wait for that information before it can 

continue and therefore immediately dispatches the data from the FBI read FIFO. 
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12.5.2.1 Linear read 

With a linear read, the renderer simply provides the relative address of the first pixel value he wants 

to read back and a count in number of pixels. The framebuffer interface will not provide any wrapping 

but simply increment the address until the specified amount of pixels values have been read back. 

A linear read request consists of the following values being written to the FIFO in that order: 

1. Read command (D/C bit set to ‘1’ and proper command constant (0x02)) 

2. Start address of the first pixel that will be read back 

3. Number of reads to be performed (in pixels) 

This is explained in more detail in section 12.5.5.2. 

 

12.5.2.2 Rectangular read 

In contrast to the linear read described above, the rectangular read allows a hardware renderer to 

specify a rectangular window inside the framebuffer. The framebuffer interface will take care of 

calculating the corresponding addresses and wrap at the edges of the rectangle. Basically, this allows 

a renderer to get a copy of the contents of a rectangular section of the framebuffer. 

A rectangular read request consists of the following values being written to the FIFO in that order: 

1. Read command (D/C bit set to ‘1’ and proper command constant (0x03)) 

2. Framebuffer address of the first pixel that will be read back 

3. Width of the window (in pixels) 

4. Height of the window (in pixels)  

This is explained in more detail in section 12.5.5.3. 

In both reading modes, the framebuffer interface uses the framebuffer base address to transform the 

relative addresses to absolute ones and uses the framebuffer span information to prevent reading 

from memory that isn’t part of the framebuffer. Note that the latter is a limitation that prevents off-

screen area blitting – a scenario where for example the CPU decodes an image in RAM (but not the 

framebuffer) and then simply asks the hardware blitting engine (renderer) to copy the decoded image 

to the appropriate location(s) inside of the framebuffer. 

 

12.5.3 Clipping 
Clipping10 is a technique that allows to limit the area (in the framebuffer) that will be affected by a 

rendering operation. At its most basic form (and with respect to operating only in two dimensions) 

clipping consists of a rectangular area with a given size and at a given position within the framebuffer. 

When rendering something only pixels inside that rectangular area get updated. All the pixels outside 

of the clipping area are unaffected by any rendering operations. More complex clipping engines allow 

defining clipping areas of arbitrary shapes. For example, this allows rendering only a circular area of a 

regular rectangular image. 

Currently the clipping takes place in the framebuffer interface and only one clipping region is 

supported. Changing the clipping area happens by changing the clipping parameters in the 

corresponding registers through the CPU. The values of the clipping registers are being passed through 

                                                           
10 https://en.wikipedia.org/wiki/Clipping_(computer_graphics) 
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the write FIFO as commands by the internal dispatcher. The reason for this is the same as for why read 

requests get passed through the write FIFO: The user might be changing the values of the clipping 

registers while some of the rendering operations are still in the write FIFO which would lead to 

unexpected results on the display. Passing everything through the same FIFO provides complete 

determinism as everything is being executed in chronological order. 

Changing the clipping area position & size consists of the following values being written to the FIFO 

in that order: 

1. Read command (D/C bit set to ‘1’ and proper command constant (0x01)) 

2. X coordinate of the window (in pixels) 

3. Y coordinate of the window (in pixels) 

4. Width of the window (in pixels) 

5. Height of the window (in pixels)  

This is explained in more detail in section 12.5.5.4. 

 

12.5.4 Read and write FIFO 
The various hardware renderers communicate with the framebuffer interface through the write- and 

the read-FIFOs. The formats of the data inside the FIFOs are complex as they combine multiple 

information into one FIFO element. For example, the write-FIFO contains the D/C bit and depending 

on that D/C bit the rest of the data is either a command value or the framebuffer address and data 

combined (concatenated). To simplify the life of a hardware renderer developer both FIFOs provide 

glue logic towards the hardware renderers to split-up and combine these signals to individual, more 

intuitive signals. 

Figure 7 shows the write-FIFO with the corresponding glue logic in front of it: 

FIFO n

FIFO n-1

...

Write FIFO

Glue 
Logic

ready
busAddr
busData

busWrite
cmdData

cmdWrite

...

FIFO 2

FIFO 1

 

Figure 7: FBI write-FIFO glue logic 

The ready signal indicates where the framebuffer interface is ready to receive new data or commands. 

This is the inverted isFull signal of the write-FIFO. A renderer must not issue new write transactions to 

the write-FIFO by strobing busWrite or cmdWrite if ready is logic ‘0’. Behavior is undefined in such a 

case. 

A renderer can alter the framebuffer contents by assigning the relative framebuffer address of the 

pixel in question to busAddr and by setting busData to the corresponding pixel value (color value). A 

one clock cycle long strobe on busWrite will store that information as a “data package” in the write-

FIFO in a format that the framebuffer interface behind the FIFO understands. 
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A renderer can issue commands to the framebuffer interface (such as issuing a read request or 

changing the clipping mask) by setting cmdData to the corresponding command and by applying a 

write strobe on cmdWrite. 

Similarly, the read FIFO is also interfaced by glue logic to simplify the life of a renderer developer: 

FIFO n

FIFO n-1

...

Read FIFO

Glue 
Logic

readFifoDataAvailable
readFifoData

readFifoDataValid
readFifoReadAck

FIFO 2

FIFO 1

 

Figure 8: FBI read-FIFO glue logic 

The readFifoDataAvailable signal indicates that there is new data in the read-FIFO ready to be 

dispatched by the renderer. This is the inverted isFull signal of the read-FIFO. 

The readFifoData is the actual data on the output port of the read-FIFO. 

It can happen that the framebuffer interface can’t complete a requested read operation for example 

because the renderer requested reading from an invalid memory section. The readFifoDataValid signal 

indicates, whether the data is actually to be interpreted by the renderer as in such a case the 

framebuffer interface will just provide dummy data to complete the read request. 

 

12.5.5 FIFO data format 
The previous sections explained the historical development of the framebuffer interface and its 

capabilities. The following is a summary of the data that needs to be written into the write-FIFO of the 

framebuffer interface to perform the corresponding tasks. 

The commands that need to be written into the write-FIFO of the framebuffer interface by a renderer 

are documented in tabular form: 

Order D/C (MSB) MSB-1 downto 0 Unit 

1 0 constant - 

2 0 < variable > Pixel count 

3 1 constant - 

4 1 < variable > Pixel value 

5 Don't care constant - 

6 Don't care < variable > Pixel coordinate 
Table 3: Framebuffer interface write-FIFO data format synopsis 

Parameters are being listed in ascending order from top to bottom. This means that the top most 

parameter is the first one to be written to the FIFO. The D/C (MSB) column specifies the state of the 

D/C bit. The MSB-1 downto 0 column the rest of the bits of the FIFO width. The values of the columns 

D/C (MSB) and the MSB-1 downto 0 will be concatenated (in that order, left-to-right) and written to 

the FIFO. 
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Note that the number of bits for the data and the address are configured through the corresponding 

generics named dataBitNb and addrBitNb. From this, the write-FIFO size has been deduced as: 

𝑤𝑟𝑖𝑡𝑒𝐹𝑖𝑓𝑜𝐵𝑖𝑡𝑁𝑏 = 𝑑𝑎𝑡𝑎𝐵𝑖𝑡𝑁𝑏 + 𝑎𝑑𝑑𝑟𝐵𝑖𝑡𝑁𝑏 + 1 

The +1 is to take the D/C bit discussed earlier into account. 

All framebuffer addresses are relative addresses where 0x00 is the first pixel in the framebuffer as 

the framebuffer interface will add the base address / offset of the framebuffer itself. 

 

12.5.5.1 Write 

Issuing a write transaction to the framebuffer is pretty straightforward and simple. As this will be by 

far the most used operation in the framebuffer interface it is crucial that it takes as little time as 

possible. 

Order D/C (MSB) MSB-1 downto 0 Unit 

1 0 <data> & <address> - 
Table 4: Framebuffer interface write-FIFO data format for write transaction 

Example: Writing the color value 0xAAAAAA to the address 0xBBBBBBBB assuming that both 

dataBitNb and addrBitNb are 32 requires writing the following into the write-FIFO: 

Order D/C (MSB) MSB-1 downto 0 Unit 

1 0 0x00AA AAAA BBBB BBBB - 

    

 Combined: 0x0 00AA AAAA BBBB BBBB  

    
Table 5: Framebuffer interface write-FIFO data format for write transaction example 

 

12.5.5.2 Linear read 

Performing a linear read requires two parameters: The start address (address of the first pixel in the 

framebuffer) and the number of pixels to be read back: 

Order D/C (MSB) MSB-1 downto 0 Unit 

1 1 0x02 - 

2 Don't care < Start address > Pixel address 

3 Don't care < Number of pixels > Pixel count 
Table 6: Framebuffer interface write-FIFO data format for linear read 

Example: Reading back 13 pixels starting at the relative framebuffer address 0x3E7 assuming that both 

dataBitNb and addrBitNb are 32 requires writing the following into the write-FIFO: 

Order D/C (MSB) MSB-1 downto 0 Unit 

1 1 0x0000 0000 0000 0002 - 

2 Don't care 0x0000 0000 0000 03E7 Pixel address 

3 Don't care 0x0000 0000 0000 000D Pixel count 
Table 7: Framebuffer interface write-FIFO data format for linear read example 
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12.5.5.3 Rectangular read 

Performing a rectangular read requires three parameters: The start address (address of the first pixel 

in the framebuffer) and the width and height of the rectangular window: 

Order D/C (MSB) MSB-1 downto 0 Unit 

1 1 0x03 - 

2 Don't care < Start address > Pixel address 

3 Don't care < Rectangle width > Pixel count 

4 Don't care < Rectangle height > Pixel count 
Table 8: Framebuffer interface write-FIFO data format for rectangular read 

Example: Reading back the pixels of a rectangle measuring 82 pixels in width and 64 pixels in height 

starting at the first pixel at address 0x3E7 assuming that both dataBitNb and addrBitNb are 32 

requires writing the following into the write-FIFO: 

Order D/C (MSB) MSB-1 downto 0 Unit 

1 1 0x0000 0000 0000 0003 - 

2 Don't care 0x0000 0000 0000 03E7 Pixel address 

3 Don't care 0x0000 0000 0000 0052 Pixel count 

4 Don't care 0x0000 0000 0000 0040 Pixel count 
Table 9: Framebuffer interface write-FIFO data format for rectangular read example 

 

12.5.5.4 Modifying clipping area 

Changing the clipping area requires writing the corresponding command followed by the four 

parameters which are X and Y coordinates and width and height dimensions of the new rectangular 

clipping area. Note that as described above the size of the FIFO is determined by the address and data 

bus width. However, the clipping parameters will be resized to coordBitNb. 

Order D/C (MSB) MSB-1 downto 0 Unit 

1 1 0x01 - 

2 Don't care < Clipping area X coordinate > Pixel coordinate 

3 Don't care < Clipping area y coordinate > Pixel coordinate 

4 Don't care < Clipping area width > Pixel count 

5 Don't care < Clipping area height > Pixel count 
Table 10: Framebuffer interface write-FIFO data format for clipping area modification 

Example: Changing the clipping area to X = 5, Y = 15, Width = 680, Height = 480 assuming that both 

dataBitNb and addrBitNb are 32 requires writing the following into the write-FIFO: 

Order D/C (MSB) MSB-1 downto 0 Unit 

1 1 0x0000 0000 0000 0001 - 

2 Don't care 0x0000 0000 0000 0005 Pixel coordinate 

3 Don't care 0x0000 0000 0000 000F Pixel coordinate 

4 Don't care 0x0000 0000 0000 02A8 Pixel count 

5 Don't care 0x0000 0000 0000 01E0 Pixel count 
Table 11: Framebuffer interface write-FIFO data format for clipping area modification 
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12.6 Renderers 
The GPU contains an isolated hardware rendering for each rendering operation that the GPU offers.  

Note: In the future, it will also be possible to have multiple instances of the same hardware rendering 

inside the GPU which allows to handle multiple rendering operations of the same type simultaneously. 

For example: Having more than one block to hardware render filled rectangles means that multiple 

filled rectangles can be rendered in parallel. 

This section of the document will explain the basic theory of operation of the existing renderers. To 

properly understand the different terms used it might be required to read the datasheet first. 

 

12.6.1 Pixel 
The pixel renderer consists of a simple finite state machine (FSM) that dispatches the required 

parameters from the command FIFO and then calculates the relative framebuffer offset to issue a 

write request to the framebuffer interface. 

The relative framebuffer address is calculated by using the following equation: 

𝐹𝐵 𝑎𝑑𝑑𝑟 = (𝑥 + 𝑓𝑏𝑊𝑖𝑑𝑡ℎ ∗ 𝑦) ∗ 𝑓𝑏𝐵𝑦𝑡𝑒𝑠𝑃𝑒𝑟𝑃𝑖𝑥𝑒𝑙 

The FSM is shown in Figure 9: 

Idle

Fetch

Execute

start =    

fetchDone =    

 

Figure 9: Pixel renderer FSM 

Fetching is done by a simple counter that is used to grab all three parameters (X, Y, color) from the 

command FIFO.  

 

12.6.2 Filled rectangle 
The filled rectangle renderer works the same way as the pixel renderer except that it contains two 

more counters which are used to count in X and Y direction until the width and height of the rectangle 

have been reached. The pixel address calculation reflects this by extending the equation of the pixel 

renderer with the two counter values countX and countY: 

𝐹𝐵 𝑎𝑑𝑑𝑟 = (𝑥 + 𝑐𝑜𝑢𝑛𝑡𝑋 + 𝑓𝑏𝑊𝑖𝑑𝑡ℎ ∗ (𝑐𝑜𝑢𝑛𝑡𝑌 + 𝑦)) ∗ 𝑓𝑏𝐵𝑦𝑡𝑒𝑠𝑃𝑒𝑟𝑃𝑖𝑥𝑒𝑙 

This calculation is performed for each pixel in the rectangle. 
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12.6.3 Clipping 
The clipping renderer functions a bit different to the pixel and the filled rectangle renderers as it 

doesn’t alter the framebuffer contents but issues a command to the framebuffer interface instead. 

The only job this clipping renderer does it dispatching the clipping mask parameters (X, Y, width and 

height) from the command FIFO and feeding them to the write-FIFO of the framebuffer interface. The 

finite state machine is simpler in this case as the fetching and the execution can be merged into the 

same state. The clipping renderer dispatches the first parameter and immediately pushes it to the 

framebuffer interface write-FIFO and therefore only adds one clock cycle of latency. 

Idle

Fetch

start =    

fetchDone =    

 

Figure 10: Clipping renderer FSM 

 

After discussing the theory of operation of the different hardware renderers it is time to look at the 

actual implementation. 

 

13 Implementation 
Section 12 explains the internal structure of the IP-core. This section of the document looks at the 

actual implementation in code. As mentioned in section 12, the overall design shown there doesn’t 

necessarily correspond to the design implementation. Entities and files have been named differently 

and sometimes parts that are shown individually in the design overview are simply embedded 

somewhere else. While this might sound like bad practice it’s to keep everything clean and simple. 

The overview given in section 12 has been structured to show the flow & handling of data in a way 

that is easy to grasp and understand. However, in code it’s sometimes often simpler to organize the 

structure slightly differently. 

This section won’t go through every line of code but instead just list the important bits and pieces that 

are necessary to understand the overall theory of operation. Mainly this consists of explaining the 

different files & entities. The entity tables will not list the data/signal types and ranges but instead just 

give a description detailed enough to understand the purpose of the generic/signal. Further details 

can be gathered easily from reading the code. 

Note that the generics and ports of all hardware renderers are exactly the same. They are not listed 

in this section as section 14 will describe everything required to write a new hardware renderer and 

therefore will also list the entity in great detail. 
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13.1 Silizium.vhd 
The silizium.vhd file contains the top-level entity of the Silizium IP-core. It doesn’t do anything except 

for forwarding everything to an entity named silizium_implementation. This technique is there to 

prevent having to re-generate the entire code of the SoC in the QSys tool every time something 

changes in the actual implementation: This way QSys knows the interface of the Silizium IP-Core which 

is the only important thing for it. All the other code we write will just be copy-pasted by the QSys tool 

upon code generation and therefore doesn’t requiring re-generating the entire SoC design which can 

take several minutes. 

Generics: 

Name Description 

dataBitNb Internal data handling width. Will be used in the future. DO NOT 
CHANGE THIS. 

coordBitNb The number of bits required to represent a coordinate in two's 
complement. 

colorBitNb The number of bits required to represent a color value (internally). 

cmdFifoNumWordsExp The exponent of the size of the input command FIFO in elements. 
Actual size will be 2^n of this value. 

fbAddrBitNb The width of the address bus of the framebuffer interface. 

fbDataBitNb The width of the data bus of the framebuffer interface. 

fbBurstcountBitNb The number of bits required for the burstcount signal. 

fbBytesPerPixel The number of bytes per pixel. 

fbWidth The width of the framebuffer in pixels. 

fbHeight The height of the framebuffer in pixels. 

fbWriteFifoNumWordsExp The exponent of the size of the framebuffer write FIFO in elements. 
Actual size will be 2^n of this value. 

fbReadFifoNumWordsExp The exponent of the size of the framebuffer read FIFO in elements. 
Actual size will be 2^n of this value. 

Table 12: silizium.vhd generics 

Ports: 

Name Direction Description 

reset in Global clock input 

clock in Global reset input 

avalon_slave_address in 

Avalon-MM slave interface 

avalon_slave_read in 

avalon_slave_readdata out 

avalon_slave_write in 

avalon_slave_writedata in 

avalon_slave_waitrequest out 

avalon_master_address out 

Avalon-MM master interface 

avalon_master_write out 

avalon_master_writedata out 

avalon_master_waitrequest in 

avalon_master_read out 
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avalon_master_readdata in 

avalon_master_readdatavalid in 

avalon_master_burstcount out 
Table 13: silizium.vhd ports 

 

13.2 Silizium_implementation.vhd 
This file contains the actual top-level implementation of the Silizium IP-Core. The entity is exactly he 

same as the one listed for the silizium.vhd file as all generics and ports are just being forwarded. 

This file contains the implementation of the slave interface which means that it hosts all registers and 

also creates the instance of the command FIFO. Furthermore, the instances of the dispatcher and the 

framebuffer interface are also being created here. 

Generics: 

Name Description 

dataBitNb Internal data handling width. Will be used in the future. DO NOT 
CHANGE THIS. 

coordBitNb The number of bits required to represent a coordinate in two's 
complement. 

colorBitNb The number of bits required to represent a color value (internally). 

cmdFifoNumWordsExp The exponent of the size of the input command FIFO in elements. 
Actual size will be 2^n of this value. 

fbAddrBitNb The width of the address bus of the framebuffer interface. 

fbDataBitNb The width of the data bus of the framebuffer interface. 

fbBurstcountBitNb The number of bits required for the burstcount signal. 

fbBytesPerPixel The number of bytes per pixel. 

fbWidth The width of the framebuffer in pixels. 

fbHeight The height of the framebuffer in pixels. 

fbWriteFifoNumWordsExp The exponent of the size of the framebuffer write FIFO in elements. 
Actual size will be 2^n of this value. 

fbReadFifoNumWordsExp The exponent of the size of the framebuffer read FIFO in elements. 
Actual size will be 2^n of this value. 

Table 14: silizium.vhd generics 
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Ports: 

Name Direction Description 

reset in Global clock input 

clock in Global reset input 

avalon_slave_address in 

Avalon-MM slave interface 

avalon_slave_read in 

avalon_slave_readdata out 

avalon_slave_write in 

avalon_slave_writedata in 

avalon_slave_waitrequest out 

avalon_master_address out 

Avalon-MM master interface 

avalon_master_write out 

avalon_master_writedata out 

avalon_master_waitrequest in 

avalon_master_read out 

avalon_master_readdata in 

avalon_master_readdatavalid in 

avalon_master_burstcount out 
Table 15: silizium.vhd ports 

 

13.3 Silizium_dispatcher.vhd 
The dispatcher receives all signals of the command FIFO required for reading from it and takes care of 

selecting the proper hardware renderer to execute the job. Each hardware renderer will dispatch his 

parameters itself from the command FIFO as the dispatcher doesn’t know how many parameters each 

hardware renderer needs. 

Generics: 

Name Description 

dataBitNb Internal data handling width. Will be used in the future. DO NOT 
CHANGE THIS. 

coordBitNb The number of bits required to represent a coordinate in two's 
complement. 

colorBitNb The number of bits required to represent a color value (internally). 

fbAddrBitNb The width of the address bus of the framebuffer interface. 

fbDataBitNb The width of the data bus of the framebuffer interface. 

fbBytesPerPixel The number of bytes per pixel. 

fbWidth The width of the framebuffer in pixels. 

fbHeight The height of the framebuffer in pixels. 
Table 16: silizium_dispatcher.vhd generics 

Ports: 

Name Direction Description 

reset in Global clock input 

clock in Global reset input 
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fifoEmpty in isEmpty signal of the command FIFO 

fifoRdAck out Read acknowledge signal of the command FIFO 

fifoData in Data output port of the command FIFO 

enable in Dispatcher enable input 

busy out Dispatcher isBusy output 

fbiBusAddr out FBI write-pixel address bus 

fbiBusData out FBI write-pixel data bus 

fbiBusWrite out FBI write-pixel write strobe 

fbiCmdData out FBI command data bus 

fbiCmdWrite out FBI command write strobe 

fbiIsReady in FBI isReady signal 

fbiReadFifoDataAvailable out FBI read-FIFO newDataAvailable signal 

fbiReadFifoData out FBI read-FIFO data output port 

fbiReadFifoDataValid out Whether the fbiReadFifoData data is valid 

fbiReadFifoReadAck in Read acknowledge signal of the FBI read FIFO 
Table 17: silizium_dispatcher.vhd ports 

 

13.4 Silizium_framebufferinterface.vhd 
The framebuffer interface implemented in this file dispatches maintains the write-FIFO and read-FIFO 

and talks to the actual framebuffer memory over the corresponding Avalon-MM master interface. 

Generics: 

Name Description 

coordBitNb The number of bits required to represent a coordinate in two's 
complement. 

addrBitNb The width of the address bus of the framebuffer interface. 

dataBitNb The width of the data bus of the framebuffer interface. 

burstcountBitNb The number of bits required for the burstcount signal. 

bytesPerPixel The number of bytes per pixel. 

writeFifoNumWordsExp The exponent of the size of the framebuffer write FIFO in elements. 
Actual size will be 2^n of this value. 

readFifoNumWordsExp The exponent of the size of the framebuffer read FIFO in elements. 
Actual size will be 2^n of this value. 

Table 18: silizium_framebufferinterface.vhd generics 
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Ports: 

Name Direction Description 

reset in Global clock input 

clock in Global reset input 

enable in Enable/disable the framebuffer interface activities 

boundaryChecksEnable in Enable/disable the memory boundary checks 

clippingEnable in Enable/disable the rectangular clipping mask 

avalon_master_address buffer 

Avalon-MM master interface 

avalon_master_write out 

avalon_master_writedata out 

avalon_master_waitrequest in 

avalon_master_read out 

avalon_master_readdata in 

avalon_master_readdatavalid in 

avalon_master_burstcount out 

fbAddrBase in Framebuffer memory base address 

fbAddrSpan in Framebuffer memory section span in bytes 

busAddr in write-pixel address bus 

busData in write-pixel data bus 

busWrite in write-pixel write strobe 

cmdData in command data bus 

cmdWrite in command write strobe 

ready out isReady signal (inverted writeFifoIsFull signal) 

readFifoDataAvailable out Whether new data is available to be read 

readFifoData out Read FIFO data output port 

readFifoDataValid out Whether the data on readFifoData is valid (valid read) 

readFifoReadAck in Read acknowledge signal of the read FIFO 

writeFifoUsedWords out Number of used words of the write FIFO 

writeFifoClear in Signal to clear the write FIFO 

readFifoUsedWords out Number of used words of the read FIFO 

readFifoClear in Signal to clear the read FIFO 

clipX out The X coordinate of the current clipping mask 

clipY out The Y coordinate of the current clipping mask 

clipWidth out The width of the current clipping mask 

clipHeight out The height of the current clipping mask 
Table 19: silizium_framebufferinterface.vhd generics 

 

The internal design of the Silizium-IP core has been designed to allow for easy adding of new hardware 

renderers. The following section provides all the information necessary to implement new hardware 

renderers. 
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14 Adding new renderers 
This section explains everything required to implement a new hardware renderer into the existing 

infrastructure of the Silizium IP-Core. 

A hardware renderer must have an entity that matches the ports listed in Table 21. Table 20 lists all 

generics that are available to a hardware renderer. 

 

14.1 Generics 
Table 20 lists the generics with type information, default values and the corresponding descriptions: 

Name Type Default Description 

dataBitNb positive 32 The width of the command FIFO. 

coordBitNb positive 32 The number of bits required to represent a coordinate in 
two's complement. 

colorBitNb positive 32 The number of bits required to represent a color value. 

cmdFifoNumWordsExp positive 7 The exponent of the size of the input command FIFO in 
elements. Actual size will be 2^n of this value. 

fbAddrBitNb positive 32 The width of the address bus of the framebuffer 
interface. 

fbDataBitNb positive 32 The width of the data bus of the framebuffer interface. 

fbBytesPerPixel positive 4 The number of bytes per pixel. 

fbWidth positive 800 The width of the framebuffer in pixels. 

fbHeight positive 480 The height of the framebuffer in pixels. 
Table 20: Silizium renderers interface generics 

 

14.2 Ports 
A hardware renderer must implement the port interface shown in Table 21: 

Name Direction Type Range 

reset in std_logic - 

clock in std_logic - 

start in std_logic - 

dataInReady in std_logic - 

dataIn in std_logic_vector dataBitNb-1 downto 0 

readAck out std_logic - 

busy out std_logic - 

fbiBusAddr out unsigned fbAddrBitNb-1 downto 0 

fbiBusData out std_logic_vector fbDataBitNb-1 downto 0 

fbiBusWrite out std_logic - 

fbiCmdData out std_logic_vector fbAddrBitNb+fbDataBitNb-1 downto 0 

fbiCmdWrite out std_logic - 

fbiIsReady in std_logic - 
Table 21: Silizium renderers interface ports 
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Detailed explanation of each signal: 

reset: Global reset input. 

clock: Global clock input. 

start: This signal will be set to ‘1’ for one clock cycle by the dispatcher once the renderer is supposed 

to start the rendering job. The current data element of the command FIFO is guaranteed to be the first 

parameter for the renderer. 

dataInReady: This signal is set to ‘1’ if there is data to be dispatched in the command FIFO. The 

renderer must not attempt to read from the command FIFO if this signal is not ‘1’. This signal is the 

inverted isEmpty signal of the command FIFO. 

readAck: The renderer must assert this signal (setting it to ‘1’ for the duration of one clock cycle) once 

a data element has been read from the FIFO. 

busy: This active-high signal allows the dispatcher to check whether the renderer is still busy or not. 

The renderer must set this signal to ‘1’ one clock cycle after the start strobe has been issued by the 

dispatcher. If this signal is not being driven ‘1’ by the renderer within that time frame the dispatcher 

assumes that the renderer finished and will start dispatching the next command from the command 

FIFO which will result in framebuffer corruption as the order of commands in the command FIFO has 

been mixed up (because the renderer didn’t get a change to dispatch the parameters from the FIFO). 

fbiBusAddr: The renderer puts the framebuffer address of a pixel it wants to change on this signal. 

fbiDataAddr: The renderer puts the pixel value (color value) of a pixel it wants to change on this signal. 

fbiBusWrite: Asserting this signal causes the glue logic of the framebuffer interface to take the address 

and data provided through fbiBusAddr and fbiDataAddr and putting them into the write-FIFO of the 

framebuffer interface. Therefore, asserting this signal will result in a change of the framebuffer 

memory (provided that the address passes the boundary checks (if enabled) and is inside the clipping 

mask (if enabled). 

fbiCmdData: This signal is used to pass a command to the framebuffer interface. The available 

commands are documented in section 12.5.1. 

fbiCmdWrite: Asserting this signal causes the glue logic of the framebuffer interface to take the 

command provided through fbiCmdData and putting it into the write-FIFO of the framebuffer 

interface. 

fbiIsReady: This signal is provided by the framebuffer interface. The renderer must not assert 

fbiBusWrite or fbiCmdWrite if this signal is not ‘1’. Behavior in such a case is undefined. This signal is 

the inverted isFull signal of the framebuffer interface write-FIFO. Therefore, fbiIsReady = ‘0’ indicates 

that the write-FIFO is full. 

 

14.3 Infrastructure 
Once a new renderer has been written it needs to be added into the existing Silizium infrastructure. 

This is done by creating an instance of the renderer in the dispatcher found in the file 

silizium_dispatcher.vhd. That file also contains the implementation of the demux and mux to select 

the appropriate renderer to which the new renderer needs to be hooked up. That process is 
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straightforward as it’s just a matter of doing the same thing that has already been done for the existing 

renderers. 

Figure 11 shows multiple renderers with the dispatcher, selector and framebuffer interface mux. 
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Figure 11: Renderers with dispatcher, selector and mux 

 

15 Tests & Verification 
Proper development of this IP-Core (or for any HDL IP-Core for that matter) would involve creating a 

test bench for every single component being designed. After losing a huge chunk of time due to a 

problem with the Avalon-MM master interface (described in section 18.1) I decided not to spend 

whole lot of time on this. As of today, there is a dedicated test bench for the framebuffer interface 

and one test bench for the entire system. This way the framebuffer interface can be tested individually 

as that is one of the most crucial/complex components. The correct functioning of the dispatcher can 

be easily verified in the overall test bench as a test bench dedicated for the dispatcher alone would be 

almost identical. The functioning of the renderers can also be tested easily through the overall test 

bench as the renderers dispatch the required parameters from the command FIFO themselves once 

they got selected by the dispatcher. The renderers are directly connected to the framebuffer interface 
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(via a mux) and therefore an additional test bench for the section between the renderers and the 

framebuffer interface is unnecessary. 

At the beginning of the project it was planned to use a higher-level test & verification tool such as 

cocotb11 for each individual component as well as for the entire IP-Core. This hasn’t been done due to 

loosing quite some time with the Avalon-MM master interface as mentioned above. Setting up a tool 

like cocotb would have required a more time than working with bare traditional VHDL test benches, 

especially as I never worked with such a tool before. 

Additionally, a software that constantly issues new rendering requests for filled rectangles while the 

CPU itself modifies the framebuffer contents every few rectangles has been written that was left 

running for 72 hours. The system kept running stable and no issues were encountered. 

 

16 Future steps 
This section of the document lists a couple of things that should be taken care of when continuing 

the project after finishing this bachelor thesis project. 

 

16.1 More hardware renderers 
Although the current design implements three hardware renderers only one is very useful in a typical 

application: The filled rectangle renderer. Other renderers were planned but couldn’t be implemented 

during this project. However, the current design of the Silizium IP-core provides everything necessary 

to add new hardware renderers. Section 14 provides all the information required to add new 

renderers. 

 

16.2 Test benches 
A higher-level testing framework (such as cocotb) should be used to allow for a more efficient 

workflow. Currently only two test benches exist for the entire system. This has been enough for this 

thesis project but continuing the project, potentially with more developers, would call for a more 

intricate testing system. 

 

16.3 FIFO abstractions 
The current design creates instances of the scfifo (single clock FIFO) provided by the Intel IP-core 

catalogue. These instances are currently hard-configured and assigned for the MAX10 FPGA families. 

A FIFO abstraction layer should be implemented to allow the Silizium IP-core to be easily ported to 

other non-Intel FPGA platforms. 

 

                                                           
11 https://cocotb.readthedocs.io/en/latest/introduction.html 
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16.4 Bus abstractions 
The current design contains hard-coded implementations for the Avalon-MM master and slave bus 

interfaces. Adding abstraction layers or bridge components to allow the Silizium IP-core to be used in 

non-Avalon systems should be added. 

 

16.5 Clipping 
Currently, clipping is implemented by providing a single rectangular clipping mask in the framebuffer 

interface. The FBI checks whether the address provided by a renderer through the write-FIFO when 

issuing a write-request is inside that mask and simply ignores it if it is not. In a real-world application, 

this means that a renderer potentially issues hundreds of write requests to the write-FIFO of the FBI 

that are outside the clipping mask. Providing each renderer with the clipping mask dimensions would 

ease the traffic on the FBI write-FIFO. 

 

16.6 Framebuffer interface burst transactions 
Writing pixel to the framebuffer currently takes up four clock cycles due to the state machine in the 

framebuffer interface. This could be optimized down to one clock cycle per pixel if the framebuffer 

interface issues burst writes (and reads). The entire framebuffer interface has been designed to 

support this eventually (hence the write-FIFO). The reason that burst writes have not been 

implemented is due to the fact that a lot of time was already lost on the Avalon-MM master interface 

(as described in section 18) and furthermore due to the fact that an Intel engineer once mentioned in 

a WebEx conference that bursts can be tricky to get working with the DDR3 memory controller that 

the reference design used in this project uses. 

 

17 Parallel Rendering 
At the very start of this project it was decided that the GPU will not support parallel rendering. In this 

case, “parallel rendering” means being able to render multiple shapes at the same time. Theoretically, 

it would be possible to render a filled rectangle at the same time as a line as these two hardware 

renderers are completely stand-alone blocks. Alternatively, it would also be possible to have multiple 

instances of the filled rectangle renderer which would allow to render multiple filled rectangles at 

once. The decision not to implement parallel rendering was made due to the time restrictions of the 

project. However, after developing the design of the GPU it was clear that parallel rendering wouldn’t 

be that much of an advantage in this case anyway. There are two reasons for this which are described 

in detail in this section: 

1. Framebuffer interface bottleneck 

2. Synchronization 

 

17.1 Framebuffer interface bottleneck 
Whenever a hardware renderer wants to change the contents of the framebuffer it eventually has to 

issue a write transaction to the framebuffer memory. In Silizium, this happens by the renderer issuing 

a write-transaction to the write-FIFO of the framebuffer interface. The Framebuffer interface 

dispatches from the write-FIFO and eventually writes to the framebuffer memory. The currently 
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implemented hardware renderers are all able to “produce” one pixel per clock cycle. Even if the 

framebuffer interface would use burst transactions (currently not implemented) it would still require 

one clock per pixel itself. This means that two hardware renderers working in parallel wouldn’t be any 

faster as the framebuffer interface can’t possibly write any faster to the framebuffer memory. Parallel 

rendering would only speed things up for hardware renderers that need more than one clock cycle 

per pixel. 

 

17.2 Synchronization 
Parallel rendering works well as long as the simultaneously rendering renderers affect different, non-

interfering sections of the framebuffer. Real-world objects such as pushbuttons, sliders and other GUI 

elements are usually assembled from multiple different objects such as rectangles, lines, text and so 

on. Some of these are rendered by the GPU and some of those are rendered by the CPU (as some 

things are just too expensive (in terms of resources) or too complex to implement in hardware such 

as font rendering. Often pixels are being over written multiple times when rendering such a complex 

element. An example: A push-button might consist of a rectangle and a border. Those two elements 

can be calculated in a way that they don’t overlap. But ultimately the CPU will want to render some 

text over that element. In this case the chronology of all rendering operations (not just those inside of 

the GPU) matters: If the text gets rendered before the rectangle, no text will be visible as the rectangle 

overwrites the text pixels. Therefore, parallel rendering would only work if non-overlapping regions 

of the framebuffer are being modified. 

 

The two sections above show that implementing parallel rendering would not offer any advantage as 

long as the Silizium IP-core does not provide any hardware renderers that are not capable of producing 

(calculating) one pixel per clock. 

 

18 Problems 
Almost any project encounters problems at some point or another. This section doesn’t list all of the 

problems that were encountered (as many of them were only small and had a minimal impact on the 

project) but instead only lists the major problems which had a noticeable impact on the overall 

project. 

 

18.1 Framebuffer interface 
The by far biggest problem occurred with the framebuffer interface. More specifically: With the 

Avalon-MM master interface. This problem had a big impact on the project (time-wise). A separate 

document (that can be found at the end of this report) has been created as the problem hasn’t been 

properly solved yet. Instead, a workaround that is suitable to finish this thesis project has been 

applied. The problem appears to be a bug in the code generated by the QSys tool and therefore a 

proper fix needs to be provided by Intel. 
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18.2 Missing pixels 
The framebuffer interface problem mentioned in section 18.1 resulted in changing the clock domain 

of this custom IP-Core as explained in the dedicated document. One of the draw-backs of this 

workaround is that the Silizium IP-core now runs on a much faster clock. The used clock is half the 

DDR3 clock which is 150 MHz. It sometimes happens that the hardware renderers (namely the 

rectangle renderers) miss out on a pixel or two. Simulations and careful examination of the entire IP-

Core design revealed that there’s no problem in the logic itself. It is very likely that the clock is simply 

too fast for the logic to keep up. The synthesizer tool also throws corresponding warnings in the time 

analysis. Further investigating the problem revealed that most likely the framebuffer address 

calculation in the rectangle renderer which involves three additions and two multiplications is too 

slow (longest path). A solution (or workaround) for this problem would be to pipeline the calculation 

of the framebuffer address. This would increase the latency by one clock cycle but wouldn’t affect the 

throughput (speed). This wasn’t implemented during this project because it was decided to spend the 

little time left after finding and solving the Avalon-MM bus problem in finalizing the rest of the design. 

After all, this problem shouldn’t appear as the QSys tool is responsible for adding the clock domain 

crossing bridge when using the slower clock. 

 

19 Conclusion 
The goal of this thesis was to develop a proof-of-concept implementation of an IP-core that provides 

hardware acceleration for 2D rendering operations in a NIOS-II system. This goal has been reached. 

The current state of the IP-core provides everything necessary to render single pixels and filled 

rectangles without using the CPU. Furthermore, other features such as a clipping mask and 

framebuffer memory boundary checks have been implemented as well. But most importantly, the 

current design provides all the infrastructure to implement hardware renderers for more shapes such 

as lines, polygons, circles and so on. A new hardware renderer can be written isolated from the entire 

system and just plugged in at the end without changing anything else in the design. Everything 

required to read back pixel data from the framebuffer is also already implemented which is required 

for more complex hardware renderers that render with anti-aliasing or for hardware renderers that 

are used to copy images or scrolling the framebuffer contents. 

At the beginning, the plan was to implement hardware renderers for lines, circles, polygons and other 

shapes as well during this thesis. Unfortunately, that couldn’t be achieved due to a problem that was 

encountered while working on the Avalon-MM master bus interface implementation in the 

framebuffer interface. This problem resulted in about four weeks of delay (see section 18.1). After the 

problem was resolved (or rather work-arounded in this case) I decided to move on with implementing 

the rest of the infrastructure after the filled-rectangle renderer was completed. The current state of 

the IP-core appears to be stable and is ready to be extended with more hardware renderers. 

The resulting IP-core has been demonstrated to various people at Intel which resulted in very positive 

feedback. Intel provides a large set of IP-cores for 2D graphics and especially video handling but none 

of them provides hardware acceleration for 2D rendering. The speed at which Silizium can render 

rectangles while leaving the CPU unused was therefore very impressive. 

Although this is the end of the bachelor thesis this is not the end of the project. The Silizium IP-core 

will be extended and further maintained by the µGFX company. Furthermore, Intel is interested in 

getting a license that allows them to add Silizium to their catalog of existing IP-cores. 



Joel Bodenmann  2017-08-18 

Page 37 of 39 
 

20 Signatures 
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Introduction 
Silizium is a GPU (graphics processing unit) IP-core written in VHDL that provides hardware acceleration 

for various 2D rendering operations. The IP-core is optimized for the use in a NIOS-II system. 

 

Features 
• Avalon-MM bus compatible 

• Can use an already existing framebuffer (doesn’t maintain a dedicated framebuffer internally) 

• Works with any display resolution and pixel format 

• Easy to use 

• Framebuffer memory boundary checks (can be disabled) 

• Rectangular clipping mask support (can be disabled) 

 

Requirements 
• NIOS-II system 

• QSys tool 

• Avalon-MM bus for command & control communication 

• Framebuffer that is accessible through an Avalon-MM bus 

 

Current limitations 
• No parallel rendering operations 

• No burst transactions to/from the framebuffer memory 

 

Currently implemented hardware renderers 
• Draw pixel 

• Fill area 

• Rectangular clipping 

• Coming soon: 

o Memory blitting (2D DMA) 

o Vertical & Horizontal scroll 

o Lines 

o Polygons 

o Circles 

o Arcs 

o Color keying 

o … 

 

  



Silizium – A µGFX product https://silizium.io  

Page 2 of 25 
 

Terms & Abbreviations 
The following table gives an overview of terms and abbreviations that are commonly used throughout this 

document: 

Abbreviation Description 

2D Two dimensional 

Avalon A bus standard created by Altera for FPGA internal communication 

CPU Central processing unit 

FBI Framebuffer interface 

FIFO First-in First-out (a type of memory/buffer) 

Framebuffer A section of memory that holds the pixel data that is shown on the display 

FSM Finite state machine 

GPU Graphics processing unit 

HAL Hardware abstraction layer 

IP-Core (Intellectual property) A pre-fabricated block of something ready to be used 

Qsys Tool of the Quartus toolchain used to create a SoC 

Quartus The FPGA IDE & Toolchain by Intel 

Silizium The name of this 2D hardware acceleration IP-Core 

SoC System-on-chip 

 TABLE 1: COMMONLY USED ABBREVIATIONS & TERMS IN THIS DOCUMENT 

 

Typical application 
Figure 1 shows typical applications of the Silizium IP-Core inside a NIOS-II system. However, due to the versatility of 

the Avalon interface, many different and alternative configurations are possible. Everything that Silizium requires is 

an Avalon-MM interface towards the CPU for configuration and an Avalon-MM interface towards the framebuffer 

for rendering. How these are actually implemented (eg. whether the Framebuffer is on-chip or external, whether it’s 

SDRAM or DDR3, whether the display controller is internal or external and so on) doesn’t have any impact on the 

Silizium IP-Core. 
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FIGURE 1: TYPICAL APPLICATIONS
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1 Internal design 
Figure 2 illustrates the overall internal design of the system: 
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FIGURE 2: INTERNAL DESIGN OVERVIEW 

 

The internal design can be split into the following groups: 

• Command & control bus interface 

• Registers 

• Command FIFO 

• Dispatcher 

• Renderers 

• Framebuffer interface (FBI) 

 

1.1 Command & control bus interface 
The command & control bus interface (from here on referred to as “the slave interface”) is used by the CPU to 

initialize, configure and control the GPU. The interface is compliant to the Avalon-MM slave standard and has the 

following requirements: 

• Address bus width: At least 4 bits 

• Data bus width: At least 32 bits 

• Read and write operations 

The run-time configuration of the GPU usually only consists of setting the framebuffer base address and the 

framebuffer span. Other parameters such as the display size, the pixel format are handled by generic values and 

therefore do not need to be changed during run-time. Once the configuration is completed the slave interface is 

usually only used to send commands to the GPU, to control the different enable flags (if required) and to read back 

the current status of the GPU (eg. busy flags, queue status and so on). 
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1.2 Registers 
Silizium features different control and configuration registers. The most important ones are: 

• Status register 

• Control register 

• Framebuffer base address & span register 

These registers can be accessed directly via the slave interface. 

Section 5 gives a detailed overview over all registers. 

 

1.3 Command FIFO 
The CPU issues commands to the GPU such as “draw a rectangle at this position with that size and this color”. These 

commands are stocked in the internal command FIFO of the GPU. Whenever there is a pending command in the 

FIFO, the dispatcher will grab it as soon as the different renderers of the GPU are no longer busy and handle it 

accordingly. 

 

1.4 Dispatcher 
The dispatcher takes commands out of the command FIFO and dispatches them to the proper hardware rendering 

blocks. To fulfill that task, the dispatcher also handles the internal bus arbitration and later parallel rendering (not 

implemented yet). 

 

1.5 Renderers 
Silizium contains an isolated hardware renderer for each rendering operation that the GPU has to offer.  

Note: In the future, it will also be possible to have multiple instances of the same hardware rendering inside the GPU 

which allows to handle multiple rendering operations of the same type simultaneously. For example: Having more 

than one block to hardware render filled rectangles means that multiple filled rectangles can be rendered in parallel. 

 

1.6 Framebuffer interface 
Silizium needs access to the framebuffer to perform the actual rendering operations. The different hardware 

renderers send data and commands to the framebuffer interface (FBI) to alter the framebuffer contents. The 

framebuffer interface consists of two different FIFOs that the renderers can access: A write-FIFO and a read-FIFO. 

Renderers send commands and framebuffer data via the write-FIFO to the FBI. Some renderers require to read back 

data from the framebuffer. The FBI reads the requested data from the framebuffer and places it into the read FIFO 

where the renderers can dispatch it from. This way, the renderers are completely isolated from the FBI which means 

that the FBI never has to wait on a renderer (unless the write FIFO is empty) which in turn means that the FBI can 

optimize framebuffer transfers by using burst transactions. 

Note that the write- and the read-FIFOs are not accessible through the slave interface. They are used exclusively 

internally. 
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2 Generics 
Table 2 lists the generics available to adjust the hardware Silizium IP-Core hardware prior to synthesizing a design 

using it: 

Name Type Default Description 

dataBitNb positive 32 Internal data handling width. Will be used in the future. DO 
NOT CHANGE THIS. 

coordBitNb positive 32 The number of bits required to represent a coordinate in 
two's complement. 

colorBitNb positive 32 The number of bits required to represent a color value 
(internally). 

cmdFifoNumWordsExp positive 6 The exponent of the size of the input command FIFO in 
elements. Actual size will be 2^n of this value. 

fbAddrBitNb positive 32 The width of the address bus of the framebuffer interface. 

fbDataBitNb positive 32 The width of the data bus of the framebuffer interface. 

fbBurstcountBitNb positive 2 The number of bits required for the burstcount signal. 

fbBytesPerPixel positive 4 The number of bytes per pixel. 

fbWidth positive 800 The width of the framebuffer in pixels. 

fbHeight positive 480 The height of the framebuffer in pixels. 

fbWriteFifoNumWordsExp positive 8 The exponent of the size of the framebuffer write FIFO in 
elements. Actual size will be 2^n of this value. 

fbReadFifoNumWordsExp positive 4 The exponent of the size of the framebuffer read FIFO in 
elements. Actual size will be 2^n of this value. 

TABLE 2: GENERICS 

When using QSys, these generics are also available as configuration parameters in the graphical component 

configuration dialog: 

 

FIGURE 3: QSYS IP-CORE CONFIGURATION DIALOG 
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2.1 Recommendations 
Except for the FIFO sizes all values are determined by the rest of the system (mainly the used display and display 

controller). 

 

2.1.1 Command FIFO depth 
The command FIFO depth can be set through the cmdFifoNumWordsExp generic value. The actual number of 

elements of the command FIFO is two to the power of this value: 

𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝐹𝐼𝐹𝑂 𝑑𝑒𝑝𝑡ℎ = 2𝑐𝑚𝑑𝐹𝑖𝑓𝑜𝑁𝑢𝑚𝑊𝑜𝑟𝑑𝑠𝐸𝑥𝑝  

The value of cmdFifoNumWordsExp must be at least 2.  

This FIFO should be large enough to hold all subsequent rendering commands that the CPU will issue at once (directly 

one after another) to prevent blocking the CPU as it will have to wait if the command FIFO is full. However, in a 

typical application a CPU will issue just a few rendering commands and then wait for them to complete prior to 

continuing render other elements manually on top of that. This means that the CPU will never issue hundreds or 

even just dozens of rendering commands and then do other non-rendering jobs for a long time. A larger FIFO would 

therefore be mostly empty. 

The default (and recommended) depth of the command FIFO is 64 elements. 

 

2.1.2 FBI write-FIFO depth 
The FBI write FIFO depth can be set through the fbWriteFifoNumWordsExp generic value. The actual number of 

elements of the FBI write-FIFO is two to the power of this value:  

𝐹𝐵𝐼 𝑤𝑟𝑖𝑡𝑒 𝐹𝐼𝐹𝑂 𝑑𝑒𝑝𝑡ℎ = 2𝑓𝑏𝑊𝑟𝑖𝑡𝑒𝐹𝑖𝑓𝑜𝑁𝑢𝑚𝑊𝑜𝑟𝑑𝑠𝐸𝑥𝑝 

The value of fbWriteFifoNumWordsExp must be at least 2. 

There are two reasons for having this FIFO: 

1. The FBI can issue burst writes 

2. The renderer does not have to wait if another component locks up the bus to the framebuffer memory 

The default (and recommended) depth of the FBI write FIFO is 256 elements. 

 

2.1.3 FBI read-FIFO depth 
The FBI read-FIFO depth can be set through the fbReadFifoNumWordsExp generic value. The actual number of 

elements of the FBI read FIFO is two to the power of this value:  

𝐹𝐵𝐼 𝑟𝑒𝑎𝑑 𝐹𝐼𝐹𝑂 𝑑𝑒𝑝𝑡ℎ = 2𝑓𝑏𝑅𝑒𝑎𝑑𝐹𝑖𝑓𝑜𝑁𝑢𝑚𝑊𝑜𝑟𝑑𝑠𝐸𝑥𝑝  

The value of fbReadFifoNumWordsExp must be at least 2. 

The purpose of this FIFO is to allow the FBI to perform burst reads and to prevent bus locks if a renderer is busy and 

can’t dispatch the read-back value(s) immediately. The maximum size of read bursts is usually limited by the used 

memory controller. The default (and recommended) depth of the FBI read FIFO is 8 elements.  
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3 Ports 
Besides the clock and reset input, Silizium only requires an Avalon-MM slave interface and an Avalon-MM master 

interface to operate: 

Name Direction Type Range 

reset in std_logic - 

clock in std_logic - 

avalon_slave_address in std_logic_vector 7 downto 0 

avalon_slave_read in std_logic - 

avalon_slave_readdata out std_logic_vector 31 downto 0 

avalon_slave_write in std_logic - 

avalon_slave_writedata in std_logic_vector 31 downto 0 

avalon_slave_waitrequest out std_logic - 

avalon_master_address out std_logic_vector fbAddrBitNb-1 downto 0 

avalon_master_write out std_logic - 

avalon_master_writedata out std_logic_vector fbDataBitNb-1 downto 0 

avalon_master_waitrequest in std_logic - 

avalon_master_read out std_logic - 

avalon_master_readdata in std_logic_vector fbDataBitNb-1 downto 0 

avalon_master_readdatavalid in std_logic - 

avalon_master_burstcount out std_logic_vector fbBurstcountBitNb-1 downto 0 

TABLE 3: PORTS 

 

Note that the Avalon interfaces can be connected to buses that have larger widths as the QSys tool will automatically 

generate the required bus rippers and mergers. For example, Silizium can be connected to an Avalon-MM bus with 

an address width of 32 bits without any problems. 

Figure 4 and Figure 5 illustrate the waveforms required to communicate with the slave interface: 

 

FIGURE 4: SLAVE INTERFACE READ WAVEFORM 
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FIGURE 5: SLAVE INTERFACE WRITE WAVEFORM 

In the current version, the master interface is not yet configurable except for the different signal width. Figure 6 and 

Figure 7 show the waveforms the master interfaces uses to read from and write to the framebuffer memory: 

 

FIGURE 6: MASTER INTERFACE READ WAVEFORM 

 

FIGURE 7: MASTER INTERFACE WRITE WAVEFORM 

 

4 Additional features 
Some of the features offered by Silizium are not relevant to the rendering operations themselves but are still relevant 

to the overall system. 

 

4.1 Boundary checks 
The framebuffer interface (FBI) can prevent write and read transactions to and from the framebuffer by performing 

boundary checks on the framebuffer addresses provided by the renderers prior to actually issuing the requested 

transaction on the bus. Any transactions that would occur outside of the framebuffer will be ignored / discarded by 

the FBI if the corresponding BoundaryChecksEnable-Bit (BCEN) is set in the control register. 
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5 Registers 
This section of the datasheet documents all the publicly available registers. Every single bit is documented with the 

position inside the register and the corresponding read, write or read-write information. 

Note: Do not try to read or write bits marked as “Reserved”. Behavior is undefined. 

The following table gives an overview of all the existing registers: 

Address offset Name Width Access 

0x00 VERSION 32-bits read-only 

0x01 CMD_FIFO 32-bits write-only 

0x02 STATUS 32-bits read-only 

0x03 CONTROL 32-bits read/write 

0x04 FB_BASE 32-bits read/write 

0x05 FB_SPAN 32-bits read/write 

0x06 CLIP_X 32-bits read-only 

0x07 CLIP_Y 32-bits read-only 

0x08 CLIP_W 32-bits read-only 

0x09 CLIP_H 32-bits read-only 

0x0D DUMMY_1 32-bits read-only 

0x0E DUMMY_2 32-bits read-only 

0x0F DUMMY_3 32-bits read/write 

TABLE 4: REGISTER MAP 

 

5.1 Version 
Register to read the Silizium version number. 

Address offset: 0x0000 0000           
Reset value: 0x<version>           

                
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

VERS[31:16] 

r r r r r r r r r r r r r r r r 
                

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

VERS[15:0] 

r r r r r r r r r r r r r r r r 

                

 Bits 31:0 VERS[31:0]: Version number 

    The version number that is burned into the hardware. 
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5.2 Command FIFO 
This is a virtual register used to write to the command FIFO. Silizium will take values written to this register and 

move them to the command FIFO the clock cycle following the write operation. 

Address offset: 0x0000 0001          
Reset value: Undefined (write only)         

                
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

CMD_FIFO[31:16] 

w w w w w w w w w w w w w w w w 
                

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

CMD_FIFO[15:0] 

w w w w w w w w w w w w w w w w 

                

 Bits 31:0 CMD_FIFO[31:0]: Command FIFO 

    The command FIFO to which commands are written to. 

 

5.3 Status 
Generic status register to check the current state of Silizium. 

Address offset: 0x0000 0002          
Reset value: 0x0000 0000         

                
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

CMDFUW[15:0] 

r r r r r r r r r r r r r r r r 
                

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Reserved 
MPTY 

 
FULL 

BUSY 

r r r 

                

 Bit 0 BUSY Busy flag 

    Flag that indicates whether a rendering operation is being executed. 

    0: No rendering operation is being executed. Silizium is idling. 

    1: A rendering operation is being executed 

                

 Bit 1 FULL Command FIFO full flag 

    0: Command FIFO is not full. 

    1: Command fifo is full. 

                

 Bit 2 MPTY Empty 

    The input command FIFO is empty 

    0: Command FIFO is not empty 

    1: Command FIFO is empty        
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 Bits 15:8 CMDFUW[15:0]: Command FIFO used words 

    

The number of used words of the command 
FIFO. 

     

    
Note: The actual width depends on the command FIFO depth set via the generics value 
of the IP-core block. This field will always be right-aligned to the 16th bit. All "unused" 
bits on the left in case of a FIFO depth that is less than 2^16 will be read back as '0'. 

    

    

    
 

5.4 Control 
Generic control register to control the behavior of Silizium. 

Address offset: 0x0000 0003          
Reset value: 0x0001 0000         

                
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Reserved 
CMEN BCEN 

rw rw 
                

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Reserved 
CLR3 CLR2 CLR1 

Reserved 
EN2 EN1 

rw rw rw rw rw 

                

 Bit 0 EN1: Dispatcher enable 

    The enable control bit for the dispatcher. 

    0: Dispatcher disabled 

    1: Dispatcher enabled 

                

 Bit 1 EN2: Framebuffer interface enable 

    The enable control bit for the framebuffer interface. 

    0: Framebuffer interface disabled 

    1: Framebuffer interface enabled 

                

 Bit 8 CLR1: Clear the command input FIFO 

    Control bit to issue a hardware clear of the input command FIFO. If set to '1', a hardware 
clear will be issued. The bit will be reset to '0' automatically once the clear operation 
completed. 

    

    

    Clearing the FIFO takes 1 clock cycle. 

                

 Bit 9 CLR2: Clear the framebuffer write FIFO 

    Control bit to issue a hardware clear of the framebuffer interface write FIFO. If set to '1', a 
hardware clear will be issued. The bit will be reset to '0' automatically once the clear 
operation completed. 

    

    

    Clearing the FIFO takes 1 clock cycle. 

    
            

 Bit 10 CLR3: Clear the framebuffer read FIFO 
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Control bit to issue a hardware clear of the framebuffer interface read FIFO. If set to '1', a 
hardware clear will be issued. The bit will be reset to '0' automatically once the clear 
operation completed. 

    Clearing the FIFO takes 1 clock cycle. 

                

 Bit 16 BCEN: Boundary check enable 

    The enable control bit for framebuffer memory boundary check. 

    0: Framebuffer memory boundary checks disabled 

    1: Framebuffer memory boundary checks enabled 

                

 Bit 17 CMEN: Clipping mask enable 

    The enable control bit for the clipping mask in the framebuffer interface. 

    0: Clipping mask disabled 

    1: Clipping mask enabled 
 

 

5.5 Framebuffer base address 
This register is used to provide the framebuffer base address to Silizium. This register must be configured to hold 

the address of the first pixel of the framebuffer. 

Note that although Silizium provides a framebuffer memory boundary check feature it is crucial that this value is set 

properly. The memory boundary checks are based on this value. Misconfiguring this register can lead to memory 

corruption. 

Check section 9 for examples regarding the proper usage of this register. 

Address offset: 0x0000 0004          
Reset value: 0x0000 0000         

                
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

FB_BASE[31:16] 

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
                

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

FB_BASE[15:0] 

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 

                

 Bits 31:0 FB_BASE[31:0]: Framebuffer base address 

    The base address of the framebuffer. 
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5.6 Framebuffer address span 
This register is used to inform Silizium about the size of the framebuffer memory section. The framebuffer interface 

uses this information to perform boundary checks to prevent illegal memory accesses if the BCEN bit is set to ‘1’ in 

the control register. 

Note that although Silizium provides a framebuffer memory boundary check feature it is crucial that this value is set 

properly. The memory boundary checks are based on this value. Misconfiguring this register can lead to memory 

corruption.  

Check section 9 for examples regarding the proper usage of this register. 

Address offset: 0x0000 0005          
Reset value: 0x0000 0000         

                
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

FB_SPAN[31:16] 

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
                

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

FB_SPAN[15:0] 

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 

                

 Bits 31:0 FB_SPAN[31:0]: Framebuffer address span 

    The size of the framebuffer memory sections in bytes. 

 

5.7 Clip X 
This register can be used to read back the current X coordinate of the rectangular clipping mask provided by the FBI. 

Note that this is a read-only register: The value of this register can only be changed by issuing a clipping mask 

modification command as described in section 6.3 to prevent synchronization issues. 

Address offset: 0x0000 0006          
Reset value: 0x0000 0000         

                
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

CLIPX[31:16] 

r r r r r r r r r r r r r r r r 
                

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

CLIPX[15:0] 

r r r r r r r r r r r r r r r r 

                

 Bits 31:0 CLIPX[31:0]: Clip X 

    The X coordinate of the rectangular clipping mask of the FBI. 
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5.8 Clip Y 
This register can be used to read back the current Y coordinate of the rectangular clipping mask provided by the FBI. 

Note that this is a read-only register: The value of this register can only be changed by issuing a clipping mask 

modification command as described in section 6.3 to prevent synchronization issues. 

Address offset: 0x0000 0007          
Reset value: 0x0000 0000         

                
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

CLIPY[31:16] 

r r r r r r r r r r r r r r r r 
                

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

CLIPY[15:0] 

r r r r r r r r r r r r r r r r 

                

 Bits 31:0 CLIPY[31:0]: Clip Y 

    The Y coordinate of the rectangular clipping mask of the FBI. 

 

5.9 Clip width 
This register can be used to read back the current width of the rectangular clipping mask provided by the FBI. Note 

that this is a read-only register: The value of this register can only be changed by issuing a clipping mask modification 

command as described in section 6.3 to prevent synchronization issues. 

Address offset: 0x0000 0008          
Reset value: 0x1111 1111         

                
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

CLIPW[31:16] 

r r r r r r r r r r r r r r r r 
                

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

CLIPW[15:0] 

r r r r r r r r r r r r r r r r 

                

 Bits 31:0 CLIPW[31:0]: Clip width 

    The width of the rectangular clipping mask of the FBI. 
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5.10 Clip height 
This register can be used to read back the current height of the rectangular clipping mask provided by the FBI. Note 

that this is a read-only register: The value of this register can only be changed by issuing a clipping mask modification 

command as described in section 6.3 to prevent synchronization issues. 

Address offset: 0x0000 0009          
Reset value: 0x1111 1111         

                
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

CLIPH[31:16] 

r r r r r r r r r r r r r r r r 
                

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

CLIPH[15:0] 

r r r r r r r r r r r r r r r r 

                

 Bits 31:0 CLIPH[31:0]: Clip height 

    The height of the rectangular clipping mask of the FBI. 

 

5.11 Dummy 1 
This dummy register can be used to test the slave interface configuration (eg. to recognize wrongly configured 

read latencies and similar) in the QSys tool. 

Address offset: 0x0000 000D          
Reset value: 0xD0D0 0D0D         

                
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 

r r r r r r r r r r r r r r r r 
                

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1 

r r r r r r r r r r r r r r r r 
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5.12 Dummy 2  
This dummy register can be used to test the slave interface configuration (eg. to recognize wrongly configured 

read latencies and similar) in the QSys tool. 

Address offset: 0x0000 000E          
Reset value: 0xE0E0 0E0E         

                
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 

r r r r r r r r r r r r r r r r 
                

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 

r r r r r r r r r r r r r r r r 

 

 

5.13 Dummy 3  
This dummy register can be used to test the slave interface configuration (eg. to recognize wrongly configured 

read latencies and similar) in the QSys tool. 

Address offset: 0x0000 000F          
Reset value: 0x0000 0000         

                
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

DUMMY_3[31:16] 

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 
                

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

DUMMY_3[15:0] 

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw 

                

 Bits 31:0 DUMMY_3[31:0]: Dummy 3 

    A dummy register for debugging purposes. Retains the content indefinitely. The 
content is not being used by any part of the IP-Core and never gets modified.     
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6 Rendering 
This section of the document explains the different available hardware renderers and how they are to be used. The 

commands that need to be send to the input command FIFO are documented in tabular form: 

Order Name Unit Value 

1 Parameter 1 - constant 

2 Parameter 2 Pixel Count  < variable > 

3 Parameter 3 Pixel Value  < variable > 

4 Parameter 4 Pixel Count constant 

TABLE 5: FIFO PARAMETERS SYNOPSIS 

Parameters are being listed in ascending order from top to bottom. This means that the top most parameter is the 

first one to be written to the command FIFO. 

The Name column specifies the name of the parameter which also serves as the description. The Unit column 

specifies the unit of the parameter value. Lastly, the Value column either shows the constant that needs to be written 

or the name of the variable in angle brackets. Note that the Value is the only thing that gets written to the FIFO. 

All values being written to the command FIFO are 32-bits wide. 

 

6.1 Draw pixel 
Silizium offers the possibility to just render single pixels. This hardware rendering feature is not there for acceleration 

but for two other reasons instead: 

• Debugging: This feature allows a developer to test whether his display driver is working properly and to 

figure out whether the framebuffer base address and span have been configured correctly without having 

to issue a more complex command. Setting just one pixel doesn’t involve “off-by-one” errors and similar. 

• Chronology: Sometimes the user of the GPU might want to render a shape that is built from different sub-

shapes. As a rough example: Maybe a filled rectangle with just a differently colored pixel in each corner is 

required. This would mean that the user asks the GPU to render the filled rectangle by putting the 

corresponding command into the FIFO. Once that is done the CPU will have to render the pixel on top of 

that. This means that the CPU has to query the GPU to ask whether the rectangle has been finished because 

otherwise the CPU might prematurely render the four corner-pixels and the GPU will render the filled 

rectangle on top of that. This is very difficult to implement. With this “draw pixel” command the CPU can 

simply put a “fill rectangle” followed by four “draw pixel” commands into the command input FIFO of the 

GPU. 

To draw a pixel, the following parameters must be written to the command input FIFO: 

Order Name Unit Value 

1 Command - 0x0000 0001 

2 X Pixel Count < x > 

3 Y Pixel Count < y > 

4 Color Pixel Value < color > 

TABLE 6: DRAW PIXEL - FIFO PARAMETERS 
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Example: Drawing a red pixel at the position X = 165 and Y = 504 assuming that the used pixel format is RGB888 

requires writing the following into the command FIFO: 

Order Value 

1 0x0000 0001 

2 0x0000 00A5 

3 0x0000 01F8 

4 0x00FF 0000 

TABLE 7: DRAW PIXEL COMMAND EXAMPLE 

 

6.2 Filled rectangle 
To draw a filled rectangle (solid color), the following parameters must be written to the command FIFO: 

Order Name Unit Value 

1 Command - 0x0000 0002 

2 X Pixel Count < x > 

3 Y Pixel Count < y > 

4 Width Pixel Count < width > 

5 Height Pixel Count < height > 

6 Color Pixel Value < color > 

TABLE 8: FILL RECTANGLE - FIFO PARAMETERS 

Example: Drawing a green rectangle at the position X = 165 and Y = 504 with width = 65 and height = 204 assuming 

that the used pixel format is RGB888 requires writing the following into the command FIFO: 

Order Value 

1 0x0000 0002 

2 0x0000 00A5 

3 0x0000 01F8 

4 0x0000 0041 

5 0x0000 00CC 

6 0x0000 FF00 

TABLE 9: FILL RECTANGLE COMMAND EXAMPLE 

 

6.3 Clipping 
Clipping is not a rendering operation as it doesn’t directly change the contents of the framebuffer but it’s still 

relevant to the overall rendering process as it affects the rendering output of all the other rendering operations. 

Silizium provides one rectangular clipping mask that can be enabled and disabled through the corresponding enable 

bit (CMEN) in the control register. If the clipping mask enable bit is set in the configuration register, everything 

outside of the rectangular clipping mask that can be defined through this command will not be rendered to the 

framebuffer. 

Clipping values are not implemented as registers but instead get fed through the command FIFO to avoid 

synchronization problems. For proper operation, it’s crucial that the chronological order of rendering operations and 

everything that affects them doesn’t get broken. However, the currently active clipping mask values can still be read 

back through the corresponding clipping mask values registers. 
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Order Name Unit Value 

1 Command - 0x0000 0003 

2 X Pixel Count < x > 

3 Y Pixel Count < y > 

4 Width Pixel Count < width > 

5 Height Pixel Count < height > 

TABLE 10: CLIPPING MASK - FIFO PARAMETERS 

Example: Setting the clipping mask to X = 150, Y = 170, width = 300 and height = 150 requires writing the following 

into the command FIFO: 

Order Value 

1 0x0000 0003 

2 0x0000 0096 

3 0x0000 00AA 

4 0x0000 012C 

5 0x0000 00096 

TABLE 11: CLIPPING MASK MODIFICATION COMMAND EXAMPLE 

 

7 HAL 
A HAL (Hardware Abstraction Layer) implemented fully in C is provided with the IP-Core for easy integration into 

existing software projects. The HAL is split into a low-level and a high-level part. The low-level HAL provides API 

functions to access the various registers and FIFOs while the high-level HAL takes this information and provides 

easier to use interfaces for checking & settings flags and rendering shapes. 

Note that for ease-of-use both HALs are implemented in the same files. The entire HAL is encapsulated in one header 

and one source file named silizium.h and silizium.c. 

The HAL is completely C89 compatible. The following 3rd-party resources are used: 

• stdint.h 

• stddef.h 

• stdbool.h 

 

7.1 Low-Level HAL 
The low-level HAL provides the following functions: 

uint32_t siliziumVersion(); 

uint32_t siliziumStatus(); 

uint32_t siliziumControl(); 

void siliziumSetControl(uint32_t value); 

 

Detailed descriptions of these functions and their parameters and return values can be found in the corresponding 

API documentation. 
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7.2 High-Level HAL 
The high-level HAL is built on top of the low-level HAL and provides the interfaces that a regular user will use such 

as easy to use functions to check busy flags, to change enable flags and to issue rendering commands. The following 

functions are available: 

void siliziumDispatcherEnable(); 

void siliziumDispatcherDisable(); 

void siliziumFramebufferinterfaceEnable(); 

void siliziumFramebufferinterfaceDisable(); 

void siliziumEnableAll(); 

void siliziumDisableAll(); 

void siliziumClippingEnable(); 

void siliziumClippingDisable(); 

void siliziumBoundaryChecksEnable(); 

void siliziumBoundaryChecksDisable(); 

bool siliziumTestSlaveInterface(); 

void siliziumSetFramebufferBaseAddress(uint32_t address); 

void siliziumSetFramebufferSpan(uint32_t span); 

uint32_t siliziumFramebufferBaseAddress(); 

uint32_t siliziumFramebufferSpan(); 

bool siliziumIsBusy(); 

void siliziumCmdFifoAppend(uint32_t value); 

void siliziumCmdFifoClear(); 

bool siliziumCmdFifoIsEmpty(); 

bool siliziumCmdFifoIsFull(); 

size_t siliziumCmdFifoUsedWords(); 

size_t siliziumCmdFifoFreeWords(); 

void siliziumRenderPixel(uint32_t x, uint32_t y, uint32_t color); 

void siliziumRenderRectangle(uint32_t x, uint32_t y, uint32_t width, uint32_t 

height, uint32_t color); 

void siliziumRenderSetClippingArea(uint32_t x, uint32_t y, uint32_t width, 

uint32_t height); 

 

Additionally, the high-level HAL needs to know the size of the command FIFO to calculate the number of free 

elements. A simple macro is used for this purpose. In this example, the command FIFO depth has been set to 128 

elements prior to synthesis by setting the cmdFifoNumWordsExp generic to 7: 

 #define SILIZIUM_CMD_FIFO_DEPTH 128 

 

Detailed descriptions of these functions and their parameters and return values can be found in the corresponding 

API documentation. 

 

8 µGFX integration 
µGFX provides a read-to-use built-in driver starting with µGFX version 2.8 that allows using Silizium in an µGFX 

application without modifying the application itself. 
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9 Examples 

9.1 Initialization 
A typical initialization sequence of Silizium after power-on looks like this (using the HAL): 

// Allocate framebuffer 

void* fbPointer = malloc(SCREEN_WIDTH * SCREEN_HEIGHT * 4); 

  

// Halt silizium (optional) 

siliziumCmdFifoClear(); 

siliziumDisableAll(); 

  

// Setup framebuffer interface 

siliziumSetFramebufferBaseAddress(fbPointer); 

siliziumSetFramebufferSpan(SCREEN_WIDTH * SCREEN_HEIGHT * 4); 

  

// Enable silizium 

siliziumEnableAll(); 

 

9.2 Checking for busy 
Sometimes it’s necessary for the CPU to know when Silizium finished rendering all the jobs queued up in the 

command FIFO. This can be done easily using the siliziumIsBusy() function provided by the HAL: 

// Wait for silizium to finish rendering 

while (siliziumIsBusy()); 

 

9.3 Checking the command FIFO state 
In almost all cases it’s important to know the current state of the command FIFO prior to writing to it. The status 

register provides flags for the isEmpty and isFull states. Additionally, the number of used words can be retrieved 

through the status register which allow to calculate the number of free words. The high-level HAL provides high-

level functions for all of these: 

bool siliziumCmdFifoIsEmpty(); 

bool siliziumCmdFifoIsFull(); 

size_t siliziumCmdFifoUsedWords(); 

size_t siliziumCmdFifoFreeWords(); 

Furthermore, the following functions are provided by the high-level HAL to modify the command FIFO: 

void siliziumCmdFifoClear(); 

void siliziumCmdFifoAppend(uint32_t value); 

 

9.4 Rendering 
After initialization, rendering commands are being issued by writing to the input command FIFO as explained in 

section 6. The following code illustrates how to queue the rendering of a filled rectangle using the HAL: 

// Render a filled rectangle 

void fillRectangle(int x, int y, int width, int height, int color) 

{ 

    siliziumCmdFifoAppend(0x00000002); 

    siliziumCmdFifoAppend(x); 

    siliziumCmdFifoAppend(y); 

    siliziumCmdFifoAppend(width); 

    siliziumCmdFifoAppend(height); 

    siliziumCmdFifoAppend(color); 

} 

http://www.opengroup.org/onlinepubs/009695399/functions/malloc.html
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However, note that siliziumCmdFifoAppend() will not block if there’s no room left in the command FIFO. Silizium will 

ignore any command FIFO appends if the command FIFO is full. The status register allows to check the isFull and 

isEmpty states of the command FIFO as well as querying the number of free words in the FIFO. For simplicity, the 

high-level HAL provides functions that block until there’s enough room in the FIFO. Note that those functions are 

not multi-thread safe: 

void siliziumRenderRectangle(uint32_t x, uint32_t y, uint32_t width, uint32_t 

height, uint32_t color) 

{ 

    // Wait until there's enough room in the FIFO 

    // Note that this only works in a single-threaded software model 

    while (siliziumCmdFifoFreeWords() < 6); 

  

    siliziumCmdFifoAppend(0x00000002); 

    siliziumCmdFifoAppend(x); 

    siliziumCmdFifoAppend(y); 

    siliziumCmdFifoAppend(width); 

    siliziumCmdFifoAppend(height); 

    siliziumCmdFifoAppend(color); 

} 

 

10 Metrics 
Metrics have been registered by using the following environment, components and configurations: 

• Quartus Prime Version 17.0.0 Build 595 04/25/2017 SJ Standard Edition 

• MAX 10 10M50DAF484C6G FPGA 

• Silizium v0.1 

Silizium configuration (generics): 

Name Value 

dataBitNb 32 

coordBitNb 32 

colorBitNb 32 

cmdFifoNumWordsExp 7 

fbAddrBitNb 32 

fbDataBitNb 32 

fbBurstcountBitNb 2 

fbBytesPerPixel 4 

fbWidth 800 

fbHeight 480 

fbWriteFifoNumWordsExp 8 

fbReadFifoNumWordsExp 4 

TABLE 12: GENERICS VALUES USED FOR RESOURCE USAGE BENCHMARK 
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Measured resources usage of the Silizium IP-core: 

Resource type Value 

LUT-Only LCs 371 

Register-Only LCs 284 

LUT/Register LCs 668 

Logic cells 1323 

Dedicated logic registers 951 

DSP 18x18 4 

Memory bits 20736 

M9Ks 3 

TABLE 13: RESOURCE USAGE ON TEST SYSTEM 

Note: “M9ks” signifies multiple “M9k” elements. M9k elements are the RAM cells in this particular FPGA. An M9k 

element features 9k memory bits. 

The memory bits usage (and therefore the M9Ks usage) can be vastly decreased by decreasing the size of the 

different FIFOs. Especially the command FIFO has been designed quite generously with a depth of 128 elements 

which most applications won’t require. 

Table 14 shows the performance/speed of Silizium. Note that these values are not affected by any changes of the 

generic values or synthesizer optimizations as they are determined by the design itself: 

Renderer Per pixel Initial latency Recovery latency Latency between pixels 

Pixel 1 11 4 4 

Filled rectangle 1 13 4 4 

Clipping mask 0 4 10 0 

TABLE 14: PERFORMANCE METRICS 

All values are number of clock cycles. These metrics are valid under the following conditions: 

• All FIFOs are non-full 

• There are no hold-offs (waits) on the slave interface bus transactions 

• There are no hold-offs (waits) on the bus towards the framebuffer memory 

Per pixel: Is the number of clock cycles the renderer needs to render/calculate one pixel 

Initial latency: Is the number of clock cycles between the completion of writing the command to the command FIFO 

and the completion of rendering/calculating the first pixel. 

Recovery latency: Is the number of clock cycles between the completion of a rendering operation and the start of 

the next rendering operation assuming that the next rendering operation was already in the command FIFO when 

the first rendering operation completed. 

Latency between pixels: Is the number of clock cycles between pixel write transactions of the FBI. Note that this is 

not the amount of clock cycles a hardware renderer needs to render a pixel but the number of clock cycles the FBI 

needs to read the pixel value calculated by the renderer and actually writing it to the bus towards the framebuffer. 
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