

Degree Programme

Systems Engineering

Major Infotronics

Bachelor’s thesis

Diploma 2017

Joel Bodenmann

22DD HHaarrddwwaarree AAcccceelleerraattiioonn

Professor
François Cor thay

Expert
Yann Thoma

Submission date of the report
18.08.2017

This document is the original report written by the student.
It wasn’t corrected and may contain inaccuracies and errors.

Objectives

The objective of the project is to develop an IP-core that provides hardware

acceleration for common 2D rendering operations in an embedded system.

Methods | Experiences | Results

The requirements for graphical user interfaces (GUI) on modern display and

touchscreen based systems are increasing steadily. Rendering complex and

attractive GUIs requires a lot of processing power. At the same time, energy

consumption for most of these embedded systems should decrease. Being able

to off-load processor intensive tasks such as rendering of 2D shapes to dedicated

hardware vastly decreases rendering time and frees a lot of processor resources

which leads to a faster GUI and a less power consuming system.

Existing solutions often work only under very strict conditions and with specific

platforms and are not flexible enough for the demands of the µGFX library which

has been designed to run on virtually any system.

The result of the project is a ready-to-use IP-core that provides hardware

acceleration for rendering solid rectangles in a NIOS-II based system. The design

can be adapted to be used in any system. New hardware renderers for additional

shapes can be added easily without modifying the rest of the design.

2D rendering with hardware acceleration

Graduate Joel Bodenmann

Bachelor’s Thesis

| 2 0 1 7 |

Degree programme

Systems engineering

Field of application

Infotronics

Supervising professor

Dr François Corthay

francois.corthay@hevs.ch

Partner

uGFX GmbH

https://ugfx.io

The “drawing infinitely many
rectangles” to confirm the stability of
the Silizium IP-core and to
demonstrate the speed improvement.

A typical graphical user interface
on an embedded system running
NIOS-II and the µGFX library.

Picture
(optional)
300 dpi

6.5 x 5cm

Picture
(optional)
300 dpi

6.5 x 5cm

Objectif du projet

L'objectif du projet est de développer un coeur IP qui fournit une accélération

matérielle pour les opérations de rendu graphique en 2D dans un système

embarqué.

Méthodes | Expériences | Résultats

Les exigences pour les interfaces utilisateur graphiques (graphical user interface /
GUI) sur l'affichage moderne des systèmes à écran tactile augmentent
régulièrement. Le rendu visuel des interfaces graphiques complexes et
attrayantes nécessite beaucoup de puissance de traitement. En même temps, la
consommation d'énergie de la plupart de ces systèmes embarqués est censée
diminuer. Le fait de pouvoir décharger les tâches intensives du processeur telles
que le rendu des formes 2D sur un circuit dédié diminue considérablement le
temps de dessin et libère beaucoup de ressources du processeur. Ceci nous
conduit à une interface graphique plus rapide et à un système moins
consommateur d'énergie.

Les solutions existantes ne fonctionnent souvent que dans des conditions très
strictes et sur des plates-formes spécifiques. Elles ne sont pas suffisamment
souples pour répondre aux exigences de la bibliothèque μGFX qui a été conçue
pour fonctionner sur pratiquement n'importe quel système.

Le résultat du projet est un coeur IP prêt à l'emploi qui fournit une accélération
matérielle pour le dessin de rectangles solides dans un système basé sur NIOS-
II. Le circuit peut être adapté pour être utilisé dans n'importe quel système. De
nouveaux calculateurs matériels pour des formes supplémentaires peuvent être
ajoutés facilement sans modifier le reste de la conception.

Rendu en 2D avec accélération matérielle

Diplômant Joel Bodenmann

Travail de diplôme

| é d i t i o n 2 0 1 7 |

Filière

Systèmes industriels

Domaine d’application

Infotronique

Professeur responsable

Dr François Corthay

francois.corthay@hevs.ch

Partenaire

uGFX Sarl

https://ugfx.io

Le «dessin d'infiniment de rectangles»
pour confirmer la stabilité du coeur IP
Silizium et pour démontrer l'amélioration
de la vitesse.

Une interface utilisateur graphique
typique sur un système embarqué
fonctionnant avec NIOS-II et la
bibliothèque μGFX.

Joel Bodenmann 2017-08-18

Page 1 of 39

Table of Contents
1 Preamble ... 3

2 Motivation ... 3

3 Project goal ... 3

4 Document structure .. 4

5 Terms & abbreviations .. 4

6 Technical advantages .. 5

6.1 Example 1: Image blitting ... 5

6.2 Example 2: Area filling .. 6

7 Used tools ... 7

8 QSys ... 7

8.1 Avalon ... 8

9 Simplifications ... 8

10 Hardware acceleration features ... 8

11 Architecture .. 10

12 Internal design .. 12

12.1 Command & Control bus interface ... 12

12.2 Registers .. 12

12.3 Command FIFO .. 12

12.4 Dispatcher ... 14

12.5 Framebuffer interface ... 14

12.5.1 Write ... 16

12.5.2 Read .. 17

12.5.3 Clipping ... 18

12.5.4 Read and write FIFO .. 19

12.5.5 FIFO data format ... 20

12.6 Renderers .. 23

12.6.1 Pixel ... 23

12.6.2 Filled rectangle .. 23

12.6.3 Clipping ... 24

13 Implementation .. 24

13.1 Silizium.vhd ... 25

13.2 Silizium_implementation.vhd ... 26

13.3 Silizium_dispatcher.vhd .. 27

13.4 Silizium_framebufferinterface.vhd ... 28

Joel Bodenmann 2017-08-18

Page 2 of 39

14 Adding new renderers... 30

14.1 Generics .. 30

14.2 Ports .. 30

14.3 Infrastructure .. 31

15 Tests & Verification ... 32

16 Future steps .. 33

16.1 More hardware renderers .. 33

16.2 Test benches ... 33

16.3 FIFO abstractions .. 33

16.4 Bus abstractions .. 34

16.5 Clipping ... 34

16.6 Framebuffer interface burst transactions ... 34

17 Parallel Rendering ... 34

17.1 Framebuffer interface bottleneck... 34

17.2 Synchronization... 35

18 Problems ... 35

18.1 Framebuffer interface ... 35

18.2 Missing pixels .. 36

19 Conclusion ... 36

20 Signatures ... 37

21 Credits ... 37

22 Appendix ... 37

23 Bibliography .. 38

24 List of illustrations ... 39

25 List of tables .. 39

Joel Bodenmann 2017-08-18

Page 3 of 39

1 Preamble
This is the official and final report for the bachelor thesis.

2 Motivation
This project has been proposed as a bachelor thesis by myself. As the author and maintainer of the

µGFX1 library I know how many CPU resources rendering even simple shapes such as a solid rectangle

can take. On small microcontroller systems or FPGAs with soft-cores this is usually a big problem as

these CPUs are not only comparably slow but also need to take care of a magnitude of other things

such as processing user events or handling wireless communication which often involve hard-realtime

requirements. These hard-realtime requirements often require the 2D rendering tasks to be split up

into multiple different operations which makes rendering a user interface even slower and therefore

quickly leads to a non-smooth user interface which does not hold up to the ever-growing performance

demands of modern graphical user interfaces.

Being able to off-load even simple tasks such as rendering a filled rectangle to a dedicated part of the

hardware (GPU) doesn’t only vastly increase rendering speed but also frees up a lot of CPU resources.

Dedicated hardware to off-load rendering operations for smaller systems is nothing new. There are

several display controllers such as the RA8875 from RAiO which provide hardware support for

rendering basic 2D shapes. Furthermore, there are more complex systems such as the FT800 from

FTDI which implement hardware rendering for complex shapes and widgets such as pushbuttons,

sliders and even entire on-screen keyboards. More advanced microcontrollers that feature built-in

display controllers also start to provide very basic hardware acceleration support for rectangle

drawing and other basic operations such as the LTDC display controller that can be found in some of

the higher-end STM32 microcontrollers. These existing solutions tend to be very inflexible and are

always highly proprietary. They can almost always only be used with the matching closed-source

software of the vendor or they come with other restrictions that vastly limit the field of use. The goal

of this project is to develop a system that can be integrated easily into any existing and new system.

3 Project goal
The goal of this thesis is to develop an IP-core that provides 2D hardware acceleration to a system-on-

chip2 (SoC) to speed up graphical user interfaces on embedded systems.

More specifically, the IP-core will be implemented in VHDL3 and will be optimized for the use with the

µGFX library and the NIOS-II4 processor.

While we will refer to this IP-core as “a GPU” (graphical processing unit) it is not to be compared to a

traditional GPU of a desktop computer system. The goal of this project is to implement hardware 2D

acceleration for small embedded systems that do not require fancy animations or 3D renderings. The

1 https://ugfx.io
2 https://en.wikipedia.org/wiki/System_on_a_chip
3 https://en.wikipedia.org/wiki/VHDL
4 https://www.altera.com/products/processors/overview.html

Joel Bodenmann 2017-08-18

Page 4 of 39

GPU will be optimized to be small & simple and also easy to use for the CPU as we want to save as

much CPU time as possible on those smaller low-performance systems.

4 Document structure
The complete bachelor thesis report consists of three separate documents:

• The actual report itself (this document)

• The datasheet of the developed IP-Core

• A document that describes the problem that was faced when implementing the Avalon-MM

master bus interface

These three documents refer to each other were necessary. To a person unfamiliar with the project it

is best to start with the datasheet and then moving on to reading the rest of this report.

The reason for having a separate document regarding the problem with the Avalon-MM master bus

interface is that the problem has not been solved yet. A workaround that is suitable to finish this thesis

has been found and applied but solving the problem has yet to be done.

5 Terms & abbreviations
The following table gives an overview of terms and abbreviations that are commonly used

throughout this document:

Abbreviation Description

2D Two dimensional

Avalon A bus standard created by Altera for FPGA internal communication

CPU Central processing unit

FBI Framebuffer interface

FIFO First-in First-out (a type of memory/buffer)

Framebuffer A section of memory that holds the pixel data that is shown on the display

FSM Finite state machine

GPU Graphics processing unit

HAL Hardware abstraction layer

IP-Core (Intellectual property) A pre-fabricated block of something ready to be used

Qsys Tool of the Quartus toolchain used to create a SoC

Quartus The FPGA IDE & Toolchain by Intel

Silizium The name of this 2D hardware acceleration IP-Core

SoC System-on-chip
 Table 1: Commonly used abbreviations & terms in this document

Joel Bodenmann 2017-08-18

Page 5 of 39

6 Technical advantages
This section of the document explains the technical advantages of having dedicated hardware for 2D

rendering operations. This is basically the technical variant of section 2 (motivation). This section

assumes that the reader is familiar with the basic concepts of a computer system (especially the CPU).

A CPU is usually designed to be very good at executing a broad variety of different tasks (tasks in terms

of logical operations and bit operations which together form calculations). Just as with most other

things, when something is designed to be usable for many different things it is usually not very good

at one particular thing. While a CPU offers everything required to render two dimensional shapes such

as rectangles and polygons or to copy images around, it is not really optimized for that. This section

of the document contains two examples that will illustrate why having dedicated hardware for 2D

rendering operations can be a huge benefit in terms of the overall application speed.

6.1 Example 1: Image blitting
Blitting (historically also known as bit blit) stands for bit block transfer and describes a technique to

assemble a bitmap (ultimately an image) from different parts of multiple different images. In layman’s

terms, it’s taking a region of pixels and copying to a different location. A good example is rendering an

image: When the developer of an (embedded) GUI wants to show an image on the display said image

needs to be loaded from memory (eg. an SD-Card). Afterwards, the image needs to be decoded

(usually by the CPU) and gets cached (“stored temporarily”) into memory. The cached version of this

image is somewhere in memory but not inside the framebuffer. This means that the image is fully

rendered but simply not on the display yet. Therefore, the next operation is to create a copy of the

cached (decoded) image in memory. Copying memory is a very inefficient task for a CPU. To copy

memory, a CPU must read a chunk of memory and store it in its internal registers and then write it

back to a different memory location. As those registers are usually just big enough for a few bytes (eg.

32 to 48 bytes in a typical modern microcontroller CPU) a lot of those read-store-write transactions

need to be executed to copy a rendered image which often takes 2 to 4 bytes of memory per pixel.

Each of those read-store-write transactions comes with overhead and also keeps the CPU from doing

anything else. Assuming a small icon of 64 x 64 pixels size with a color format that takes 4 bytes per

pixel it would take a CPU with the ability to store 32 bytes in registers at once 512 of those

transactions:

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 =
64 ∗ 64 ∗ 4 𝑏𝑦𝑡𝑒𝑠

32 𝑏𝑦𝑡𝑒𝑠
= 512

Almost all embedded systems (such as microcontroller) which would be used to implement graphical

user interface offer DMA5 (direct memory access) which is a part of dedicated hardware next to the

CPU that allows copying memory without using/occupying the CPU. However, those DMAs cannot be

used efficiently in such an application as they only support linear memory spaces. Copying a two-

dimensional object in a framebuffer requires to wrap at the end of the object and then move to a

different starting address for the next row. Traditionally DMAs cannot do this as they only provide a

start and end address configuration parameter and constantly increment between the two. Therefore,

a CPU would have to setup the DMA to copy one row of the image, wait for it to finish and then

configure it to copy the next row.

5 https://en.wikipedia.org/wiki/Direct_memory_access

Joel Bodenmann 2017-08-18

Page 6 of 39

A hardware blitting engine is basically a DMA that knows the concept of having two-dimensional

information in a linear memory space (a framebuffer). Instead of a start and stop address it gets

provided with the start address and the width and height of the object in pixels. There are two benefits

of having dedicated hardware for this:

• This dedicated hardware will be a lot faster at copying that memory (as it has been built

especially for this task)

• After configuring and starting the hardware blitting engine the CPU can occupy itself with

other things such as reacting on user inputs or decoding the next resource (eg. image) that

will be used

These two benefits combined speed up the final application a lot as the operation of copying the image

is faster and the latency to react on user input and similar decreases at the same time.

While the latest and most high-end microcontrollers such as some of the STM32 F4 and F7 series

microcontrollers are equipped with such a DMA2D it is still rarely the case and in all cases those two-

dimensional DMAs are only able to be used together with the built-in display controller of those

microcontroller which in turn imply a large set of new limitations.

6.2 Example 2: Area filling
In the first example, the main argument for having a dedicated piece of hardware was that a CPU is a

lot slower at copying memory around than dedicated hardware that has been optimized for this. As

the dedicated hardware is a lot faster performing the same operation the time required to perform

the copying operation drops down. However, there are also cases where the CPU itself would be fast

enough to perform the job but having dedicated hardware still saves overall time because the CPU

can perform other tasks in the meantime. A good & easy to understand example for this is area filling

(rendering a filled rectangle in the framebuffer). Ultimately, the value of each pixel in the framebuffer

needs to be modified. A (modern) CPU is not a whole not slower at this compared to dedicated

hardware but when the CPU can off-load this task to dedicated hardware the CPU has time to perform

other tasks.

The two examples above illustrate why and how dedicated hardware for 2D rendering operations can

vastly speed up graphical user interfaces.

Joel Bodenmann 2017-08-18

Page 7 of 39

7 Used tools
The overall goal of this project is to develop an IP-core that can be used in any system afterwards.

However, for the scope of this bachelor thesis project we will focus on implementing a design that

runs on a MAX10 FPGA using the NIOS-II system. The following tools are used to achieve that goal:

Software

• Quartus 17.0 (Quartus Prime Version 17.0.0 Build 595 04/25/2017 SJ Standard Edition)

• Eclipse for NIOS-II Kepler Service Revision 2, Build 20140224-0627

• ModelSim Intel FPGA starter edition 10.5b (Revision 2016.10)

• µGFX library v2.7

Hardware

• Terasic MAX10 Neek6

8 QSys
A NIOS-II based system is usually developed using a utility named QSys7 that is part of Intels FPGA

development suite named Quartus8. QSys provides a graphical interface for designing a SoC. As the

2D hardware acceleration IP-core would be part of the resulting SoC it is essential that the developed

block can be added easily to a QSys project through the graphical user interface.

Figure 1: QSys screenshot

6 https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=956
7 https://www.altera.com/products/design-software/fpga-design/quartus-prime/features/qts-qsys.html
8 https://en.wikipedia.org/wiki/Altera_Quartus

Joel Bodenmann 2017-08-18

Page 8 of 39

8.1 Avalon
The IP-core that provides the hardware accelerations needs an interface through which it can

communicate with the CPU. The NIOS-II CPU relies heavily on the Avalon bus9, specifically the Avalon

memory mapped (Avalon-MM) bus. The Avalon-MM bus offers a master-slave topology with multi-

master capabilities. Our IP-core will have an Avalon-MM bus slave through which the CPU can send

commands to the GPU. Furthermore, the GPU will also feature an Avalon-MM bus master that allows

accessing the framebuffer.

9 Simplifications
Due to time limitations, the following decisions have been made to keep the design simpler:

• No parallel rendering

After identifying the resources & systems that will be used and after deciding which simplifications

are being made for the scope of this bachelor thesis it is time to determine which functions bring the

most benefits when implemented in hardware.

10 Hardware acceleration features
A crucial step of the project is to identify which rendering functions bring the most benefits when

implemented in hardware. For this, Table 2 has been created that lists the basic rendering functions

provided by the µGFX library together with a rating of their complexity (in terms of implementation)

and how often they are used in a typical application. From those two values, a priority rating has been

deduced from which in turn the order of implementation for this project has been deduced.

Column description:

• Complexity: The complexity of the existing software algorithm relative to all other rendering

algorithms in the table. 10 is the most complex.

• Occurrences: The number of occurrences in a practical real-world GUI implementation

relative to all other rendering algorithms in that table. 10 is the most used one.

• Priority: The priority in terms of order of implementation for this thesis/project.

The complete API reference for all primitive rendering functions that the µGFX library provides can be

found here: http://api.ugfx.io/group___g_d_i_s_p.html

9 https://en.wikipedia.org/wiki/Nios_II#Avalon_switch_fabric_interface

http://api.ugfx.io/group___g_d_i_s_p.html

Joel Bodenmann 2017-08-18

Page 9 of 39

Function Description Complexity Occurrences Priority

Blend Colors Blend two colors 1 3 -

Draw Pixel Draw a single pixel 1 10-5 -

Draw Line Draw a line (one pixel thick) 5 8 3

Fill Area Fill an area with a solid color 1 10 1

Blit Area Fill an area with a given buffer (2D memory copy) 2 6 2

Draw Box Draw an unfilled rectangle 5 6 4

Stream (Start, Color, End) Stream pixel values 2 2 -

Draw Circle Draw an unfilled circle 7 4 9

Fill Circle Draw a filled circle 7 4 10

Fill Dual Circle Draw a filled circle with border 8 1 11

Draw Ellipse Draw an unfilled ellipse 9 2 12

Fill Ellipse Draw a filled ellipse 9 2 13

Draw Arc Sectors Draw one or more arc sectors 9 2 -

Draw Thick Arc Draw a thick arc 9 3 -

Fill Arc Draw a filled arc 9 3 -

Vertical Scroll Scroll a certain area of the framebuffer 2 5 6

Draw Polygon Draw an unfilled polygon 7 4 5

Fill Convex Polygon Draw a filled (convex) polygon 7 7 7

Draw Thick Line Draw a thick line 7 5 8

Draw Character Draw a single character 10 10 -

Fill Character Draw a single character and fill the background 10 10 -

Draw String Draw a string 10 10 -

Fill String Draw a string and fill the background 10 10 -

Draw String Box Draw a string with justification 10 10 -

Fill String Box Draw a string with justification and fill the backgrounds 10 10 -

Draw Rounded Box Draw an unfilled rectangle with rounded corners 5 5 -

Fill Rounded Box Draw a filled rectangle with rounder corners 5 5 -
Table 2: µGFX rendering functions overview

Joel Bodenmann 2017-08-18

Page 10 of 39

11 Architecture
Initially the idea was to create one IP-core per hardware acceleration function. However, after reading

a lot of material about QSys it became clear that the best solution is to create just one IP-core that

internally dispatches the jobs to the different sub components. The reason for this is that all of these

components would require the same bus interface which would result in a lot of code duplication and

would also require the user of the IP-core to hook up each block manually which quickly becomes a

tedious task with a growing number of renderers and also decreases readability of the overall SoC

design. Furthermore, the QSys tool provides a nice graphical configuration dialog for each IP-core.

Once the Silizium IP-core is completed we can create a configuration dialog where each hardware

acceleration feature can be either enabled or disabled and further configured. Another advantage of

having just one IP-core is that we can handle the bus arbitration internally ourselves. This allows for

further optimizations such as running multiple different rendering jobs in parallel, optimizing for burst

transactions and similar.

From the end user’s perspective, there will be just one IP-core with one Avalon-MM slave and one

Avalon-MM master interface:

2D Hardware Acceleration

Avalon-MM Slave

Avalon-MM Master

2D Hardware Acceleration

Avalon-MM Slave

Avalon-MM Master

Figure 2: IP core interfaces

The slave interface will be used to configure and control the GPU as well as issuing rendering

commands. The master interface is used to access the framebuffer memory.

Figure 3 shows two different use cases for the Silizium IP-core in a typical NIOS-II based SoC. It is to

note that the Silizium block is not affected by other aspects of the systems such as the location of the

framebuffer (eg. Internal or external memory) or the used display interface.

Joel Bodenmann 2017-08-18

Page 11 of 39

CPU

Framebuffer
Reader

Avalon-MM

RAM
Interface

S

RAM
Interface

S

M

Silizium

S M

M
Clocked
Video

Output

CPU

Framebuffer
Reader

Avalon-MM

RAM
Interface

S

M

Silizium

S M

M
Clocked
Video

Output

FPGA

Display

CPU

Framebuffer
Bridge

Avalon-MM

RAM
Interface

S

M

Silizium

S M

M

FPGA

Display
External

RAM

External
RAM

Note: RAM Interface could be internal RAM as
well depending on the system architecture

Framebuffer Framebuffer

Figure 3: Typical applications / use cases

Joel Bodenmann 2017-08-18

Page 12 of 39

12 Internal design
Figure 4 gives an overview of the internal design of the Silizium IP-core. The design can be split into

the following components:

• Command & Control bus interface

• Registers

• Command FIFO

• Dispatcher

• Renderers

• Framebuffer interface

Note: The purpose of said figure is to give an overview of how things work internally. The actual

implementation is split up into different entities.

12.1 Command & Control bus interface
The command & control bus interface (from here on referred to as “the slave interface”) is used by

the CPU to initialize, configure and control the GPU. The interface is compliant to the Avalon-MM slave

standard and has the following requirements:

• Address bus width: At least 4 bits

• Data bus width: At least 32 bits

• Read and write operations

The run-time configuration of the GPU usually only consists of setting the framebuffer base address

and the framebuffer span. Other parameters such as the display size, the pixel format and similar are

handled by generic values and therefore do not need to be changed during run-time. Once the

configuration is completed the slave interface is usually only used to send commands to the GPU, to

control the different enable flags (if required) and to read back the current status of the GPU (eg. busy

flags) and the command queue status.

12.2 Registers
The GPU features different control and configuration registers. The most important ones are:

• Status register

• Control register

• Framebuffer base address & span register

These registers can be accessed directly via the slave interface.

The documentation of the values and effects of these registers are documented in the datasheet.

12.3 Command FIFO
The CPU issues commands to the GPU such as “draw a rectangle at this position with that size and this

color”. These commands are stocked in the internal command FIFO of the GPU. Whenever there is a

pending command in the FIFO the dispatcher will grab it as soon as the different renderers of the GPU

are no longer busy and handle it accordingly.

Joel Bodenmann 2017-08-18

Page 13 of 39

Renderer 1

Registers

...

...

...

Param 1

Command 3

Param 4

Param 3

Param 2

Param 1

Command 2

Param 3

Param 2

Param 1

Command 1

Dispatcher

Control

Status

FB Base Addr

FB Span

FIFO

Fr
am

eb
uf

fe
r

A
cc

es
s

M
ux

Renderer 2

Renderer 3

Renderer 4

Renderer 5

FB Interface

Avalon-MM Master

FB Interface

Avalon-MM Master

Slave Bus Interface

Avalon-MM Slave

Slave Bus Interface

Avalon-MM Slave

Se
le

ct
o

r

Figure 4: Internal design overview

Joel Bodenmann 2017-08-18

Page 14 of 39

12.4 Dispatcher
The dispatcher takes commands out of the command FIFO and dispatches them to the appropriate

hardware rendering blocks. To fulfill that task, the dispatcher also handles the internal bus arbitration

and parallel rendering in the future (not implemented yet).

12.5 Framebuffer interface
The framebuffer interface (FBI) is the sub-component which actually talks to the framebuffer. In this

particular project, we’re focusing on a NIOS-II system with a framebuffer that is accessible over an

Avalon-MM bus. However, adapting to a different system is very easy.

Figure 5 gives a detailed overview of the architecture of the framebuffer interface. The left side is the

communication towards the individual renderers and the right side is the communication towards the

Avalon-MM bus. The first thing to note is that the framebuffer interface allows for bidirectional

communication. This is due to the fact that some renderers require read-back from the framebuffer

to fulfill their tasks. A common example is a hardware renderer for scrolling: Such a block takes a

portion of the display contents and moves it inside the framebuffer. For this, the block needs to read

the contents of the framebuffer first. Furthermore, read-back is also required for anti-aliasing and

loading miscellaneous contents from other parts of the memory (off-screen memory) which is often

used to store decoded images or complex pre-rendered shapes that just need to be copied to the on-

screen portion of the framebuffer.

The communication towards the renderers is being buffered through two individual FIFOs: A write-

FIFO and a read-FIFO. There are two benefits of having buffers at this place: Firstly, a renderer can

keep rendering when the bus towards the framebuffer (the Avalon-MM bus) is currently being locked

by another bus member. Secondly, having a write queue the framebuffer interface logic (the state

machine) can optimize bus transfers by making use of burst writes (currently not implemented).

Joel Bodenmann 2017-08-18

Page 15 of 39

FIFO n

FIFO n-1

FIFO n-2

...

...

...

...

...

...

...

...

FIFO 3

FIFO 2

FIFO 1

Write FIFO

FIFO n

FIFO n-1

FIFO n-2

...

...

...

...

...

...

...

...

FIFO 3

FIFO 2

FIFO 1

Write FIFO

>=
Finite State Machine

FIFO n

FIFO n-1

...

FIFO 2

FIFO 1

Read FIFO

FIFO n

FIFO n-1

...

FIFO 2

FIFO 1

Read FIFO

FB Span FB Base Addr

Avalon-MM Master

Avalon-MM Master

Raw

D/C Flag

FB write data

FB write addr

FB read addr

FB read data

Clipping
Mask
Comp.

Clipping Info

Glue
Logic

Glue
Logic

Figure 5: Framebuffer interface design overview

Joel Bodenmann 2017-08-18

Page 16 of 39

12.5.1 Write
At the very basic requirements, a renderer would simply provide the framebuffer interface with an

address inside of the framebuffer area and a matching value to write there. The framebuffer interface

would then take care of issuing the correct write transaction on the Avalon-MM bus. There are two

minor draw-backs with this:

1. Each renderer would have to know the exact framebuffer location (base address)

2. A renderer could issue invalid write transactions (outside of the framebuffer location) which

results in memory corruption and most likely a crash of the entire system.

Handling the former is done by using relative addresses inside of the renderers. A renderer always

addresses the framebuffer starting at 0x00 which represents the first pixel. The framebuffer interface

simply adds the framebuffer base address (which is being provided by the CPU via the corresponding

configuration register) to the addresses calculated by the renderers.

The second draw-back is handled by simply comparing the framebuffer addresses provided by the

renderers to the framebuffer span which is also provided by the CPU via the corresponding

configuration register. As the renderers provide all addresses relative to 0x00 this is simply a matter

of comparing the raw relative address to the span itself prior to adding the base address. Write

requests outside of the framebuffer address space are simply being ignored by the framebuffer

interface.

At this point it is worth to note that using the framebuffer span to prevent invalid write transactions

isn’t a mechanism meant to prevent bugs in the renderers themselves (as they should be verified prior

to using them in a critical application) but rather because writing outside of the framebuffer area can

actual be requested by the user. There are two possible scenarios which lead to a hardware renderer

having to render outside of the framebuffer area:

• The user accidentally provided invalid coordinates to the hardware rendering. This can be as

simple as a typo in a constant while developing a new GUI or just a complex run-time

calculation that went wrong.

• The user might want to just render a portion of a shape on the screen.

For the latter, a good example is a hardware renderer that allows rendering polygons. The user might

want to just render a portion of that polygon somewhere in a corner of the screen as shown in Figure

6. In such a case, the user simply asks the hardware renderer to render the polygon with negative X

and Y coordinates. The renderer itself doesn’t implement any clipping (this will be discussed shortly)

so the renderer simply renders the entire polygon and the framebuffer interface will throw out any

write transactions outside of the framebuffer area.

Display Area

Figure 6: Partial on-screen rendering of a polygon

Joel Bodenmann 2017-08-18

Page 17 of 39

12.5.2 Read
Disclaimer: Due to time restrictions, the read portion of the framebuffer interface could never be fully

tested. While the design described in this section is final/complete the actual implementation will still

need some work.

As mentioned in the introduction of this chapter there are certain cases where a renderer needs to be

able to read-back the current contents of the framebuffer to perform its job. Therefore, a renderer

needs a way to ask the framebuffer interface to issue a read transaction on the bus towards the

framebuffer memory. In the simplest form, the renderer would simply assert a read request signal and

wait for the data to be returned by the framebuffer interface. However, that would lead to

synchronization issues. When a hardware renderer requires the contents of a portion of the

framebuffer that is usually in order to modify that same portion (eg. By performing a scroll operation

or by overlying a filter). This means that the renderer needs the most recent & up-to-date version of

the framebuffer contents in respect of the rendering commands already issued by the user. The write

FIFO of the framebuffer interface might still contain data that is relevant for the read-back operation

that hasn’t been written to the actual framebuffer just yet. To prevent these sorts of problem, the

read requests of a renderer are also being passed through the same FIFO as the write request.

However, this means that the state machine that dispatches from the write FIFO needs to be able to

distinguish between data-to-write and commands. This is achieved by adding an additional bit to the

FIFO element width. This bit is from here on referred to as the D/C bit (Data/Command). The bit set to

‘1’ means that everything after that bit represents a command that needs to be interpreted by the

framebuffer interface while the bit set to ‘0’ means that everything after that bit is the relative

framebuffer address and the data to be written at that address.

At the moment, the only commands that the framebuffer interface can interpret is a read request and

modifying the clipping area (explainer later on). In fact, there are two different read commands that

can be issued: One is for linear reads and the other one is for window wrapper reads.

Data that was read back from the framebuffer by the framebuffer interface are stocked into the read

FIFO from which the hardware renderers can dispatch. There are two benefits from having this FIFO:

• If a renderer would have to do some processing that prevents it from reading the data that

was read back from the FBI immediately this would mean that the renderer would lock up the

Avalon bus (the FBI would have to assert the waitrequest signal which would force the

memory controller to hold on which would in turn potentially halt the entire system (other

components such as the CPU couldn’t access the memory either during that time). This FIFO

allows the FBI to check whether there’s enough room to stock the data that it will request

from the memory controller prior to actually issuing the read command.

• The FBI can make burst reads as multiple values can be stocked in the FIFO.

Note that the read FIFO is usually many times smaller than the write FIFO. This is due to the fact that

a renderer that requested a pixel-readback will usually have to wait for that information before it can

continue and therefore immediately dispatches the data from the FBI read FIFO.

Joel Bodenmann 2017-08-18

Page 18 of 39

12.5.2.1 Linear read

With a linear read, the renderer simply provides the relative address of the first pixel value he wants

to read back and a count in number of pixels. The framebuffer interface will not provide any wrapping

but simply increment the address until the specified amount of pixels values have been read back.

A linear read request consists of the following values being written to the FIFO in that order:

1. Read command (D/C bit set to ‘1’ and proper command constant (0x02))

2. Start address of the first pixel that will be read back

3. Number of reads to be performed (in pixels)

This is explained in more detail in section 12.5.5.2.

12.5.2.2 Rectangular read

In contrast to the linear read described above, the rectangular read allows a hardware renderer to

specify a rectangular window inside the framebuffer. The framebuffer interface will take care of

calculating the corresponding addresses and wrap at the edges of the rectangle. Basically, this allows

a renderer to get a copy of the contents of a rectangular section of the framebuffer.

A rectangular read request consists of the following values being written to the FIFO in that order:

1. Read command (D/C bit set to ‘1’ and proper command constant (0x03))

2. Framebuffer address of the first pixel that will be read back

3. Width of the window (in pixels)

4. Height of the window (in pixels)

This is explained in more detail in section 12.5.5.3.

In both reading modes, the framebuffer interface uses the framebuffer base address to transform the

relative addresses to absolute ones and uses the framebuffer span information to prevent reading

from memory that isn’t part of the framebuffer. Note that the latter is a limitation that prevents off-

screen area blitting – a scenario where for example the CPU decodes an image in RAM (but not the

framebuffer) and then simply asks the hardware blitting engine (renderer) to copy the decoded image

to the appropriate location(s) inside of the framebuffer.

12.5.3 Clipping
Clipping10 is a technique that allows to limit the area (in the framebuffer) that will be affected by a

rendering operation. At its most basic form (and with respect to operating only in two dimensions)

clipping consists of a rectangular area with a given size and at a given position within the framebuffer.

When rendering something only pixels inside that rectangular area get updated. All the pixels outside

of the clipping area are unaffected by any rendering operations. More complex clipping engines allow

defining clipping areas of arbitrary shapes. For example, this allows rendering only a circular area of a

regular rectangular image.

Currently the clipping takes place in the framebuffer interface and only one clipping region is

supported. Changing the clipping area happens by changing the clipping parameters in the

corresponding registers through the CPU. The values of the clipping registers are being passed through

10 https://en.wikipedia.org/wiki/Clipping_(computer_graphics)

Joel Bodenmann 2017-08-18

Page 19 of 39

the write FIFO as commands by the internal dispatcher. The reason for this is the same as for why read

requests get passed through the write FIFO: The user might be changing the values of the clipping

registers while some of the rendering operations are still in the write FIFO which would lead to

unexpected results on the display. Passing everything through the same FIFO provides complete

determinism as everything is being executed in chronological order.

Changing the clipping area position & size consists of the following values being written to the FIFO

in that order:

1. Read command (D/C bit set to ‘1’ and proper command constant (0x01))

2. X coordinate of the window (in pixels)

3. Y coordinate of the window (in pixels)

4. Width of the window (in pixels)

5. Height of the window (in pixels)

This is explained in more detail in section 12.5.5.4.

12.5.4 Read and write FIFO
The various hardware renderers communicate with the framebuffer interface through the write- and

the read-FIFOs. The formats of the data inside the FIFOs are complex as they combine multiple

information into one FIFO element. For example, the write-FIFO contains the D/C bit and depending

on that D/C bit the rest of the data is either a command value or the framebuffer address and data

combined (concatenated). To simplify the life of a hardware renderer developer both FIFOs provide

glue logic towards the hardware renderers to split-up and combine these signals to individual, more

intuitive signals.

Figure 7 shows the write-FIFO with the corresponding glue logic in front of it:

FIFO n

FIFO n-1

...

Write FIFO

Glue
Logic

ready
busAddr
busData

busWrite
cmdData

cmdWrite

...

FIFO 2

FIFO 1

Figure 7: FBI write-FIFO glue logic

The ready signal indicates where the framebuffer interface is ready to receive new data or commands.

This is the inverted isFull signal of the write-FIFO. A renderer must not issue new write transactions to

the write-FIFO by strobing busWrite or cmdWrite if ready is logic ‘0’. Behavior is undefined in such a

case.

A renderer can alter the framebuffer contents by assigning the relative framebuffer address of the

pixel in question to busAddr and by setting busData to the corresponding pixel value (color value). A

one clock cycle long strobe on busWrite will store that information as a “data package” in the write-

FIFO in a format that the framebuffer interface behind the FIFO understands.

Joel Bodenmann 2017-08-18

Page 20 of 39

A renderer can issue commands to the framebuffer interface (such as issuing a read request or

changing the clipping mask) by setting cmdData to the corresponding command and by applying a

write strobe on cmdWrite.

Similarly, the read FIFO is also interfaced by glue logic to simplify the life of a renderer developer:

FIFO n

FIFO n-1

...

Read FIFO

Glue
Logic

readFifoDataAvailable
readFifoData

readFifoDataValid
readFifoReadAck

FIFO 2

FIFO 1

Figure 8: FBI read-FIFO glue logic

The readFifoDataAvailable signal indicates that there is new data in the read-FIFO ready to be

dispatched by the renderer. This is the inverted isFull signal of the read-FIFO.

The readFifoData is the actual data on the output port of the read-FIFO.

It can happen that the framebuffer interface can’t complete a requested read operation for example

because the renderer requested reading from an invalid memory section. The readFifoDataValid signal

indicates, whether the data is actually to be interpreted by the renderer as in such a case the

framebuffer interface will just provide dummy data to complete the read request.

12.5.5 FIFO data format
The previous sections explained the historical development of the framebuffer interface and its

capabilities. The following is a summary of the data that needs to be written into the write-FIFO of the

framebuffer interface to perform the corresponding tasks.

The commands that need to be written into the write-FIFO of the framebuffer interface by a renderer

are documented in tabular form:

Order D/C (MSB) MSB-1 downto 0 Unit

1 0 constant -

2 0 < variable > Pixel count

3 1 constant -

4 1 < variable > Pixel value

5 Don't care constant -

6 Don't care < variable > Pixel coordinate
Table 3: Framebuffer interface write-FIFO data format synopsis

Parameters are being listed in ascending order from top to bottom. This means that the top most

parameter is the first one to be written to the FIFO. The D/C (MSB) column specifies the state of the

D/C bit. The MSB-1 downto 0 column the rest of the bits of the FIFO width. The values of the columns

D/C (MSB) and the MSB-1 downto 0 will be concatenated (in that order, left-to-right) and written to

the FIFO.

Joel Bodenmann 2017-08-18

Page 21 of 39

Note that the number of bits for the data and the address are configured through the corresponding

generics named dataBitNb and addrBitNb. From this, the write-FIFO size has been deduced as:

𝑤𝑟𝑖𝑡𝑒𝐹𝑖𝑓𝑜𝐵𝑖𝑡𝑁𝑏 = 𝑑𝑎𝑡𝑎𝐵𝑖𝑡𝑁𝑏 + 𝑎𝑑𝑑𝑟𝐵𝑖𝑡𝑁𝑏 + 1

The +1 is to take the D/C bit discussed earlier into account.

All framebuffer addresses are relative addresses where 0x00 is the first pixel in the framebuffer as

the framebuffer interface will add the base address / offset of the framebuffer itself.

12.5.5.1 Write

Issuing a write transaction to the framebuffer is pretty straightforward and simple. As this will be by

far the most used operation in the framebuffer interface it is crucial that it takes as little time as

possible.

Order D/C (MSB) MSB-1 downto 0 Unit

1 0 <data> & <address> -
Table 4: Framebuffer interface write-FIFO data format for write transaction

Example: Writing the color value 0xAAAAAA to the address 0xBBBBBBBB assuming that both

dataBitNb and addrBitNb are 32 requires writing the following into the write-FIFO:

Order D/C (MSB) MSB-1 downto 0 Unit

1 0 0x00AA AAAA BBBB BBBB -

 Combined: 0x0 00AA AAAA BBBB BBBB

Table 5: Framebuffer interface write-FIFO data format for write transaction example

12.5.5.2 Linear read

Performing a linear read requires two parameters: The start address (address of the first pixel in the

framebuffer) and the number of pixels to be read back:

Order D/C (MSB) MSB-1 downto 0 Unit

1 1 0x02 -

2 Don't care < Start address > Pixel address

3 Don't care < Number of pixels > Pixel count
Table 6: Framebuffer interface write-FIFO data format for linear read

Example: Reading back 13 pixels starting at the relative framebuffer address 0x3E7 assuming that both

dataBitNb and addrBitNb are 32 requires writing the following into the write-FIFO:

Order D/C (MSB) MSB-1 downto 0 Unit

1 1 0x0000 0000 0000 0002 -

2 Don't care 0x0000 0000 0000 03E7 Pixel address

3 Don't care 0x0000 0000 0000 000D Pixel count
Table 7: Framebuffer interface write-FIFO data format for linear read example

Joel Bodenmann 2017-08-18

Page 22 of 39

12.5.5.3 Rectangular read

Performing a rectangular read requires three parameters: The start address (address of the first pixel

in the framebuffer) and the width and height of the rectangular window:

Order D/C (MSB) MSB-1 downto 0 Unit

1 1 0x03 -

2 Don't care < Start address > Pixel address

3 Don't care < Rectangle width > Pixel count

4 Don't care < Rectangle height > Pixel count
Table 8: Framebuffer interface write-FIFO data format for rectangular read

Example: Reading back the pixels of a rectangle measuring 82 pixels in width and 64 pixels in height

starting at the first pixel at address 0x3E7 assuming that both dataBitNb and addrBitNb are 32

requires writing the following into the write-FIFO:

Order D/C (MSB) MSB-1 downto 0 Unit

1 1 0x0000 0000 0000 0003 -

2 Don't care 0x0000 0000 0000 03E7 Pixel address

3 Don't care 0x0000 0000 0000 0052 Pixel count

4 Don't care 0x0000 0000 0000 0040 Pixel count
Table 9: Framebuffer interface write-FIFO data format for rectangular read example

12.5.5.4 Modifying clipping area

Changing the clipping area requires writing the corresponding command followed by the four

parameters which are X and Y coordinates and width and height dimensions of the new rectangular

clipping area. Note that as described above the size of the FIFO is determined by the address and data

bus width. However, the clipping parameters will be resized to coordBitNb.

Order D/C (MSB) MSB-1 downto 0 Unit

1 1 0x01 -

2 Don't care < Clipping area X coordinate > Pixel coordinate

3 Don't care < Clipping area y coordinate > Pixel coordinate

4 Don't care < Clipping area width > Pixel count

5 Don't care < Clipping area height > Pixel count
Table 10: Framebuffer interface write-FIFO data format for clipping area modification

Example: Changing the clipping area to X = 5, Y = 15, Width = 680, Height = 480 assuming that both

dataBitNb and addrBitNb are 32 requires writing the following into the write-FIFO:

Order D/C (MSB) MSB-1 downto 0 Unit

1 1 0x0000 0000 0000 0001 -

2 Don't care 0x0000 0000 0000 0005 Pixel coordinate

3 Don't care 0x0000 0000 0000 000F Pixel coordinate

4 Don't care 0x0000 0000 0000 02A8 Pixel count

5 Don't care 0x0000 0000 0000 01E0 Pixel count
Table 11: Framebuffer interface write-FIFO data format for clipping area modification

Joel Bodenmann 2017-08-18

Page 23 of 39

12.6 Renderers
The GPU contains an isolated hardware rendering for each rendering operation that the GPU offers.

Note: In the future, it will also be possible to have multiple instances of the same hardware rendering

inside the GPU which allows to handle multiple rendering operations of the same type simultaneously.

For example: Having more than one block to hardware render filled rectangles means that multiple

filled rectangles can be rendered in parallel.

This section of the document will explain the basic theory of operation of the existing renderers. To

properly understand the different terms used it might be required to read the datasheet first.

12.6.1 Pixel
The pixel renderer consists of a simple finite state machine (FSM) that dispatches the required

parameters from the command FIFO and then calculates the relative framebuffer offset to issue a

write request to the framebuffer interface.

The relative framebuffer address is calculated by using the following equation:

𝐹𝐵 𝑎𝑑𝑑𝑟 = (𝑥 + 𝑓𝑏𝑊𝑖𝑑𝑡ℎ ∗ 𝑦) ∗ 𝑓𝑏𝐵𝑦𝑡𝑒𝑠𝑃𝑒𝑟𝑃𝑖𝑥𝑒𝑙

The FSM is shown in Figure 9:

Idle

Fetch

Execute

start =

fetchDone =

Figure 9: Pixel renderer FSM

Fetching is done by a simple counter that is used to grab all three parameters (X, Y, color) from the

command FIFO.

12.6.2 Filled rectangle
The filled rectangle renderer works the same way as the pixel renderer except that it contains two

more counters which are used to count in X and Y direction until the width and height of the rectangle

have been reached. The pixel address calculation reflects this by extending the equation of the pixel

renderer with the two counter values countX and countY:

𝐹𝐵 𝑎𝑑𝑑𝑟 = (𝑥 + 𝑐𝑜𝑢𝑛𝑡𝑋 + 𝑓𝑏𝑊𝑖𝑑𝑡ℎ ∗ (𝑐𝑜𝑢𝑛𝑡𝑌 + 𝑦)) ∗ 𝑓𝑏𝐵𝑦𝑡𝑒𝑠𝑃𝑒𝑟𝑃𝑖𝑥𝑒𝑙

This calculation is performed for each pixel in the rectangle.

Joel Bodenmann 2017-08-18

Page 24 of 39

12.6.3 Clipping
The clipping renderer functions a bit different to the pixel and the filled rectangle renderers as it

doesn’t alter the framebuffer contents but issues a command to the framebuffer interface instead.

The only job this clipping renderer does it dispatching the clipping mask parameters (X, Y, width and

height) from the command FIFO and feeding them to the write-FIFO of the framebuffer interface. The

finite state machine is simpler in this case as the fetching and the execution can be merged into the

same state. The clipping renderer dispatches the first parameter and immediately pushes it to the

framebuffer interface write-FIFO and therefore only adds one clock cycle of latency.

Idle

Fetch

start =

fetchDone =

Figure 10: Clipping renderer FSM

After discussing the theory of operation of the different hardware renderers it is time to look at the

actual implementation.

13 Implementation
Section 12 explains the internal structure of the IP-core. This section of the document looks at the

actual implementation in code. As mentioned in section 12, the overall design shown there doesn’t

necessarily correspond to the design implementation. Entities and files have been named differently

and sometimes parts that are shown individually in the design overview are simply embedded

somewhere else. While this might sound like bad practice it’s to keep everything clean and simple.

The overview given in section 12 has been structured to show the flow & handling of data in a way

that is easy to grasp and understand. However, in code it’s sometimes often simpler to organize the

structure slightly differently.

This section won’t go through every line of code but instead just list the important bits and pieces that

are necessary to understand the overall theory of operation. Mainly this consists of explaining the

different files & entities. The entity tables will not list the data/signal types and ranges but instead just

give a description detailed enough to understand the purpose of the generic/signal. Further details

can be gathered easily from reading the code.

Note that the generics and ports of all hardware renderers are exactly the same. They are not listed

in this section as section 14 will describe everything required to write a new hardware renderer and

therefore will also list the entity in great detail.

Joel Bodenmann 2017-08-18

Page 25 of 39

13.1 Silizium.vhd
The silizium.vhd file contains the top-level entity of the Silizium IP-core. It doesn’t do anything except

for forwarding everything to an entity named silizium_implementation. This technique is there to

prevent having to re-generate the entire code of the SoC in the QSys tool every time something

changes in the actual implementation: This way QSys knows the interface of the Silizium IP-Core which

is the only important thing for it. All the other code we write will just be copy-pasted by the QSys tool

upon code generation and therefore doesn’t requiring re-generating the entire SoC design which can

take several minutes.

Generics:

Name Description

dataBitNb Internal data handling width. Will be used in the future. DO NOT
CHANGE THIS.

coordBitNb The number of bits required to represent a coordinate in two's
complement.

colorBitNb The number of bits required to represent a color value (internally).

cmdFifoNumWordsExp The exponent of the size of the input command FIFO in elements.
Actual size will be 2^n of this value.

fbAddrBitNb The width of the address bus of the framebuffer interface.

fbDataBitNb The width of the data bus of the framebuffer interface.

fbBurstcountBitNb The number of bits required for the burstcount signal.

fbBytesPerPixel The number of bytes per pixel.

fbWidth The width of the framebuffer in pixels.

fbHeight The height of the framebuffer in pixels.

fbWriteFifoNumWordsExp The exponent of the size of the framebuffer write FIFO in elements.
Actual size will be 2^n of this value.

fbReadFifoNumWordsExp The exponent of the size of the framebuffer read FIFO in elements.
Actual size will be 2^n of this value.

Table 12: silizium.vhd generics

Ports:

Name Direction Description

reset in Global clock input

clock in Global reset input

avalon_slave_address in

Avalon-MM slave interface

avalon_slave_read in

avalon_slave_readdata out

avalon_slave_write in

avalon_slave_writedata in

avalon_slave_waitrequest out

avalon_master_address out

Avalon-MM master interface

avalon_master_write out

avalon_master_writedata out

avalon_master_waitrequest in

avalon_master_read out

Joel Bodenmann 2017-08-18

Page 26 of 39

avalon_master_readdata in

avalon_master_readdatavalid in

avalon_master_burstcount out
Table 13: silizium.vhd ports

13.2 Silizium_implementation.vhd
This file contains the actual top-level implementation of the Silizium IP-Core. The entity is exactly he

same as the one listed for the silizium.vhd file as all generics and ports are just being forwarded.

This file contains the implementation of the slave interface which means that it hosts all registers and

also creates the instance of the command FIFO. Furthermore, the instances of the dispatcher and the

framebuffer interface are also being created here.

Generics:

Name Description

dataBitNb Internal data handling width. Will be used in the future. DO NOT
CHANGE THIS.

coordBitNb The number of bits required to represent a coordinate in two's
complement.

colorBitNb The number of bits required to represent a color value (internally).

cmdFifoNumWordsExp The exponent of the size of the input command FIFO in elements.
Actual size will be 2^n of this value.

fbAddrBitNb The width of the address bus of the framebuffer interface.

fbDataBitNb The width of the data bus of the framebuffer interface.

fbBurstcountBitNb The number of bits required for the burstcount signal.

fbBytesPerPixel The number of bytes per pixel.

fbWidth The width of the framebuffer in pixels.

fbHeight The height of the framebuffer in pixels.

fbWriteFifoNumWordsExp The exponent of the size of the framebuffer write FIFO in elements.
Actual size will be 2^n of this value.

fbReadFifoNumWordsExp The exponent of the size of the framebuffer read FIFO in elements.
Actual size will be 2^n of this value.

Table 14: silizium.vhd generics

Joel Bodenmann 2017-08-18

Page 27 of 39

Ports:

Name Direction Description

reset in Global clock input

clock in Global reset input

avalon_slave_address in

Avalon-MM slave interface

avalon_slave_read in

avalon_slave_readdata out

avalon_slave_write in

avalon_slave_writedata in

avalon_slave_waitrequest out

avalon_master_address out

Avalon-MM master interface

avalon_master_write out

avalon_master_writedata out

avalon_master_waitrequest in

avalon_master_read out

avalon_master_readdata in

avalon_master_readdatavalid in

avalon_master_burstcount out
Table 15: silizium.vhd ports

13.3 Silizium_dispatcher.vhd
The dispatcher receives all signals of the command FIFO required for reading from it and takes care of

selecting the proper hardware renderer to execute the job. Each hardware renderer will dispatch his

parameters itself from the command FIFO as the dispatcher doesn’t know how many parameters each

hardware renderer needs.

Generics:

Name Description

dataBitNb Internal data handling width. Will be used in the future. DO NOT
CHANGE THIS.

coordBitNb The number of bits required to represent a coordinate in two's
complement.

colorBitNb The number of bits required to represent a color value (internally).

fbAddrBitNb The width of the address bus of the framebuffer interface.

fbDataBitNb The width of the data bus of the framebuffer interface.

fbBytesPerPixel The number of bytes per pixel.

fbWidth The width of the framebuffer in pixels.

fbHeight The height of the framebuffer in pixels.
Table 16: silizium_dispatcher.vhd generics

Ports:

Name Direction Description

reset in Global clock input

clock in Global reset input

Joel Bodenmann 2017-08-18

Page 28 of 39

fifoEmpty in isEmpty signal of the command FIFO

fifoRdAck out Read acknowledge signal of the command FIFO

fifoData in Data output port of the command FIFO

enable in Dispatcher enable input

busy out Dispatcher isBusy output

fbiBusAddr out FBI write-pixel address bus

fbiBusData out FBI write-pixel data bus

fbiBusWrite out FBI write-pixel write strobe

fbiCmdData out FBI command data bus

fbiCmdWrite out FBI command write strobe

fbiIsReady in FBI isReady signal

fbiReadFifoDataAvailable out FBI read-FIFO newDataAvailable signal

fbiReadFifoData out FBI read-FIFO data output port

fbiReadFifoDataValid out Whether the fbiReadFifoData data is valid

fbiReadFifoReadAck in Read acknowledge signal of the FBI read FIFO
Table 17: silizium_dispatcher.vhd ports

13.4 Silizium_framebufferinterface.vhd
The framebuffer interface implemented in this file dispatches maintains the write-FIFO and read-FIFO

and talks to the actual framebuffer memory over the corresponding Avalon-MM master interface.

Generics:

Name Description

coordBitNb The number of bits required to represent a coordinate in two's
complement.

addrBitNb The width of the address bus of the framebuffer interface.

dataBitNb The width of the data bus of the framebuffer interface.

burstcountBitNb The number of bits required for the burstcount signal.

bytesPerPixel The number of bytes per pixel.

writeFifoNumWordsExp The exponent of the size of the framebuffer write FIFO in elements.
Actual size will be 2^n of this value.

readFifoNumWordsExp The exponent of the size of the framebuffer read FIFO in elements.
Actual size will be 2^n of this value.

Table 18: silizium_framebufferinterface.vhd generics

Joel Bodenmann 2017-08-18

Page 29 of 39

Ports:

Name Direction Description

reset in Global clock input

clock in Global reset input

enable in Enable/disable the framebuffer interface activities

boundaryChecksEnable in Enable/disable the memory boundary checks

clippingEnable in Enable/disable the rectangular clipping mask

avalon_master_address buffer

Avalon-MM master interface

avalon_master_write out

avalon_master_writedata out

avalon_master_waitrequest in

avalon_master_read out

avalon_master_readdata in

avalon_master_readdatavalid in

avalon_master_burstcount out

fbAddrBase in Framebuffer memory base address

fbAddrSpan in Framebuffer memory section span in bytes

busAddr in write-pixel address bus

busData in write-pixel data bus

busWrite in write-pixel write strobe

cmdData in command data bus

cmdWrite in command write strobe

ready out isReady signal (inverted writeFifoIsFull signal)

readFifoDataAvailable out Whether new data is available to be read

readFifoData out Read FIFO data output port

readFifoDataValid out Whether the data on readFifoData is valid (valid read)

readFifoReadAck in Read acknowledge signal of the read FIFO

writeFifoUsedWords out Number of used words of the write FIFO

writeFifoClear in Signal to clear the write FIFO

readFifoUsedWords out Number of used words of the read FIFO

readFifoClear in Signal to clear the read FIFO

clipX out The X coordinate of the current clipping mask

clipY out The Y coordinate of the current clipping mask

clipWidth out The width of the current clipping mask

clipHeight out The height of the current clipping mask
Table 19: silizium_framebufferinterface.vhd generics

The internal design of the Silizium-IP core has been designed to allow for easy adding of new hardware

renderers. The following section provides all the information necessary to implement new hardware

renderers.

Joel Bodenmann 2017-08-18

Page 30 of 39

14 Adding new renderers
This section explains everything required to implement a new hardware renderer into the existing

infrastructure of the Silizium IP-Core.

A hardware renderer must have an entity that matches the ports listed in Table 21. Table 20 lists all

generics that are available to a hardware renderer.

14.1 Generics
Table 20 lists the generics with type information, default values and the corresponding descriptions:

Name Type Default Description

dataBitNb positive 32 The width of the command FIFO.

coordBitNb positive 32 The number of bits required to represent a coordinate in
two's complement.

colorBitNb positive 32 The number of bits required to represent a color value.

cmdFifoNumWordsExp positive 7 The exponent of the size of the input command FIFO in
elements. Actual size will be 2^n of this value.

fbAddrBitNb positive 32 The width of the address bus of the framebuffer
interface.

fbDataBitNb positive 32 The width of the data bus of the framebuffer interface.

fbBytesPerPixel positive 4 The number of bytes per pixel.

fbWidth positive 800 The width of the framebuffer in pixels.

fbHeight positive 480 The height of the framebuffer in pixels.
Table 20: Silizium renderers interface generics

14.2 Ports
A hardware renderer must implement the port interface shown in Table 21:

Name Direction Type Range

reset in std_logic -

clock in std_logic -

start in std_logic -

dataInReady in std_logic -

dataIn in std_logic_vector dataBitNb-1 downto 0

readAck out std_logic -

busy out std_logic -

fbiBusAddr out unsigned fbAddrBitNb-1 downto 0

fbiBusData out std_logic_vector fbDataBitNb-1 downto 0

fbiBusWrite out std_logic -

fbiCmdData out std_logic_vector fbAddrBitNb+fbDataBitNb-1 downto 0

fbiCmdWrite out std_logic -

fbiIsReady in std_logic -
Table 21: Silizium renderers interface ports

Joel Bodenmann 2017-08-18

Page 31 of 39

Detailed explanation of each signal:

reset: Global reset input.

clock: Global clock input.

start: This signal will be set to ‘1’ for one clock cycle by the dispatcher once the renderer is supposed

to start the rendering job. The current data element of the command FIFO is guaranteed to be the first

parameter for the renderer.

dataInReady: This signal is set to ‘1’ if there is data to be dispatched in the command FIFO. The

renderer must not attempt to read from the command FIFO if this signal is not ‘1’. This signal is the

inverted isEmpty signal of the command FIFO.

readAck: The renderer must assert this signal (setting it to ‘1’ for the duration of one clock cycle) once

a data element has been read from the FIFO.

busy: This active-high signal allows the dispatcher to check whether the renderer is still busy or not.

The renderer must set this signal to ‘1’ one clock cycle after the start strobe has been issued by the

dispatcher. If this signal is not being driven ‘1’ by the renderer within that time frame the dispatcher

assumes that the renderer finished and will start dispatching the next command from the command

FIFO which will result in framebuffer corruption as the order of commands in the command FIFO has

been mixed up (because the renderer didn’t get a change to dispatch the parameters from the FIFO).

fbiBusAddr: The renderer puts the framebuffer address of a pixel it wants to change on this signal.

fbiDataAddr: The renderer puts the pixel value (color value) of a pixel it wants to change on this signal.

fbiBusWrite: Asserting this signal causes the glue logic of the framebuffer interface to take the address

and data provided through fbiBusAddr and fbiDataAddr and putting them into the write-FIFO of the

framebuffer interface. Therefore, asserting this signal will result in a change of the framebuffer

memory (provided that the address passes the boundary checks (if enabled) and is inside the clipping

mask (if enabled).

fbiCmdData: This signal is used to pass a command to the framebuffer interface. The available

commands are documented in section 12.5.1.

fbiCmdWrite: Asserting this signal causes the glue logic of the framebuffer interface to take the

command provided through fbiCmdData and putting it into the write-FIFO of the framebuffer

interface.

fbiIsReady: This signal is provided by the framebuffer interface. The renderer must not assert

fbiBusWrite or fbiCmdWrite if this signal is not ‘1’. Behavior in such a case is undefined. This signal is

the inverted isFull signal of the framebuffer interface write-FIFO. Therefore, fbiIsReady = ‘0’ indicates

that the write-FIFO is full.

14.3 Infrastructure
Once a new renderer has been written it needs to be added into the existing Silizium infrastructure.

This is done by creating an instance of the renderer in the dispatcher found in the file

silizium_dispatcher.vhd. That file also contains the implementation of the demux and mux to select

the appropriate renderer to which the new renderer needs to be hooked up. That process is

Joel Bodenmann 2017-08-18

Page 32 of 39

straightforward as it’s just a matter of doing the same thing that has already been done for the existing

renderers.

Figure 11 shows multiple renderers with the dispatcher, selector and framebuffer interface mux.

Filled Rectangle

Dispatcher

Fr
am

eb
u

ff
e

r
A

cc
es

s
M

u
x

Unfilled Rectangle

Line

Ellipse

Area Blitting

Se
le

ct
or

Figure 11: Renderers with dispatcher, selector and mux

15 Tests & Verification
Proper development of this IP-Core (or for any HDL IP-Core for that matter) would involve creating a

test bench for every single component being designed. After losing a huge chunk of time due to a

problem with the Avalon-MM master interface (described in section 18.1) I decided not to spend

whole lot of time on this. As of today, there is a dedicated test bench for the framebuffer interface

and one test bench for the entire system. This way the framebuffer interface can be tested individually

as that is one of the most crucial/complex components. The correct functioning of the dispatcher can

be easily verified in the overall test bench as a test bench dedicated for the dispatcher alone would be

almost identical. The functioning of the renderers can also be tested easily through the overall test

bench as the renderers dispatch the required parameters from the command FIFO themselves once

they got selected by the dispatcher. The renderers are directly connected to the framebuffer interface

Joel Bodenmann 2017-08-18

Page 33 of 39

(via a mux) and therefore an additional test bench for the section between the renderers and the

framebuffer interface is unnecessary.

At the beginning of the project it was planned to use a higher-level test & verification tool such as

cocotb11 for each individual component as well as for the entire IP-Core. This hasn’t been done due to

loosing quite some time with the Avalon-MM master interface as mentioned above. Setting up a tool

like cocotb would have required a more time than working with bare traditional VHDL test benches,

especially as I never worked with such a tool before.

Additionally, a software that constantly issues new rendering requests for filled rectangles while the

CPU itself modifies the framebuffer contents every few rectangles has been written that was left

running for 72 hours. The system kept running stable and no issues were encountered.

16 Future steps
This section of the document lists a couple of things that should be taken care of when continuing

the project after finishing this bachelor thesis project.

16.1 More hardware renderers
Although the current design implements three hardware renderers only one is very useful in a typical

application: The filled rectangle renderer. Other renderers were planned but couldn’t be implemented

during this project. However, the current design of the Silizium IP-core provides everything necessary

to add new hardware renderers. Section 14 provides all the information required to add new

renderers.

16.2 Test benches
A higher-level testing framework (such as cocotb) should be used to allow for a more efficient

workflow. Currently only two test benches exist for the entire system. This has been enough for this

thesis project but continuing the project, potentially with more developers, would call for a more

intricate testing system.

16.3 FIFO abstractions
The current design creates instances of the scfifo (single clock FIFO) provided by the Intel IP-core

catalogue. These instances are currently hard-configured and assigned for the MAX10 FPGA families.

A FIFO abstraction layer should be implemented to allow the Silizium IP-core to be easily ported to

other non-Intel FPGA platforms.

11 https://cocotb.readthedocs.io/en/latest/introduction.html

Joel Bodenmann 2017-08-18

Page 34 of 39

16.4 Bus abstractions
The current design contains hard-coded implementations for the Avalon-MM master and slave bus

interfaces. Adding abstraction layers or bridge components to allow the Silizium IP-core to be used in

non-Avalon systems should be added.

16.5 Clipping
Currently, clipping is implemented by providing a single rectangular clipping mask in the framebuffer

interface. The FBI checks whether the address provided by a renderer through the write-FIFO when

issuing a write-request is inside that mask and simply ignores it if it is not. In a real-world application,

this means that a renderer potentially issues hundreds of write requests to the write-FIFO of the FBI

that are outside the clipping mask. Providing each renderer with the clipping mask dimensions would

ease the traffic on the FBI write-FIFO.

16.6 Framebuffer interface burst transactions
Writing pixel to the framebuffer currently takes up four clock cycles due to the state machine in the

framebuffer interface. This could be optimized down to one clock cycle per pixel if the framebuffer

interface issues burst writes (and reads). The entire framebuffer interface has been designed to

support this eventually (hence the write-FIFO). The reason that burst writes have not been

implemented is due to the fact that a lot of time was already lost on the Avalon-MM master interface

(as described in section 18) and furthermore due to the fact that an Intel engineer once mentioned in

a WebEx conference that bursts can be tricky to get working with the DDR3 memory controller that

the reference design used in this project uses.

17 Parallel Rendering
At the very start of this project it was decided that the GPU will not support parallel rendering. In this

case, “parallel rendering” means being able to render multiple shapes at the same time. Theoretically,

it would be possible to render a filled rectangle at the same time as a line as these two hardware

renderers are completely stand-alone blocks. Alternatively, it would also be possible to have multiple

instances of the filled rectangle renderer which would allow to render multiple filled rectangles at

once. The decision not to implement parallel rendering was made due to the time restrictions of the

project. However, after developing the design of the GPU it was clear that parallel rendering wouldn’t

be that much of an advantage in this case anyway. There are two reasons for this which are described

in detail in this section:

1. Framebuffer interface bottleneck

2. Synchronization

17.1 Framebuffer interface bottleneck
Whenever a hardware renderer wants to change the contents of the framebuffer it eventually has to

issue a write transaction to the framebuffer memory. In Silizium, this happens by the renderer issuing

a write-transaction to the write-FIFO of the framebuffer interface. The Framebuffer interface

dispatches from the write-FIFO and eventually writes to the framebuffer memory. The currently

Joel Bodenmann 2017-08-18

Page 35 of 39

implemented hardware renderers are all able to “produce” one pixel per clock cycle. Even if the

framebuffer interface would use burst transactions (currently not implemented) it would still require

one clock per pixel itself. This means that two hardware renderers working in parallel wouldn’t be any

faster as the framebuffer interface can’t possibly write any faster to the framebuffer memory. Parallel

rendering would only speed things up for hardware renderers that need more than one clock cycle

per pixel.

17.2 Synchronization
Parallel rendering works well as long as the simultaneously rendering renderers affect different, non-

interfering sections of the framebuffer. Real-world objects such as pushbuttons, sliders and other GUI

elements are usually assembled from multiple different objects such as rectangles, lines, text and so

on. Some of these are rendered by the GPU and some of those are rendered by the CPU (as some

things are just too expensive (in terms of resources) or too complex to implement in hardware such

as font rendering. Often pixels are being over written multiple times when rendering such a complex

element. An example: A push-button might consist of a rectangle and a border. Those two elements

can be calculated in a way that they don’t overlap. But ultimately the CPU will want to render some

text over that element. In this case the chronology of all rendering operations (not just those inside of

the GPU) matters: If the text gets rendered before the rectangle, no text will be visible as the rectangle

overwrites the text pixels. Therefore, parallel rendering would only work if non-overlapping regions

of the framebuffer are being modified.

The two sections above show that implementing parallel rendering would not offer any advantage as

long as the Silizium IP-core does not provide any hardware renderers that are not capable of producing

(calculating) one pixel per clock.

18 Problems
Almost any project encounters problems at some point or another. This section doesn’t list all of the

problems that were encountered (as many of them were only small and had a minimal impact on the

project) but instead only lists the major problems which had a noticeable impact on the overall

project.

18.1 Framebuffer interface
The by far biggest problem occurred with the framebuffer interface. More specifically: With the

Avalon-MM master interface. This problem had a big impact on the project (time-wise). A separate

document (that can be found at the end of this report) has been created as the problem hasn’t been

properly solved yet. Instead, a workaround that is suitable to finish this thesis project has been

applied. The problem appears to be a bug in the code generated by the QSys tool and therefore a

proper fix needs to be provided by Intel.

Joel Bodenmann 2017-08-18

Page 36 of 39

18.2 Missing pixels
The framebuffer interface problem mentioned in section 18.1 resulted in changing the clock domain

of this custom IP-Core as explained in the dedicated document. One of the draw-backs of this

workaround is that the Silizium IP-core now runs on a much faster clock. The used clock is half the

DDR3 clock which is 150 MHz. It sometimes happens that the hardware renderers (namely the

rectangle renderers) miss out on a pixel or two. Simulations and careful examination of the entire IP-

Core design revealed that there’s no problem in the logic itself. It is very likely that the clock is simply

too fast for the logic to keep up. The synthesizer tool also throws corresponding warnings in the time

analysis. Further investigating the problem revealed that most likely the framebuffer address

calculation in the rectangle renderer which involves three additions and two multiplications is too

slow (longest path). A solution (or workaround) for this problem would be to pipeline the calculation

of the framebuffer address. This would increase the latency by one clock cycle but wouldn’t affect the

throughput (speed). This wasn’t implemented during this project because it was decided to spend the

little time left after finding and solving the Avalon-MM bus problem in finalizing the rest of the design.

After all, this problem shouldn’t appear as the QSys tool is responsible for adding the clock domain

crossing bridge when using the slower clock.

19 Conclusion
The goal of this thesis was to develop a proof-of-concept implementation of an IP-core that provides

hardware acceleration for 2D rendering operations in a NIOS-II system. This goal has been reached.

The current state of the IP-core provides everything necessary to render single pixels and filled

rectangles without using the CPU. Furthermore, other features such as a clipping mask and

framebuffer memory boundary checks have been implemented as well. But most importantly, the

current design provides all the infrastructure to implement hardware renderers for more shapes such

as lines, polygons, circles and so on. A new hardware renderer can be written isolated from the entire

system and just plugged in at the end without changing anything else in the design. Everything

required to read back pixel data from the framebuffer is also already implemented which is required

for more complex hardware renderers that render with anti-aliasing or for hardware renderers that

are used to copy images or scrolling the framebuffer contents.

At the beginning, the plan was to implement hardware renderers for lines, circles, polygons and other

shapes as well during this thesis. Unfortunately, that couldn’t be achieved due to a problem that was

encountered while working on the Avalon-MM master bus interface implementation in the

framebuffer interface. This problem resulted in about four weeks of delay (see section 18.1). After the

problem was resolved (or rather work-arounded in this case) I decided to move on with implementing

the rest of the infrastructure after the filled-rectangle renderer was completed. The current state of

the IP-core appears to be stable and is ready to be extended with more hardware renderers.

The resulting IP-core has been demonstrated to various people at Intel which resulted in very positive

feedback. Intel provides a large set of IP-cores for 2D graphics and especially video handling but none

of them provides hardware acceleration for 2D rendering. The speed at which Silizium can render

rectangles while leaving the CPU unused was therefore very impressive.

Although this is the end of the bachelor thesis this is not the end of the project. The Silizium IP-core

will be extended and further maintained by the µGFX company. Furthermore, Intel is interested in

getting a license that allows them to add Silizium to their catalog of existing IP-cores.

Joel Bodenmann 2017-08-18

Page 37 of 39

20 Signatures

Joel Bodenmann, 2017/08/18

21 Credits
Special thanks go to the following people which helped to realize this project:

• François Corthay, responsible professor, HEVs

• Yann Thoma, project expert, HEVs

• Scott Prigmore, technical assistance, Intel

• Doug Rydberg, pre-project management, Intel

22 Appendix
• IP-Core datasheet (part of this report)

• Avalon master interface problem report (part of this report)

• CD-ROM / SD-CARD / USB-Stick containing:

o PDF versions of these documents (and related documents listed below)

o VHDL source code of the IP-Core

o C library HAL for the IP-Core

Joel Bodenmann 2017-08-18

Page 38 of 39

23 Bibliography

Document name Avalon interface specifications

Document ID MNL-AVABUSREF

Issuer Altera / Intel

Version or date 2017.05.08

Link

https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/manual/mnl_avalon_spec.pdf

Document name SCFIFO and DCFIFO IP Cores User Guide

Document ID UG-MFNALT_FIFO

Issuer Altera / Intel

Version or date 2017.05.08

Link

https://www.altera.com/en_US/pdfs/literature/ug/ug_fifo.pdf

Document name Quartus II Handbook Volume I

Document ID QII5V1

Issuer Altera / Intel

Version or date 2015.05.04

Link

https://www.altera.com/content/dam/altera-
www/global/en_US/pdfs/literature/hb/qts/qts_qii5v1.pdf

Document name Silizium IP core - Datasheet

Document ID N/A

Issuer uGFX GmbH

Version or date v1.0

Link https://silizium.io/datasheet.pdf

Joel Bodenmann 2017-08-18

Page 39 of 39

24 List of illustrations
Figure 1: QSys screenshot ... 7

Figure 2: IP core interfaces ... 10

Figure 3: Typical applications / use cases ... 11

Figure 4: Internal design overview .. 13

Figure 5: Framebuffer interface design overview ... 15

Figure 6: Partial on-screen rendering of a polygon .. 16

Figure 7: FBI write-FIFO glue logic .. 19

Figure 8: FBI read-FIFO glue logic ... 20

Figure 9: Pixel renderer FSM ... 23

Figure 10: Clipping renderer FSM ... 24

Figure 11: Renderers with dispatcher, selector and mux ... 32

25 List of tables
Table 1: Commonly used abbreviations & terms in this document ... 4

Table 2: µGFX rendering functions overview .. 9

Table 3: Framebuffer interface write-FIFO data format synopsis .. 20

Table 4: Framebuffer interface write-FIFO data format for write transaction 21

Table 5: Framebuffer interface write-FIFO data format for write transaction example 21

Table 6: Framebuffer interface write-FIFO data format for linear read ... 21

Table 7: Framebuffer interface write-FIFO data format for linear read example 21

Table 8: Framebuffer interface write-FIFO data format for rectangular read 22

Table 9: Framebuffer interface write-FIFO data format for rectangular read example 22

Table 10: Framebuffer interface write-FIFO data format for clipping area modification 22

Table 11: Framebuffer interface write-FIFO data format for clipping area modification 22

Table 12: silizium.vhd generics ... 25

Table 13: silizium.vhd ports .. 26

Table 14: silizium.vhd generics ... 26

Table 15: silizium.vhd ports .. 27

Table 16: silizium_dispatcher.vhd generics .. 27

Table 17: silizium_dispatcher.vhd ports ... 28

Table 18: silizium_framebufferinterface.vhd generics ... 28

Table 19: silizium_framebufferinterface.vhd generics ... 29

Table 20: Silizium renderers interface generics .. 30

Table 21: Silizium renderers interface ports ... 30

Document version: v1.0
IP-Core version: v0.1

2017-08-15

Silizium IP core - Datasheet

Silizium – A µGFX product https://silizium.io

Page 1 of 25

Introduction
Silizium is a GPU (graphics processing unit) IP-core written in VHDL that provides hardware acceleration

for various 2D rendering operations. The IP-core is optimized for the use in a NIOS-II system.

Features
• Avalon-MM bus compatible

• Can use an already existing framebuffer (doesn’t maintain a dedicated framebuffer internally)

• Works with any display resolution and pixel format

• Easy to use

• Framebuffer memory boundary checks (can be disabled)

• Rectangular clipping mask support (can be disabled)

Requirements
• NIOS-II system

• QSys tool

• Avalon-MM bus for command & control communication

• Framebuffer that is accessible through an Avalon-MM bus

Current limitations
• No parallel rendering operations

• No burst transactions to/from the framebuffer memory

Currently implemented hardware renderers
• Draw pixel

• Fill area

• Rectangular clipping

• Coming soon:

o Memory blitting (2D DMA)

o Vertical & Horizontal scroll

o Lines

o Polygons

o Circles

o Arcs

o Color keying

o …

Silizium – A µGFX product https://silizium.io

Page 2 of 25

Terms & Abbreviations
The following table gives an overview of terms and abbreviations that are commonly used throughout this

document:

Abbreviation Description

2D Two dimensional

Avalon A bus standard created by Altera for FPGA internal communication

CPU Central processing unit

FBI Framebuffer interface

FIFO First-in First-out (a type of memory/buffer)

Framebuffer A section of memory that holds the pixel data that is shown on the display

FSM Finite state machine

GPU Graphics processing unit

HAL Hardware abstraction layer

IP-Core (Intellectual property) A pre-fabricated block of something ready to be used

Qsys Tool of the Quartus toolchain used to create a SoC

Quartus The FPGA IDE & Toolchain by Intel

Silizium The name of this 2D hardware acceleration IP-Core

SoC System-on-chip

 TABLE 1: COMMONLY USED ABBREVIATIONS & TERMS IN THIS DOCUMENT

Typical application
Figure 1 shows typical applications of the Silizium IP-Core inside a NIOS-II system. However, due to the versatility of

the Avalon interface, many different and alternative configurations are possible. Everything that Silizium requires is

an Avalon-MM interface towards the CPU for configuration and an Avalon-MM interface towards the framebuffer

for rendering. How these are actually implemented (eg. whether the Framebuffer is on-chip or external, whether it’s

SDRAM or DDR3, whether the display controller is internal or external and so on) doesn’t have any impact on the

Silizium IP-Core.

Silizium – A µGFX product https://silizium.io

Page 3 of 25

CPU

Framebuffer
Reader

Avalon-MM

RAM
Interface

S

RAM
Interface

S

M

Silizium

S M

M
Clocked
Video

Output

CPU

Framebuffer
Reader

Avalon-MM

RAM
Interface

S

M

Silizium

S M

M
Clocked
Video

Output

FPGA

Display

CPU

Framebuffer
Bridge

Avalon-MM

RAM
Interface

S

RAM
Interface

S

M

Silizium

S M

M

CPU

Framebuffer
Bridge

Avalon-MM

RAM
Interface

S

M

Silizium

S M

M

FPGA

Display
External

RAM

External
RAM

Note: RAM Interface could be internal RAM as
well depending on the system architecture

Framebuffer Framebuffer

FIGURE 1: TYPICAL APPLICATIONS

Silizium – A µGFX product https://silizium.io

Page 4 of 25

1 Internal design
Figure 2 illustrates the overall internal design of the system:

Renderer 1

Registers

...

...

...

Param 1

Command 3

Param 4

Param 3

Param 2

Param 1

Command 2

Param 3

Param 2

Param 1

Command 1

Dispatcher

Control

Status

FB Base Addr

FB Span

FIFO

Fr
am

eb
uf

fe
r

A
cc

es
s

M
ux

Renderer 2

Renderer 3

Renderer 4

Renderer 5

FB Interface

Avalon-MM Master

FB Interface

Avalon-MM Master

Slave Bus Interface

Avalon-MM Slave

Slave Bus Interface

Avalon-MM Slave

Se
le

ct
o

r

FIGURE 2: INTERNAL DESIGN OVERVIEW

The internal design can be split into the following groups:

• Command & control bus interface

• Registers

• Command FIFO

• Dispatcher

• Renderers

• Framebuffer interface (FBI)

1.1 Command & control bus interface
The command & control bus interface (from here on referred to as “the slave interface”) is used by the CPU to

initialize, configure and control the GPU. The interface is compliant to the Avalon-MM slave standard and has the

following requirements:

• Address bus width: At least 4 bits

• Data bus width: At least 32 bits

• Read and write operations

The run-time configuration of the GPU usually only consists of setting the framebuffer base address and the

framebuffer span. Other parameters such as the display size, the pixel format are handled by generic values and

therefore do not need to be changed during run-time. Once the configuration is completed the slave interface is

usually only used to send commands to the GPU, to control the different enable flags (if required) and to read back

the current status of the GPU (eg. busy flags, queue status and so on).

Silizium – A µGFX product https://silizium.io

Page 5 of 25

1.2 Registers
Silizium features different control and configuration registers. The most important ones are:

• Status register

• Control register

• Framebuffer base address & span register

These registers can be accessed directly via the slave interface.

Section 5 gives a detailed overview over all registers.

1.3 Command FIFO
The CPU issues commands to the GPU such as “draw a rectangle at this position with that size and this color”. These

commands are stocked in the internal command FIFO of the GPU. Whenever there is a pending command in the

FIFO, the dispatcher will grab it as soon as the different renderers of the GPU are no longer busy and handle it

accordingly.

1.4 Dispatcher
The dispatcher takes commands out of the command FIFO and dispatches them to the proper hardware rendering

blocks. To fulfill that task, the dispatcher also handles the internal bus arbitration and later parallel rendering (not

implemented yet).

1.5 Renderers
Silizium contains an isolated hardware renderer for each rendering operation that the GPU has to offer.

Note: In the future, it will also be possible to have multiple instances of the same hardware rendering inside the GPU

which allows to handle multiple rendering operations of the same type simultaneously. For example: Having more

than one block to hardware render filled rectangles means that multiple filled rectangles can be rendered in parallel.

1.6 Framebuffer interface
Silizium needs access to the framebuffer to perform the actual rendering operations. The different hardware

renderers send data and commands to the framebuffer interface (FBI) to alter the framebuffer contents. The

framebuffer interface consists of two different FIFOs that the renderers can access: A write-FIFO and a read-FIFO.

Renderers send commands and framebuffer data via the write-FIFO to the FBI. Some renderers require to read back

data from the framebuffer. The FBI reads the requested data from the framebuffer and places it into the read FIFO

where the renderers can dispatch it from. This way, the renderers are completely isolated from the FBI which means

that the FBI never has to wait on a renderer (unless the write FIFO is empty) which in turn means that the FBI can

optimize framebuffer transfers by using burst transactions.

Note that the write- and the read-FIFOs are not accessible through the slave interface. They are used exclusively

internally.

Silizium – A µGFX product https://silizium.io

Page 6 of 25

2 Generics
Table 2 lists the generics available to adjust the hardware Silizium IP-Core hardware prior to synthesizing a design

using it:

Name Type Default Description

dataBitNb positive 32 Internal data handling width. Will be used in the future. DO
NOT CHANGE THIS.

coordBitNb positive 32 The number of bits required to represent a coordinate in
two's complement.

colorBitNb positive 32 The number of bits required to represent a color value
(internally).

cmdFifoNumWordsExp positive 6 The exponent of the size of the input command FIFO in
elements. Actual size will be 2^n of this value.

fbAddrBitNb positive 32 The width of the address bus of the framebuffer interface.

fbDataBitNb positive 32 The width of the data bus of the framebuffer interface.

fbBurstcountBitNb positive 2 The number of bits required for the burstcount signal.

fbBytesPerPixel positive 4 The number of bytes per pixel.

fbWidth positive 800 The width of the framebuffer in pixels.

fbHeight positive 480 The height of the framebuffer in pixels.

fbWriteFifoNumWordsExp positive 8 The exponent of the size of the framebuffer write FIFO in
elements. Actual size will be 2^n of this value.

fbReadFifoNumWordsExp positive 4 The exponent of the size of the framebuffer read FIFO in
elements. Actual size will be 2^n of this value.

TABLE 2: GENERICS

When using QSys, these generics are also available as configuration parameters in the graphical component

configuration dialog:

FIGURE 3: QSYS IP-CORE CONFIGURATION DIALOG

Silizium – A µGFX product https://silizium.io

Page 7 of 25

2.1 Recommendations
Except for the FIFO sizes all values are determined by the rest of the system (mainly the used display and display

controller).

2.1.1 Command FIFO depth
The command FIFO depth can be set through the cmdFifoNumWordsExp generic value. The actual number of

elements of the command FIFO is two to the power of this value:

𝑐𝑜𝑚𝑚𝑎𝑛𝑑 𝐹𝐼𝐹𝑂 𝑑𝑒𝑝𝑡ℎ = 2𝑐𝑚𝑑𝐹𝑖𝑓𝑜𝑁𝑢𝑚𝑊𝑜𝑟𝑑𝑠𝐸𝑥𝑝

The value of cmdFifoNumWordsExp must be at least 2.

This FIFO should be large enough to hold all subsequent rendering commands that the CPU will issue at once (directly

one after another) to prevent blocking the CPU as it will have to wait if the command FIFO is full. However, in a

typical application a CPU will issue just a few rendering commands and then wait for them to complete prior to

continuing render other elements manually on top of that. This means that the CPU will never issue hundreds or

even just dozens of rendering commands and then do other non-rendering jobs for a long time. A larger FIFO would

therefore be mostly empty.

The default (and recommended) depth of the command FIFO is 64 elements.

2.1.2 FBI write-FIFO depth
The FBI write FIFO depth can be set through the fbWriteFifoNumWordsExp generic value. The actual number of

elements of the FBI write-FIFO is two to the power of this value:

𝐹𝐵𝐼 𝑤𝑟𝑖𝑡𝑒 𝐹𝐼𝐹𝑂 𝑑𝑒𝑝𝑡ℎ = 2𝑓𝑏𝑊𝑟𝑖𝑡𝑒𝐹𝑖𝑓𝑜𝑁𝑢𝑚𝑊𝑜𝑟𝑑𝑠𝐸𝑥𝑝

The value of fbWriteFifoNumWordsExp must be at least 2.

There are two reasons for having this FIFO:

1. The FBI can issue burst writes

2. The renderer does not have to wait if another component locks up the bus to the framebuffer memory

The default (and recommended) depth of the FBI write FIFO is 256 elements.

2.1.3 FBI read-FIFO depth
The FBI read-FIFO depth can be set through the fbReadFifoNumWordsExp generic value. The actual number of

elements of the FBI read FIFO is two to the power of this value:

𝐹𝐵𝐼 𝑟𝑒𝑎𝑑 𝐹𝐼𝐹𝑂 𝑑𝑒𝑝𝑡ℎ = 2𝑓𝑏𝑅𝑒𝑎𝑑𝐹𝑖𝑓𝑜𝑁𝑢𝑚𝑊𝑜𝑟𝑑𝑠𝐸𝑥𝑝

The value of fbReadFifoNumWordsExp must be at least 2.

The purpose of this FIFO is to allow the FBI to perform burst reads and to prevent bus locks if a renderer is busy and

can’t dispatch the read-back value(s) immediately. The maximum size of read bursts is usually limited by the used

memory controller. The default (and recommended) depth of the FBI read FIFO is 8 elements.

Silizium – A µGFX product https://silizium.io

Page 8 of 25

3 Ports
Besides the clock and reset input, Silizium only requires an Avalon-MM slave interface and an Avalon-MM master

interface to operate:

Name Direction Type Range

reset in std_logic -

clock in std_logic -

avalon_slave_address in std_logic_vector 7 downto 0

avalon_slave_read in std_logic -

avalon_slave_readdata out std_logic_vector 31 downto 0

avalon_slave_write in std_logic -

avalon_slave_writedata in std_logic_vector 31 downto 0

avalon_slave_waitrequest out std_logic -

avalon_master_address out std_logic_vector fbAddrBitNb-1 downto 0

avalon_master_write out std_logic -

avalon_master_writedata out std_logic_vector fbDataBitNb-1 downto 0

avalon_master_waitrequest in std_logic -

avalon_master_read out std_logic -

avalon_master_readdata in std_logic_vector fbDataBitNb-1 downto 0

avalon_master_readdatavalid in std_logic -

avalon_master_burstcount out std_logic_vector fbBurstcountBitNb-1 downto 0

TABLE 3: PORTS

Note that the Avalon interfaces can be connected to buses that have larger widths as the QSys tool will automatically

generate the required bus rippers and mergers. For example, Silizium can be connected to an Avalon-MM bus with

an address width of 32 bits without any problems.

Figure 4 and Figure 5 illustrate the waveforms required to communicate with the slave interface:

FIGURE 4: SLAVE INTERFACE READ WAVEFORM

Silizium – A µGFX product https://silizium.io

Page 9 of 25

FIGURE 5: SLAVE INTERFACE WRITE WAVEFORM

In the current version, the master interface is not yet configurable except for the different signal width. Figure 6 and

Figure 7 show the waveforms the master interfaces uses to read from and write to the framebuffer memory:

FIGURE 6: MASTER INTERFACE READ WAVEFORM

FIGURE 7: MASTER INTERFACE WRITE WAVEFORM

4 Additional features
Some of the features offered by Silizium are not relevant to the rendering operations themselves but are still relevant

to the overall system.

4.1 Boundary checks
The framebuffer interface (FBI) can prevent write and read transactions to and from the framebuffer by performing

boundary checks on the framebuffer addresses provided by the renderers prior to actually issuing the requested

transaction on the bus. Any transactions that would occur outside of the framebuffer will be ignored / discarded by

the FBI if the corresponding BoundaryChecksEnable-Bit (BCEN) is set in the control register.

Silizium – A µGFX product https://silizium.io

Page 10 of 25

5 Registers
This section of the datasheet documents all the publicly available registers. Every single bit is documented with the

position inside the register and the corresponding read, write or read-write information.

Note: Do not try to read or write bits marked as “Reserved”. Behavior is undefined.

The following table gives an overview of all the existing registers:

Address offset Name Width Access

0x00 VERSION 32-bits read-only

0x01 CMD_FIFO 32-bits write-only

0x02 STATUS 32-bits read-only

0x03 CONTROL 32-bits read/write

0x04 FB_BASE 32-bits read/write

0x05 FB_SPAN 32-bits read/write

0x06 CLIP_X 32-bits read-only

0x07 CLIP_Y 32-bits read-only

0x08 CLIP_W 32-bits read-only

0x09 CLIP_H 32-bits read-only

0x0D DUMMY_1 32-bits read-only

0x0E DUMMY_2 32-bits read-only

0x0F DUMMY_3 32-bits read/write

TABLE 4: REGISTER MAP

5.1 Version
Register to read the Silizium version number.

Address offset: 0x0000 0000
Reset value: 0x<version>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

VERS[31:16]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VERS[15:0]

r r r r r r r r r r r r r r r r

 Bits 31:0 VERS[31:0]: Version number

 The version number that is burned into the hardware.

Silizium – A µGFX product https://silizium.io

Page 11 of 25

5.2 Command FIFO
This is a virtual register used to write to the command FIFO. Silizium will take values written to this register and

move them to the command FIFO the clock cycle following the write operation.

Address offset: 0x0000 0001
Reset value: Undefined (write only)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CMD_FIFO[31:16]

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMD_FIFO[15:0]

w w w w w w w w w w w w w w w w

 Bits 31:0 CMD_FIFO[31:0]: Command FIFO

 The command FIFO to which commands are written to.

5.3 Status
Generic status register to check the current state of Silizium.

Address offset: 0x0000 0002
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CMDFUW[15:0]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
MPTY

FULL

BUSY

r r r

 Bit 0 BUSY Busy flag

 Flag that indicates whether a rendering operation is being executed.

 0: No rendering operation is being executed. Silizium is idling.

 1: A rendering operation is being executed

 Bit 1 FULL Command FIFO full flag

 0: Command FIFO is not full.

 1: Command fifo is full.

 Bit 2 MPTY Empty

 The input command FIFO is empty

 0: Command FIFO is not empty

 1: Command FIFO is empty

Silizium – A µGFX product https://silizium.io

Page 12 of 25

 Bits 15:8 CMDFUW[15:0]: Command FIFO used words

The number of used words of the command
FIFO.

Note: The actual width depends on the command FIFO depth set via the generics value
of the IP-core block. This field will always be right-aligned to the 16th bit. All "unused"
bits on the left in case of a FIFO depth that is less than 2^16 will be read back as '0'.

5.4 Control
Generic control register to control the behavior of Silizium.

Address offset: 0x0000 0003
Reset value: 0x0001 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
CMEN BCEN

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CLR3 CLR2 CLR1

Reserved
EN2 EN1

rw rw rw rw rw

 Bit 0 EN1: Dispatcher enable

 The enable control bit for the dispatcher.

 0: Dispatcher disabled

 1: Dispatcher enabled

 Bit 1 EN2: Framebuffer interface enable

 The enable control bit for the framebuffer interface.

 0: Framebuffer interface disabled

 1: Framebuffer interface enabled

 Bit 8 CLR1: Clear the command input FIFO

 Control bit to issue a hardware clear of the input command FIFO. If set to '1', a hardware
clear will be issued. The bit will be reset to '0' automatically once the clear operation
completed.

 Clearing the FIFO takes 1 clock cycle.

 Bit 9 CLR2: Clear the framebuffer write FIFO

 Control bit to issue a hardware clear of the framebuffer interface write FIFO. If set to '1', a
hardware clear will be issued. The bit will be reset to '0' automatically once the clear
operation completed.

 Clearing the FIFO takes 1 clock cycle.

 Bit 10 CLR3: Clear the framebuffer read FIFO

Silizium – A µGFX product https://silizium.io

Page 13 of 25

Control bit to issue a hardware clear of the framebuffer interface read FIFO. If set to '1', a
hardware clear will be issued. The bit will be reset to '0' automatically once the clear
operation completed.

 Clearing the FIFO takes 1 clock cycle.

 Bit 16 BCEN: Boundary check enable

 The enable control bit for framebuffer memory boundary check.

 0: Framebuffer memory boundary checks disabled

 1: Framebuffer memory boundary checks enabled

 Bit 17 CMEN: Clipping mask enable

 The enable control bit for the clipping mask in the framebuffer interface.

 0: Clipping mask disabled

 1: Clipping mask enabled

5.5 Framebuffer base address
This register is used to provide the framebuffer base address to Silizium. This register must be configured to hold

the address of the first pixel of the framebuffer.

Note that although Silizium provides a framebuffer memory boundary check feature it is crucial that this value is set

properly. The memory boundary checks are based on this value. Misconfiguring this register can lead to memory

corruption.

Check section 9 for examples regarding the proper usage of this register.

Address offset: 0x0000 0004
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FB_BASE[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FB_BASE[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

 Bits 31:0 FB_BASE[31:0]: Framebuffer base address

 The base address of the framebuffer.

Silizium – A µGFX product https://silizium.io

Page 14 of 25

5.6 Framebuffer address span
This register is used to inform Silizium about the size of the framebuffer memory section. The framebuffer interface

uses this information to perform boundary checks to prevent illegal memory accesses if the BCEN bit is set to ‘1’ in

the control register.

Note that although Silizium provides a framebuffer memory boundary check feature it is crucial that this value is set

properly. The memory boundary checks are based on this value. Misconfiguring this register can lead to memory

corruption.

Check section 9 for examples regarding the proper usage of this register.

Address offset: 0x0000 0005
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FB_SPAN[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FB_SPAN[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

 Bits 31:0 FB_SPAN[31:0]: Framebuffer address span

 The size of the framebuffer memory sections in bytes.

5.7 Clip X
This register can be used to read back the current X coordinate of the rectangular clipping mask provided by the FBI.

Note that this is a read-only register: The value of this register can only be changed by issuing a clipping mask

modification command as described in section 6.3 to prevent synchronization issues.

Address offset: 0x0000 0006
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CLIPX[31:16]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLIPX[15:0]

r r r r r r r r r r r r r r r r

 Bits 31:0 CLIPX[31:0]: Clip X

 The X coordinate of the rectangular clipping mask of the FBI.

Silizium – A µGFX product https://silizium.io

Page 15 of 25

5.8 Clip Y
This register can be used to read back the current Y coordinate of the rectangular clipping mask provided by the FBI.

Note that this is a read-only register: The value of this register can only be changed by issuing a clipping mask

modification command as described in section 6.3 to prevent synchronization issues.

Address offset: 0x0000 0007
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CLIPY[31:16]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLIPY[15:0]

r r r r r r r r r r r r r r r r

 Bits 31:0 CLIPY[31:0]: Clip Y

 The Y coordinate of the rectangular clipping mask of the FBI.

5.9 Clip width
This register can be used to read back the current width of the rectangular clipping mask provided by the FBI. Note

that this is a read-only register: The value of this register can only be changed by issuing a clipping mask modification

command as described in section 6.3 to prevent synchronization issues.

Address offset: 0x0000 0008
Reset value: 0x1111 1111

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CLIPW[31:16]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLIPW[15:0]

r r r r r r r r r r r r r r r r

 Bits 31:0 CLIPW[31:0]: Clip width

 The width of the rectangular clipping mask of the FBI.

Silizium – A µGFX product https://silizium.io

Page 16 of 25

5.10 Clip height
This register can be used to read back the current height of the rectangular clipping mask provided by the FBI. Note

that this is a read-only register: The value of this register can only be changed by issuing a clipping mask modification

command as described in section 6.3 to prevent synchronization issues.

Address offset: 0x0000 0009
Reset value: 0x1111 1111

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CLIPH[31:16]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CLIPH[15:0]

r r r r r r r r r r r r r r r r

 Bits 31:0 CLIPH[31:0]: Clip height

 The height of the rectangular clipping mask of the FBI.

5.11 Dummy 1
This dummy register can be used to test the slave interface configuration (eg. to recognize wrongly configured

read latencies and similar) in the QSys tool.

Address offset: 0x0000 000D
Reset value: 0xD0D0 0D0D

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 0 0 0 0 1 1 0 1

r r r r r r r r r r r r r r r r

Silizium – A µGFX product https://silizium.io

Page 17 of 25

5.12 Dummy 2
This dummy register can be used to test the slave interface configuration (eg. to recognize wrongly configured

read latencies and similar) in the QSys tool.

Address offset: 0x0000 000E
Reset value: 0xE0E0 0E0E

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0

r r r r r r r r r r r r r r r r

5.13 Dummy 3
This dummy register can be used to test the slave interface configuration (eg. to recognize wrongly configured

read latencies and similar) in the QSys tool.

Address offset: 0x0000 000F
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DUMMY_3[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DUMMY_3[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

 Bits 31:0 DUMMY_3[31:0]: Dummy 3

 A dummy register for debugging purposes. Retains the content indefinitely. The
content is not being used by any part of the IP-Core and never gets modified.

Silizium – A µGFX product https://silizium.io

Page 18 of 25

6 Rendering
This section of the document explains the different available hardware renderers and how they are to be used. The

commands that need to be send to the input command FIFO are documented in tabular form:

Order Name Unit Value

1 Parameter 1 - constant

2 Parameter 2 Pixel Count < variable >

3 Parameter 3 Pixel Value < variable >

4 Parameter 4 Pixel Count constant

TABLE 5: FIFO PARAMETERS SYNOPSIS

Parameters are being listed in ascending order from top to bottom. This means that the top most parameter is the

first one to be written to the command FIFO.

The Name column specifies the name of the parameter which also serves as the description. The Unit column

specifies the unit of the parameter value. Lastly, the Value column either shows the constant that needs to be written

or the name of the variable in angle brackets. Note that the Value is the only thing that gets written to the FIFO.

All values being written to the command FIFO are 32-bits wide.

6.1 Draw pixel
Silizium offers the possibility to just render single pixels. This hardware rendering feature is not there for acceleration

but for two other reasons instead:

• Debugging: This feature allows a developer to test whether his display driver is working properly and to

figure out whether the framebuffer base address and span have been configured correctly without having

to issue a more complex command. Setting just one pixel doesn’t involve “off-by-one” errors and similar.

• Chronology: Sometimes the user of the GPU might want to render a shape that is built from different sub-

shapes. As a rough example: Maybe a filled rectangle with just a differently colored pixel in each corner is

required. This would mean that the user asks the GPU to render the filled rectangle by putting the

corresponding command into the FIFO. Once that is done the CPU will have to render the pixel on top of

that. This means that the CPU has to query the GPU to ask whether the rectangle has been finished because

otherwise the CPU might prematurely render the four corner-pixels and the GPU will render the filled

rectangle on top of that. This is very difficult to implement. With this “draw pixel” command the CPU can

simply put a “fill rectangle” followed by four “draw pixel” commands into the command input FIFO of the

GPU.

To draw a pixel, the following parameters must be written to the command input FIFO:

Order Name Unit Value

1 Command - 0x0000 0001

2 X Pixel Count < x >

3 Y Pixel Count < y >

4 Color Pixel Value < color >

TABLE 6: DRAW PIXEL - FIFO PARAMETERS

Silizium – A µGFX product https://silizium.io

Page 19 of 25

Example: Drawing a red pixel at the position X = 165 and Y = 504 assuming that the used pixel format is RGB888

requires writing the following into the command FIFO:

Order Value

1 0x0000 0001

2 0x0000 00A5

3 0x0000 01F8

4 0x00FF 0000

TABLE 7: DRAW PIXEL COMMAND EXAMPLE

6.2 Filled rectangle
To draw a filled rectangle (solid color), the following parameters must be written to the command FIFO:

Order Name Unit Value

1 Command - 0x0000 0002

2 X Pixel Count < x >

3 Y Pixel Count < y >

4 Width Pixel Count < width >

5 Height Pixel Count < height >

6 Color Pixel Value < color >

TABLE 8: FILL RECTANGLE - FIFO PARAMETERS

Example: Drawing a green rectangle at the position X = 165 and Y = 504 with width = 65 and height = 204 assuming

that the used pixel format is RGB888 requires writing the following into the command FIFO:

Order Value

1 0x0000 0002

2 0x0000 00A5

3 0x0000 01F8

4 0x0000 0041

5 0x0000 00CC

6 0x0000 FF00

TABLE 9: FILL RECTANGLE COMMAND EXAMPLE

6.3 Clipping
Clipping is not a rendering operation as it doesn’t directly change the contents of the framebuffer but it’s still

relevant to the overall rendering process as it affects the rendering output of all the other rendering operations.

Silizium provides one rectangular clipping mask that can be enabled and disabled through the corresponding enable

bit (CMEN) in the control register. If the clipping mask enable bit is set in the configuration register, everything

outside of the rectangular clipping mask that can be defined through this command will not be rendered to the

framebuffer.

Clipping values are not implemented as registers but instead get fed through the command FIFO to avoid

synchronization problems. For proper operation, it’s crucial that the chronological order of rendering operations and

everything that affects them doesn’t get broken. However, the currently active clipping mask values can still be read

back through the corresponding clipping mask values registers.

Silizium – A µGFX product https://silizium.io

Page 20 of 25

Order Name Unit Value

1 Command - 0x0000 0003

2 X Pixel Count < x >

3 Y Pixel Count < y >

4 Width Pixel Count < width >

5 Height Pixel Count < height >

TABLE 10: CLIPPING MASK - FIFO PARAMETERS

Example: Setting the clipping mask to X = 150, Y = 170, width = 300 and height = 150 requires writing the following

into the command FIFO:

Order Value

1 0x0000 0003

2 0x0000 0096

3 0x0000 00AA

4 0x0000 012C

5 0x0000 00096

TABLE 11: CLIPPING MASK MODIFICATION COMMAND EXAMPLE

7 HAL
A HAL (Hardware Abstraction Layer) implemented fully in C is provided with the IP-Core for easy integration into

existing software projects. The HAL is split into a low-level and a high-level part. The low-level HAL provides API

functions to access the various registers and FIFOs while the high-level HAL takes this information and provides

easier to use interfaces for checking & settings flags and rendering shapes.

Note that for ease-of-use both HALs are implemented in the same files. The entire HAL is encapsulated in one header

and one source file named silizium.h and silizium.c.

The HAL is completely C89 compatible. The following 3rd-party resources are used:

• stdint.h

• stddef.h

• stdbool.h

7.1 Low-Level HAL
The low-level HAL provides the following functions:

uint32_t siliziumVersion();

uint32_t siliziumStatus();

uint32_t siliziumControl();

void siliziumSetControl(uint32_t value);

Detailed descriptions of these functions and their parameters and return values can be found in the corresponding

API documentation.

Silizium – A µGFX product https://silizium.io

Page 21 of 25

7.2 High-Level HAL
The high-level HAL is built on top of the low-level HAL and provides the interfaces that a regular user will use such

as easy to use functions to check busy flags, to change enable flags and to issue rendering commands. The following

functions are available:

void siliziumDispatcherEnable();

void siliziumDispatcherDisable();

void siliziumFramebufferinterfaceEnable();

void siliziumFramebufferinterfaceDisable();

void siliziumEnableAll();

void siliziumDisableAll();

void siliziumClippingEnable();

void siliziumClippingDisable();

void siliziumBoundaryChecksEnable();

void siliziumBoundaryChecksDisable();

bool siliziumTestSlaveInterface();

void siliziumSetFramebufferBaseAddress(uint32_t address);

void siliziumSetFramebufferSpan(uint32_t span);

uint32_t siliziumFramebufferBaseAddress();

uint32_t siliziumFramebufferSpan();

bool siliziumIsBusy();

void siliziumCmdFifoAppend(uint32_t value);

void siliziumCmdFifoClear();

bool siliziumCmdFifoIsEmpty();

bool siliziumCmdFifoIsFull();

size_t siliziumCmdFifoUsedWords();

size_t siliziumCmdFifoFreeWords();

void siliziumRenderPixel(uint32_t x, uint32_t y, uint32_t color);

void siliziumRenderRectangle(uint32_t x, uint32_t y, uint32_t width, uint32_t

height, uint32_t color);

void siliziumRenderSetClippingArea(uint32_t x, uint32_t y, uint32_t width,

uint32_t height);

Additionally, the high-level HAL needs to know the size of the command FIFO to calculate the number of free

elements. A simple macro is used for this purpose. In this example, the command FIFO depth has been set to 128

elements prior to synthesis by setting the cmdFifoNumWordsExp generic to 7:

 #define SILIZIUM_CMD_FIFO_DEPTH 128

Detailed descriptions of these functions and their parameters and return values can be found in the corresponding

API documentation.

8 µGFX integration
µGFX provides a read-to-use built-in driver starting with µGFX version 2.8 that allows using Silizium in an µGFX

application without modifying the application itself.

Silizium – A µGFX product https://silizium.io

Page 22 of 25

9 Examples

9.1 Initialization
A typical initialization sequence of Silizium after power-on looks like this (using the HAL):

// Allocate framebuffer

void* fbPointer = malloc(SCREEN_WIDTH * SCREEN_HEIGHT * 4);

// Halt silizium (optional)

siliziumCmdFifoClear();

siliziumDisableAll();

// Setup framebuffer interface

siliziumSetFramebufferBaseAddress(fbPointer);

siliziumSetFramebufferSpan(SCREEN_WIDTH * SCREEN_HEIGHT * 4);

// Enable silizium

siliziumEnableAll();

9.2 Checking for busy
Sometimes it’s necessary for the CPU to know when Silizium finished rendering all the jobs queued up in the

command FIFO. This can be done easily using the siliziumIsBusy() function provided by the HAL:

// Wait for silizium to finish rendering

while (siliziumIsBusy());

9.3 Checking the command FIFO state
In almost all cases it’s important to know the current state of the command FIFO prior to writing to it. The status

register provides flags for the isEmpty and isFull states. Additionally, the number of used words can be retrieved

through the status register which allow to calculate the number of free words. The high-level HAL provides high-

level functions for all of these:

bool siliziumCmdFifoIsEmpty();

bool siliziumCmdFifoIsFull();

size_t siliziumCmdFifoUsedWords();

size_t siliziumCmdFifoFreeWords();

Furthermore, the following functions are provided by the high-level HAL to modify the command FIFO:

void siliziumCmdFifoClear();

void siliziumCmdFifoAppend(uint32_t value);

9.4 Rendering
After initialization, rendering commands are being issued by writing to the input command FIFO as explained in

section 6. The following code illustrates how to queue the rendering of a filled rectangle using the HAL:

// Render a filled rectangle

void fillRectangle(int x, int y, int width, int height, int color)

{

 siliziumCmdFifoAppend(0x00000002);

 siliziumCmdFifoAppend(x);

 siliziumCmdFifoAppend(y);

 siliziumCmdFifoAppend(width);

 siliziumCmdFifoAppend(height);

 siliziumCmdFifoAppend(color);

}

http://www.opengroup.org/onlinepubs/009695399/functions/malloc.html

Silizium – A µGFX product https://silizium.io

Page 23 of 25

However, note that siliziumCmdFifoAppend() will not block if there’s no room left in the command FIFO. Silizium will

ignore any command FIFO appends if the command FIFO is full. The status register allows to check the isFull and

isEmpty states of the command FIFO as well as querying the number of free words in the FIFO. For simplicity, the

high-level HAL provides functions that block until there’s enough room in the FIFO. Note that those functions are

not multi-thread safe:

void siliziumRenderRectangle(uint32_t x, uint32_t y, uint32_t width, uint32_t

height, uint32_t color)

{

 // Wait until there's enough room in the FIFO

 // Note that this only works in a single-threaded software model

 while (siliziumCmdFifoFreeWords() < 6);

 siliziumCmdFifoAppend(0x00000002);

 siliziumCmdFifoAppend(x);

 siliziumCmdFifoAppend(y);

 siliziumCmdFifoAppend(width);

 siliziumCmdFifoAppend(height);

 siliziumCmdFifoAppend(color);

}

10 Metrics
Metrics have been registered by using the following environment, components and configurations:

• Quartus Prime Version 17.0.0 Build 595 04/25/2017 SJ Standard Edition

• MAX 10 10M50DAF484C6G FPGA

• Silizium v0.1

Silizium configuration (generics):

Name Value

dataBitNb 32

coordBitNb 32

colorBitNb 32

cmdFifoNumWordsExp 7

fbAddrBitNb 32

fbDataBitNb 32

fbBurstcountBitNb 2

fbBytesPerPixel 4

fbWidth 800

fbHeight 480

fbWriteFifoNumWordsExp 8

fbReadFifoNumWordsExp 4

TABLE 12: GENERICS VALUES USED FOR RESOURCE USAGE BENCHMARK

Silizium – A µGFX product https://silizium.io

Page 24 of 25

Measured resources usage of the Silizium IP-core:

Resource type Value

LUT-Only LCs 371

Register-Only LCs 284

LUT/Register LCs 668

Logic cells 1323

Dedicated logic registers 951

DSP 18x18 4

Memory bits 20736

M9Ks 3

TABLE 13: RESOURCE USAGE ON TEST SYSTEM

Note: “M9ks” signifies multiple “M9k” elements. M9k elements are the RAM cells in this particular FPGA. An M9k

element features 9k memory bits.

The memory bits usage (and therefore the M9Ks usage) can be vastly decreased by decreasing the size of the

different FIFOs. Especially the command FIFO has been designed quite generously with a depth of 128 elements

which most applications won’t require.

Table 14 shows the performance/speed of Silizium. Note that these values are not affected by any changes of the

generic values or synthesizer optimizations as they are determined by the design itself:

Renderer Per pixel Initial latency Recovery latency Latency between pixels

Pixel 1 11 4 4

Filled rectangle 1 13 4 4

Clipping mask 0 4 10 0

TABLE 14: PERFORMANCE METRICS

All values are number of clock cycles. These metrics are valid under the following conditions:

• All FIFOs are non-full

• There are no hold-offs (waits) on the slave interface bus transactions

• There are no hold-offs (waits) on the bus towards the framebuffer memory

Per pixel: Is the number of clock cycles the renderer needs to render/calculate one pixel

Initial latency: Is the number of clock cycles between the completion of writing the command to the command FIFO

and the completion of rendering/calculating the first pixel.

Recovery latency: Is the number of clock cycles between the completion of a rendering operation and the start of

the next rendering operation assuming that the next rendering operation was already in the command FIFO when

the first rendering operation completed.

Latency between pixels: Is the number of clock cycles between pixel write transactions of the FBI. Note that this is

not the amount of clock cycles a hardware renderer needs to render a pixel but the number of clock cycles the FBI

needs to read the pixel value calculated by the renderer and actually writing it to the bus towards the framebuffer.

Silizium – A µGFX product https://silizium.io

Page 25 of 25

11 Document revision history

Date Version Changes

2017-08-15 v1.0 Adding register map, approving for publishing

2017-08-14 v0.3 Improving layout

2017-08-12 v0.2 Adding metrics

2017-08-10 v0.1 Initial release

