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Preface 

 
	 This book is inteded for one for semester introductory 
course in discrete mathematics. It includes several basic topics 
of Discrete Mathematics, for examples, exercises, and figures. 
In addition, it contains some motivating examples aimed to 
make readers can easily imagine the abstract concepts in this 
book. It can be said that the realistic mathematics approach 
is sometimes found in this book. 

The book is set sequentially in five chapters. Chapter 
1 discusses topic of mathematics induction consisting of 
“weak mathematics induction” and “strong mathematics 
induction”. Chapter 2 provides topic of combinatorics which 
widely covers many subtopics, i.e. counting principle, 
permutation, combination, permutation and combination of 
multiset, binomial coefficient, principle of inclusion-exclusion, 
derangement, and pigeonhole principle. Chapter 3 contains 
topic of generating function which specifically discuss some 
operations of generating function and the application of 
generating function in counting. Chapter 4 discusses topic of 
recurrence relation which mainly discuss how to find the 
solution of a recurrence relation using both characteritic 
equation and generating function. The last but not least, 
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chapter 5 discusses several basic things about graph theory 
and an application of it.  

he authors hopes this book is certainly useful for 
everyone, particularly for mathematics department students in 
International Class Program in State University of Makassar. 
However, critiques and advices are emphatically needed for 
the refinement of this book in future.   
 

              Makassar, August  2016 

              Author 
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1.1. Preliminary 

In mathematics, the natural numbers, 𝑁 , is the set of all 
non-negative integers: 

𝑁	 = 	 {1,2,3, . . . } 
Frequently, it is a need to prove some mathematical 

statements related to  every member of 𝑁 . For instance, consider 
the following problem: 
Show that for every 𝑛 ≥ 1, 

1 + 2 + 3 + ⋯+ 𝑛 = 	
𝑛 𝑛 + 1

2
																			(1.1)	

 In a sense, the equation 1.1 represents a infinity of 
different statements; for every n we care to plug in, we get a 
different “theorem”. Here are the first few: 
 

														1 =
1 2
2

= 1 

 

					1 + 2	 =
2 3
2

= 3 

MATHEMATICS INDUCTION
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1 + 2 + 3 =
3 4
2

= 6 

 
and so on. Any one of the particular formulas above is easy to 
prove—just add up the numbers on the left and calculate the 
product on the right and verify that they are the same. But how 
do you show that the statement is true for every 𝑛 ≥ 1  ? A very 
powerful method is known as mathematical induction, often 
called simply “induction”. 

A helpful way to think about induction is as follows: 
Imagine that each of the statements corresponding to a different 
value of 𝑛 is a domino standing on end. Imagine also that when 
a domino’s statement is proven, that domino is knocked down. 
We can prove the statement for every 𝑛 if we can show that 
every domino can be knocked over. If we knock them over one 
at a time, we’ll never finish, but imagine that we can somehow 
set up the dominoes in a line and close enough together that 
when domino number k falls over, it knocks over domino number 
𝑘 + 1 for every value of 𝑘. In other words, if domino number 1 
falls, it knocks over domino 2. Similarly, 2 knocks over 3, 3 
knocks over 4, and so on. If we knock down number 1, it’s clear 
that all the dominoes will eventually fall. 
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Figure source: 
http://rapgenius.com 

Figure 1.1 Knocking Down 
Dominoes 
 

So a complete proof 
of the statement for every 

value of 𝑘 can be made in two steps: first, show that if the 
statement is true for any given value, it will be true for the next, 
and second, show that it is true for 𝑘 = 1, the first value. 
What follows is a complete proof of statement 1:  

Suppose that the statement happens to be true for a 
particular value of 𝑛, say 𝑛 = 𝑘. Then we have: 2, 2 knocks over 
3, and so on. If we knock down number 1, it’s clear that all the 
dominoes will eventually fall. 

Suppose that the statement happens to be true for a 
particular value of 𝑛, say 𝑛 = 𝑘. Then we have: 
                                               

1 + 2 + ⋯+ 𝑘 =
𝑘 𝑘 + 1

2
											(1.2)													

     
We would like to start from this, and somehow convince 

ourselves that the statment is also true for the next value: 𝑛 =
𝑘 + 1. Well, what does statement 1 look like when 𝑛 = 𝑘 + 1? 
Just plug in 𝑘 + 1 and see:  

1 + 2 + ⋯+ 𝑘 + 𝑘 + 1 =
𝑘 + 1 𝑘 + 2

2
																	(1.3)	
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Notice that the left hand side of equation 3 is the same 

as the left hand side of equation 2 except that thereis an extra 
𝑘 + 1 added to it. Further, if equation 2 is true, then we can add 
𝑘 + 1 to both sides of it and get: 

1 + 2 + ⋯+ 𝑘 + 𝑘 + 1 =
𝑘 𝑘 + 1

2
+ 𝑘 + 1  

																																																			=
𝑘 𝑘 + 1 + 2 𝑘 + 1

2
 

																																																																			=
𝑘 + 1 𝑘 + 2 	

2
															(1.4)		

                                    
Showing that if we apply a little bit of algebra to the right 

hand side of equation 4 it is clearly equal to 𝑘 + 1 𝑘 + 2 2- 
exactly what it should be to make equation 3 true. We have 
effectively shown here that if domino 𝑘 falls, so does domino 
	𝑘 + 1. 
 
1.2.  Formal Definition of Induction 

Here is a more formal definition of induction, but if you 
look closely at it, you’ll see that it’s just a restatement of the 
dominoes definition: 

Let 𝑆(𝑛) be any statement about a natural number 𝑛. If 
𝑆(1) is true and if we can show that if 𝑆(𝑘) is true then 𝑆(𝑘	 + 	1) 
is also true, then 𝑆(𝑛) is true for every 𝑛	𝜖	𝑁 . 

The following figure gives our rule for proof by 
mathematical induction  
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Proposition. The statements 𝑆(1),	𝑆(2),	𝑆(3),	𝑆(4),... are all true. 
Proof. (Induction) 

(1) Prove that the first statement 𝑆(1) is true. 
(2) Given any integer  𝑘 ≥ 1, prove that the statement 𝑆(𝑘) ⇒

𝑆(𝑘 + 1) is true. 

It follows by mathematical induction that every 𝑆(𝑛) is true. 

In this setup, the first step (1) is called the basis step. 
Because (1) is usually a very simple statement, the basis step is 
often quite easy to do. The second step (2) is called the inductive 
step. In the inductive step direct proof is most often used to 
prove. 
 
Example 1.1 

Prove that if 𝑛	𝜖	𝑁,	 then 1 + 3 + 5 + 7 + ⋯+ 2𝑛 − 1 = 𝑛; ! 

Proof : 
(1) Observe that if 𝑛 = 1, this statement is 1 = 1;, which is 

obviously true. (basis step) 
(2) We must now prove 𝑆(𝑘) ⇒ 𝑆(𝑘 + 1). That is, we must show 

that if 1 + 3 + 5 + 7 + ⋯+ 2𝑘 − 1 = 𝑘;   then 
 

							1 + 3 + 5 + 7 + ⋯+ 2𝑘 − 1 + 2 𝑘 + 1 − 1 = 𝑘 + 1 ; 
 
We use direct proof. Suppose 1 + 3 + 5 + 7 + ⋯+ 2𝑘 − 1 = 𝑘;. 
Then 
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1 + 3 + 5 + 7 + ⋯+ 2𝑘 − 1 + 2 𝑘 + 1 − 1 		
= 𝑘; + 2 𝑘 + 1 − 1  
= 	𝑘; + 2𝑘 + 1                                                                                 
= 	 𝑘 + 1 ; 

 
Thus, 1 + 3 + 5 + 7 + ⋯+ 2𝑘 − 1 + 2 𝑘 + 1 − 1 		= 𝑘 + 1 ;. 
This proves 𝑆(𝑘) ⇒ 𝑆(𝑘 + 1). It follows by induction that 1 + 3 +
5 + 7 + ⋯+ 2𝑛 − 1 = 𝑛;for every 𝑛	𝜖	𝑁 

In induction proofs it is not necessarily to start with the 
first statement 𝑆(1)  indexed by the natural number 1. Depending 
on the problem, the first statement could be 𝑆(0) or 𝑆(𝑚) for any 
other integer 𝑚. In the next example the statements are 
𝑆 0 , 𝑆 1 , 𝑆 2 , 𝑆 3 , …. The  same rule is used except that the 
basis step verifies 𝑆 0 , not 𝑆 1 .  
 
Example 1.2  

If 𝑛 is a non-negative integer, then 5| 𝑛@ − 𝑛  
 
Proof: 

We will prove the proposition using mathematical 
induction. Since it states for non-negative integer, we apply the 
basis step with 𝑛 = 0.  

(1) If 𝑛 = 0, the statement is 5| 0; − 0 , which is indeed true. 
(2) Let 𝑘 ≥ 0. We need to prove that if 5| 𝑘@ − 𝑘 , then 

5| 𝑘 + 1 @ − 𝑘 + 1 . 
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We use direct proof. Suppose 5| 𝑘@ − 𝑘 . Thus 𝑘@ − 𝑘 = 5𝑎  
for some 𝑎	𝜖	𝑍. 
Observe that 
𝑘 + 1 @ − 𝑘 + 1

= 	𝑘@ + 5𝑘C + 10𝑘D + 10𝑘; + 5𝑘 + 1 − 𝑘 − 1 
																								= 𝑘@ − 𝑘 + 5𝑘C + 10𝑘D + 10𝑘; + 5𝑘 

												= 5𝑎 + 5𝑘C + 10𝑘D + 10𝑘; + 5𝑘 
						= 5 𝑎 + 𝑘C + 2𝑘D + 2𝑘; + 𝑘  

Since 𝑎 + 𝑘C + 2𝑘D + 2𝑘; + 𝑘  is an integer, it means that 
𝑘 + 1 @ − 𝑘 + 1  is an integer multiple of 5, so 
5| 𝑘 + 1 @ − 𝑘 + 1 . We have shown that if 5| 𝑘@ − 𝑘 , 
then 5| 𝑘 + 1 @ − 𝑘 + 1 . It follows by induction that 
5| 𝑛@ − 𝑛  for all non-negative integers 𝑛. 
 

1.3. Strong Mathematics Induction 

Strong mathematics induction is a special case of 
mathematics induction. To distinguish between what we just 
discussed in the prevous part and strong mathematics induction, 
let denote the previously discussed mathematics induction as 
“weak mathematics induction”. As for an analogy, imagine a 
ladder on which one is stepping on. When you climb up the 
ladder, you have to step on the lower step and need to go up 
based on it. After we climb up the several steps, we can go up 
further by assuming that the step you are stepping on exists.  

1. Basis step: The first step in the ladder you are stepping on 
2. Inductive step: The steps you are assuming to exist 
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• Weak Induction: The step that you are currently stepping 
on 

• Strong Induction: The steps that you have stepped on 
before including the current one 

Next, going up further based on the steps we assumed to exist. 

The difference between weak mathematics induction and 
strong mathematics induction only appears in inductive step. In 
weak induction, we only assume that particular statement holds 
at k-th step, while in strong induction, we assume that the 
particular statment holds at all the steps from the base case to 
k-th step 
 

 
Figure 1.2. “Ladder” for Weak Mathematics Induction and 

Strong Mathematics Induction 
 

	

	
	
	
	
	
	
		

	
	
	
	
	
	
	

Figure	1.2.	“Ladder”	for	Weak	Mathematics	Induction	and	Strong	Mathematics	Induction	
	

S(1)	

S(k)	

S(k+1)	

S(1)	

S(k)	

S(k+1)	

Weak	Mathematics	Induction	 Strong	Mathematics	Induction	
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Here are the formal rule for strong induction: 
Proposition. The statements 𝑆(1),	𝑆(2),	𝑆(3),	𝑆(4),... are all true. 
Proof. (Induction) 

(1) Prove that the first statement 𝑆(1) is true. 
(2) Assume that for all k in the range nk <1 , 𝑆(𝑘) is true, 

prove that the statement 𝑆(𝑘) ⇒ 𝑆(𝑘 + 1) is true. 

It follows by mathematical induction that every 𝑆(𝑛) is true. 
Like in the weak mathematics induction, in strong 

mathematics induction, the basis step doesn’t absolutely start with 
the first statement 𝑆(1). Depending on the problem, the first 
statement could be 𝑆(0) or 𝑆(𝑚) for any other integer 𝑚.  

Example 1.3 
Prove by induction that every integer greater than or equal 

to 2 can be factored into primes!         
Proof (by strong mathematical induction): 
 
1) Basis step:  

The statement is true for n=2  because 2 itself is a prime 
number, so the prime factorization of 2 is 2. Trivially, the 
statement S(2) holds. 

2) Inductive step: 
Assume the statement 𝑆(𝑘) is true for all 𝑘 with 2≤	𝑘 <	𝑛    

Consider the number 𝑘 + 1. 

Case 1 : 𝑘 + 1 is a prime number. 
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When k+1 is a prime number, the number is a prime 
factorization of itself. Therefore, the statement 𝑆(𝑘 + 1) holds. 

Case 2 : 𝑘 + 1 is not a prime number. 
We know that 𝑘 + 1 is a composite, so 𝑘 + 1 =

𝑝𝑞	(𝑝, 𝑞 ∈ 𝑍H). Intuitively, we can conclude that both 𝑝 and 
𝑞 are less than or equal to 𝑘 + 1. From the induction 
hypothesis stated above, for all integers less than or equal 
to 𝑘, the statement holds, which means both 𝑝 and 𝑞 can 
be expressed as prime factorizations. In this sense, because 
𝑘 + 1 is a product of 𝑝 and 𝑞, by multiplying the prime 
factorizations of 𝑝 and 𝑞, we can get the prime factorization 
for 𝑘 + 1  as well. 

Therefore, the statement that every integer greater than 
or equal to 2 can be factored into primes holds for all such 
integers.  
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Exercises 1 
 

Prove the following statements by Mathematics Induction! 
1. 𝑛 + 1 ; + 𝑛 + 2 ; + 𝑛 + 3 ; + ⋯+ 2𝑛 ; = 

I ;IHJ (KIHJ)
L

	is true for all natural numbers  𝑛 . 

2. ( ) ( ) ( ) ( )( )21
6
1122...23121 ++=+++++ nnnnnnnn  is 

true for all natural numbers  𝑛 . 
3. 𝑛(𝑛	 + 	1)(𝑛	 + 	2)(𝑛	 + 	3)  is divisible by  24,  for all 

natural numbers  n. 

4. 𝑛(𝑛	 + 	1)(𝑛	 + 	2)(𝑛	 + 	3)	… (𝑛	 + 	𝑟	– 	1)  is divisible by  

𝑟	! , for all natural numbers  𝑛, where  𝑟	 = 	1, 2, … .	

5.  7|𝑛K − 𝑛 for any integer 𝑛 ≥ 1. 

6.  8|3;I − 1 for any integer 𝑛 ≥ 0. 

7.  𝑛! ≤ 𝑛I for any integer 𝑛 ≥ 1 (𝑛! = 1.2.3… . 𝑛) 

8. For any real number 𝑥 > −1  and any positive integer 𝑥, 

(1 + 𝑥)I ≥ 1 + 𝑛𝑥 

9. Let the “Fibonacci sequence” can be defined by 𝑆J =

𝑆; = 𝑆D = 1 and 𝑆I = 𝑆IRJ + 𝑆IR; for 𝑛 ≥ 4. Prove that 

𝑆I < 2I for all 𝑛 ∈ 𝑍H ! 
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2.1. Two Counting Principles  

Some proofs concerning finite sets involve counting the 
number of elements of the sets, so we will look at the basics of 
counting. 

2.1.1. Addition Principle 

Let 𝑆 be a set. A partition of 𝑆 is a collection 𝑆J,𝑆;, … , 𝑆T 
of subsets of 𝑆	such that each element of 𝑆 is in exactly one of 
those subsets: 

  𝑆 = 𝑆J ∪ 𝑆; ∪ …	∪ 𝑆T, 
𝑆V ∩ 𝑆X = ∅, 𝑖 ≠ 𝑗 . 

Theorem 2.1 
Suppose that a set S is partitioned into pairwise disjoint 

parts 𝑆J,𝑆;, … , 𝑆T.  The number of objects in S can be determined 
by finding the number of objects in each of the parts, and adding 
the numbers so obtained: 

|𝑆| = |𝑆J + 𝑆;	 + ⋯ 𝑆T|. 

COMBINATORICS
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Example 2.1 
In the faculty of Mathematics and Natural Science of UNM, 

the Math Department is offering 26 classses, the Biology 
Department is offering 20 classes, the Physics Department  is 
offering 18 classes, and the Chemistry Department is offering 23 
classes. How many classes is the Faculty of Mathematics and 
Natural Science offering? 
Solution : 

The classes in the different departments partition the 
classes of the Mathematics and Natural Science Faculty (we 
assume no cross listing and that those are the only departments). 
Thus, we can use the addition principle: 26 + 20 + 18 + 23 = 
87: 

2.1.2. Multiplication Principle 

Theorem 2.2. 
Let 𝑆 be a set of ordered pairs (𝑎, 𝑏) of objects, where 

the first object 𝑎 comes from a set of size 𝑝, and for each choice 
of object 𝑎 there are 𝑞 choices for object 𝑏. Then the size of 𝑆 
is 𝑝	×𝑞 

Example 2.2. 
Suppose there are three major routes from Makassar to 

Maros, and four routes from Maros to Soppeng. How many 
routes are there from Makassar to Soppeng that go through 
Maros? 
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Solution : 
There are three major from Makassar to Maros. Meanwhile, there 
are four routes from Maros to Soppeng. By the multiplication 
principle, the total route is 3 x 4 = 12 routes. 

Example 2.3 
How many multiples of 5 are there from 10 to 95? 

Solution :  
As we know, multiples of 5 are integers with two digits having 0 
or 5 in the second digit. (i.e. the unit’s place). The second digit 
from the left can be chosen in 2 ways. The first digit can be any 
one of 1,2,3,4,5,6,7,8,9. i.e. There are 9 choices for the first digit. 
Thus, there are 2×9 =18 multiples of 5 from 10 to 95. 
There are several combinatoric problems, namely:  

i) Counting or selecting ordered objects 
- With repetition 
- Without repetition 

ii) Counting or selecting unordered objects 
- With repetition 
- Without repetition 

To distinguish the objects with repetition and the objects 
without repetition, we need to differentiate the arrangement or the 
selection taken from set and multiset. In a multiset, an object can 
be repeated, meanwhile, in a set, an object can not be repeated. 
As an example, the multiset M = {𝑎, 𝑎, 𝑎, 𝑏, 𝑐, 𝑐, 𝑑, 𝑑, 𝑑, 𝑑}  has 10 
elements. The multiset M can be written as M = 
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{3. 𝑎, 1. 𝑏, 2. 𝑐, 4. 𝑑}.  The arrangement of the type i) is called 
permutation and in the type ii) is called combination.  

2.2. Permutation 
 
 
 
 
 
 
 
 
 
  

Figure 2.1. The ways in arranging Comic of Naruto and Conan 

Figure Sources : http://blogs.slj.com and 
http://turnerilmu21.blogspot.com    

Suppose we want to arrange our comics on a cupboard. 
If we have only one comic, there is only one way of arranging it. 
Suppose we have two comics, Conan and Naruto.  

We can arrange the Conan and Naruto comics in two 
ways. Conan comic first and the Naruto comic next (CN) or 
Naruto novel first and Conan novel next (NC). In other words, 
there are two arrangements of the two comics. 

Now, suppose we want to add a One Piece (O) comic 
also to the cupboard. After arranging Conan and Naruto comics 

The	first	way:	Naruto	first	
then	Conan	

The	second	way	:	Conan	
first	then	Naruto	
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in one of the two ways, say CN, we can put One Piece comic in 
one of the following ways: OCN, CON or CNO. Similarly, 
corresponding to NC, we have three other ways of arranging the 
books.  So, by the Counting Principle, we can arrange One Piece, 
Conan, and Naruto comics in 3 × 2 ways = 6 ways. 

By permutation we mean an arrangement of objects in a 
particular order. In the above example, we were discussing the 
number of permutations of one book or two books. In general, if 
you want to find the number of permutations of 𝑛 objects 𝑛 ≥1, 
how can you do it? Let us see if we can find an answer to this. 

Similar to what we saw in the case of books, there is one 
permutation of one object, 2×1 permutations of two objects and 
3×2×1 permutations of three objects. It may be that, there are 
𝑛× (𝑛 −1)	× (𝑛 − 2)	×...3	×	2	×1 permutations of 𝑛 objects. In 
fact, it is so, as you will see when we prove the following result. 

Theorem 2. 3 
The total number of permutations of n objects is 

𝑛	×(𝑛	– 	1)×	. . .2×1. 

Proof : 
The first place in an arrangement can be filled in n 

different ways. Once it has been done, the second place can be 
filled by any of the remaining (𝑛	– 1) objects and so this can be 
done in (𝑛 –1) ways. Similarly, once the first two places have 
been filled, the third can be filled in (𝑛 –2) ways and so on. The 
last place in the arrangement can be filled only in one way, 
because in this case we are left with only one object. Using the 
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counting principle, the total number of arrangements of n different 
objects is 𝑛×	(𝑛	 − 1)×(	𝑛	 − 	2)×. . .×3×	2×1.	

For the sake of the efficiency, the notation of dot product 
∙  will be sometimes used to replace the sign × for denoting 

the multiplication of two numbers. Therefore we will frequently 
use, for example, 3∙ 2  instead of 3×2.	The product 
	𝑛	(𝑛	– 	1)(	𝑛	 − 	2)	. . . 3 ∙ 2 ∙ 1 occurs so often in Mathematics that 
it deserves a name and notation. It is usually denoted by 𝑛! (or 
by n read as n factorial). 

𝑛! 	= 	𝑛	(𝑛	– 	1)	. . . 3 ∙ 2 ∙ 1	
Example 2.4. 
Find the value of  

a) 4!  b) 5! + 3! 
Solution : 
a) 4! = 4 ∙ 3 . 2 ∙ 1 = 24 
b) 5! = 5∙ 4∙ 3 ∙ 2∙ 1 = 120 

3! = 3∙ 2∙ 1 = 6 
So, 5! + 3! = 120 + 6 = 126 

 

2.3. Permutation of 𝒓 Objects out of 𝒏 Objects 

Suppose you have five different cakes and you want to 
share one each to Hijrah, Irwan, and Ansari. In how many ways 
can you do it? You can give any one of the five cakes to Hijrah, 
and after that you can give any one of the remaining four cakes 
to Irwan. After that, you can give one of the remaining three 
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cakes to Ansari. So, by the Counting Principle, you can distribute 
the cakes in 5 ∙ 4 ∙ 3 = 60 ways. 

More generally, suppose you have to arrange 𝑟 objects 
out of 𝑛 objects. In how many ways can you do it? Let us view 
this in the following way. Suppose you have 𝑛 objects and you 
have to arrange 𝑟	of these in 𝑟 boxes, one object in each box.  

 
 …      
 

Suppose there is one box, r = 1. You can put any of the 
n objects in it and this can be done in n ways. Suppose there 
are two boxes, r = 2. You can put any of the objects in the first 
box and after that the second box can be filled with any of the 
remaining n – 1 objects. So, by the counting principle, the two 
boxes can be filled in n (n – 1) ways. Similarly, 3 boxes can be 
filled in n (n – 1) (n – 2) ways. In general, we have the following 
theorem. 
 
Theorem 2.4 

The number of permutations of r objects out of n objects 
is n (n–1)...(n – r + 1). 
The number of permutations of r objects out of n objects is 
usually denoted by 𝑃 𝑛, 𝑟 . Thus, 
𝑃 𝑛, 𝑟  = n(n -1)(n - 2)...(n - r +1)  ... (2.1) 
Proof :  

𝑛	 𝑛-1	ways	 𝑛 − 𝑟 + 1	ways	
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Suppose we have to arrange r objects out of n different 
objects. In fact it is equivalent to filling r places, each with one of 
the objects out of the given n objects. The first place can be 
filled in n different ways. Once this has been done, the second 
place can be filled by any one of the remaining (𝑛– 1) objects, 
in (𝑛– 1) ways. Similarly, the third place can be filled in (𝑛	– 	2) 
ways and so on. The last place, the r th place can be filled in 
[𝑛– (𝑟– 1)] i.e. (𝑛– 𝑟 + 1) different ways. You may easily see, as 
to why this is so. Using the Counting Principle, we get the 
required number of arrangements of r out of n objects is n (𝑛	 −
1)	(𝑛	 − 	2). . . . . . . . . . . . (𝑛	 − 	𝑟	 + 1). 

Example 2.5 
Evaluate :  

a) 𝑃(4,2)		
b) 𝑃 6,3   

Solution : 
a)  𝑃 4,2 =4(4 - 1) = 12  
b) 𝑃 6,3 = 6 6 − 	1 6 − 	2 = 	6 ∙ 5 ∙ 4 = 	120. 

Consider the formula for 𝑃 𝑛, 𝑟 , namely 𝑃 𝑛, 𝑟  = 	𝑛(𝑛	 − 1)(𝑛	 −

	2). . . (𝑛	 − 	𝑟	 + 1). This can be obtained by removing the terms 
𝑛	– 	𝑟, 𝑛	– 	𝑟	– 	1, . . . ,2, 1 from the product for 𝑛!. The product of 
these terms is (𝑛	– 	𝑟)	(𝑛	– 	𝑟	– 	1)	. . .2 ∙ 1, i.e.,	(𝑛	– 	𝑟)!. 
Now  

𝑛!
𝑛 − 𝑟 !

	=
𝑛 𝑛 − 1 𝑛 − 2 … 𝑛 − 𝑟 + 1 𝑛 − 𝑟 … 2.1

𝑛 − 𝑟 𝑛 − 𝑟 − 1 …2.1
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  = 𝑛 𝑛 − 1 𝑛 − 2 … 𝑛 − 𝑟 + 1  
  = 𝑃(𝑛, 𝑟) 

So using the factorial notation this formua can be written as 
follows: 

𝑃 𝑛, 𝑟 =
𝑛!

𝑛 − 𝑟 !
						… . (2.2) 

Example 2.6 
Find the value of 𝑃 𝑛, 0  

Solution :  
Here 𝑟 = 0. Using equation 2.2. we get 

𝑃 𝑛, 0 = 	
𝑛!
𝑛!
= 1 

Permutation can also be applied to solve several following cases: 

Example 2.7 
There are 4 Civics books, 5 Chemistry books, and 3 

Sport books. In how many ways can we arrange these so that 
books on Civics are together, Chemistry are together and Sport 
are together of which we are not asked to arrange the kinds of 
books in specific order? 

Solution :  
There are 4 books on Civics and they have to be put together. 
They can be arranged in 4! ways. Similarly, there are 5 Chemistry 
books then they can be arranged in 5! ways. And there are 3 
Sport books then they can be arranged in 3! ways. So, by the 
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counting principle all of them together can be arranged in 
4!×5!×3! ways = 17280 ways. 
 

Example 2.8 
Suppose 5 students who are delegated by Mathematics 

Department, State University of Makassar to take participation in 
Mathematics Event are spending night a hotel and they are 
allotted 5 beds. Among them, Firman does not want a bed next 
to Yusran because Yusran snores. Then, in how many ways can 
you allot the beds? 

Solution : 
Let the beds be numbered 1 to 5. 

Case 1 : Suppose Yusran is allotted bed number 1. 
Then, Firman cannot be allotted bed number 2. So Firman 

can be allotted a bed in 3 ways. After alloting a bed to Firman, 
the remaining 3 students can be allotted beds in 3! ways. So, in 
this case the beds can be allotted in 3x3! ways = 36 ways. 

Case 2 : Yusran is allotted bed number 5. 
Then, Firman cannot be allotted bed number 4 

As in Case 1, the beds can be allotted in 36 ways. 

Case 3 : Yusran is allotted one of the beds numbered 2,3, or 4. 
Firman cannot be allotted the beds on the right hand side 

and left hand side of Yusran’s bed. For example, if Yusran is 
allotted bed number 2, beds numbered 1 or 3 cannot be allotted 
to Firman. 



introduction to Discrete Mathematics with an Application of Graph Theory 

	
	

  23 

Therefore, Firman can be allotted a bed in 2 ways in all 
these cases. After allotting a bed to Firman, the other 3 can be 
allotted a bed in 3! ways. Therefore, in each of these cases, the 
beds can be allotted in 2×3! = 12 ways. Since Yusran has 
possibilities to be alloted in three beds, then the total of the ways 
is 3×12 = 36 

 The beds can be allotted in 
2×36 + (3×12) = 108 ways. 

Example 2.9 
In how many ways can 4 girls and 5 boys be arranged 

in a row so that all the four girls are together? 

 
 
Solution : 

Let 4 girls be one unit and now there are 6 units in all. 
They can be arranged in 6! ways. In each of these arrangements 
4 girls can be arranged in 4! ways. Total number of arrangements 
in which girls are always together 
= 6! ∙ 4! 
= 720∙24 
= 17280 
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2.4. Circular Permutation 

Theorem 2.5  

If 𝑛 objects are arranged in a circle, then  there are I!
IRJ !

 or 𝑛! 

permutations of the n objects around the circle. The proof of the 
theorem 2.5 is given to readers as exercise 
 
2.5. Combination  

Suppose Larry has 4 set of shirts and trousers and he 
wants to take 2 sets to go on a trip to Selayar Island. In how 
many ways can he do it? Let us denote the sets by S1, S2, S3, 
S4. Then Lerry can choose two pairs in the following ways : 

1. {𝑆J;}      2. {S13},     3.{S14} 
4. {S23},      5. {𝑆;C}     6. {𝑆DC} 

Observe that {𝑆J;} is the same as {𝑆;J}. So, there are 6 
ways of choosing the two sets that you want to take with you. Of 
course, if you had 10 pairs and you wanted to take 7 pairs, it 
will be much more difficult to work out the number of pairs in 
this way. However, this argument holds good in general as we 
can see from the following theorem. 

Theorem 2.6 
Let n, 𝑛 ≥ 1 be an integer and 𝑟 ≤ 𝑛 . Let us denote the 
number of ways of choosing r objects out of n objects by 
𝐶 𝑛, 𝑟 . Then  
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𝐶 𝑛, 𝑟 =
𝑃 𝑛, 𝑟
𝑟!

=
𝑛!

𝑛 − 𝑟 ! 𝑟!
…										(2.3) 

Proof :  
We can choose r objects out of n objects in 𝐶 𝑛, 𝑟  ways. Each 
of the r objects chosen can be arranged in r! ways. Thus, by the 
counting principle, the number of ways of choosing r objects and 
arranging the r objects chosen can be done in 𝐶 𝑛, 𝑟 𝑟! ways. 
But, this is precisely 𝑃 𝑛, 𝑟 . In other words, we have  

𝑃 𝑛, 𝑟 = 𝑟! 𝐶 𝑛, 𝑟  ....            (2.4) 

Dividing both sides by 𝑟!, we get the result in the theorem. 
 
Corollary 2.1 

𝐶 𝑛, 𝑟 = 𝐶(𝑛, 𝑛 − 𝑟) 

Example 2.10 
Find the number of subsets of the set 

{1,2,3,4,5,6,7,8,9,10,11} having 4 elements. 

Solution : 
Here the order of choosing the elements doesn’t matter 

and this is a problem in combinations. We have to find the 
number of ways of choosing 4 elements of this set which has 
11 elements. By relation (2.3), this can be done in 𝐶 11,4 = 330 
ways. 

Theorem 2.7 
The number of subsets in a set 𝑆 containing n elements is  

2I = 	𝐶 𝑛, 0 + 𝐶 𝑛, 1 + ⋯+ 𝐶 𝑛, 𝑛  
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Proof : 
The aim of this proof is to show that the two sides of the 

equation is counting the number of the subsets of a set with 𝑛 
elements. As a matter of fact, each subset of 𝑆 is a subset with 
𝑟 elements, for 𝑟 = 0, 1, 2, … , 𝑛. Since 𝐶 𝑛, 𝑟  is equal to the 
number of subset with 𝑟 elements in 𝑆 which satisfies the addition 
rule namely 𝐶 𝑛, 0 + 𝐶 𝑛, 1 + ⋯+ 𝐶 𝑛, 𝑛 which is equal to the 
number of subsets in 𝑆.  

Let H be a subset of 𝑆. Then the first element could be 
or could not be in H. It also holds for the second element, the 
third element, ..., and the n-th element as well. Therefore, by 
using multiplication rule, there are 2.2.2. ...2 = 2I. 
 
2.6. Permutation of Multiset 

  Let 𝑀 be a multiset. An 𝑟-permutation of 𝑀 is an ordered 
arrangement of 𝑟 objects of 𝑀. If |𝑀| = 𝑛, then an n-permutation 
of 𝑀 is called a permutation of 𝑀 . 

Theorem 2.8. 
Let 𝑀 be a multiset of 𝑘 different types where each type has 
infinitely many elements. Then the number of 𝑟-permutations of 
𝑀 equals 𝑘j 

Example 2.11 
Let 𝑆 = {∞. 0,∞. 1,∞. 2}. The number of 4-

permutation of multiset is 3C = 81 
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Suppose we want to permute the letters of the 
word DARWAN. There would be  6!  ways to 
permute  DARWIN since all of the letters are different. How do 
we deal with the repeated A? Let's pretend they're 
different: DA1RWA2N. Now there are 6! ways, but we counted 
both of these, but in the original problem they should only be 
counted once: 

DA1RWA2N  DA2RWA1N 
In fact, we counted every permutation twice: with each 

possible ordering of the As. The real solution is L!
;!
 = 360 

Example 2.12: 
How many ways are there to permute the letters of the 

word DARWAN? 
Solution: 

Let's first decide where to put the As, in C(6,2) ways. 
Then in the remaining 4 positions, permute the remaining 4 
elements. Final answer: 

𝐶 6,2 . 𝑃 4,4 =
6!
2! 4!

4!
0!
=
6!
2!

 

Theorem 2.9 
There are 𝑛!/𝑘! 	ways to permute 𝑛 objects where 𝑘 are identical 
(but the other 𝑛 − 𝑘 are different). 
Proof idea: Exactly as the previous example, with 𝑛= 5 and 𝑘=2 

Theorem 2.10 
Suppose we have n items, where there are n1,n2,…,nk that are 
identical. The number of ways to permute them is 
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𝑛!
𝑛J! 𝑛;! … 𝑛n!

 

Proof: 
As before, first select positions for the n1 identical items 

in 𝐶(𝑛, 𝑛1) ways. Then place the 𝑛; items in 𝐶(𝑛 − 𝑛J, 𝑛;) ways, 
and so on. The total number of ways to arrange the items is  

C(n,n1)C(n−n1,n2)C(n−n1−n2,n3)⋯C(n−n1−⋯−nk−1,nk) 

=   I!
Io! IRIo !

		 (IRIo)!
Io! IRIoRIp !

		 (IRIoRIp)!
Io! IRIoRIpRIq !

…	(IRIoR⋯RIrso)
Ir!t!

 

=  I!
Io!Ip!…Ir!

 

 
Example 2.13 
How many ways to order the letters of MAKASSAR? 
 
Solution : 
There are 8 letters, but three As and two Ss, so there are  
8!
3! 2!

= 3360 

 
2.7. Combination of Multiset 

A motivating Example: 
How many ways can you select 15 kinds of cakes from 

a cake store containing large quantities of cakes, Jalangkote, 
Barongko, Baruasa’, Taripang, and Panada? 

You may need to model this problem using a chart: 
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      Jalangkote Barongko   Baruasa’    Taripang    Panada 
A: 111          111        111     111         111     =15 
B: 11          111111    111111  1      =15 
C:             1111     1111111     1111         =15 

Here, we set an order of the categories and just count 
how many from each category are chosen. Now, each event will 
contain fifteen 1’s, but we need to indicate where we transition 
from one category to the next. If we use 0 to mark our transitions, 
then the events become: 

A: 1110111011101110111 
B: 1100111111011111101 
C: 0011110111111101111 

Thus, associated with each event is a binary string with 
number of 1’s = number of things to be chosen and number of 
0’s = number of transitions between categories. From this 
example we see that the number of ways to select 15 cakes 
from a collection of 5 types of cake is C(15 + 4,15) = C(19,15) 
= C(19,4). Note that number of zeros = number of transitions = 
number of categories - 1. 

 

Theorem 2.11 
  The number of ways to fill r slots from n categories with 
repetition allowed is: C(r + n - 1, r) = C(r + n - 1, n - 1). In 
words, the counts are: C(number of slots + number of transitions, 
number of slots) or C(number of slots + number of transitions, 
number of transitions). 
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Example 2.14 
How many ways can we fill a box holding 100 pieces of 

candy from 30 different types of candy? 

Solution:  
Here number of slots = 100, number of transitions = 30 - 1, so 

there are 𝐶 100 + 29, 9 = J;v!
Jtt!;v!

 different ways to fill the box. 

Example 2.15 
How many non-negative integer solutions are there to 

the equation a + b + c + d = 100. 

Solution : 
In this case, we could have 100 a’s or 99 a’s and 1 b, or 98 a’s 
and 2 d’s, etc.We see that the number of slots = 100 and we 
are ranging over 4 categories, so number of transitions = 3. 
Therefore, there are C(100+3,100) = 103!/(100!3!) non-negative 
solutions to a + b + c + d = 100. 

 

2.8. Binomial Coefficient 

𝐶 𝑛, 𝑘  or 𝑛𝑘  represents the combination of 𝑘  from a set 𝑛 . In 

this section, we will explore various properties of binomial 
coefficients. 

Pascal’s Triangle 
Table 2.1 contains the values of the binomial coefficients 

𝑛
𝑘 for n = 0 to 6 and all relevant k values. The table begins with 

a 1 for n = 0 and k = 0, because the empty set, the set with no 



introduction to Discrete Mathematics with an Application of Graph Theory 

	
	

  31 

elements, has exactly one 0-element subset, namely itself. We 
have not put any value into the table for a value of k larger than 
n, because we haven’t defined what we mean by the binomial 

coefficient 𝑛𝑘  in that case. However, since there are no subsets 

of an n-element set that have size larger than n, it is natural to 

define 𝑛𝑘  to be zero when 𝑘 > 𝑛, and so we define 𝑛𝑘  to be 

zero when 𝑘 > 𝑛. Thus we could could fill in the empty places 
in the table with zeros. The table is easier to read if we don’t fill 
in the empty spaces, so we just remember that they are zero. 

Table 2.1: A table of binomial coefficients 

 
 

Several properties of binomial coefficients are apparent 

in Table 2.1. Each row begins with a 1, because 𝑛
𝑘  is always 

1, as it must be because there is just one subset of an n-element 
set with 0 elements, namely the empty set. Similarly, each row 
ends with a 1, because an n-element set S has just one n-

	

																						!/#	 0						1							2							3						4						5							6	
	 0													1			

1													1							1	 					 									
2													1							2								1																		
3													1							3								3								1		
4													1							4								6								4						1	
5													1							5							10					10					5					1							
	6	 	1						6								15				20				15				6							1						
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element subset, namely S itself. Each row increases at first, and 
then decreases. 

Further the second half of each row is the reverse of the 
first half. The array of numbers called Pascal’s Triangle 
emphasizes that symmetry by rearranging the rows of the table 
so that they line up at their centers. In Table 2.1, each entry is 
the sum of the one above it and the one above it and to the left. 
In algebraic terms, then, the Pascal Relationship says 

𝑛
𝑘 = 𝑛 − 1

𝑘 − 1 + 𝑛 − 1
𝑘               (2.5) 

whenever n > 0 and 0 < k < n. Notice that It is possible to give 
a purely algebraic (and rather dreary) proof of this formula by 
plugging in our earlier formula for binomial coefficients into all 
three terms and verifying that we get an equality. A guiding 
principle of discrete mathematics is that when we have a formula 
that relates the numbers of elements of several sets, we should 
find an explanation that involves a relationship among the sets. 

A proof using sets 

As we know that the expression 𝑛𝑘  is the number of k-

element subsets of an n element set. Each of the three terms in 
Equation 2.5 therefore represents the number of subsets of a 
particular size chosen from an appropriately sized set. In 
particular, the three sets are the set of k-element subsets of an 
n-element set, the set of (k − 1)-element subsets of an (n − 1)-
element set, and the set of k-element subsets of an (n − 1)-
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element set. We should, therefore, be able to explain the 
relationship between these three quantities using the addition 
principle. 

The number of k-element subsets of an n-element set is 
called a binomial coefficient because of the role that these 
numbers play in the algebraic expansion of a binomial x+y.  

Theorem 2.12 (Binomial Theorem) 

Let 𝑥, 𝑦	𝜖	𝑅  For any integer n ≥ 0  

(𝑥 + 𝑦)I = 𝑛
0 𝑥I + 𝑛

1 𝑥IRJ𝑦 + 𝑛
2 𝑥IR;𝑦; + ⋯+ 𝑛

𝑛 − 1 𝑥𝑦IRJ

+ 𝑛
𝑛 𝑦I 

Combinatorial Proof : 
Consider how to get a term of the form x n−jy k out of the product 
of n terms each (𝑥 + 𝑦): (𝑥 + 𝑦) 𝑥 + 𝑦 … (𝑥 + 𝑦). Such terms 
are formed by picking k y's and (n − k) x's. Since once the y's 

are picked, there is really no choice for the x's, there are 𝑛
𝑘  

such terms. So 

(𝑥 + 𝑦)I = 𝑛
0

I

nyt

𝑥n𝑦IRn 

The proof of the Binomial Theorem can also be obtained by 
using mathematics induction. We leave it to readers as an 
exercise. The Binomial Theorem can be written in the several 
equivalent forms as follows: 

a) (𝑥 + 𝑦)I = 𝑛
𝑛 − 𝑘

I
nyt 𝑥n𝑦IRn 
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b) (𝑥 + 𝑦)I = 𝑛
𝑘

I
nyt 𝑥IRn𝑦n 

c) (𝑥 + 𝑦)I = 𝑛
𝑛 − 𝑘

I
nyt 𝑥IRn𝑦n	

 
Corollary 2.2 
Let 𝑛 be a positive integer, then for all 𝑥	𝜖	𝑅,  

(1 + 𝑥)I = 𝑛
𝑘

I

nyt

𝑥n = 𝑛
𝑛 − 𝑘

I

nyt

𝑥n 

In addition, there are also several identities that can be 
stated based on the binomial coefficient for 𝑛 and 𝑘 element 
positive integer as follows: 

1) 𝑛
𝑘 = 𝑛 − 1

𝑘 − 1  I
n
 

 

2) 𝑛
0 + 𝑛

1 + 𝑛
2 + ⋯+ 𝑛

𝑛 = 2I 

 

3) 𝑛
0 − 𝑛

1 + 𝑛
2 − ⋯+ (−1)I 𝑛

𝑛 = 0 
 

4) 1 𝑛
1 + 2 𝑛

2 + ⋯+ 𝑛 𝑛
𝑛 = 𝑛2IRJ 

 

5) 𝑛 𝑛 + 1 2IR; = 𝑘; 𝑛
𝑘

I
nyt  

 
The proof of the identity 2 and 4 is given here. For the 

proof of other identities, we give them to readers as exercise.  
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Proof : 
2) From the Binomial theorem (Theorem 2.11), put 𝑥 = 𝑦 = 1. 

Then the equation becomes  
 

(1 + 1)I = 𝑛
0 + 𝑛

1 + 𝑛
2 + ⋯+ 𝑛

𝑛 − 1 + 𝑛
𝑛  

 

4) Let 𝑥 = 	0 𝑛
0 + 1 𝑛

1 + 2 𝑛
2 + ⋯+ 𝑛 𝑛

𝑛 				… (1) 

Then by corollary 2.1, 𝑥 can be written as 

 𝑥 = 0 𝑛
𝑛 + 1 𝑛

𝑛 − 1 + 2 𝑛
𝑛 − 2 + ⋯+ 𝑛 𝑛

0  

or 

𝑥 = 𝑛 𝑛
0 + 𝑛 − 1 𝑛

1 + 𝑛 − 2 𝑛
2 + ⋯+ 0 𝑛

0 		… (2) 
by adding (1) by (2), we obtain 

2𝑥 = 𝑛 𝑛
𝑛 + 𝑛 𝑛

𝑛 − 1 + 𝑛 𝑛
𝑛 − 2 + ⋯+ 𝑛 𝑛

0  

2𝑥 = 𝑛 𝑛
𝑛 + 𝑛

𝑛 − 1 + 𝑛
𝑛 − 2 + ⋯+ 𝑛

0  

By referring to the identity no. 2, then we have 
2𝑥 = 𝑛2I 

Replacing 𝑥 with 		0 𝑛
0 + 1 𝑛

1 + 2 𝑛
2 + ⋯+ 𝑛 𝑛

𝑛 , we obtain 

2 0 𝑛
0 + 1 𝑛

1 + 2 𝑛
2 + ⋯+ 𝑛 𝑛

𝑛 = 𝑛2I 

																			⇔ 																			2 1 𝑛
1 + 2 𝑛

2 + ⋯+ 𝑛 𝑛
𝑛 	= 𝑛2I                               

																			⇔ 																						 𝑛1 + 2 𝑛
2 + ⋯+ 𝑛 𝑛

𝑛 = I;|

;
 

																			⇔ 																														1 𝑛
1 + 2 𝑛

2 + ⋯+ 𝑛 𝑛
𝑛 = 𝑛2IRJ 

The extention of the notation 𝑛𝑘  for arbitrary real number 𝑛 and 

positive integer𝑘, is denoted by  
𝑛
𝑘 =

𝑟 𝑟 − 1 … 𝑟 − 𝑘 + 1
𝑘 𝑘 − 1 …1
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Where  𝑟 is real number 

Example 2.15 

7
2
5

=
7
2×

5
2×

3
2×

1
2×

−1
2

5×4×3×2×1
 

Moreover, Pascal relationship also holds in the following 
formula: 

𝑟
𝑘 = 𝑟 − 1

𝑘 − 1 + 𝑟 − 1
𝑘  

Furthermore, by expanding the binomial coefficient, we obtain 
𝑟
0 + 𝑟 + 1

1 + 𝑟 + 2
2 + ⋯+ 𝑟 + 𝑘

𝑘 = 𝑟 + 𝑘 + 1
𝑘   

For every real number 𝑟 and non-negative integer 𝑘 
Binomial theorem provides formula 𝑥 + 𝑦 I, where 𝑛 is positive 
integer. The formula can be expanded to get formula 
𝑥 + 𝑦 + 𝑧 I. More general, it can be expanded for a sum of real 

numbers as many as 𝑡, i.e. 𝑥J + 𝑥; + ⋯+ 𝑥� I. 
In the general formula, the coefficient of binomial is in the form 
of  

I!
Io!Ip!..I�!

          

where 𝑛J, 𝑛;, … , 𝑛�  are non-negative integers and 𝑛J + 𝑛; + ⋯+

𝑛� = 𝑛. That form is called multinomial number and denoted by  
𝑛

𝑛J	𝑛; 	…	𝑛�  

Theorem 2.12 (Multinomial Theorem) 
Let n be positive integers. For all 𝑥J, 𝑥;, … , 𝑥� satisfies 

𝑥J + 𝑥; + ⋯+ 𝑥� I =
𝑛

𝑛J	𝑛; 	…	𝑛� 𝑥JIo𝑥;Ip … 𝑥�I� 

Where 𝑛J + 𝑛; + ⋯+ 𝑛� = 𝑛 
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Example 2.16 
The coefficient of 𝑥JD𝑥;𝑥D; in 2𝑥J − 3𝑥; + 5𝑥D L is  

6
3	1	2 (2D) −3 5; = −36000 

2.9. Inclusion-Exclusion Principle 

A motivating example: 
At AIHS (Australia International High School) there are 
_ 28 students in algebra class, 
_ 30 students in biology class, and 
_ 8 students in both classes. 
How many students are in either algebra or biology class? 

Solution : 
Let 𝐴 denote the set of students in algebra class and B denote 
the set of students in biology class. To find the number of 
students in either class, we first add up the students in each 
class: 

𝐴 + |𝐵| 
However, this counts the students in both classes twice. Thus we 
have to subtract them once: 

−|𝐴 ∩ 𝐵| 
This shows 

|𝐴 ∪ 𝐵| = 𝐴 + |𝐵| − |𝐴 ∩ 𝐵| 
|𝐴 ∪ 𝐵| = 28 + 30 − 8 = 50 

so there are 50 students in at least one of the two classes. In 
the above example, we firstly do addition or “inclusion” and next 
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do subtraction or “exclusion” The same reasoning works with 
three sets. 

From an observation of the favorite teams of students in 
SMA Negeri 5 Makassar, it is obtained that there are 
- 55 students who like either Real Madrid, Manchester City, or 

Schalke 
- 28 students who like Real Madrid 
- 30 students who like Manchester city 
- 24 students who like Schalke 
- 8 students who like both Real Madrid and Manchester City 
- 16 students like both Real Madrid and Schalke 
- 5 students like both Manchester City and Schalke 
- How many students who like Real Madrid, Manchester City, 

and Schalke? 
Solution: 
Let’s denote Real Madrid as R, Manchester City as M, and 
Schalke as S. Next, let 𝐴, 𝐵, and 𝐶 denote the set of students 
who like  R, M, and S respectively. Then 𝐴 ∪ 𝐵 ∪ 𝐶 is the set of 
students who like one of the three teams, 𝐴 ∩ 𝐵 is the set of 
students who like R and M,  	𝐴 ∩ 𝐶 is the set of students who 
like R and S, and 𝐵 ∩ 𝐶 is the set of students who like M and S 
To count the number of students who like all three teams, i.e. 
count|	𝐴 ∪ 𝐵 ∪ 𝐶|, we can first add all the number of students 
who like R, who like M, and who like S: 

𝐴 + 𝐵 + 𝐶  
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However, now we've counted the students who like two teams 
too many times. So we subtract out the students who like each 
pair of teams: 

𝐴 + 𝐵 + 𝐶 − |𝐴 ∩ 𝐵| − |𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| 
However, for students who like two teams, we've counted them 
twice, then subtracted them once, so they're counted once. But 
for students who like all three teams, we counted them 3 times, 
then subtracted them 3 times. So we counted them 0 time. Thus 
we need to add them again  

𝐴 + 𝐵 + 𝐶 − |𝐴 ∩ 𝐵| − |𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| + |𝐴 ∩ 𝐵 ∩ 𝐶| 
 
Thus 
 𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 + 𝐵 + 𝐶 − |𝐴 ∩ 𝐵| − |𝐴 ∩ 𝐶| − |𝐵 ∩ 𝐶| + |𝐴 ∩
𝐵 ∩ 𝐶|  
																55 = 28 + 30 + 24 − 8 − 16 − 5 + |𝐴 ∩ 𝐵 ∩ 𝐶| 
Thus  
	|𝐴 ∩ 𝐵 ∩ 𝐶| = 2 
 
Therefore, the number of students who like Real Madrid, 
Manchester City, and Schalke is 2. The same reasoning works 
with an arbitrary number of sets; we state the general result in 
the following theorem. 

  



Combinatorics 

	
	

	40 

Theorem 2.13 (Inclusion-Exclusion Principle) 
𝐴J ∪ 𝐴; ∪ …∪ 𝐴I

= 𝐴V −
J�V�I

𝐴V ∩ 𝐴X
J�V�X�I

+ 𝐴V ∩ 𝐴X ∩ 𝐴n − ⋯
J�V�X�n�I

+ −1 I 𝐴J ∩ 𝐴; ∩ …∩ 𝐴I  
 

Proof: 
We will prove the formula by showing that an element in the 
union is counted exactly once by the right-hand side of the 
equation. 
 

Suppose that a is a member of exactly 𝑟 of the sets 𝐴J, 𝐴;, … , 𝐴I. 
Where 1 ≤ 𝑟 ≤ 𝑛. This element is counted 𝐶 (𝑟, 1) times by 
|𝐴V|. It is counted 𝐶 (𝑟, 2) times by |𝐴V ∩ 𝐴X|. In general, it is 

counted 𝐶 (𝑟, 𝑚) times by the summation involving 𝑚 of the sets 
𝐴V . 
Thus, this element is counted exactly 𝐶 (𝑟, 1) - 𝐶 (𝑟, 2) + 𝐶 (𝑟, 
3) - ... + −1 jHJ𝐶(𝑟, 𝑟). times by the expression on the right-
hand side of this equation. Our goal is to evaluate this quantity. 
 

From binomial theorem, we have 𝐶	 𝑟, 0 − 𝐶 (𝑟, 1) + 𝐶 (𝑟, 2) - 
𝐶 (𝑟, 3) - ... + −1 jHJ𝐶 𝑟, 𝑟 = 0 
 

Hence, 1 = 𝐶	 𝑟, 0 = 𝐶 𝑟, 1 − 	𝐶 (𝑟, 2) + 𝐶 (𝑟, 3) - ... + 
−1 jHJ𝐶(𝑟, 𝑟). Therefore, each element in the union is counted 

exactly once by the expression on the right-hand side of the 
equation. 
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Example 2.17 
Find the number of positive integers less than or equal 

to 1000 that are divisible by 7, 10, or 15! 
Solution: 
For a positive integer 𝑘, let 𝐴n denote the set of integers in 
𝑟{1,2, … ,1000}; that are divisible by 𝑘. We want to find 
|𝐴K ∪ 𝐴Jt ∪ 𝐴J@|. Note that  

𝐴n =
1000
𝑘

 

Where 𝑦  denotes the greatest integer less than 𝑦. Indeed, the 
multiples of 𝑘. Note also that 𝐴n ∩ 𝐴� = 𝐴��T(n,�) since a number 
is divisible by both 𝑘 and 𝑙 if and only if it is divisible by lcm(𝑘, 𝑙). 
Using the property of Inclusion-Exclusion, we get 
 
𝐴K ∪ 𝐴Jt ∪ 𝐴J@  
 
= 𝐴K + 𝐴Jt + 𝐴J@ − |𝐴K ∩ 𝐴Jt| − |𝐴K ∩ 𝐴J@| − |𝐴Jt ∩ 𝐴J@| +

|𝐴K ∩ 𝐴Jt ∩ 𝐴J@| 
 
= 𝐴K + 𝐴Jt + 𝐴J@ − |𝐴Kt| − |𝐴Jt@| − |𝐴Dt| + |𝐴;Jt| 
 

= Jttt
K

+ Jttt
Jt

+ Jttt
J@

− Jttt
Kt

− Jttt
Jt@

− Jttt
Dt

+ Jttt
;Jt

 

 
= 142 + 100 + 83 – 14 – 9 – 33 + 4 
 
= 273 
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2.10. Derangements 

A derangement (or complete permutation) of a set is 
a permutation that leaves no element in its original position. Let 
three objects of A 1,2,3. When we permute A, we will obtain six 
kinds of permutations, namely : 
1, 2,3   2,1, 3   3,1, 2 
1,3, 2    2,3,1    3, 2,1 
Of the six permutations of A, there are only two derangements, 
i.e.  2,3,1 and 3,1, 2. In 2,3,1 for example, there is no element 
in its original position since 2 takes the 1’s position, 3 takes the 
2’s position, and 1 takes the 3’s position.  
 
A Motivating Example: Serving Meal Context 
As another illustration for derangement, suppose Hisyam, Zaki, 
and Uni, who live in different apartments, respectively order 
Burger, Cronut, and Steak in a chain restaurant. However, the 
deliverer of the restaurant delivers Cronut to Hisyam, Steak to 
Zaki, and Burger to Uni. Another derangement that could happen 
is that the deliverer delivers Steak to Hisyam, Burger to Zaki, and 
Cronut to Uni.  
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Figure 2.2. Cronut Cake 

 
In this section, we will discuss the number of derangements that 
is possible for 𝑛 objects. However, before it, let we try to find the 
number of derangements in the case of delivering meal above.  
 

Let us refer to a meal by a number and to a person by a number. 
Our task is to determine the number of ways to pair the meal 
and the persons so that no meal numbers match person 
numbers. When we have only 1 kind of meal ordered by 1 
person, there is no way to derange the meal, for there is one 
meal to deliver to one person. When we have two kinds of meals 
ordered by two persons, the deliverer may deliver meal #2 to 
person #1 and meal #1 to person #2.  
 

Now, let us denote burger as meal #1, cronut as meal #2, and 
steak as meal #3. Let us also denote Hisyam as person #1, 
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Zaki as person #2, and Uni as person #3. When we have those 
three meals, there are 3! = 6 ways to distribute them. The 
deliverer now writes the meal numbers in the order they are 
delivered, such as 1 3 2, indicating burger is delivered to Hisyam, 
steak is delivered to Zaki, and cronut is delivered to Uni.  
 

The 6 possible distributions for 3 meals are 
1  2  3    2  1  3   3 1 2 
1  3  2    2  3  1     3 2 1 
 

Suppose there is an additional person, namely Agus who orders 
Pizza in the same restaurant. For the purpose of efficiency, let we 
denote Agus as person #4 and Pizza as meal #4. 
 

We know there are 4! = 24 ways the deliverer could deliver the 
4 meals.  Rather than list the 24 cases, let us consider how the 
Inclusion-Exclusion Principle may help us. We seek the number 
of ways to place the numbers in the set {1,2,3,4} in line such 
that no value occurs in its natural position. Let 𝑋(1) represent the 
property that 1 is delivered to the right person when 1,2,3,4 are 
permuted. Then 𝑋 1 = 1.3! . The 1 represents the 1 way to 
place the 1 in its  natural position and the 3! shows the number 
of ways to permute the remaining 3 values. Note that we are not 
considering whether any of 2,3,4 wind up in their respective 
natural positions. We could argue similarly that 𝑋 2 = 𝑋 3 =

𝑋 4  . Therefore, there are 4.3! ways for a value to occur in its 
natural position. 
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About 𝑋 1 ∩ 𝑋 2  which means both 1 and 2 are delivered to 
the right persons,  there is 1 way to place 1,2 in their natural 
order, and then 2! ways to place the remaining values. This will 
be true for any pair of values we wish to restrict to their natural 
positions. How many pairs are there? This is just 𝐶(4,2) = 6. 
Therefore, there are 𝐶 4,2 2!  ways for two values to 
simultaneously occur in their natural positions. So, |𝑋 1 ∩ 𝑋 2 | 
= 𝐶 4,2 2! 
 
Then, for |𝑋 1 ∩ 𝑋 2 ∩ 𝑋 3 |, there is 1 way to place 1,2,3 in 
their natural order, and then 1! way to place the remaining value. 
This will be true for any set of three values we wish to restrict to 
their natural positions. How many 3-element sets are there? This 
is just 𝐶 4,3  = 4. Therefore, there are 𝐶 4,3 1! ways for three 
values to simultaneously occur in their natural positions. 
 
Finally, 𝑋 1 ⋀𝑋 2 ⋀		𝑋 3 ⋀𝑋 4 = 1, since there  is only one 
way for all 4 values to be in their natural positions. 
 

Now apply the Inclusion-Exclusion Principle : 
~𝑋 1 ⋀~𝑋 2 ⋀~𝑋 3 ⋀~𝑋 4 = 4! − 4 3! + 6 2! − 4 1! + 1

= 9 

In words, using the Inclusion Exclusion Principle, we are 
suggesting that to determine the number of derangements of the 
values 1,2,3,4, first calculate the number of permutations of those 
values (4!), subtract the number of ways to keep at least one 
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element in its natural position, add back the number of ways to 
keep at least two values in their natural positions, subtract the 
number of ways to keep at least three values in their natural 
positions, and finally add back the number of ways to keep all 
values in their natural positions. 
If we denote 𝐷(4) as a derangement of four objects, then 

                  𝐷 4 = ~𝑋 1 ⋀~𝑋 2 ⋀~𝑋 3 ⋀~𝑋 4  

																												= 4! − 4 3! + 6 2! − 4 1! + 1 

																										= 𝐶 4,0 4! − 𝐶 4,1 3! + 𝐶 4,2 2! − 𝐶 4,3 1!
+ 𝐶 4,4 0! 

																	=
4!
0! 4!

. 4! −
4!
1! 3!

. 3! +
4!
2! 2!

. 2! −
4!
3! 1!

. 1! +
4!
4! 0!

. 0! 

																	=
4!
0!
−
4!
1!
+
4!
2!
−
4!
3!
+
4!
4!

 

																	= 4! 1 −
1
1!
+
1
2!
−
1
3!
+
1
4!

 

																	= 9 

Therefore, the number of possible derangements, i.e. Hisyam, 
Zaki, Uni, and Agus don’t receive their own ordered meal is 9. 
Theorem 2.14 
For 

𝑛 ≥ 1, 𝐷I = 𝑛! 1 −
1
1!
+
1
2!
−
1
3!
+ ⋯+ −1 I 1

𝑛!
; 𝑛	𝜖	𝑁 
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Proof:  
Let Si be the set of permutations of n items which fix item i. Then 
the number of permutation  in k of the Si would be the 

permutations that fix k items. There are 𝑛
𝑘  ways to choose 

the k items to fix, and (n−k)! ways to arrange the other n−k items. 
Thus, the number of permutations that fix at least 1 item would 
be 

−1 nRJ 𝑛
𝑘 𝑛 − 𝑘 ! =

I

nyJ

(−1)nRJ
𝑛!
𝑘!

I

nyJ

 

Since there are n! permutations in total, the number of 
permutations that don't fix any items is 
 

								𝐷I = 𝑛! − 	 −1 nRJ 𝑛!
𝑘!

I

nyJ

 

= (−1)n
𝑛!
𝑘!

I

nyt

 

																																															= 𝑛! 1 −
1
1!
+
1
2!
−
1
3!
+ ⋯+ −1 I 1

𝑛!
 

 
Note that, the series of 𝑒RJ is  

𝑒RJ = 1 −
1
1!
+
1
2!
−
1
3!
+
1
4!
− ⋯ 

Therefore, we may write  
  

𝑒RJ =
𝐷I
𝑛!
+ (−1)IHJ

1
(𝑛 + 1)!

+ (−1)IH;
1

(𝑛 + 2)!
+ ⋯ 
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There are other properties of derangement as follows: 
1) 𝐷I = 𝑛 − 1 𝐷IRJ + 𝐷IR; ,			𝑛 = 3,4,5, …       (2.7) 

 
2) 𝐷I = 𝑛𝐷IRJ + (−1)I,						𝑛 = 2,3,4, …               (2.8) 
 
 
Proof : 
1) For any derangment (𝑗J, 𝑗;, … , 𝑗I)	 , we have 𝑗I ≠ 𝑛. Let 𝑗I =

𝑘, where 𝑘 ∈ 1, 2, … , 𝑛 − 1 . We now break the 
derangements on 𝑛  element is two cases 
Case 1: 𝑗n = 𝑛 (so 𝑘 and 𝑛 map to each other). By removing 
elements k and n from the permutation we have a 
derangement on n−2 elements, and so, for fixed k, there 
are Dn−2derangements in this case. 
Case 2: 𝑗n ≠ 𝑛. Swap the valued of 𝑗n and 𝑗I, so that we 
have a new permutation with jk=k and jn≠n. By removing 
element k we have a derangement on n−1 elements, and 
so, for fixed k, there are Dn−1 derangements in this case. 

 
Thus, with n−1 choices for k, we have, for n≥3, 
 

𝐷I = 𝑛 − 1 𝐷IRJ + 𝐷IR;  
The proof of the property number 2 is left to readers as an 
exercise. 
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Example 2.18 
Aulia, Budi, Catur, Dinda, and Eka are siblings. Each of the 
siblings has a toy which is different one to another. After playing 
with their own toy, a room in their house is messy because of 
the toys. Mr. Jumaris, as their father, wants to clean up the room 
by putting each toy to its box (each child has its own box for his 
toy). How many possible occurrence that Mr. Jumaris puts the 
toys of which there is no toy is put in its own box? 
 
Solution: 
The number of objects is 5. So the total derangements of five 
objects 𝐷@ is : 
 

𝐷@ = 5! 1 −
1
1!
+
1
2!
−
1
3!
+
1
4!
−
1
5!

= 44 

Or the value 𝐷@ can be obtained by using one of the properties 
of derangement formula, i.e. the equation (2.6) : 𝐷I =
𝑛 − 1 𝐷IRJ + 𝐷IR; ,			𝑛 = 3,4,5, … 

 

By substituting 𝑛	with 5, we get 

𝐷@ = 5 − 1 𝐷C + 𝐷D  

Since 𝐷C = 9 and 𝐷D = 2, then 

𝐷@ = 5 − 1 9 + 2 = 4 11 = 	44 
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Therefore, the number of total possibilities of which Mr. Jumaris 
put no toy in its own box is 44.  
 
2.11 Pigeonhole Principle 
Consider there are four pigeonholes and five pigeons. When the 
pigeons go to the pigeonholes, then there exist pigeonhole that 
contain at least two pigeons.  

 

The pigeonhole principle is sometimes useful in answering the 
question: is there an item having a given property? When the 
pigeonhole principle is successfully applied, the principle tells us 
only that the object exists; the principle will not tell us how to find 
the object or how many there are. We will discuss the first version 
of the pigeonhole principle.  
 

Pigeonhole Principle (First Form) : 
If n pigeons fly into k pigeonholes and k<n, some pigeonhole 
contains at least two pigeons.   
 

We note that the Pigeonhole Principle tells us nothing about how 
to locate the pigeonhole that contains two or more pigeons. It 
only asserts the existence of a pigeonhole containing two or 
more pigeons.  
To apply the pigeonhole principle, we must decide which objects 
will play the roles of the pigeons and which objects will play the 
roles of the pigeonholes. Our beginning examples illustrate the 
application.  
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Example 2.19 

Ten persons have first names Andi, Budi, and Charlie and last 
names Didi, Eman, and Fatur. Show that at least two persons 
have the same first and the last names. 

Solution: 

There are nine possible names, derived from 3; = 9,	for example, 
Andi Didi, Charlie Eman, Budi Fatur, etc, for the 10 persons. If 
we think of the person as pigeons and the names as 
pigeonholes, we can consider the assignment of names to 
people to be that of assigning pigeonholes to the pigeons. By 
the pigeonhole principle, some name (pigeonhole) is assigned 
to at least two persons (pigeons). 
 
The simplest form of the pigeonhole principle is the following 
fairly obvious assertion. 

Example 2.20 
If Messi has ten black socks and ten white socks, and he is picking 
socks randomly, how many socks, at least, he needs to take  to 
find a matching pair? 

Solution:  

He will only need to pick three to find a matching pair. The three 
socks (pigeons) can be one of two colors (pigeonhole). By the 
pigeonhole principle, at least two must be of the same color. 
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Another way of seeing this is by thinking sock by sock. If the 
second sock matches the first, then we are done. Otherwise, pick 
the third sock. Now the first two socks already cover both color 
cases. The third sock must be one of those and form a matching 
pair. 

Theorem 2.15 
If 𝑛	 + 	1 objects are distributed into 𝑛 boxes, then at least one 
box contains two or more of the objects. 
 
Proof : 
The proof is by contradiction. If each of the n boxes contains at 
most one 
of the objects, then the total number of objects is at most 1 +
1 + ⋯+ 1 𝑛	1𝑠 = 𝑛	. Since we distribute 𝑛 + 1 objects, some box 
contains at least two of the objects.  Notice that neither the 
pigeonhole principle nor its proof gives any help in finding a box 
that contains two or more of the objects. They simply assert that 
if we examine each of the boxes, we will come upon a box that 
contains more than one object. The pigeonhole principle merely 
guarantees the existence of such a box. Thus, whenever the 
pigeonhole principle is applied to prove the existence of an 
arrangement or some phenomenon, it will give no indication of 
how to construct the arrangement or find an instance of the 
phenomenon other than to examine all possibilities. 
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Notice also that the conclusion of the pigeonhole principle cannot 
be guaranteed if there are only 𝑛 (or fewer) objects. This is 
because we may put a different object in each of the 𝑛 boxes. 
Of course, it is possible to distribute as few as two objects among 
the boxes in such'a way that a box contains two objects, but 
there is no guarantee that a box will contain two or more objects 
unless we distribute at least 𝑛 + 1 objects. The pigeonhole 
principle asserts that, no matter how we distribute 	𝑛 + 1 objects 
among n boxes, we cannot avoid putting two objects in the same 
box. Instead of putting objects into boxes, we may think of 
coloring each object with one of n colors. The pigeonhole 
principle asserts that if 𝑛 + 1 objects are colored with n colors, 
then two objects have the same color. 

Example 2.21 
Among 13 people there are at least two who have their birthdays 
in the same month. 

Example 2.22 
There are n married couples. How many of the 2n people must 
be selected to guarantee that a married couple has been 
selected?  

Solution: 
To apply the pigeonhole principle in this case, think of n boxes, 
one corresponding to each of the n couples. If we select n + 1 
people and put each of them in the box corresponding to the 
couple to which they belong, then some box contains two 
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people; that is, we have selected a married couple. Two of the 
ways to select n people without getting a married couple are to 
select all the husbands or all the wives. Therefore, n + 1 is the 
smallest number that will guarantee a married couple has been 
selected. 
 

Pigeonhole Principle (Second Form): 
If 𝑓 is a function from a finite set 𝑋 to a finite set 𝑌 and 𝑋 >

𝑌 ,	then 𝑓 𝑥J = 𝑓 𝑥;  for some 𝑥J, 𝑥; ∈ 𝑋, 𝑥J ≠ 𝑥;. 

The second form of the pigeonhole can be reduced to the first 
form by letting 𝑋 be the set of pigeons and 𝑌 be the set of 
pigeonholes. We assign pigeon 𝑥 to pigeonhole 𝑓(𝑥). By the first 
form of the Pigeonhole Principle, at least two pigeons, 𝑥J, 𝑥; ∈ 𝑋, 
are assigned to the same pigeonhole; that is 𝑓 𝑥J = 𝑓 𝑥;  for 
some 𝑥J, 𝑥; ∈ 𝑋, 𝑥J ≠ 𝑥;. 

Our next example illustrates the use of the second version of the 
Pigeonhole Principle. 

Example 2.23 
An inventory in International Class Program consists of a list of 
89 items, each marked “available” or “unavailable”. There are 45 
available items. Show that there are at least two available items 
in the list exactly nine items apart. (For example, available items 
at positions 13 and 22 or positions 69 and 78 satisfy the 
condition).  
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Solution: 
Let 𝑎V denote the position of the ith available item. We must show 
that 𝑎V − 𝑎X = 9 for some i and j. Consider the numbers 

𝑎J,			𝑎; ,				…,				𝑎C@																																																										(2.9)  
    

and 
𝑎J + 9, 			𝑎; + 9,				 …,				𝑎C@ + 9																																				(2.10)									          

 
The 90 numbers in (2.9) and (2.10) have possible values only 
from 1 to 89. By the second form of the Pigeonhole Principle, 
two of the numbers must coincide. We cannot have two of (2.9) 
or two of (2.10) identical; thus some number in (2.9) is equal to 
some number in (2.10). Therefore, 𝑎V − 𝑎X = 9 for some i and j, 
as desired.  
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Exercises 2  

1. In the examination of Real Analysis conducted in 
Mathematics Department, there are 6  true - false questions. 
How many responses are possible ? 
 

2. There are six oranges and eight apples. How many non-
empty subsets that can be formed by the two kinds of those 
fruits?  
 

3. Four couples are sitting in a row. Find the number of 
arrangements in which no person is sitting next to his or her 
partner?. What if they are sitting in a circle? 

 
4. In how many ways a march leader arrange his team 

consisting of six men and five women so that, in one column 
march, no two men are together? 

 
5. Find the number of permutations of the letters of the word 

‘PARANGTAMBUNG’, in each of the following cases : 
(i) beginning with A and ending with R. 
(ii) vowels are always together. 
(iii) vowels are never together. 

 
6. “Warung Bu Bety” provides 3 kinds of vegetables, 2 kinds 

of fish and 2 types of rices. If Mr. Rahman wants 1 vegetable, 
1 fish and 1 rice, how many choices does he have ? 
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7. A group of 12 friends meet at a party. Each person shake 

hands once with all others. How many hand shakes will be 
there ? 

 

8. Use binomial theorem to prove that 

3I = 𝑛
𝑘 2n

I

nyt

 

9. In Serie-A league consisting of 38 matches in one season, 
how many different ways the team Inter Milan are there to 
have 20 wins, 12 draws, and 6 loses?  

	
10. How many integer solutions are there to: a + b + c + d = 

15, when a ≥ 3, b ≥ 0, c ≥ 2 and d ≥ 1 ? 
 

11. How many integer solutions are there to: a + b + c + d = 
15, when a ≥ --3, b ≥ 0, c ≥ -2 and d ≥ -1 ? 

 

12. Find the coefficient of 𝑥J;𝑥;D𝑥D𝑥C; in 𝑥J − 𝑥; + 2𝑥D − 2𝑥C �! 
 

13. At SMP Negeri 24 Makassar, there are 
- 44 students in either mathematics, biology, or physics 

class 
- 25 students in biology class 
- 23 students in physics class 
- 13 students in both mathematics and biology 
- 9 students in both biology and physics 
- 10 students in both algebra and physics 
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- 6 students in all three classes. 
How many students are in mathematics class? 
 

14. Use the principle of inclusion-exclusion to find the number 
of primes not exceeding 100! 

 

15.  A new employee checks the hats of n people at a 
restaurant, forgetting to put claim check numbers on the 
hats. When customers return for their hats, the checker gives 
them back hats chosen at random from the remaining hats. 
What is the probability that no one receives the correct hat? 

 

16.  Prove that 𝐷I is even if and only if n is odd! 
 

17.  Suppose that each person in a class A consisting 32 
students receives scholarship in January. Prove that at least 
two students receive scholarship on the same day! 

 

18.  Eighteen persons have first names Ayu, Bani, Cacha and 
last names Dian and Eput. Show that at least three persons 
have the same first and last names! 

 

19.  In a birthday party, with two or more people, show that there 
must be  at least two people who have the same number of 
friends.  
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Generating function is a very “beautiful” way to work with 
a sequence of numbers. In simple words, it transforms problems 
about sequences into problems about functions. 

We’ll begin this chapter by introducing the notion of 
ordinary generating function and next we’ll describe several 
operations involving generating function. 
 
3.1. Ordinary Generating Functions 
 Let (𝑎t, 𝑎J, 𝑎;, 𝑎D, … )	be infinite sequence of real 
numbers. Generating function of the sequence is the power 
series 

𝐺 𝑥 = 	 𝑎I𝑥I
�

Iyt

 

That generating function can also be written as  
𝐺 𝑥 = 𝑎t + 𝑎J𝑥+𝑎;𝑥; + 𝑎D𝑥D + ⋯. 

 

GENERATING FUNCTIONS
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If a sequence is finite, we can still construct a generating function 
by taking all the terms after the last to be zero. For a more 
convenient way, we’ll frequently indicate the correspondence 
between a sequence and its generating function with a double-
sided arrow as follows: 
 

(𝑎t, 𝑎J, 𝑎;, 𝑎D … ) ↔ 𝑎t + 𝑎J𝑥+𝑎;𝑥; + 𝑎D𝑥D + ⋯. 
 

For example, here are several sequences and their generating 
functions of the sequence: 
 
(0,0,0,0,…) 	↔ 0 + 0𝑥 + 0𝑥; + 0𝑥D + ⋯ = 0 
 
(3,2,1,0,0,…) ↔ 3 + 2𝑥 + 1𝑥; + 0𝑥D + 0𝑥C = 	3 + 2𝑥 + 1𝑥;	 
 
(1,3,3,1,0,0,0,0,…)  ↔ 1 + 3𝑥 + 3𝑥; + 𝑥D  
 
In the last form, we enable to change it into the form (1 + 𝑥)D 
 

Here, we may see that a generating function is a “formal” power 
series in the sense that we usually regard 𝑥 as a placeholder 
rather than a number. Only in rare cases will we actually evaluate 
a generating function by letting x take a real number value, so 
we generally ignore the issue of convergence. 
 

Recall the sum of an infinite geometric series is: 

1 + 𝑐 + 𝑐; + 𝑐D + ⋯ =
1

1 − 𝑐
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This equation does not hold when |𝑧| ≥ 1, but as remarked, we 
don’t mind with about convergence issues. This formula gives 
closed-form generating functions for a whole range of 
sequences. For example: 
 

(1,1,1,1,…) ↔  1 + 𝑥 + 𝑥; + 𝑥D + ⋯ = J
JR�

 
 

(1,0,1,0,…)				↔  1 + 𝑥; + 𝑥C + 𝑥L + ⋯ 				= J
JR�p

 

 

(1,-1,1,-1,…)	↔ 1 − 𝑥 + 𝑥; − 𝑥D + 𝑥C + ⋯ 		= J
JH�

 

 
3.2.  Some Operations on Ordinary Generating  
       Functions 
  
a. Scaling 

A generating function can be multiplied by a constant to 
scale every term in the associated sequence by the same 
constant. For example, Multiplying a generating function by a 
constant scales every term in the associated sequence by the 
same constant.  

 
Example 3.1 
 (1, 0, 1, 0, 1, 0,...) ↔  1 + 𝑥; + 𝑥C + 𝑥L … = J

JR�p
 

 

If we multiply the generating function by 2, we obtain 

 ;
JR�p

 = 2 + 2𝑥; + 2𝑥C + 2𝑥L + ⋯ 
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Which generates the sequence : 
 (2, 0, 2, 0, 2, 0,...) 
 

Theorem 3.1 
If 

 (𝑓t, 𝑓J, 𝑓;, …. )  ↔   𝐹(𝑥) 
Then  
 (𝑐𝑓t, c𝑓J, 𝑐𝑓;, …. ) ↔   𝑐. 𝐹(𝑥) 
Proof : 
 (𝑐𝑓t, c𝑓J, 𝑐𝑓;, …. ) ↔ 𝑐𝑓t + 𝑐𝑓J𝑥 + 𝑐𝑓;𝑥; + ⋯ 
          =  𝑐(𝑓t + 𝑓J𝑥 + 𝑓;𝑥; + ⋯ ) 
  = 𝑐	𝐹(𝑥) 
b. Addition 

We may also do addition on generating functions by adding 
the two sequences term by term.  

 

Example 3.2 
(1,1,1,1,…)  +  (1,-1,1,-1,…) ↔   

1
1 − 𝑥

+
1

1 + 𝑥
=

1 + 𝑥 + (1 − 𝑥)
1 − 𝑥 (1 + 𝑥)

=
2

1 − 𝑥;
 

 
Theorem 3.2 
If  (𝑓t, 𝑓J, 𝑓;, …. ) 	↔   𝐹(𝑥)  and 
(𝑔t, 𝑔J, 𝑔, …. ) 	↔   𝐺(𝑥) 
then  
(𝑓t + 𝑔t, 𝑓J + 𝑔J, 𝑓; + 𝑔;, …. ) ↔ 𝐹 𝑥 + 𝐺(𝑥) 
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Proof : 
(𝑓t + 𝑔t, 𝑓J + 𝑔J, 𝑓; + 𝑔;, …. ) ↔  (𝑓I+𝑔I)𝑥I�

Iyt  
   
    = (𝑓I𝑥I) + (𝑔I𝑥I)�

Iyt
�
Iyt  

 
    = 𝐹 𝑥 + 𝐺(𝑥) 
c. Right Shifting 
 We may add k leading terms in a sequence 
 
Example 3.3 
 

(1,1,1,1,…) ↔  J
JR�

 
For that sequence, we may right-shift it  by adding k leading 
zeros: 
(0,0,0,0,…1,1,1,1,…) ↔  𝑥n + 𝑥nHJ + 𝑥nH;+𝑥nHD + ⋯ 
																																																																= 𝑥n(1 + 𝑥 + 𝑥; + 𝑥D + ⋯ ) 

=
𝑥n

1 − 𝑥
 

 
Theorem 3.3 
If  

 (𝑓t, 𝑓J, 𝑓;, …. )  ↔   𝐹(𝑥) 
Then 
(0,0,0,0,…0,	𝑓t, 𝑓J, 𝑓;,…) ↔   					𝑥n𝐹(𝑥)     
We let the readers to prove the theorem 3.3 
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d. Multiplication 
Multiplication can also be performed on generating 
functions.  
 

Theorem 3.4 
If 𝑎t, 𝑎J, 𝑎;, 𝑎D, … ↔ 	𝐴(𝑥)	 and 𝑏t, 𝑏J, 𝑏;, 𝑏D, … ↔ 	𝐵(𝑥) 
Then 𝑐t, 𝑐J, 𝑐;, 𝑐D, …   ↔    𝐴(𝑥) ∙ 𝐵(𝑥) 
where 𝑐I = 𝑎t𝑏I + 𝑎J𝑏IRJ + 𝑎;𝑏IR; + ⋯+ 𝑎I𝑏t 
 
Proof: 
Let  𝐶 𝑥 = 𝐴 𝑥 ∙ 𝐵 𝑥 = 𝑐I𝑥I�

Iyt  
To evaluate the product 𝐴 𝑥 ∙ 𝐵 𝑥 , it can be used a table to 
list all the cross-terms from the multiplication of the sums: 

Table 4.1. The croos-terms product of 𝐴 𝑥 ∙ 𝐵 𝑥  

 
Notice that all terms involving the same power of 𝑥 lie on a /- 
sloped diagonal. Collecting these terms together, we find that the 
coefficient of 𝑥I in the product is the sum of all the terms on the 
(𝑛 + 1)st diagonal, i.e. 

𝑎t𝑏I + 𝑎J𝑏IRJ + 𝑎;𝑏IR; + ⋯+ 𝑎I𝑏t 
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&$#$								&$!"#$						&$!$#%								&$!%#'	 				…	 									
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e.  Differentiation and Integration 
We may take the derivative of a generating function.  

Example 3.4 
𝑑
𝑑𝑥

1 + 𝑥 + 𝑥; + 𝑥D + 𝑥C + ⋯ = 	
𝑑
𝑑𝑥

1
1 − 𝑥

	 

  

							1 + 2𝑥 + 3𝑥; + 4𝑥D + ⋯ = 	
1

(1 − 𝑥);
 

  

        (1,2,3,4, … ) ↔	 J
(JR�)p

 

In general, differentiating a generating function has two effects on 
the corresponding sequence: each term is multiplied by its index 
and the entire sequence is shifted left one place. 
 
Theorem 3.5 
If  
(𝑓t, 𝑓J, 𝑓;, …. )  ↔   𝐹(𝑥)  
Then 
(𝑓J, 2𝑓;, 3𝑓D, …. )  ↔   𝐹�(𝑥) 
 
Proof: 
(𝑓J, 2𝑓;, 3𝑓D, …. ) ↔				 𝑓J + 2𝑓;𝑥 + 3𝑓D𝑥; + ⋯ 

=
𝑑
𝑑𝑥

(𝑓t + 𝑓J𝑥 + 𝑓;𝑥; + 𝑓D𝑥D … ) 

																																									=
𝑑
𝑑𝑥

𝐹(𝑥) 

The Derivative Rule is very useful. In fact, there is frequent, 
independent need for each of differentiation’s two effects, 
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multiplying terms by their index and left-shifting one place. 
Typically, we want just one effect and must somehow cancel out 
the other. For example, let’s try to find the generating function for 
the sequence of squares, (0, 1, 4, 9, 16, …. ). If we could start with 
the sequence (1,1,1,1,…) multiply each term by its index two 
times, then we’d have the desired result: 
(0, 0 ∙ 	1 ∙ 1, 2 ∙ 2, 3 ∙ 3, … )  = (0, 1, 4, 9, …. ) 
 

A challenge is that differentiation not only multiplies each term by 
its index, but also shifts the whole sequence left one place. 
However, the Right-Shift Rule  tells how to cancel out this 
unwanted left-shift: multiply the generating function by x. Our 
procedure, therefore, is to begin with the generating function for 
(1,1,1,1,…), differentiate, multiply by x, and then differentiate and 
multiply by x once more. 

(1,1,1,1,…)  		↔ 			 J
JR�

 

(1,2,3,4,…)			↔ 		 �
��

J
JR�

 = J
(JR�)p

 

(0,1,2,3,…)				↔ 		𝑥	 J
(JR�)p

= 	 �
(JR�)p

 

(1,4,9,16,…)   ↔		 �
��

�
(JR�)p

= JH�
(JR�)q

 

(0, 1, 4, 9, …. ) ↔ 		𝑥 JH�
(JR�)q

= �(JH�)
(JR�)q

 

Thus the generating function for squares is : 
𝑥(1 + 𝑥)
(1 − 𝑥)D

 

As we may expect, we can also perform integration on generating 
functions. 
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Example 3.5 
(0,1,− J

;
,	J
D
,	− J

C
…) 		↔ 		𝑥 − J

;
𝑥; + J

D
𝑥D − J

C
𝑥C … 

= (1 − 𝑥 + 𝑥; − 𝑥D + ⋯ )𝑑𝑥 

=
𝑑𝑥

(1 + 𝑥)
 

= ln 1 + 𝑥 + 	𝐶  
To find the constant C, we put in x=0 to get C=G(0). If we write 
𝐺 𝑥 = 𝑎t + 𝑎J𝑥+𝑎;𝑥; + 𝑎D𝑥D + ⋯. 
Then G(0) is simply equal to 𝑎t, which is 0 in this case. Hence 
the answer is 

𝐺 𝑥 = ln(1 + 𝑥) 
 
3.3. Finding the Coefficient of Generating Functions 

Generating functions are particularly useful for solving 
counting problems. In particular, problems involving choosing 
items from a set often lead to nice generating functions by letting 
the coefficient of 𝑥I

  
be the number of ways to choose n items. 

Consider the following sequence and its generating function : 

𝑘
0 , 𝑘1 , 𝑘2 , … , 𝑘𝑘 , 0,0,0, …  ↔ 𝑘

0 + 𝑘
1 𝑥 + 𝑘

2 𝑥; + ⋯+

𝑘
𝑘 𝑥n 

Here, we can see that the coefficient of, for example, 𝑥; is 𝑘
2  

that is the number of ways to choose 2 items from a set with 𝑘 

elements. Thus, the coefficient of 𝑥I in 1 + 𝑥 n is 𝑘𝑛 . Similarly, 

the coefficient of 𝑥nHJ
 
is the number of ways to choose 𝑘 + 1 

items from a size k set, which is zero.  
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Some motivating examples : 

• Suppose there is a single-element set {𝑎J}. Then the 
generating function for the number of ways to select n 
elements from this set is simply 1	+	𝑥: we have 1 way to 
select zero elements, 1 way to select one element, and 0 
ways to select more than one element. Similary the number 
of ways to select n elements from the set {𝑎;}is also given 
by the generating function 1	+	𝑥.  

• To find the generating function for the number of ways to 
select n elements from the {𝑎J, 𝑎;} is multiplying the 
generating function for choosing from each set, i.e. 
 
(1 + 	𝑥).(1 + 	𝑥)     =(1 + 	𝑥);      = 1 + 	2𝑥 + 𝑥; 
 
 

 
Sure enough, for the set {𝑎J, 𝑎;}, we have 1 way to select 
zero elements, 2 ways to select one element, 1 way to select 
two elements, and 0 ways to select more than two elements.   
Repeated application of this rule gives the generating 
function for selecting n items from a k-element set {𝑎J, 𝑎;, 
...., 𝑎n}: 
 

(1 + 	𝑥)  		(1 + 	𝑥)   ...  (1 + 	𝑥)   = (1 + 	𝑥)n 
 
 

Gen	func	for	
Selecting	an	𝑎J		
	

Gen	func	for	
Selecting	an	𝑎;		
	

Gen	func	for	
Selecting	 an	
{𝑎J, 𝑎;}		
	

Gen	func	for	
Selecting	an	𝑎J		
	

Gen	func	for	
Selecting	an	𝑎J		
	

Gen	func	for	
Selecting	an	𝑎n 		
	

Gen	func	for	
Selecting	an	{𝑎J, 𝑎;,	....,	𝑎n}		
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• There is a boy named Anto. He has 3 shirts and 2 trousers. 
That Anto owns 3 shirts means he has 1 way to choose no 
shirt and 3 ways to choose 1 shirt. Therefore, the model of 
the generating function of this context is 1	+	3𝑥. Similarly, 
that Anto owns 2 trousers means he has 1 way to choose 
no trouser and 2 ways to choose 1 trouser. Then, the model 
of the generating function of that case is 1 +	2𝑥. When we 
seek for the combination in which Anto uses shirt or trouser, 
we may multiply the models of the generating functions each 
other that is 
1 + 3𝑥 1 + 2𝑥  = 1 + 5𝑥 + 6𝑥; meaning that he has 1 way 

to choose neither shirt nor trouser, 5 ways to exactly choose 
either one shirt or one trouser and 6 ways to choose both 
one shirt and one trouser.   

 

This section is also about developing algebraic techniques 
for calculating the coefficients of generating functions. All 
methods seek to reduce a given generating function to a simple 
binomial –type generating function, or a product of binomial-type 
generating functions. The followings are several polynomial 
identities and polynomial expantions :  

1. JR�|�o

JR�
 = 1 + 𝑥 + 𝑥; + ⋯+ 𝑥I 

 

2. J
JR�

 = 1 + 𝑥 + 𝑥; + ⋯ 
 

3. 1 + 𝑥 I = 1 + 𝑛
1 𝑥 + 𝑛

1 𝑥; + ⋯+ 𝑛
𝑟 𝑥j + ⋯+ 𝑛

𝑛 𝑥I 
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4. 1 − 𝑥T I = 1 − 𝑛
1 𝑥T + 𝑛

2 𝑥;T + ⋯+ −1 j 𝑛
𝑟 𝑥jT +

⋯+ −1 I 𝑛
𝑛 𝑥IT 

 

5. J
JR� | = 𝑥V�

Vyt
I
= 𝑛 + 𝑖 − 1

𝑖 𝑥V�
Vyt  

 

6. if ℎ 𝑥 = 𝑓 𝑥 𝑔(𝑥), where 𝑓 𝑥 = 𝑎t + 𝑎J𝑥+𝑎;𝑥; + 𝑎D𝑥D + ⋯ 
and 
𝑔 𝑥 = 𝑏t + 𝑏J𝑥+𝑏;𝑥; + 𝑏D𝑥D + ⋯ 
Then ℎ 𝑥 = 𝑎t𝑏t + 𝑎J𝑏t + 𝑎t𝑏J 𝑥 + 𝑎;𝑏t + 𝑎J𝑏J +
𝑎t𝑏; 𝑥; + ⋯+ 𝑎j𝑏t + 𝑎jRJ𝑏J + 𝑎jR;𝑏; + ⋯+ 𝑎t𝑏j 𝑥j + ⋯ 
 

7. The coefficient of 𝑥j in 1 + 𝑥 + 𝑥; + ⋯ I is 𝐶 𝑟 + 𝑛 −

1, 𝑟 = 𝑟 + 𝑛 − 1
𝑟 	

Here are some proofs of the polynomial identities: 
1. 1 + 𝑥 + 𝑥; + ⋯+ 𝑥I 1 − 𝑥  

= 1 + 𝑥 + 𝑥; + ⋯+ 𝑥I + −𝑥 − 𝑥; − ⋯𝑥I − 𝑥IHJ  
= 1 − 𝑥IHJ 
By dividing both sides with 1 − 𝑥 , we get the identitiy 1. 
 

2. If n is made infinitely large, so that  1 + 𝑥 + 𝑥; + ⋯+ 𝑥I                                   
becomes the infinite series 1 + 𝑥 + 𝑥; + ⋯  then the 
multiplication process will yield a power series in which the 
coefficient of each 𝑥n, 𝑘 > 0  is zero. We conclude that  
1 + 𝑥 1 + 𝑥 + 𝑥; + ⋯+ 𝑥I = 1               

By dividing both sides, we obtain the identitiy 2. 
The identity 3 is binomial coefficient, which was explained in the 
chapter 2.  Meanwhile the identity 4 is the application of the 
binomial coefficient by replacing 𝑥 in the identity 3 with 𝑥T.  

For the identity 5, 1 − 𝑥 RI = J
JR�

I
= 1 + 𝑥 + 𝑥; + ⋯ I 
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Since J
JR�

= 1 + 𝑥 + 𝑥; + ⋯  

Let us determine the coefficient 𝑥j in the identity 7 by counting 
the number of formal products whose sum of exponents is r, if 
ei represents the exponent of the ith term in a formal product , 
the the number of formal products 𝑥�o𝑥�p𝑥�q … 𝑥�| whose 
exponents sum to r is the same as the number of integer solution 
to the equation 
𝑒J + 𝑒; + 𝑒D + ⋯+ 𝑒I = 𝑟, 𝑒V ≥ 0 
In the chapter 2, we have explained that the number of 
nonnegative integers solutions to this equation is 𝐶 𝑟 + 𝑛 − 1, 𝑟 , 
so the coefficient 𝑥j in the identity 7 is 𝐶 𝑟 + 𝑛 − 1, 𝑟 =
𝑟 + 𝑛 − 1

𝑟 . This verifies identity 5.  

Example 3.6 
Find the coefficient of 𝑥JL in (𝑥; + 𝑥D + 𝑥C + ⋯ )@ 
Solution: 
To simplify the expression, we extract 𝑥; from each polynomial 
factor and then apply the identity 2. 

(𝑥; + 𝑥D + 𝑥C + ⋯ )@ = 𝑥; 1 + 𝑥 + 𝑥; + ⋯ @ 
																																						= 𝑥Jt(1 + 𝑥 + 𝑥; + ⋯ )@ 

	= 𝑥Jt J
JR� �  

Thus the coefficient of 𝑥JL in (𝑥; + 𝑥D + 𝑥C + ⋯ )@ is the 

coefficient of 𝑥JL in 𝑥Jt J
JR� � (i.e. the 𝑥L term in 1 − 𝑥 R@ is 

multiplied by 𝑥Jt to become the 𝑥JL in 𝑥Jt J
JR� � ).  

From identity 5, we see that the coefficient of  𝑥L in 1 − 𝑥 R@ is 
6 + 5 − 1

6 = 210
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Exercises 3 
1. Let 𝑝 = 1	 + 𝑥 + 𝑥; + 𝑥D, 𝑞 = 1	 + 𝑥 + 𝑥; + 𝑥D + 𝑥C, and 𝑟 = 

J
JR�

. 

a. Find the coefficient of 𝑥D in 𝑝;; in 𝑝D; in 𝑝C 

b. Find the coefficient of 𝑥D in 𝑞;; in 𝑞D; in 𝑞C 

c. Find the coefficient of 𝑥D in 𝑟;; in 𝑟D; in 𝑟C 

d. Give a simple explanation for the fact that 𝑝, 𝑞,	and 𝑟 all 
gave the same answers? 

e. Repeat the problem of 1.a, 1.b, and 1.c to but the 
instruction is finding the coefficient of 𝑥C 
 

2. Find the coefficient of 𝑥;in each of the following. 

a. 2	 + 𝑥 + 𝑥; 1	 + 2𝑥 + 𝑥; 1	 + 𝑥 + 2𝑥;  
b. 2	 + 𝑥 + 𝑥; 1	 + 2𝑥 + 𝑥; ; 1	 + 𝑥 + 2𝑥; D 
c. 𝑥 1 + 𝑥 CD(2 − 𝑥)@ 

 
3. Find the coefficient of 𝑥;Jin 𝑥; + 𝑥D + 𝑥C + 𝑥@ + 𝑥L �  

 
4. Find the coefficient of 𝑥@in the following functions: 

a. 𝑓 𝑥 = (1 − 2𝑥)R� 
b. 𝑔 𝑥 = (1 + 𝑥 + 𝑥; + ⋯ )R� 

 
5. How many ways in distributing 25 identical balls into 7 

different boxes, if the first box can be filled at most 10 balls 
and the other balls can be put in the remain 6 boxes ? 
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4.1. Introduction 

”Sometimes we value someone based only on other’s 
perspective, however, it is good when we value someone after 
being close with him” 

The quote above is related to the material in this chapter, 
i.e. recurrence relation. Specifically, we will show how to 
determine a specific term of a sequence after recognizing several 
preceding terms. A recurrence relation for the sequence {𝑎I} is 
an equation that expresses 𝑎I in terms of one or more of the 
previous terms of the sequence, namely, 𝑎J, 𝑎;, …, 𝑎IRJ, for all 
integers n with  n ³ 𝑛t, where 𝑛t is a non-negative integer. To 
completely describe the sequence, the first few values are 
needed, where few" depends on the recurrence. These are 
called the initial conditions. When we are given a recurrence 
relation and initial conditions, then you can write down as many 
terms of the sequence we please: just keep applying the 
recurrence. For example, 𝑎t = 𝑎J = 1, 𝑎I = 𝑎IRJ + 𝑎IR;, 𝑛 ≥ 2, 

RECURRENCE RELATION
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defines the Fibonacci Sequence 1,1,2,3,5,8,13,... where each 
subsequent term is the sum of the preceding two terms.    

A sequence is called a solution of a recurrence relation 
if it terms satisfy the recurrence relation. In other words, a 
recurrence relation is like a recursively defined sequence, but 
without specifying any initial values (initial conditions). Therefore, 
the same recurrence relation can have (and usually has) multiple 
solutions. If both the initial conditions and the recurrence relation 
are specified, then the sequence is uniquely determined.  

Consider the recurrence relation  𝑎I = 2𝑎IRJ − 𝑎IR;	for n 
= 2, 3, 4, … . The sequence  𝑎I = 3𝑛 is a solution of the 
recurrence relation since for 𝑛 ≥ 2 we see that 2𝑎IRJ − 𝑎IR; =
2 3 𝑛 − 1 − 3 𝑛 − 2 = 3𝑛 = 𝑎I. In addition, the sequence 𝑎I =
5, is a solution of the recurrence relation since for 𝑛 ≥ 2, 2𝑎IRJ −
𝑎IR; = 2.5 − 5 = 𝑎I. 
 
Example 4.1 

Fira deposits Rp 10.000.000,- in a savings account at a bank 
yielding 5% per year with interest compounded annually. How 
much money will be in the account after 30 years? 
 

Solution: 
Let 𝑃I denote the amount in the account after n years. Based on 
the condition, we can state 𝑃I in the term of 𝑃IRJ by deriving the 
following recurrence relation 
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𝑃I = 𝑃IRJ + 0,05𝑃IRJ = 1,05𝑃IRJ. 
The initial condition is 𝑃t = 10.000 
Then we have: 
𝑃J = 1,05𝑃t 
𝑃; = 1,05𝑃J = 1,05 ;𝑃t 
𝑃D = 1,05𝑃; = 1,05 D𝑃t 
... 
𝑃I = 1,05𝑃IRJ = 1,05 I𝑃t 

We now have a formula to calculate 𝑃I  for any natural 
number n and can avoid the iteration. So the value of 𝑃Dt 
denoting the amount of money after 30 years is  
𝑃Dt = 1,05 Dt10.000.000 = 43.219.420 
 

4.2.  Solving Recurrence Relation 

On this section we discuss how to obtain the solution of linear 
recurrence relation. There are two reasons on the selection of 
linear recurrence relation. First, it generally has systematic steps 
to solve. Secondly, it often occurs in modelling of several 
problems. 

4.2.1. Solving Homogeneous Linear Recurrence Relation with 
Constant Coefficient 

Linear Recurrence Relation (LRR) of degree k with 
constant coefficient is a recurrence relation of the form  
 
𝑎I = 𝑐J𝑎IRJ + 𝑐;𝑎IR; + ⋯+ 𝑐n𝑎IRn + 𝑓 𝑛 															(4.1)  
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where 𝑐J, 𝑐;, … , 𝑐n are real numbers, and 𝑐n ≠ 0. 
Meanwhile 𝑓(𝑛) is a function of 𝑛. 
The recurrence relation in the definition is linear since the right-
hand side is a sum of multiples of the previous terms of the 
sequence. On this section, we firstly discuss LRR which is 
homogeneous.  

Linear Homogeneous Recurrence Relation (LHRR) with 
constant coefficient is a linear recurrence relation in the equation 
4.1 with 𝑓 𝑛 = 0. So it is written in the form : 𝑎I = 𝑐J𝑎IRJ +

𝑐;𝑎IR; + ⋯+ 𝑐n𝑎IRn. It is called homogeneous since no term 
occur that are not multiples of the 𝑎Xs. The coefficients of the 
terms of the sequence are all constants, rather than functions that 
depend on n. The degree is k because 𝑎I	is expressed in terms 
of the previous k terms of the sequence. In other words, the 
order of a recurrence relation is the di_erence between the 
greatest and lowest sub-scripts of the terms of the sequence in 
the equation. 

To understand comprehensively about the linearity, 
homogenity, and degree concepts, we provide several examples: 

Example  4.2 

• The recurrence relation 𝑃I = 1,05𝑃IRJ is a linear 
homogeneous recurrence relation of degree one. 

• The recurrence relation 𝑓I = 𝑓IRJ + 𝑓IR; is a linear 
homogeneous recurrence relation of degree two. 

• The recurrence relation 𝑎I = 𝑎IRJ + 𝑎;IR; is not linear. 
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• The recurrence relation 𝐸I = 𝐸IRJ + 1 is not homogeneous.  

• The recurrence relation 𝐷I = 𝐷IRJ does not have constant 
coefficients. 

 

The basic approach for solving LHRR is to look for 
solutions of theform 𝑎I = 𝑟I, where 𝑟 is a constant. Note that 
𝑎I = 𝑟I is a solution of the recurrence relation  

𝑎I = 𝑐J𝑎IRJ + 𝑐;𝑎IR; + ⋯+ 𝑐n𝑎IRn 
if and only if  

𝑟I = 𝑐J𝑟IRJ + 𝑐;𝑟IR; + ⋯+ 𝑐n𝑟IRn 
When both sides of late equation are divided by 𝑟IRn 

and the right-hand side is subtracted from the left, we obtain the 
equivalent equation 
 

𝑟n − 𝑐J𝑟nRJ + 𝑐;𝑟nR; + ⋯+ 𝑐nRJ𝑟 − 𝑐n = 0, 

which is called the characteristic equation of the 
recurrence relation. The solutions of this equation are called the 
characteristic roots of the recurrence relation. 
We will first develop results that deal with LHRR with constant 
coefficients of degree two. Then corresponding general results 
when the degree may be greater than two will be stated. 

Theorem 4.1 
Let 𝑐J and 𝑐; be real numbers. Suppose that 𝑟; − 𝑐J𝑟 −

𝑐; = 0 has two distinct roots 𝑟J and 𝑟;. Then the sequence {𝑎I} 
is a  a solution of the recurrence relation 𝑎I = 𝑐J𝑎IRJ + 𝑐;𝑎IR; if 
and only if 𝑎I = 𝛼J𝑟JI + 𝛼;𝑟;I 
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for 𝑛	 = 	0,1,2, . ..  where 𝛼J and 𝛼; are constants. 

Proof: 
It should be firstly shown that if 𝑟J and 𝑟;are the root of 

the characteristic equation, and 𝛼J and 𝛼; are constants, then 
the sequence {𝑎I} with  𝑎I = 𝛼J𝑟JI + 𝛼;𝑟;I is a solution of he 
recurrence relation. Then, it must be shown that if the sequence 
{𝑎I} is a solution, then 𝑎I = 𝛼J𝑟JI + 𝛼;𝑟;I for some constants 𝛼J 
and 𝛼;. Now we will show that  𝑎I = 𝛼J𝑟JI + 𝛼;𝑟;I is a solution 
of the recurrence relation. Since 𝑟J and 𝑟; are roots of 𝑟; − 𝑐J𝑟 −
𝑐; = 0, it follows that 𝑟J; = 𝑐J𝑟J + 𝑐;, and 𝑟;; = 𝑐J𝑟J + 𝑐;. 

From these equations, we see that 
𝑐J𝑎IRJ + 𝑐;𝑎IR; = 𝑐J 𝛼J𝑟JIRJ + 𝛼;𝑟;IRJ + 𝑐; 𝛼J𝑟JIR; + 𝛼;𝑟;IR;  

																		= 𝛼J𝑟JIR; 𝑐J𝑟J + 𝑐; + 𝛼;𝑟;IR; 𝑐J𝑟; + 𝑐;  
= 𝛼J𝑟JI + 𝛼;𝑟;I 
= 𝑎I 

To show that every solution {𝑎I} of the recurrence 
relation 𝑎I = 𝑐J𝑎IRJ + 𝑐;𝑎IR; has 𝑎I = 𝛼J𝑟JI + 𝛼;𝑟;I for 𝑛	 =
	0,1,2, . ..	for some constants 𝛼J and 𝛼;, suppose {𝑎I} is a solution 
of the recurrence relation, and the initial conditions 𝑎t = 𝐶t and 
𝑎J = 𝐶J hold.  

It will be shown that there are constants 𝛼J and 𝛼; so 
that the sequence {𝑎I} with 𝑎I = 𝛼J𝑟JI + 𝛼;𝑟;I satisfies these 
same initial conditions. 
This requires that  
𝑎t = 𝐶t = 𝛼J + 𝛼; and 𝑎J = 𝐶J = 𝛼J𝑟J + 𝛼;𝑟; 
From these equations it follows that 
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𝛼J = 𝐶J − 𝐶t𝑟; / 𝑟J − 𝑟; , 𝛼; = 𝐶t𝑟J − 𝐶t / 𝑟J − 𝑟; , 
where these expressions for 𝛼J and 𝛼; depend on the fact that 
𝑟J ≠ 𝑟; 
since this recurrence relation and these initial conditions uniquely 
determine the sequence, it follows that 𝑎I = 𝑎I = 𝛼J𝑟JI + 𝛼;𝑟;I. 

Example 4.3 
What is the solution of the recurrence 𝑎I = 𝑎IRJ + 2𝑎IR; 

with 𝑎t = 2 and 𝑎J = 7? 

Solution: 
The characteristic equation of the recurrence relation is 𝑟; − 𝑟 −
2 = 0  
Its roots are 𝑟 = 2 and 𝑟 = −1.   
Hence, the sequence {𝑎I} is a solution to the recurrence relation 
if and only if: 𝑎I = 𝛼J2I + 𝛼; −1 I, for some constants 𝛼J and 
𝛼;. 
Given the equation 𝑎I = 𝛼J2I + 𝛼; −1 I and the initial conditions 
𝑎t = 2 and 𝑎J = 7, it follows that 
𝑎t = 2 = 𝛼J + 𝛼;   
𝑎J = 7 = 𝛼J. 2 + 𝛼;. (−1) 
The solution of the equation system is 𝛼J = 3 and 𝛼; = −1. 
Therefore, the solution to the recurrence relation and initial 
conditions is the sequence {𝑎I} with 
𝑎I = 3. 2I − −1 I . 
Check: We can check our answer quickly and easily. The 
recurrence formula gives us 
𝑎; = 𝑎J + 2𝑎t = 7 + 2.2 = 11 
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𝑎D = 𝑎; + 2𝑎J = 11 + 2.7 = 25 
𝑎C = 𝑎D + 2𝑎; = 25 + 2.11 = 47 
Based on the solution 𝑎I = 3. 2I − −1 I , it appears that the 
sequence is indeed giving us numbers {2,7,11,25,47,...}. So the 
formula of the solution seems to be correct.   
 

Example 4.4 
Solve the recurrence relation satisfied by the Fibonacci 
sequence: 

2    ,21 += naaa nnn ,   with 00=a   and    11=a   

Solution: 
The characteristic equation of the recurrence relation 

012 =rr  and its characteristic roots are 

2
51   ,

2
51

21 =
+

= rr . 

Therefore 

𝑎I = 𝛼J
1 + 5
2

¢

+ 𝛼;
1 + 5
2

¢

 

Substituting the initial conditions we get a system of linear 
equation which are uniquely solvable giving 

𝛼J =
J
@
 , 𝛼; = − J

@
. 

The theorem 4.1 does not apply when there is one characteristic 
root of multiplicity two. This case can be handled using the 
following theorem. 
Recurrence relation with degree k having k characteristic roots 
𝑟J, 𝑟;, … , 𝑟n  of which 𝑟J ≠ 𝑟; ≠ ⋯ ≠ 𝑟n, has general solution: 

𝑎I = 𝛼J𝑟JI + 𝛼;𝑟;I + ⋯+ 𝛼n𝑟nI 
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Theorem 4.2 
Let 𝑐J and 𝑐; be real numbers with 𝑐; ≠ 0 . Suppose that 

𝑟; − 𝑐J𝑟 − 𝑐; = 0 has only one root 𝑟t. A sequence {𝑎I} is a 
solution of the recurrence relation 𝑎I = 𝑐J𝑎IRJ + 𝑐;𝑎IR; if and 
only if 𝑎I = 𝛼J𝑟tI + 𝛼;𝑛𝑟tI for 𝑛	 = 	0,1,2, . ..  where 𝛼J and 𝛼; are 
constants. 

Example 4.5 
What is the solution of the recurrence relation  

𝑎I = 6𝑎IRJ − 9𝑎IR; 
with initial conditions 𝑎t = 1 and 𝑎J = 6? 
 

Solution:  
The only root of 𝑟; − 6𝑟 + 9	is 𝑟 = 3. Hence the solution to this 
recurrence relation is 𝑎I = 𝛼J3I + 𝛼;𝑛3I for some constants 𝛼J 
and 𝛼;. Using the initial conditions, it follows that 𝛼J = 𝛼; = 1 . 
 

Recurrence relation with degree k having one root 𝑟t (with 
multiplicity k) has general solution:  

𝑎I = 𝛼J𝑟tI + 𝛼;𝑛𝑟tI + 𝛼D𝑛;𝑟tI …+ 𝛼n𝑛nRJ𝑟tI 
 
4.2.2. Solving Inhomogeneous Linear Recurrence Relation with 

Constant Coefficient 

Inhomogeneous linear recurrence relation with constant 
coefficient is a recurrence relation of the form of 
  𝑎I = 𝑐J𝑎IRJ + 𝑐;𝑎IR; + ⋯+ 𝑐n𝑎IRn + 𝑓 𝑛 , where 𝑐n ≠ 0 and 
𝑓 𝑛 ≠ 0. 
It includes k initial conditions and for 1 ≤ 𝑖 ≤ 𝑘, 𝑐V is constant. 
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Frequently, we denote the homogeneous part of the 
inhomogeneous recurrence relation as “the associated 
homogeneous recurrence relation”. There haven’t been yet 
general procedures to determine solution for linear recurrence 
relation which is not homogeneous. However, we firstly may 
determine general form of the particular solution based on 𝑓 𝑛 , 
and then we are able to determine the exact solution based on 
a given recurrence relation.  
 
Case I 
If 𝑓 𝑛  is a polynom of degree t in n, i.e. 
𝐴J𝑛� + 𝐴;𝑛�RJ + ⋯+ 𝐴�𝑛 + 𝐴�HJ     
Then the general form of its particular solution is 

𝐵J𝑛� + 𝐵;𝑛�RJ + ⋯+ 𝐵�𝑛 + 𝐵�HJ 
Example 4.6 
What is the particular solution of 𝑎I + 5𝑎IRJ + 6𝑎IR; = 3𝑛; −
2𝑛 + 1 
 
Solution : 
The particular solution, based on the polynom, is 
𝐵J𝑛; + 𝐵;𝑛 + 𝐵D																																																																										(4.2) 
By substituting (4.2) to the recurrence relation, we obtain 
𝐵J𝑛; + 𝐵;𝑛 + 𝐵D + 5 𝐵J 𝑛 − 1 ; + 𝐵; 𝑛 − 1 + 𝐵D)

+ 6 𝐵J 𝑛 − 2 ; + 𝐵; 𝑛 − 2 + 𝐵D = 3𝑛; − 2𝑛 + 1 
12𝐵J𝑛; − 34𝐵J − 12𝐵; 𝑛 + 29𝐵J − 17𝐵; + 12𝐵D

= 3𝑛; − 2𝑛 + 1				 
By equating the coefficient of the two sides in the latest equation, 
we obtain the equation system 



introduction to Discrete Mathematics with an Application of Graph Theory 

	
	

  83 

12𝐵J = 3 
34𝐵J − 12𝐵; = 2 
29𝐵J − 17𝐵; + 12𝐵D = 1 
Solving the equation system, we obtain 
𝐵J = 1 4; 𝐵; = 13 24;	 𝐵D = 71 288 
Then, the exact solution of the recurrence relation is 

𝑎I =
1
4
𝑛; +

13
24
𝑛 +

71
288

 
 

Case 2 
If 𝑓 𝑛  is in the form of 𝛽I, then the particular solution will be in 
the form of 𝐵𝛽I, providing that 𝛽 is not the characteristic root of 
the recurrence relation given. 
 

Example 4.7 
Find the particular solution of the recurrence relation  
 𝑎I + 5𝑎IRJ + 6𝑎IR; = 42. 4I ! 
Solution : 
The particular solution of 𝑎I + 5𝑎IRJ + 6𝑎IR; = 42. 4I has general 
form of 𝐵4I. 
By replacing 𝑎I with 𝐵4I in 𝑎I + 5𝑎IRJ + 6𝑎IR; = 42. 4I, we 
obtain 
 𝐵. 4I + 5𝐵. 4IRJ + 6𝐵. 4IR; = 42. 4I 
⇔	 𝐵. 4I + 5𝐵. 4I. 4RJ + 6𝐵. 4I. 4R; = 42. 4I			 
⇔	 𝐵. 4I + @

C
. 𝐵. 4I + L

JL
. 𝐵. 4I = 42. 4I			 

⇔	 C;
JL
. 𝐵. 4I = 42. 4I 

⇔	 𝐵 = 16 
Therefore, the particular solution of the recurrence relation 𝑎I +
5𝑎IRJ + 6𝑎IR; = 42. 4I is 𝑎I = 16. 4I 



Recurrence Relation 

	
	

	 	84 

Case 3 
If 𝑓 𝑛  is in the form of 𝛽I, then the particular solution will be in 
the form of 𝐵𝑛�𝛽I, providing that 𝛽 is the characteristic root with 
multiplicity t of the associated homogeneous recurrence relation 
given. 
 

Example 4.8 
Find the particular solution of the recurrence relation 𝑎I − 6𝑎IRJ +
9𝑎IR; = 3I ! 
Solution : 
The recurrence relation 𝑎I − 6𝑎IRJ + 9𝑎IR; = 3I has 
characteristic equation i.e. 

	𝑟; − 3𝑟 + 9 = 3I 
⇔	 𝑟 − 3 ; = 3I 
Its characteristic root is 3, which is the same as the base part of 
the exponent 3I. It occurs in multiplicity 2, hence, the general 
form of the particular solution of the recurrence relation is 𝐵𝑛;3I. 
By replacing 𝑎I with 𝐵𝑛;3I in 𝑎I − 6𝑎IRJ + 9𝑎IR; = 3I, we 
obtain 

							𝐵𝑛;3I − 6𝐵 𝑛 − 1 ;. 3IRJ + 9𝐵 𝑛 − 2 ;. 3IR; = 3I 
⇔	𝐵𝑛;3I − 6𝐵 𝑛; − 2𝑛 + 1 . 3I3RJ + 9𝐵 𝑛; − 4𝑛 + 4 . 3I3R;

= 3I 
⇔	𝐵𝑛;3I − 2𝐵𝑛;. 3I + 4𝐵𝑛. 3I − 2𝐵3I + 𝐵𝑛;. 3I − 4𝐵𝑛. 3I

+ 4𝐵. 3I = 3I 
⇔	2𝐵3I = 3I 
⇔ 	𝐵 = 1/2. 

Then the particular solution of the recurrence relation is 𝑎I =
J
;
. 𝑛;. 3I 
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Case 4 
If 𝑓 𝑛  is the product of a polynom and an exponent, then the 
general form of the particular solution of the recurrence relation 
given is the product of the particular solution in the case 1 and 
the particular solution in the case 2, i.e. if 𝑓 𝑛  is in the form of 
𝐴J𝑛� + 𝐴;𝑛�RJ + ⋯+ 𝐴�𝑛 + 𝐴�HJ 𝛽I 

Then the general form of the particular solution of a recurrence 
relation given is  
𝐵J𝑛� + 𝐵;𝑛�RJ + ⋯+ 𝐵�𝑛 + 𝐵�HJ 𝛽I 

 
Example 4.9 
Find the particular solution of 𝑎I = −𝑎IRJ + 3𝑛. 2I 
Solution : 
The characteristic equation of the recurrence relation 𝑎I =
−𝑎IRJ + 3𝑛. 2I is  

𝑟 + 1 = 3𝑛. 2I 
The general form of the particular solution is 𝐵J𝑛 + 𝐵t . 2I 
By replacing 𝑎I with 𝐵J𝑛 + 𝐵t . 2I in the recurrence relation 
𝑎I = −𝑎IRJ + 3𝑛. 2I, we obtain 

𝐵J𝑛 + 𝐵t . 2I + 𝐵J 𝑛 − 1 + 𝐵t . 2IRJ = 3𝑛. 2I 
⇔	 𝐵J𝑛. 2I + 𝐵t𝑛. 2I + 𝐵J𝑛. 2IRJ − 𝐵J. 2IRJ + 𝐵t. 2IRJ = 3𝑛. 2I 
⇔	 𝐵J𝑛. 2I + 𝐵t𝑛. 2I + 𝐵J𝑛. 2I. 2RJ − 𝐵J. 2I. 2RJ + 𝐵t. 2I. 2RJ =

3𝑛. 2I 
⇔	 𝐵J𝑛. 2I + 𝐵t𝑛. 2I + 𝐵J/2 𝑛. 2I − 𝐵J/2 . 2I + 𝐵t/2 . 2I =

3𝑛. 2I 

⇔	 𝐵J +
¤o
;
𝑛. 2I + D¤¥

;
− ¤o

;
	 . 2I = 3𝑛. 2I 
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By equating the coefficient of the corresponding terms, we obtain 
linear equation system: 

𝐵J +
¤o
;
= 3 and D¤¥

;
− ¤o

;
= 0 

Solving the linear equation system gives 
𝐵J = 2 and 𝐵t = 2/3 
Then, the particular solution of the recurrence relation 𝑎I =
−𝑎IRJ + 3𝑛. 2I is 2𝑛 + 2/3 . 2I 
 
The solution of a nonhomogeneous linear recurrence relation 
with constant coefficient is the sum of the particular solution of 
the associated recurrence relation and the particular solution that 
satisfies the inhomogeneous recurrence relation given including 
𝑓 𝑛  in the right side. If the roots of the characteristic equation, 
as many as k, are all different, then the total solution of a 
nonhomogeneous linear recurrence relation given is 
𝑎I = 𝑎I = 𝛼J𝑟JI + 𝛼;𝑟;I + ⋯+ 𝛼n𝑟nI + 𝑝(𝑛), where 𝑝(𝑛) is the 
particular solution of a nonhomogeneous linear recurrence 
relation given. 
 

Example 4.10 
Find the solution of the inhomogeneous recurrence relation 𝑎I −
6𝑎IRJ + 9𝑎IR; = 3I ! 

Solution : 
In the example 4.8, 3 is the only characteristic root, then the 
general solution of its associated homogeneous recurrence 
relation is 
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 𝑎I = 𝐴t. 3I + 𝐴J. 𝑛. 3I 

meanwhile, the particular solution of the recurrence relation is 
𝑎I = (1/2). 𝑛;3I  

Hence, the total solution of the recurrence relation 𝑎I − 6𝑎IRJ +
9𝑎IR; = 3I is  𝑎I = 𝐴t. 3I + 𝐴J. 𝑛. 3I + (1/2). 𝑛;3I. 

Example 4.11 

Find the solution of 𝑎I + 5𝑎IRJ + 6𝑎IR; = 42. 4I , 𝑎; = 278 and 
𝑎D = 962! 

Solution : 

The solution of the recurrence relation given is  

𝑎I = 𝐴J. −2 I + 𝐴J. −3 I + 16.4I																								(4.3)  

Substituting 𝑎; and 𝑎D for 𝑎I in the equation (4.3) gives 

278 = 4𝐴J + 9𝐴; + 256 

962 = −8𝐴J − 27𝐴; + 1024 

By solving this linear equation system, we obtain 

𝐴J = 1 and 𝐴; = 2 

Then, the solution of the recurrence relation for 𝑎I − 6𝑎IRJ +
9𝑎IR; = 3I is 𝑎I = −2 I + 2 −3 I + 16.4I 
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4.3. Using Generating Functions to solve Recurrence  
Relations 

Generating function is also a useful tool to find the 
solution of a  recurrence relation. The process of solving 
recurrence relation may take following systematic ways: 
Step 1: Assume that ( )xG is the generating function for the 

sequence !! ,,,,, 210 naaaa . That is ( )
=

=
0n

n
n xaxG . 

(Note that if we can somehow find the coefficients in the 
expansion of ( )xG , then we can map them into 

!! ,,,,, 210 naaaa  and hence can get the value of na ). 

Step 2: Multiply both sides of the recurrence relation by nx to 

get n
knk

n
n

n
n

n
n xaCxaCxaCxa +++= !2211 . 

Step 3: Sum over n from k to on both sides to get 

n
kn

kn
k

n
n

kn

n
n

kn

n

kn
n xaCxaCxaCxa

====

+++= !2211  

Step 4: Rearrange the indices to get  

=
====

n
k

n
n

n

n
n

n
k

n
n

n

n
n xaxaxCxaxa

2

00
1

1

00

 

  +
==

n
k

n
n

n

n
n xaxaxC

3

00

2
2   !+  

     +
=

0
0

1
1 axaxC n

n
n

k
k   +

=

n

n
n

k
k xaxC

0

. 
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Step 5: Substitute ( )xG  for n

n
n xa

=0
and put the k initial values of 

ia s in the above equation and then solve for ( )xG . 

Step 6: Expand the closed form of ( )xG  as a series and state 

the value of na as the coefficient of nx in that series. 

We will apply those steps to get the soluion of recurrence 
relation as in the following examples. 
Example 4.12   

Solve the recurrence relation 17= nn aa with the initial condition

50 =a . 

Solution:  

Let ( )
=

=
0n

n
n xaxG , so that na = Coefficient of nx in ( )xG . 

Multiplying both sides of the recurrence relation by nx , we get
n

n
n

n xaxa 17= . 

Summing over n  from 1 to  on both sides, we get, 

= =

=
1 1

17
n n

n
n

n
n xaxa . 

or,
= =

=
0 1

1
10 7

n n

n
n

n
n xxaaxa ,  

or, ( )
=

=
1

1
10 7

n

n
n xaxaxG  

or, ( ) ( )xxGxG 75 = , Or, ( ) ( ) 571 =xGx  



Recurrence Relation 

	
	

	 	90 

or, ( ) ( )
=

==
0

75
71
5

n

nx
x

xG     

Hence, na = Coefficient of nx in ( )xG , which is n75 . 

Example 4.13 
Solve the recurrence relation 21 65= nnn aaa  with the initial 

conditions 30,6 10 == aa  using generating function method ! 

Solution:  

Let ( )
=

=
0n

n
n xaxG , so that na = Coefficient of nx in ( )xG  

Multiplying both sides of the recurrence relation by nx , we get 
n

n
n

n
n

n xaxaxa 21 65= . 

Summing over n  from 2  to  on both sides, we get,  

= ==

=
2 2

2
2

1 65
n n

n
n

n

n
n

n
n xaxaxa . 

⇔ 
= ==

=
0 2

22
2

2

1
110 65

n n

n
n

n

n
n

n
n xxaxxaxaaxa  

⇔ ( )
==

=
2

2
2

2

2

1
1 65306

n

n
n

n

n
n xaxxaxxxG  

⇔ ( ) ( )( ) ( )xGxaxGxxxG 2
0 65306 = ,  

⇔ ( ) ( )( ) ( )xGxxGxxxG 2665306 =  

⇔ ( ) ( ) 6651 2 =+ xGxx  

⇔ ( ) ( )( ) xxxxxx
xG

21
12

31
18

2131
6

651
6

2 ==
+

=  

⇔ ( ) ( ) ( )=
== 00
212318

n

n

n

n xxxG    



introduction to Discrete Mathematics with an Application of Graph Theory 

	
	

  91 

Hence, na = Coefficient of nx in ( )xG , which is nn 212318 . 

Example 4.14 
Solve the recurrence relation 𝑎I = 2𝑎IRJ + 4IRJ, 𝑛 ≥ 2;	𝑎t =

1, 𝑎J = 3 using generating function method ! 

Solution : 

Let ( )
=

=
0n

n
n xaxG , so that na = Coefficient of nx in ( )xG . 

Multiplying both sides of the recurrence relation by nx , we get. 

 𝑎I𝑥I = 2𝑎IRJ𝑥I + 4IRJ𝑥I 

⇔  𝑎I𝑥I = 2𝑎IRJ + 4IRJ 𝑥I 

Summing over n  from 2  to  on both sides, we get, 

	𝑎I𝑥I =
�

Iy;

2𝑎IRJ + 4IRJ 𝑥I	
�

Iy;

, 

⇔					 	𝑎I𝑥I =
�

Iy;

2𝑎IRJ + 4IRJ 𝑥I	
�

Iy;

 

⇔					 	𝑎I𝑥I =
�

Iy;

2 𝑎IRJ𝑥I + 4IRJ
�

Iy;

𝑥I	
�

Iy;

																	(4.4) 

From the left side of the equation (4.4), we obtain  

	𝑎I𝑥I = 	𝑎I𝑥I − 𝑎t − 𝑎J𝑥
�

Iyt

�

Iy;

 

 = 𝐺 𝑥 − 1 − 3𝑥 

From the first term of the right side of the equation (4.4), we get 
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2 𝑎IRJ𝑥I =	
�

Iy;

2𝑥 	𝑎IRJ𝑥IRJ
�

Iy;

 

= 2𝑥 	𝑎IRJ𝑥IRJ
�

IyJ

− 𝑎t  

= 2𝑥 𝐺 𝑥 − 1  

= 2𝑥𝐺 𝑥 − 2𝑥 

From the first term of the right side of the equation (4.4), we get 

4IRJ
�

Iy;

= 𝑥 4IRJ
�

Iy;

𝑥IRJ 

= 𝑥 (4𝑥)IRJ − 1
�

Iy;

 

= 𝑥
1

1 − 4𝑥
− 1  

Then the equation (4.4) becomes 

𝐺 𝑥 − 1 − 3𝑥 = 2𝑥𝐺 𝑥 − 2𝑥 +
1

1 − 4𝑥
− 𝑥 

Which is equivalent to  

𝐺 𝑥 =
1 − 3𝑥

1 − 4𝑥 1 − 2𝑥
 

Since 
JRD�

JRC� JR;�
= J/;

JRC�
+ J/;

JR;�
, then  

𝐺 𝑥 =
1
2

1
1 − 4𝑥

+
1

1 − 2𝑥
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=
1
2
4I + 2I 𝑥I

�

Iyt

 

Since J
;
4I + 2I  is also the coefficient of 𝑥I in 𝐺 𝑥 , then we 

can conclude that 𝑎Iy 	
J
;
4I + 2I . 

In summary, the procedures of solving a nonhomogeneous linear 
recurrence relation i,e. 
1. Write down the associated homogeneous recurrence and its 

general solution. 
 

2. Find a particular solution the non-homogeneous recurrence. 
This may involve solving several simpler non-homogeneous 
recurrences (using this same procedure). 
 

3. Add all of the above solutions together to obtain the general 
solution to the non-homogeneous recurrence. 
 

4. Use the initial conditions to get a system of k equations in 
k unknowns, then solve it to obtain the solution you want. 
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Exercises 4 
1. Solve the following recurrence relations by using 

characteristic root method : 
i. 𝑎J = 𝑎; = 1;	𝑎I = 	 𝑎IRJ + 𝑎IR;, 𝑛 ≥ 3 
ii. 𝑎t = 0;	𝑎J = −1;	𝑎I = 7𝑎IRJ − 12𝑎IR;, 𝑛 ≥ 2. 
iii. 𝑎t = 𝑎J = 1;	𝑎I = 2𝑎IRJ + 3𝑎IR;,			𝑛 ≥ 2 
iv. 𝑎J = 2, 𝑎; = 6;	𝑎I − 4𝑎IRJ + 4𝑎IR; = 0,			𝑛 ≥ 3 
v. 𝑎t = 0, 𝑎J = 1,	 𝑎; = 2;	𝑎I = 9𝑎IRJ − 15𝑎IR; + 7𝑎IRD,	𝑛 ≥ 3 
vi. 𝑎t = 0,𝑎J = 1, 𝑎; = 2, 𝑎D = 3;		𝑎I + 2𝑎IR; − 15𝑎IR;,	𝑛 ≥ 4 
vii. 𝑎t = 1;	𝑎I = 3𝑎IRJ + 2I, 𝑛 > 0  
viii. 𝑎t = 0;	𝑎J = 1;	𝑎I − 4𝑎IRJ + 4𝑎IR; + 𝑛2I + 3I + 4, 𝑛 ≥ 2	 
2. Akbar and Hasrawan flip their coins. If the coins are both 

heads or both tails, Akbar wins. If one coin is a head and 
the other a tail, Hasrawan wins. Akbar starts with T coins, 
and Hasrawan starts with S coins.  
a. Let 𝑝Idenote the probability that Akbar wins all of 

Hasrawan’s coins if Akbar starts with n coins. Write a 
recurrence relation for 𝑝I. 

b. What is the value of 𝑝t ? 
c. What is the value of 𝑝¦H§	? 
d. Find the solution of 𝑝I 

3. Referring to the problems number 1, solve each recurrence 
relation using generating function.  
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5.1. Definitions and Fundamental Concepts 

Conceptually, a graph is formed by vertices and edges 
connecting the vertices. 
Example 5.1 
 
 
 
 

Formally, a graph is a pair of sets (V,E), where V is the 
set of vertices and E is the set of edges, formed by pairs of 
vertices. E is a multiset, in other words, its elements can occur 
more than once so that every element has a multiplicity. Often, 
we label the vertices with letters (for example: 𝑎, 𝑏, 𝑐 . . . or 𝑣J,	𝑣; 
, . . .) or numbers 1, 2, . . . Throughout this chapter, we will label 
the elements of V in this way. 
 

INTRODUCTION AND THE 
APPLICATION OF GRAPH THEORY
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𝑣J 	

𝑣D	
𝑣C	

𝑣;	

Example 5.2 
(Continuing from example 5.1) We label the vertices as follows: 
 
 
 
 
 
 

 
We have 𝑉 = {𝑣J, … . , 𝑣@} for vertices and 𝐸 =

{ 𝑣J, 𝑣; , 𝑣;, 𝑣@ , 𝑣@, 𝑣@ , 𝑣@, 𝑣C , 𝑣@, 𝑣C } for the edges. 
Similarly, we often label the edges with letters (for example: : 
𝑎, 𝑏, 𝑐 . . . or 𝑒J,	𝑒; , . . .) or numbers 1, 2, . . . for simplicity. 
Remark. The two edges (𝑢, 𝑣) and (𝑣, 𝑢) are the same. In other 
words, the pair is not ordered. 

Example 5.3 
Continuing from the previous example. We label the edges as 
follows: 

 

 
 
 

 
So 𝐸 = {𝑒J, 𝑒;, 𝑒D, 𝑒C, 𝑒@} 

𝑒D	
	

𝑒@	
	

𝑒C	
	

𝑒;	
	

𝑒J	
	

𝑣D	 𝑣C 	

𝑣@	

𝑣; 	

𝑣J 	

𝑣@ 
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We have the following terminologies: 
1. The two vertices 𝑢 and 𝑣 are end vertices of the edge  

(𝑢,𝑣). 
2. Edges that have the same end vertices are parallel. 
3. An edge of the form (𝑣,	𝑣) is a loop. 
4. A graph is simple if it has no parallel edges or loops. 
5. A graph with no edges (i.e. 𝐸 is empty) is empty. 
6. A graph with no vertices (i.e. 𝑉 and 𝐸 are empty) is a null 

graph. 
7. A graph with only one vertex is trivial. 
8. Edges are adjacent if they share a common end vertex. 

 

Example 5.4 
• 𝑣C and 𝑣@ are end vertices of 𝑒@. 
• 𝑒C and 𝑒@ are parallel. 
• 𝑒D is a loop. 
• The graph is not simple. 
• 𝑒J and 𝑒; are adjacent. 
• 𝑣J and 𝑣; are adjacent. 
• The degree of 𝑣J is 1 so it is a pendant vertex. 
• 𝑒J is a pendant edge. 
• The degree of 𝑣@ is 5. 
• The degree of 𝑣C is 2. 
• The degree of 𝑣D is 0 so it is an isolated vertex. 

 

In the future, we will label graphs with letters, for example: 
𝐺 = (𝑉, 𝐸) 
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The minimum degree of the vertices in a graph 𝐺 is denoted 
𝛿(𝐺) (= 0 if there is an isolated vertex in 𝐺). Similarly, we write 
∆(𝐺) as the maximum degree of vertices in 𝐺. 
 
Example 5.5  
(Continuing from the previous example) 𝛿 𝐺 = 0 and ∆ 𝐺 = 5. 
 
Remark. In this course, we only consider finite graphs, i.e. 𝑣 
and 𝑒 are finite sets. 
 
That every edge has two end and vertices, we get 
 
Theorem 5.1 
The graph 𝐺 = (𝑉, 𝐸), where 𝑉 = {𝑣J, … . , 𝑣I}  and 𝑉 = {𝑒J, … . , 𝑒T}  
satisfies 

𝑑 𝑣V = 2𝑚.
I

VyJ

 

Corollary 5.1 
Every graph has an even number of vertices of odd degree. 
 
Proof : 
If the vertices 𝑣J, … . , 𝑣n have odd degrees and the vertices 
𝑣nHJ, … , 𝑣I have even degrees, then (Theorem 5.1) 
𝑑 𝑣J + ⋯+ 𝑑 𝑣n = 2𝑚 − ⋯− 𝑑 𝑣I  is even. Therefore, 𝑘 is 
even. 
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Example 5.6 
(Continuing from the previous example). Now the sum of the 
degrees is 1 + 2 + 0 +2 + 5 = 10 = 2 · 5. There are two vertices 
of odd degree, namely 𝑣J and 𝑣@. A simple graph that contains 
every possible edge between all the vertices is called a complete 
graph. A complete graph with n vertices is denoted as 𝐾I. The 
first four complete graphs are given as examples: 
 
 
 
 
 

Figure 5.1. Complete graphs with certain number of vertices 

The graph 𝐺J = (𝑉J,𝐸J) is a subgraph of 𝐺; = (𝑉;,𝐸;)  if 
1. 𝑉J, ⊆ 𝑉; and 
2. Every edge of	𝐺J is also an edge of 𝐺; 
Example 5.7  
We have the graph 
 
 
 
 
 
 
 
 

𝐾C	𝐾;	 𝐾D	𝐾J	

𝑣; 	

𝑣D 	

𝑒@	
𝑣J 	

𝐺;	

𝑒J	
𝑣C 	

𝑒C	𝑒;	

𝑒L	

𝑣@ 	

𝑒D	
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and some of its subgraphs are 
 
 
 
 
 
 
 
The subgraph of  𝐺 = (𝑉, 𝐸) induced by the edge set 𝐸J ⊆ 𝐸; 
is 

𝐺J = (𝑉J,𝐸J) =��°. 𝐸J  

where 𝑉J, consists of every end vertex of the edges in 𝐸J,. 
 

Example 5.8 
(Continuing from above) From the original graph 𝐺, the edges 
𝐸;, 𝐸D and 𝐸@ induce the subgraph 
 
 
 
 
 
 
 
 

𝑣; 	

𝑣J 	

𝐺J	

𝑒L	

𝑣@ 	

𝑣D 	

𝑣C 	
𝑒C	

𝐺J	

𝑣J 	
𝑣@ 	

𝑣; 	

𝑣D 	

𝑒D	

𝑒;	
〈𝑒;, 𝑒D, 𝑒@〉:	
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The subgraph of  𝐺 = (𝑉, 𝐸) induced by the vertex set 𝑉J ⊆ 𝑉 
is 

𝐺J = (𝑉J,𝐸J) =��°. 𝑉J  

where 𝐸J, consists of every end vertex of the edges in 𝑉J,. 
 
Example. 5.9 
(Continuing from the previous example) From the original graph 
𝐺, the vertices 𝑣J,𝑣D, and 𝑣@, and induce the subgraph 
 
 
 
 
 
 
 
 

5.2.  Walks, Trails, Paths, Circuits, Connectivity, Components 
 

Remark. There are many different variations of the following 
terminologies. We will adhere to the definitions given here. A 
walk in the graph 𝐺 = (𝑉, 𝐸) is a finite sequence of the form 

𝑣Vt, 𝑒XJ, 𝑒VJ, 𝑒X;, … . , 𝑒Xn, 𝑣Vn, 

which consists of alternating vertices and edges of  𝐺. The walk 
starts at a vertex. Vertices 𝑣V�RJ and 𝑣V� are end vertices of 𝑒X�, (𝑡 =
1, … . , 𝑘). 𝑣Vt is the initial vertex and 𝑣Vn is the terminal vertex. 𝑘 
is the length of the walk. A zero length walk is just a single vertex 

𝑒@	

𝑒L	

𝑣@ 	
𝑣D 	

𝑒D	

𝑣J 	
〈𝑣J, 𝑣D, 𝑣@〉	
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𝑣Vt . It is allowed to visit a vertex or go through an edge more 
than once. A walk is open if 𝑣Vt ≠ 𝑣Vn. Otherwise it is closed. 
 
Example 5.10  
In the graph 
 
 
 
 
 
 
 
the walk 

𝑣;, 𝑒K, 𝑣@, 𝑒�, 𝑣J, 𝑒�, 𝑣@, 𝑒L, 𝑣C, 𝑒@, 𝑣C, 𝑒@, 𝑣C 
is open. On the other hand, the walk 

𝑣C, 𝑒@, 𝑣C, 𝑒D, 𝑣D, 𝑒;, 𝑣;, 𝑒K, 𝑣@, 𝑒L, 𝑣C 
is closed. 

A walk is a trail if any edge is traversed at most once. 
Then, the number of times that the vertex pair 𝑢, 𝑣	can appear as 
consecutive vertices in a trail is at most the number of parallel 
edges connecting 𝑢 and 𝑣. 

Example 5.11 
(Continuing from the previous example) The walk in the graph 

𝑣J, 𝑒�, 𝑣@, 𝑒v, 𝑣J, 𝑒J, 𝑣;, 𝑒K, 𝑣@, 𝑒L, 𝑣C, 𝑒@, 𝑣C, 𝑒C, 𝑣C 
is a trail. 
 

𝑣; 	
	

𝑣D 	
	

𝑣C 	
	

𝑒K	
	

𝑒�	
	

𝑒J	
	

𝑒;	
	

𝑒D	
	

𝑒@	
	𝑒v	

	

𝑒C	
	

𝑒L	
	

𝑒Jt 	
	 𝑣@ 	

	

𝑣J 	
	

𝑣L 	
	

𝐺:	
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A trail is a path if any vertex is visited at most once except 
possibly the initial and terminal vertices when they are the same. 
A closed path is a circuit. For simplicity, we will assume in the 
future that a circuit is not empty, i.e. its length ≥ 1. We identify 
the paths and circuits with the subgraphs induced by their edges. 
 
Example 5.12 
 (Continuing from the previous example) The walk 

𝑣;, 𝑒K, 𝑣@, 𝑒L, 𝑣C, 𝑒D, 𝑣D 
is a path and the walk 

𝑣;, 𝑒K, 𝑣@, 𝑒L, 𝑣C, 𝑒D, 𝑣D, 𝑒;, 𝑣; 
is a circuit. 
The walk starting at 𝑢 and ending at 𝑣 is called an 𝑢 − 𝑣 walk. 𝑢 
and 𝑣 are connected if there is a	𝑢 − 𝑣 walk in the graph (then 
there is also a 𝑢 − 𝑣 path!). If 𝑢 and 𝑣 are connected and 𝑣 and 
𝑤 are connected, then 𝑢 and 𝑤 are also connected, i.e. if there 
is a 𝑢 − 𝑣 walk and a 𝑣 − 𝑤 walk, then there is also a 𝑢 − 𝑤 
walk. A graph is connected if all the vertices are connected to 
each other. (A trivial graph is connected by convention.) 

Example 5.13 
The graph 
 
 
is not connected 
The subgraph 𝐺J (not a null graph) of the graph 𝐺 is a 
component of 𝐺 if 
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1. 𝐺J is connected and 
2. Either 𝐺J  is trivial (one single isolated vertex of 𝐺) or 𝐺J  

is not trivial and 𝐺J  is the subgraph induced by those 
edges of 𝐺 that have one end vertex in 𝐺J. 

Different components of the same graph do not have any 
common vertices because of the following theorem. 
 

Theorem 5.2.  
If the graph 𝐺 has a vertex 𝑣 that is connected to a vertex of the 
component 𝐺Jof 𝐺, then 𝑣 is also a vertex of  𝐺J. 
 

Proof : 
If 𝑣 is connected to vertex 𝑣 of 𝐺J, then there is a walk in 𝐺 
𝑣 = 𝑣Vt, 𝑒XJ, 𝑣VJ, … . , 𝑣VnRJ, 𝑒Xn, 𝑣Vn = 𝑣�. 
Since 𝑣� is a vertex of  𝐺J, then (condition #2 above) 𝑒Xn is an 
edge of 𝐺J and 𝑣VnRJ is a vertex of 𝐺J. We continue this process 
and see that 𝑣 is a vertex of 𝐺J. 
Example 5.14 
 
 
 
 
 
 
 
 
 

𝑣@	

𝑣L	

𝑣K	

𝑣�	

𝑒@	

𝑒K	
𝑒C	 𝑒L	

𝐺J 	 𝐺D 	 𝐺C	

𝑒J	

𝑣D 	

𝑣;	

𝑒;	𝑣J	
𝑣C	

𝑒D	

𝐺; 	
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Theorem 5.3  
Every vertex of  G belongs to exactly one component of  G. 
Similarly, every edge of  G belongs to exactly one component 
of  G. 
 

Proof :  
We choose a vertex 𝑣 in 𝐺. We do the following as many times 
as possible starting with 𝑉J = {𝑣} =  
(∗) If 𝑣′ is a vertex of 𝐺 such that 𝑣′ ∉  𝑉J and 𝑣′ is connected 
to some vertex of 𝑉J, then 

𝑉J ← 𝑉J ∪ {𝑣�} 
Since there is a finite number of vertices in 𝐺, the process stops 
eventually. The last 𝑉J induces a subgraph 𝐺J of 𝐺 that is the 
component of 𝐺 containing 𝑣. 𝐺J is connected because its 
vertices are connected to v so they are also connected to each 
other. Condition #2 holds because we can not repeat (∗). By 
Theorem 5.2, 𝑣 does not belong to any other component. The 
edges of the graph are incident to the end vertices of the 
components. 
 
Theorem 5.3 divides a graph into distinct components. The proof 
of the theorem gives an algorithm to do that. We have to repeat 
what we did in the proof as long as we have free vertices that 
do not belong to any component. Every isolated vertex forms its 
own component. A connected graph has only one component, 
namely, itself. 
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A graph 𝐺 with 𝑛 vertices, 𝑚 edges and 𝑘 components has the 
rank 

𝜌 𝐺 = 𝑛 − 𝑘 
The nullity of the graph is 

𝜇 𝐺 = 𝑚 − 𝑛 + 𝑘 
We see that 𝜌 𝐺 ≥ 0 and 𝜌 𝐺 + 𝜇 𝐺 = 𝑚. In addition, 𝜇 𝐺 ≥

0 because 
 
Theorem 5.4 

𝜌 𝐺 ≤ 𝑚 
Proof : 
We will use the principle of strong of induction for 𝑚. 
1. Basis step: 𝑚 = 0 The components are trivial and 𝑛 = 𝑘. 
We make Induction Hypothesis: The theorem is true for 𝑚 <
𝑝. (𝑝 ≥ 1) 
2. Inductive step: the theorem is true for m = p. 

Proof: We choose a component 𝐺J of 𝐺 which has at least 
one edge. 

We label that edge 𝑒 and the end vertices 𝑢 and 𝑣. We also 
label 𝐺; as the subgraph of  𝐺 and 𝐺J, obtained by removing 
the edge 𝑒 from 𝐺J (but not the vertices 𝑢 and 𝑣). We label 
𝐺′ as the graph obtained by removing the edge 𝑒 from𝐺 
(but not the vertices 𝑢 and 𝑣) and let 𝑘′be the number of 
components of 𝐺′. We have two cases: 

a. 𝐺;  is connected. Then, 𝑘� = 𝑘 = k. We use the Induction 
Hypothesis on 𝐺�: 𝑛 − 𝑘 = 𝑛 − 𝑘� = 𝜌 𝐺� ≤ 𝑚 − 1 < 𝑚. 
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b. 𝐺;  is not connected. Then there is only one path between 
𝑢 and 𝑣: 

𝑢, 𝑒, 𝑣  
and no other path. Thus, there are two components in 𝐺; 
and 𝑘� = 𝑘 + 1. We use the Induction Hypothesis on 𝐺�: 

𝜌 𝐺� = 𝑛 − 𝑘� = 𝑛 − 𝑘 − 1 ≤ 𝑚 − 1 
 
Hence 𝑛 − 𝑘 ≤ 𝑚  
 

These kinds of combinatorial results have many consequences. 
For example: 
 

Theorem 5.5 
If  𝐺 is a connected graph and 𝑘 ≥ 2 is the maximum path length, 
then any two paths in 𝐺 with length k share at least one common 
vertex. 
Proof  : 
We only consider the case where the paths are not circuits (Other 
cases can be proven in a similar way.). Consider two paths of 𝐺 
with length 𝑘:  

𝑣V¥, 𝑒Xo, 𝑣Vo, 𝑒Xp, … , 𝑒Xr, 𝑣Vr (path 𝑝J) 
and 

𝑣V�¥, 𝑒X�o, 𝑣V�o, 𝑒X�p, … , 𝑒X¼r, 𝑣V�r (path 𝑝;). 
 
Let us consider the counter hypothesis: The paths p1 and p2 do 
not share a common vertex. Since 𝐺 is connected, there exists 
an 𝑣V¥ − 𝑣V�r path. We then find the last vertex on this path which 
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is also on 𝑝J (at least 𝑣V¥	 is on 𝑝J ) and we label that vertex 𝑣V�  
We find the first vertex of the 𝑣V� − 𝑣V�r path which is also on 𝑝; 
(at least 𝑣V�r	 is on 𝑝;) and we label that vertex 𝑣V�½ . So we get a 
𝑣V� − 𝑣V½  path 
The situation is as follows: 
 

𝑣V¥, 𝑒Xo, 𝑣Vo, … , 𝑣V�, 𝑒X��o, … , 𝑒Xr, 𝑣Vr 
𝑒X��o 
.	
.	
. 

𝑒X��¾ 
𝑣V�¥, 𝑒X�o, 𝑣V�o, 𝑒X�p, … , 𝑒X¼r, 𝑣V�r 

 
From here we get two paths: 𝑣V¥ − 𝑣V�r path and 𝑣V�¥ − 𝑣Vr path. 
The two cases are: 
• 𝑡 ≥ 𝑠: Now the length of the 𝑣V¥−𝑣V�r	path is more than 𝑘 +

1 
• 𝑡 ≤ 𝑠: Now the length of the 𝑣V�¥−𝑣Vr	path is more than 𝑘 +

1 
 
A graph is circuitless if it does not have any circuit in it. 
Theorem 5.6.  
If  𝐺 is a connected graph and 𝑘 ≥ 2 is the maximum path 
length, then any two paths in 𝐺 with length k share at least one 
common vertex. 
A graph is circuitless exactly when there are no loops and there 
is at most one path between any two given vertices. 
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Proof :  
First let us assume 𝐺 is circuitless. Then, there are no loops in 
𝐺. Let us assume the counter hypothesis: There are two different 
paths between distinct vertices 𝑢 and 𝑣 in 𝐺: 

𝑢 = 𝑣V¥, 𝑒Xo, 𝑣Vo, 𝑒Xp, … , 𝑒Xr, 𝑣Vr = 𝑣 (path 𝑝J) 
and 

𝑢 = 𝑣V�¥, 𝑒X�o, 𝑣V�o, 𝑒X�p, … , 𝑒X�r, 𝑣V�r = 𝑣 (path 𝑝;) 
 
 (here we have 𝑖t = 𝑖′t and 𝑖n = 𝑖′� where 𝑘 ≥ 𝑙. We choose the 
smallest index 𝑡 such that 𝑣V� ≠ 𝑣V�� .There is such a 𝑡 because 
otherwise 
1. 𝑘 > 𝑙 and 𝑣Vr = 𝑣 = 𝑣V¾ = 𝑣V¾	or 
2. 𝑘 = 𝑙 and 𝑣V¥ = 𝑣V�¥, … , 𝑣V¾ = 𝑣V�¾ . Then, there would be two 

parallel edges between two consecutive vertices in the path. 
That would imply the existence of a circuit between two 
vertices in 𝐺  

 
We choose the smallest index  𝑠 such that 𝑠 ≥ 𝑡	and 𝑣V½ is in the 
path 𝑝; (at least 𝑣Vr is in 𝑝;). We choose an index 𝑟 such that 
𝑟 ≥ 𝑡 and 𝑣V�¿ = 𝑣V½  (it exists because 𝑝J is a path). Then,  

𝑣V�so, 𝑒X�, … , 𝑒X½	, 𝑣V½ = 𝑣V¼¿ , 𝑒X�¿	, … , 𝑒X¼�, 𝑣V¼�so(= 𝑣V¼�so)	 
is a circuit. (verify the case 𝑡=	𝑠 = 𝑟.) 
Let us prove the reverse implication. If the graph does not have 
any loops and no two distinct vertices have two different paths 
between them, then there is no circuit. For example, if 

𝑣V¥, 𝑒Xo, 𝑣Vo, 𝑒Xp, … , 𝑒Xr, 𝑣Vr = 𝑣V¥ 
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is a circuit, then either 𝑘 = 1 and 𝑒Xo is a loop, or 𝑘 ≥ 2 and 
then two vertices 𝑣V¥ and 𝑣Vo are connected by two disctinct 
paths 

𝑣V¥, 𝑒Xo, 𝑣Vo and 𝑣Vo, 𝑒Xp, … , 𝑒Xr, 𝑣Vr = 𝑣V¥ 
5.3 Graph Operations 
The complement of the simple graph 𝐺 = (𝑉, 𝐸	)is the simple 
graph 𝐺 = (𝑉, 𝐸	), where the edges in 𝐸 are exactly the edges 
not in 𝐺. 
 
Example 5.14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑣D 	

𝐺:	

𝑣; 	

𝑣C 	𝑣J 	

𝑣@ 	
𝐺:	
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Example 5.15 
The complement of the complete graph 𝐾I is the empty graph 

with 𝑛 vertices. Obviously, 𝐺 = 𝐺. If the graphs 𝐺 = (𝑉, 𝐸) and 
𝐺� = (𝑉�, 𝐸�) are simple and 𝑉′ ⊆ 𝑉 then the difference graph is 
𝐺 − 𝐺� = (𝑉, 𝐸��), where 𝐸�� contains those edges from 𝐺 that 
are not in 𝐺�� (simple graph). 
 
Example 5.16 
 
 
 
 
 
 
 
 
 
Here are some binary operations between two simple graphs 
𝐺J = (𝑉J, 𝐸J) and 𝐺; = (𝑉;, 𝐸;) : 
• The union is 𝐺J ∪ 	𝐺; = (𝑉J ∪ 	𝑉;, 𝐸J ∪ 	𝐸;) (simple graph) 
• The intersection is 𝐺J ∩ 	𝐺; = (𝑉J ∩ 	𝑉;, 𝐸J ∩ 	𝐸;) (simple 

graph) 
• The ring sum 𝐺J ⊕ 𝐺; is the subgraph of 𝐺J ∪ 	𝐺; induced 

by the edge set 𝐸J ⊕ 𝐸; (simple graph), where ⊕ is the 
symmetric difference, i.e. 

𝐸J ⊕ 𝐸; = (𝐸J − 𝐸;) ∪ (𝐸; − 𝐸J) 

𝐺ʹ:	𝐺:	

𝐺ʹ:	
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Since the ring sum is a subgraph induced by an edge set, there 
are no isolated vertices. All three operations are commutative and 
associative. 
  
Example 5.17 
For the graphs  
 

 
 
 
 
We have 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑒J	

𝑣D	

𝑒;	

𝑒C	

𝑒D	
𝑣J	

𝑣C	

𝑣;	
𝑣@	

𝑣J	
𝐺J:	
:	

𝑣D	 𝑒K	

𝑒L	

𝑣L	

𝑣K	

𝑣J	
𝑒J	𝐺;:	

:	

𝑒L	𝑒C	

𝑒L	

𝐺J ∪ 𝐺;:	
:	

𝑒J	

𝑣J	

𝑒;	
𝑒D	

𝑣J	

𝑣C	

𝑣;	
𝑣@	

𝑣J	

𝑣D	 𝑒K	
𝑣L	

𝑣K	

𝑣J	

𝑒J	

𝐺J ∩ 	𝐺;:	
:	 𝑒J	

𝑣D	

𝑣J	
𝐺J
⊕ 	𝐺 :	 𝑣C	

𝑒D	
𝑒;	

𝑒C	
𝑣D	 𝑒K	

𝑒L	

𝑣L	

𝑣;	𝑣J	
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The operations ∪,∩,	and ⊕ can also be defined for more general 
graphs other than simple graphs. Naturally, we have to ”keep 
track” of the multiplicity of the edges: 
∪	∶ The multiplicity of an edge in 𝐺J ∪ 𝐺; is the larger of its 

multiplicities in 𝐺J and 𝐺;. 
 

∩	∶ The multiplicity of an edge in 𝐺J ∩ 𝐺; is the smaller of its 
multiplicities in 𝐺J and 𝐺;. 

 

⊕ : The multiplicity of an edge in 𝐺J ⊕ 𝐺; is |𝑚J − 𝑚;|, where 
𝑚J is its multiplicity in 𝐺Jand	𝑚; is its multiplicity in 𝐺; . 

 
(We assume zero multiplicity for the absence of an edge.) In 
addition, we can generalize the difference operation for all kinds 
of graphs if we take account of the multiplicity. The multiplicity of 
the edge e in the difference 𝐺 − 𝐺′ is 
 

𝑚J − 𝑚; =
𝑚J − 𝑚;, if	𝑚J ≥ 𝑚;

0, if	𝑚J < 𝑚;
 (also known as the proper 

difference), 
 

where 𝑚J and 𝑚; are the multiplicities of 𝑒 in 𝐺J and 𝐺;, 
respectively. 
 

If 𝑣 is a vertex of the graph 𝐺 = (𝑉, 𝐸), then 𝐺 − 𝑣 is the subgraph 
of 𝐺 induced by the vertex set 𝑉 − {𝑣}. We call this operation the 
removal of a vertex. 
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Example 5.18 
(Continuing from the previous example) 
 
 
  
 
 
Similarly, if 𝑒 is an edge of the graph 𝐺 = (𝑉, 𝐸), then 𝐺 − 𝑒 is 
graph (𝑉, 𝐸′), where 𝐸′ is obtained by removing 𝑒 from 𝐸. This 
operation is known as removal of an edge. We remark that we 
are not talking about removing an edge as in Set Theory, 
because the edge can have nonunit multiplicity and we only 
remove the edge once. 
 

Example 5.19 
(Continuing from the previous example) 
 
 
 
 
 
(Continuing from the previous example) 
 
 
 
  

𝑣;	𝑣J	

𝑣@	𝑒D	
𝑒J	

𝑣D	

𝐺J − 𝑣C:	

𝑒J	

𝑣D	

𝑒;	

𝑒C	

𝑒D	

𝑣C	

𝑣;	

𝑣@	
𝑣J	

𝐺J − 𝑒@:	
:	

𝑒J	

𝑣D 	

𝑒;	

𝑒C	

𝑒D	

𝑣C 	

𝑣; 	
𝑣@ 	

𝑣J 	
𝐺J − 𝑒@:	

:	
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If 𝑢 and 𝑣 are two distinct vertices of the graph 𝐺 = (𝑉, 𝐸), then 
we can short circuit the two vertices	𝑢 and 𝑣 and obtain the 
graph(𝑉′, 𝐸′), where 
𝑉� = 𝑉 − 𝑢, 𝑣 ∪ {𝑤}  (𝑤 ∉ 𝑉is the ”new” vertex) 
and 

𝐸� = (𝐸 − (𝑣�, 𝑢 , (𝑣�, 𝑣)|𝑣� ∈ 𝑉}) 
∪ {(𝑣�, 𝑤)|(𝑣�𝑢 ∈ 𝐸	or	(𝑣�, 𝑣) ∈ 𝐸} 
∪ {(𝑤, 𝑤)|(𝑢, 𝑢) ∈ 𝐸	or	(𝑣, 𝑣) ∈ 𝐸} 

 
(Recall that the pair of vertices corresponding to an edge is not 
ordered). Note! We have to maintain the multiplicity of the edges. 
In particular, the edge (𝑢, 𝑣) becomes a loop. 

 

Example 5.20 
(Continuing from the previous example) Short-circuit 𝑣D and 𝑣C 
in the graph 𝐺J: 
 
 
 
 
 
 
 
In the graph 𝐺 = (𝑉, 𝐸), contracting the edge 𝑒 = (𝑢, 𝑣) (not a 
loop) means the operation in which we first remove 𝑒 and then 
short-circuit 𝑢 and 𝑣. (Contracting a loop simply removes that 
loop.) 

𝑣;	
	

𝑣J	
	

𝑣@	
	

𝑤	
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Example 5.21 
(Continuing from the previous example) We contract the edge 𝑒D 
in 𝐺J by first removing 𝑒D and then short-circuiting 𝑣; and 𝑣D. 
 
 
  
 
 
 
 
 
 
 
 
 
Remark. If we restrict short-circuiting and contracting to simple 
graphs, then we remove loops and all but one of the parallel 
edges between end vertices from the results. 
 
5.4 Cuts 
A vertex 𝑣 of a graph 𝐺 is a cut vertex or an articulation vertex 
of 𝐺 if the graph 𝐺 − 𝑣 consists of a greater number of 
components than 𝐺. 
 
Example 5.22 
𝑣 is a cut vertex of the graph below: 

𝑣@ 	𝑒;	

𝑣; 	

𝑣C 	

𝑒@	𝑒J	
𝑒C	

𝑣J 	

𝑣D 	

𝑤	

𝑣@ 	𝑒;	

𝑣C 	

𝑣J 	



introduction to Discrete Mathematics with an Application of Graph Theory 

	
	

  117 

 
  
 
 
  
 
 
 
 
 
 
(Note! Generally, the only vertex of a trivial graph is not a cut 
vertex, neither is an isolated vertex.) 

A graph is separable if it is not connected or if there exists 
at least one cut vertex in the graph. Otherwise, the graph is 
nonseparable. For example, The graph 𝐺 in the previous example 
is separable. 
 
Example 5.23 
The graph below is nonseparable. 
 
 
 
 
 
 

𝑣	

Cut	vertex	

𝐺:	
:	

𝐺
− 𝑣:	
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A block of the graph 𝐺 is a subgraph 𝐺J of 𝐺 (not a null 
graph) such that 
• 𝐺J is nonseparable, and 
• if 𝐺;  is any other subgraph of 𝐺, then 𝐺J ∪ 𝐺; = 𝐺J  or 𝐺J ∪

𝐺; is separable (think about that!). 
 
Example 5.24 
 The graph below is separable: 
 
 
 
  
 
 
 
 
 
 
 
 
Theorem 5.7 
The vertex 𝑣 is a cut vertex of the connected graph 𝐺 if and only 
if there exist two vertices 𝑢 and 𝑤 in the graph 𝐺 such that 

i. 𝑣 ≠ 𝑢, 𝑣 ≠ 𝑤 and 𝑢 ≠ 𝑤, but 
ii. 𝑣 is on every 𝑢 − 𝑤 path. 
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Proof: 
First, let us consider the case that 𝑣 is a cut-vertex of 𝐺. Then, 
𝐺 − 𝑣 is not connected and there are at least two components 
𝐺J = (𝑉J, 𝐸J). We choose 𝑢 ∈ 𝑉J and 𝑤 ∈ 𝑉;. The 𝑢 − 𝑤 path is 
in 𝐺 because it is connected. If 𝑣 is not on this path, then the 
path is also in 𝐺 − 𝑣. The same reasoning can be used for all 
the 𝑢 − 𝑤 paths in 𝐺. If v is in every 𝑢 − 𝑤 path, then the vertices 
𝑢 and 𝑤 are not connected in 𝐺 − 𝑣. 
 

Theorem 5.8 
A nontrivial simple graph has at least two vertices which are not 
cut vertices. 
Proof: 
We will use induction for the graph 𝐺 with 𝑛 vertices. 
1. Basis step: The case 𝑛 = 2 is obviously true. 

We make Induction Hypothesis: The theorem is true for 𝑛 ≤
𝑘. (𝑘 ≥ 2) 

2. Inductive Step: The theorem is true for 𝑛 = 𝑘 + 1. 
 

Proof: If there are no cut vertices in 𝐺, then it is obvious. 
Otherwise, we consider a cut vertex v of 𝐺. Let 𝐺J, . . . ,	𝐺T be 
the components of 𝐺	 − 	𝑣  (so	𝑚 ≥ 2). Every component 𝐺V falls 
into one of the two cases: 
i. 𝐺V is trivial so the only vertex of 𝐺V is a pendant vertex or an 

isolated vertex of 𝐺 but it is not a cut vertex of 𝐺. 
ii. 𝐺V is not trivial. The Induction Hypothesis tells us that there 

exist two vertices 𝑢 and 𝑤 
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in 𝐺V which are not cut vertices of 𝐺V. If 𝑣 and 𝑢 (respectively 𝑣 
and 𝑤) are not adjacent in 𝐺, then 𝑢 (respectively 𝑤) is not a cut 
vertex in 𝐺. If both 𝑣 and 𝑢 as well as 𝑢 and 𝑤 are adjacent in 
𝐺, then 𝑢 and 𝑤 can not be cut vertices of 𝐺. 
 
A cut set of the connected graph 𝐺 = (𝑉, 𝐸) is an edge set 𝐹 ⊆
𝐸 such that 
1. 𝐺 − 𝐹 (remove the edges of 𝐹 one by one) is not 

connected, and 
2. 𝐺 − 𝐻 is connected whenever 𝐻 ⊂ 𝐹	. 

 

Theorem 5.9.  
If 𝐹 is a cut set of the connected graph 𝐺, then 𝐺 − 𝐹 has two 
components. 
 

Proof:  
Let 𝐹 = {𝑒J, . . . , 𝑒n}. The graph 𝐺 − {𝑒J, … , 𝑒nRJ} is connected 
(and so is 𝐺 if 𝑘 = 1) by condition #2. When we remove the 
edges from the connected graph, we get at most two 
components. 
Example 5.25  
In the graph 
 

 
 
 
 

𝑒;	
:	

𝑒�	
:	

𝑒K	
:	

𝑒L	
:	

𝑒@	
:	

𝑒D	
:	

𝑒C	
:	

𝑒J	
:	

𝑣J 	
:	

𝑣C 	
:	

𝑣; 	
:	

𝑣; 	
:	

𝑣@ 	
:	

𝑣L 	
:	
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𝑒J, 𝑒C , 𝑒L, 𝑒K , 𝑒J, 𝑒;, 𝑒D , 𝑒� , 𝑒D, 𝑒C, 𝑒@, 𝑒L ,
𝑒;, 𝑒@, 𝑒K , 𝑒;, 𝑒@, 𝑒L  and 𝑒;, 𝑒D, 𝑒C  are cut sets. Are there other 
cut sets? 
In a graph 𝐺 = (𝑉, 𝐸), a pair of subsets 𝑉J and 𝑉; of 𝑉 satisfying 
 
𝑉 = 𝑉J ∪ 𝑉;, 𝑉J ∩ 𝑉; = ∅,	 𝑉J ≠ ∅, 𝑉; ≠ ∅ 
 
is called a cut (or a partition) of 𝐺, denoted	 𝑉J, 𝑉; ,. Usually, the 
cuts 𝑉J, 𝑉;  and 𝑉;, 𝑉J 	are considered to be the same. 
 
Example 5.26 
(Continuing from the previous example) {𝑣J, 𝑣;, 𝑣D} , {𝑣C, 𝑣@, 𝑣L}  
is a cut. 
 
We can also think of a cut as an edge set: 
cut 𝑉J, 𝑉; = {those edges with one end vertex in 𝑉J and the other 
end vertex in 𝑉;}. 
 
(Note! This edge set does not define 𝑉J and 𝑉; uniquely so we 
can not use this for the definition of a cut.) 
 
Using the previous definitions and concepts, we can easily prove 
the following: 
 
1. The cut 𝑉J, 𝑉; , of a connected graph𝐺 (considered as an 

edge set) is a cut set if and only if the subgraphs induced 
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by 𝑉J and 𝑉; are connected, i.e. 𝐺 − 𝑉J, 𝑉; , has two 
components. 

2. If  𝐹 is a cut set of the connected graph 𝐺 and 𝑉J and 𝑉; 
are the vertex sets of the two components of 𝐺 − 𝐹, then 
𝑉J, 𝑉; ,  is a cut and 𝐹 = 𝑉J, 𝑉; , 

3. If 𝑣 is a vertex of a connected (nontrivial) graph 𝐺 = (𝑉, 𝐸), 
then 𝑣 , 𝑉 − {𝑣}  is a cut of 𝐺. It follows that the cut is a 
cut set if the subgraph (i.e. 𝐺 − 𝑣v) induced by 𝑉 − {𝑣} is 
connected, i.e. if v is not a cut vertex. 

 
If there exists a cut 𝑉J, 𝑉;  for the graph 𝐺 = (𝑉, 𝐸) so that 𝐸 =
𝑉J, 𝑉;    i.e. the cut (considered as an edge set) includes every 
edge, then the graph G is bipartite. 
 
Example 5.27  
The graph 
  
  
 
 
 
 
 
is bipartite. 𝑉J = {𝑣J, 𝑣;, 𝑣D}, and 𝑉J; = {𝑣C, 𝑣@, 𝑣L, 𝑣K}, 
 

𝑣@ 	
:	

𝑣J 	
:	

𝑣; 	
:	

𝑣C 	
:	

𝑣L 	
:	

𝑣K 	
:	

𝑣D 	
:	
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A simple bipartite graph is called a complete bipartite graph if 
we can not possibly add any more edges to the edge set 𝑉J, 𝑉; , 
i.e. the graph contains exactly all edges that have one end vertex 
in 𝑉J and the other end vertex in 𝑉;. If there are 𝑛 vertices in 𝑉J 
and 𝑚 vertices in 𝑉;, we denote it as 𝐾I,T (cf. complete graph). 
 

Example 5.28 
 
 
 
 
 

 
 
 
(Usually, 𝐾I,T and 𝐾T,I are considered to be the same) 
 

5.5 Labeled Graphs and Isomorphism 

By a labeling of the vertices of the graph 𝐺 = (𝑉, 𝐸), we 
mean a mapping 𝛼: 𝑉 → 𝐴, where 𝐴 is called the label set. 
Similarly, a labeling of the edges is a mapping 𝛽: 𝐸 → 𝐵, where 
𝐵 is the label set. Often, these labels are numbers. Then, we call 
them weights of vertices and edges. In a weighted graph, the 
weight of a path is the sum of the weights of the edges traversed. 

The labeling of the vertices (respectively edges) is injective 
if distinct vertices (respectively edges) have distinct labels. An 

𝐾J,J:	
:	

𝐾;,D:	
:	

𝐾;,J:	
:	

𝐾J,;:	
:	
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injective labeling is bijective if there are as many labels in 𝛼 
(respectively in B) as the number of vertices (respectively edges) 
 
Example 5.29 
If  𝐴 = {0,1} and 𝐵 = ℝ,	 then in the graph, 
 

 
 
 
 
  
 
 
 
 
the labeling of the edges (weights) is injective but not the labeling 
of the vertices. 
 

The two graphs 𝐺J = (𝑉J, 𝐸J) and𝐺; = (𝑉;, 𝐸;) are isomorphic if 
labeling the vertices of 𝐺J bijectively with the elements of 𝑉; gives 
𝐺;. (Note! We have to maintain the multiplicity of the edges.) 
 

Example 5.30 
The graphs 𝐺J and 𝐺;are isomorphic and the vertex labeling 
𝑣V ⟼ 𝑣′V and edge labeling 𝑒X ⟼ 𝑒′X define the isomorphism. 
  

0,6	
:	

0,2	
:	0,4	

:	

0,7	
:	

0,1	
:	

1	
:	

1	
:	

0	
:	

1	
:	

0	
:	

0	
:	
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5.6. Trees 
5.6.1. Trees and Forests 
A forest is a circuitless graph. A tree is a connected forest. A 
subforest is a subgraph of a forest.A connected subgraph of a 
tree is a subtree. Generally speaking, a subforest (respectively 
subtree) of a graph is its subgraph, which is also a forest 
(respectively tree). 
 

Example 5.31 
Four trees which together form a forest: 
  

𝑣L	
:	𝑣@	

:	 𝑒K	
:	𝑒L	

:	
𝑒D	
:	

𝑒;	
:	

𝑒J	
:	

𝑒C	
:	

𝑒�	
:	

𝑒v	
:	

𝑒Jt	
:	

𝑣;	
:	

𝑣J	
:	

𝑣D	
:	

𝑣C	
:	

𝑣�	
:	

𝑣K	
:	

𝐺J:	
:	

𝑒ʹD	
:	

𝑒ʹC	
:	

𝑒ʹK	
:	

𝑒ʹJt	
:	𝑣ʹ�	

:	 𝑒ʹ�	
:	

𝑒ʹv 	
:	

𝑒ʹL	
:	

𝑒ʹ@	
:	

𝑣ʹC	
:	

𝑣ʹ;	
:	

𝑒ʹJ	
:	

𝑒ʹ;	
:	

𝑣ʹJ	
:	

𝑣ʹD	
:	

𝑣ʹK	
:	

𝑣ʹL	
:	

𝑣ʹ@	
:	

𝐺;:	
:	
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A spanning tree of a connected graph is a subtree that includes 
all the vertices of that graph. If 𝑇 is a spanning tree of the graph 
𝐺, then 

𝐺 − 𝑇 =ÍÎÏ. 𝑇∗ 
is the cospanning tree. 
 

Example 5.32 
 
 
 
 
 
 
 

 
 
 
If the graph G has n vertices and m edges, then the following 
statements are equivalent: 
i) 𝐺 is a tree. 

𝐺:	
:	 𝑠𝑝𝑎𝑛𝑛𝑖𝑛𝑔	𝑡𝑟𝑒𝑒:	

:	

𝑐𝑜𝑠𝑝𝑎𝑛𝑛𝑖𝑛𝑔	𝑡𝑟𝑒𝑒:	
:	
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ii) There is exactly one path between any two vertices in 𝐺 
and 𝐺 has no loops. 

iii) 𝐺 is connected and 𝑚 = 𝑛 − 1 
iv) 𝐺 is circuitless and 𝑚 = 𝑛 − 1 
v) 𝐺 is circuitless and if we add any new edge to 𝐺, then we 

will get one and only one circuit. 
 

Proof :  
𝑖) ⇒ 𝑖𝑖) if 𝐺 is a tree, then it is connected and circuitless. Thus, 
there are no loops in 𝐺. There exists a path between any two 
vertices of 𝐺. By Theorem 5.6, we know that there is only one 
such path. 
 

𝑖𝑖) ⇒ 𝑖𝑖𝑖): G is connected. Let us use induction on 𝑚. 
 

1. Basis Step: 𝑚 = 0, 𝐺 is trivial and the statement is obvious. 
We set Inductive Hypothesis:	𝑚 = 𝑛 − 1 when 𝑚 ≤ 𝑙, 𝑙 ≥ 0 . 

2.  Inductive step: 𝑚 = 𝑛 − 1 when 𝑚 = 𝑙 + 1. 
Proof: Let 𝑒 be an edge in 𝐺. Then 𝐺 − 𝑒 has 𝑙 edges. If  

𝐺 − 𝑒 is connected, then there exist two different paths between 
the end vertices of 𝑒 so (ii) is false. Therefore, 𝐺 − 𝑒 has two 
components 𝐺J and 𝐺;. Let there be 𝑛J vertices and 𝑚J edges 
in 𝐺J. Similarly, let there be 𝑛; vertices and 𝑚; vertices in 𝐺;. 
Then, 𝑛 = 𝑛J + 𝑛; and 𝑚 = 𝑚J + 𝑚; + 1. 
The Inductive Hypothesis states that 

𝑚J = 𝑛J − 1 and 𝑚; = 𝑛; − 1, 
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so 𝑚 = 𝑛J + 𝑛; − 1 = 𝑛 − 1. 
𝑖𝑖𝑖) ⇒ 𝑖𝑣): consider the counter hypothesis:  There is a circuit in 
𝐺. Let 𝑒 be some edge in that circuit. Thus, there are 𝑛 vertices 
and 𝑛 − 2 edges in the connected graph 𝐺 − 𝑒. 
 
𝑖𝑣) ⇒ 𝑣): If 𝐺 is circuitless, then there is at most one path between 
any two vertices (Theorem 5.6). If 𝐺 has more than one 
component, then we will not get a circuit when we draw an edge 
between two different components. By adding edges, we can 
connect components without creating circuits: 
 
 
 
 
If we add 𝑘 ≥ 1 edges, then (because 𝑖 ⇒ 𝑖𝑖𝑖) 
𝑚 + 𝑘 = 𝑛 − 1	 ( because 𝑚 = 𝑛 − 1	 ). 
So 𝐺 is connected. When we add an edge between vertices that 
are not adjacent, we get only one circuit. Otherwise, we can 
remove an edge from one circuit so that other circuits will not 
be affected and the graph stays connected, in contradiction to 
𝑖𝑖𝑖 ⇒ 𝑖𝑣. Similarly, if we add a parallel edge or a loop, we get 
exactly one circuit. 
 

𝑣) ⇒ 𝑖): Consider the counter hypothesis: 𝐺 is not a tree, i.e. it is 
not connected. When we add edges as we did previously, we 
do not create any circuits (see figure).   

1st	
compon
ent	

2nd	
compon
ent	
	

3rd	
compon
ent	
	

4th		
compon
ent	
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Since spanning trees are trees, Theorem 5.10 is also true for 
spanning trees. 
 

Theorem 5.11. 
A connected graph has at least one spanning tree. 
Proof. Consider the connected graph 𝐺 with 𝑛 vertices and 𝑚 
edges. If 𝑚 = 𝑛 − 1, then 𝐺 is a tree. Since 𝐺 is connected, 𝑚 ≥

𝑛 − 1 (Theorem 5.4). We still have to consider the case 𝑚 ≥ 𝑛, 
where there is a circuit in G. We remove an edge e from that 
circuit. 𝐺 − 𝑒 is now connected. We repeat until there are 𝑛 − 1 
edges. Then, we are left with a tree. 
 

Remark. We can get a spanning tree of a connected graph by 
starting from an arbitrary subforest 𝑀 (as we did previously). 
Since there is no circuit whose edges are all in 𝑀, we can 
remove those edges from the circuit which are not in 𝑀. 
 

By Theorem 5.10, the subgraph 𝐺J of 𝐺 with 𝑛 vertices is a 
spanning tree of 𝐺 (thus 𝐺 is connected) if any three of the 
following four conditions hold: 
1. 𝐺J has 𝑛 vertices. 
2. 𝐺J is connected. 
3.  𝐺J has 𝑛 − 1 edges. 
4. 𝐺J is circuitless. 

 

Actually, conditions #3 and #4 are enough to guarantee that 𝐺J 
is a spanning tree. If conditions #3 and #4 hold but 𝐺J is not 
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connected, then the components of 𝐺J are trees and the number 
of edges in 𝐺J would be: 

number of vertices − number of components < 𝑛 − 1 
Theorem 5.12.  
If a tree is not trivial, then there are at least two pendant 
vertices. 
 

Proof : 
If a tree has 𝑛 ≥ 	2 vertices, then the sum of the degrees is 2(𝑛	 −
	1). If every vertex has a degree ≥ 	2, then the sum will be ≥ 	2𝑛	. 
On the other hand, if all but one vertex have degree ≥ 	2, then 
the sum would be ≥ 	1	 + 	2(𝑛	 − 	1) 	= 	2𝑛	 − 	1. (This also 
follows from Theorem 5.8 because a cut vertex of a tree is not 
a pendant vertex!) 
 

A forest with 𝑘	components is sometimes called a 𝑘 -tree. (So 
a 1-tree is a tree.) 
 

Example 5.33 
 
 
 
 
 
5.6.2.  (Fundamental) Circuits and (Fundamental) Cut Sets 
If the branches of the spanning tree 𝑇 of a connected graph 𝐺 
are 𝑏J, . . . , 𝑏IRJand the corresponding links of the cospanning 

4-tree	
:	
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tree T∗ are 𝑐J, . . . , 𝑐TRIHJ, then there exists one and only one 
circuit 𝐶V in 𝑇	 + 	𝑐V (which is the subgraph of 𝐺 induced by the 
branches of 𝑇 and 𝑐V) (Theorem 2.1). We call this circuit a 
fundamental circuit. Every spanning tree defines 𝑚	 − 	𝑛	 + 	1 
fundamental circuits 𝑐J, . . . , 𝑐TRIHJ, which together form a 
fundamental set of circuits. Every fundamental circuit has exactly 
one link which is not in any other fundamental circuit in the 
fundamental set of circuits. Therefore, we can not write any 
fundamental circuit as a ring sum of other fundamental circuits in 
the same set. In other words, the fundamental set of circuits is 
linearly independent under the ring sum operation. 
Example 5.34 
 
 
 
 
 
The graph 𝑇 − 𝑏V has two components 𝑇J and 𝑇;. The 
corresponding vertex sets are 𝑉J and 𝑉;. Then, 𝑉J, 𝑉; , is a cut 
of 𝐺. It is also a cut set of 𝐺 if we treat it as an edge set because  
𝐺 − 𝑉J, 𝑉;  has two components. Thus, every branch 𝑏V of 𝑇  has 
a corresponding cut set 𝐼�. The cut sets 𝐼J, . . . , 𝐼IRJ are also 
known as fundamental cut sets and they form a fundamental set 
of cut sets. Every fundamental cut set includes exactly one 
branch of 𝑇 and every branch of 𝑇 belongs to exactly one 

𝐶D	𝐶J	 𝐶;	
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fundamental cut set. Therefore, every spanning tree defines a 
unique fundamental set of cut sets for 𝐺. 
Example. 5.35 
(Continuing from the previous example) The graph 
 
 
 
 
 
 

has the spanning tree 
 
 
 
 
  
 

that defines these fundamental cut sets: 
𝑏J ∶ 	 {𝑒J, 𝑒;}																𝑏; ∶ 	 {𝑒;, 𝑒D, 𝑒C}						𝑏D ∶ 	 {𝑒;, 𝑒C, 𝑒@, 𝑒L}	
𝑏C ∶ 	 {𝑒;, 𝑒C, 𝑒@, 𝑒K}					𝑏@ ∶ 	 {𝑒�} 
 

Next, we consider some properties of circuits and cut sets: 
(a) Every cut set of a connected graph 𝐺 includes at least one 

branch from every spanning tree of 𝐺. (Counter hypothesis: 
Some cut set 𝐹 of 𝐺 does not include any branches of a 
spanning tree 𝑇. Then, 𝑇 is a subgraph of 𝐺 − 𝐹 and 𝐺 − 𝐹 
is connected.  

𝑏C	

𝑏D	
𝑏J	

𝑏;	

𝑏@	

𝐺:	
𝑒@	𝑒C	

𝑒K	

𝑒L	
𝑒J	

𝑒D	

𝑒;	
𝑒�	
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(b) Every circuit of a connected graph 𝐺 includes at least one 
link from every cospanning tree of 𝐺. (Counter hypothesis: 
Some circuit 𝐶 of 𝐺 does not include any link of a 
cospanning tree 𝑇∗. Then, 𝑇 = 𝐺 − 𝑇∗ has a circuit and 𝑇 is 
not a tree.  

 

Theorem 5.12 
The edge set 𝐹 of the connected graph 𝐺 is a cut set of  𝐺 if 
and only if 
(i) 𝐹 includes at least one branch from every spanning tree 

of  𝐺, and 
(ii)  if  𝐻	 ⊂ 	𝐹, then there is a spanning tree none of whose 

branches is in 𝐻. 
 

Proof : 
 Let us first consider the case where 𝐹 is a cut set. Then, (i) is 
true (previous proposition (a)). If 𝐻	 ⊂ 	𝐹 then 𝐺	 − 	𝐻 is 
connected and has a spanning tree 𝑇. This 𝑇 is also a spanning 
tree of 𝐺. Hence, (ii) is true. 
Let us next consider the case where both (i) and (ii) are true. 
Then 𝐺 − 𝐹 is disconnected. If 𝐻	 ⊂ 	𝐹 there is a spanning tree 𝑇 
none of whose branches is in 𝐻	. Thus 𝑇 is a subgraph of 𝐺 − 𝐻 
and 𝐺 − 𝐻 is connected. Hence, 𝐹 is a cut set. 
 

Similarly: 
Theorem 5.13  
The subgraph 𝐶 of the connected graph 𝐺 is a circuit if and 
only if 
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(i) 𝐶 includes at least one link from every cospanning tree of 
𝐺, and 

(ii) if 𝐷 is a subgraph of 𝐶 and 𝐷 ≠ 𝐶, then there exists a 
cospanning tree none of whose links is in 𝐷. 

 

Proof:  
Let us first consider the case where 𝐶 is a circuit. Then, 𝐶 
includes at least one link from every cospanning tree (property 
(b) above) so (i) is true. If 𝐷 is a proper subgraph of 𝐶, it 
obviously does not contain circuits, i.e. it is a forest. We can then 
supplement 𝐷 so that it is a spanning tree of 𝐺 ,i.e. some 
spanning tree 𝑇 of 𝐺 includes 𝐷 and 𝐷 does not include any link 
of T∗. Thus, (ii) is true. 
 

Now we consider the case where (i) and (ii) are both true. Then, 
there has to be at least one circuit in 𝐶 because 𝐶 is otherwise 
a forest and we can supplement it so that it is a spanning tree 
of 𝐺. We take a circuit 𝐶′  in 𝐶. Since (ii) is true, 𝐶′ ≠ 𝐶 is not 
true, because 𝐶 ‘ is a circuit and it includes a link from every 
cospanning tree (see property (b) above). Therefore, 𝐶 = 𝐶′ is a 
circuit. 
 

Theorem 5.14 
 A circuit and a cut set of a connected graph have an even 
number of common edges 
Proof : 
We choose a circuit 𝐶 and a cut set 𝐹 of the connected graph 
𝐺. 𝐺 − 𝐹 has two components 𝐺J = (𝑉J, 𝐸J) and 𝐺; = (𝑉;, 𝐸;). If 
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𝐶 is a subgraph of 𝐺J or 𝐺;, then the theorem is obvious because 
they have no common edges. Let us assume that 𝐶 and 𝐹 have 
common edges. We traverse around a circuit by starting at some 
vertex 𝑣 of 𝐺J. Since we come back to 𝑣, there has to be an 
even number of edges of the cut  𝑉J, 𝑉;  in 𝐶. 
 
5.7. An Application : Scheduling Serie-A Competition  
5.7.1. Introduction  

It can be seen in the name, the graph is represented as a 
diagram graphically to simplify to know its properties. The 
diagram visualizes points including lines connecting them. A 
graph can represent something. For example, points represent 
people and connecting lines represents friendship or love 
relationship. Moreover, graph can be broadly applied to a wide 
range of disciplines. It can be found in the field of biochemistry 
(genomics), electrical engineering (communication network and 
coding theory), computer science (algorithm and computation) 
and operations research (scheduling), etc.  

In addition graph specifically can be used to set schedule 
of a full season soccer league competition. Full season 
competition means that each team has to play both home match 
and away match against every other team. One of the popular 
full season-soccer competitions is Italy League Serie-A. The 
number of teams in Serie A is 20 teams. It is then consequently 
assumed that each team has a home-stadium to have a home 
match. In this study, according to regulations of soccer league 
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competition in common, there are several basic conditions which 
should be maintained. Firstly, a team has to meet all other teams 
once before having a match against another team for the second 
time. Such a thing is called half-season competition. Secondly, 
the schedule should be arranged such that each team has a 
home-match and away match alternately as frequent as possible. 
If a team has a home-match or an away match consecutively, 
then it is called that a team has a break. The number of breaks 
should be minimized as few as possible. Thirdly, in the 
competition of Serie-A, there are some couples of teams which 
have the same home-stadium, e.g. Milan and Inter in San 
Siro/Giuseppe Meazza stadium and Roma and Lazio in Olimpico 
stadium. Each of these couple of teams should be kept such that 
the two teams don’t play a home-match or an away-match in 
the same match-daty. For the term, the two teams are called 
complementary teams. The notable thing from a complementary 
team is that. Consequently, if Milan has a home-match in a 
certain match-day, then Inter has an away-match. Therefore, if 
one of the teams has a break of home-match, for example, then 
the other team has a break of away-match. Then the challenge 
is that how to construct Serie-A competition with the most 
minimum number of breaks and particularly arrange the schedule 
of the complementary teams such that they don’t have the same 
home match and the same away match in all match-days of the 
competition  
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5.7.2. Several Theoretical Definitions 
Conceptually, graph is formed by vertices and edges. 

Formally, a graph is a pair of sets 𝑉, 𝐸  where 𝑉 is the set of 
vertices and 𝐸 is the set of edges. Each edge 𝑒 = (𝑥, 𝑦) is an 
unordered pair of vertices of which 𝑥 and 𝑦 are the end points 
of 𝑒. Two vertices 𝑥 and 𝑦 in a graph G is said to be adjacent 
each other if they are directly connected by an edge (Yulianti, 
2008). In other words, 𝑥 is adjacent to 𝑦 if (𝑥,	𝑦) is an adge in a 
graph G. An edge 𝑒 or (𝑥, 𝑦) can be directed, for instance, from 
𝑥 to 𝑦. On this case 𝑒 = (𝑥 → 𝑦). For arbitrary 𝑒 = 𝑥, 𝑦 , then 𝑒	is 
incident to vertices 𝑥 and 𝑦. 

The degree 𝑑Ó(𝑥) of a vertex 𝑥 in a graph 𝐺 is the number 
of edges in 𝐺 incident to vertex 𝑥. Graph 𝐺 is said 𝑑-reguler if 
𝑑Ó 𝑥 = 𝑑 for every	𝑥.		The subfamily of 𝐹 of the edges 𝐺 of which 
there is no two edges adjacent is called matching. 1-reguler 
matching is called factor and the partition of the edge family of 
𝐺 into factor is called factorization of 𝐺.  

Some other important related-graph concepts are simple 
graph, bipartite graph and complete graph. Simple graph doesn’t 
contain loop which is an edge connecting the same vertex. 
Bipartite graph is a simple graph which can be partitioned into 
two sets 𝑉J and 𝑉; with the following properties: 
1. If 𝑣 ∈ 𝑉J, then  𝑣 can only be adjacent to the vertices in 𝑉; 
2. If 𝑣 ∈ 𝑉;, then  𝑣 can only be adjacent to the vertices in𝑉J 
3. 𝑉J ∩ 𝑉; = ∅ 
4. 𝑉J ∪ 𝑉; = 𝑉. 
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Meanwhile, a graph is said to be a complete graph if each 
vertex adjacent to all vertices in the graph. The symbol of a 
complete graph 𝐾I, where 𝑛 is the number of vertices in the 
graph. Then, it can be drawn that the degree 𝑑Ó 𝑥 	for every 
vertex 𝑥 of a complete graph is the same, that is if 𝐺 is a 
complete graph and the number of vertices in 𝐺 is 𝑛, then 
𝑑Ó 𝑥 = 𝑛 − 1, for every 𝑥.  

In the competition of Italia soccer league, every team should 
meet evey other team exactly one teame till the half of the 
season. Then the competition can be represented as a complete 
graph if every team is represented as a vertex and the match 
between any two teams is represented as edge. Therefore all of 
the matches in each match-day including the teams competing 
is called matching or factor. 

Furthermore, the other important concepts are walk, trail, 
path, and cycle. A walk of a graph G is a non-null finite sequence 
𝑊 = 𝑣t, 𝑒J,	𝑣J, 𝑒;, … . , 𝑣IRJ, 𝑒I, 𝑣I whose terms are of vertices and 
edges of which each vertex and each edge alternate such that 
𝑣VRJ and 𝑣V is connected by 𝑒V where  1 ≤ 𝑖 ≤ 𝑛. If each edge in 
walk W is transversed at most once, then the walk W is said a 
trail. A walk 𝑊 is a path if for any two vertices 𝑣V and 𝑣X in the 
sequence 𝑊 satisfies 𝑣V ≠ 𝑣X . Meanwhile, cycle is a walk which 
starts and ends at the same vertex.  
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5.7.3. Some Important Concepts and Theorems 
In this section, it will be explained several important 

concepts related to a tournament construction and some 
theorems functioning to prove the feasibility of the concepts to 
use in the soccer league schedule.  
Theorem 5.15. There will be breaks in a full-season soccer 
league with home-away system consisting of 2𝑛 teams, 𝑛 > 1, 
𝑛 ∈ 𝑁 
Proof : 
Let the elements of a set 𝐻 = {1,2,3, … , 𝑛} be the teams beginning 
the competition as home-teams. Conversely, each of the other 
teams in a set 𝐴 = {𝑛 + 1, 𝑛 + 2, 𝑛 + 3, … . , 2𝑛} begins the 
competition as away-teams. If every team is represented as a 
vertex, then there are 2𝑛 vertices in a graph 𝐺. Then, matching 
can be formed from a bipartite graph 𝐺 which is partitioned into 
two sets 𝐾 for home teams and 𝑇 for away teams. To avoid  
break, for match-day 𝑝, where p is odd, all of the teams in 𝐻 
are in the set 𝐾 meanwhile those of 𝐴 are in the set 𝑇. On the 
other hand, for match-day p, where p is even, all teams in 𝐻 is 
in the set 𝑇 and those of 𝐴 are in the set 𝐾. Since 𝑑Ó 𝑥  for 
each vertex 𝑥 in the complete bipartite graph is 𝑛 then this system 
can only be maintained till the n-th match-day since till that 
match-day.  In other words, each of the team in 𝐻 has had a 
match against all teams in 𝐴 till the n-th match-day. In the n+1-
th match-day, each of teams both in 𝐻 and in 𝐴 will have a 
match against a team in 𝐻 and in 𝐴 respectively. Without loss of 
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generality, let in the n-th match-day, the teams in 𝐻 has a home-
match. Then in the n+1-th match-day, there will be I

;
 teams of 

H having match against the other I
;
 teams in their own home-

stadium. It then implies that breaks occur in the soccer league. 
One of the competitions related to the proof of the 

theorem 2.1. is the group phase of Europe Champion League of 
which there are four teams in every group and the breaks start 
in the third match-day of game. 

Then, consider a graph 𝐺 = 𝐾2n and define the schedule 

with oriented coloring (𝐹J, 𝐹;, … , 𝐹;IRJ) where each 𝐹Õ is a factor 
such that if edge (𝑗, 𝑘) meaning that team 𝑗 has a match against 

team 𝑘 in the home-stadium of the team 𝑘 is in 𝐹Õ then the edge 
can be notated as (𝑗 → 𝑘) which is on the p-th match-day. In a 
schedule 𝑆, pattern of home-away = 𝐻(𝑆) is defined by : 
 

ℎXÕ 𝑆 =
𝐾
𝑇
−
 if team 𝑗 has a match 

Home
Away
−

 , in the  p-th match-

day  
For example, for the first half season of a competition 

consisting of four teams, the oriented coloring for the competition 

is as follows :	𝐹J : 41					32	, 𝐹; : 24					13,  𝐹D : 21					43	  
From the oriented coloring, the pattern of home-away can be 
shown in the table 5.1. : 
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Table 5.1. Home-away pattern for each factor 𝐹Ü 
Team/Match-day 1 2 3 
1 K T K 
2 K T T 
3 T K K 
4 T K T 

The profile of the i-th team is the i-th row of 𝐻(𝑆). The 
following theorem describes the properties of the competition 
which has the minimum number of breaks.  
Lemma 5.1.  
There are at most 𝛼(𝐺) vertices which have the same profile. 
Proof : 
Suppose there is a set 𝑇, 𝑇 > 𝛼(𝐺) with the elements i.e. 
vertices with the same profile. It implies that in 𝑇 there are at least 
two vertices 𝑖, 𝑗 adjacent in 𝐺. Since (𝑖, 𝑗) can be oriented from 𝑖 
to 𝑗 or from 𝑗 to 𝑖, there exist day 𝑘 where ℎVn(𝑆) ≠ ℎXn(𝑆) which 
is a contradiction. Then 𝑇 ≤ 𝛼(𝐺).  
In addition, it can be concluded from lemma 3.1. that there are 
at most 2𝛼(𝐺) teams which have the same profile without any 
break. Specifically, there are as many as 𝛼(𝐺) teams which have 
a profile without any break beginning the competition with a 
home-match and there are as many as 𝛼(𝐺) teams which have 
a profile without any break beginning the competition with an 
away-match. 
Theorem 5.16. Let 𝐺 is d-reguler graph with 2𝑛 vertices and 
𝛼(𝐺) is the maximum size of a set of independent vertex in 𝐺, 
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then there are at least 2(𝑛 − 𝛼 𝐺 ) in the oriented coloring 

(𝐹J, 𝐹;, … , 𝐹�) of 𝐺.  
Proof : 
From the proof of  lemma 3.1, it can be concluded that there 
are at least 2 𝑛 − 𝛼 𝐺  teams with the profile at least 1 break, 
therefore the number of the minimum breaks are 2 𝑛 − 𝛼 𝐺 .  
Corollari 5.1. The oriented coloring (𝐹J, 𝐹;, … , 𝐹;IRJ) of 𝐾;I has 
at least 2𝑛 − 2 breaks. 
Proof : 
The maximum size for the independent set of vertices of 𝐾;I is 
1 from the theorem 3.1., so the number of the mimimum breaks 
is 2 𝑛 − 1 = 2𝑛 − 2. 
 The schedule corresponding to factorization with oriented 

coloring (𝐹J, 𝐹;, … , 𝐹�) means that each team plays exactly one 
match in every match-day for 𝑑 match-days. In other words,  for 
the entire match-days, there is no team which has no match. 
Werra (1988) states that the schedule is compact. In a compact 
schedule, if there is a team having a home-match in the k-th 
match-day and in the k+1-th match-day, then there is another 
team with an away match in those consecutive weks. Besides 
that, the compact schedule of the competition with 2𝑛 teams has 
𝑛 couples of complementary teams (Werra, 1988). The example 
of a compact schedule can be seen in the table 2.1. of which 
there are two couples of complement teams i.e. team 1 with 
team 4 and team 2 with team 3.  
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5.7.4. Kirkman Tournament Construction  
Kirkman tournament construction is a scheduling method 

firstly introduced by Reverend T.P. Kirkman in 1846. There are 
several kinds of constructions of Kirkman, however, the kind of 
construction used in this study concerns the competition which 
will be resulted. In other words, the construction is appropriate to 
a soccer league with 2𝑛 teams with full season system. In relation 
to graph, all matches and teams are represented as a complete 
graph with 2𝑛 vertices. It can then be factorized into some 
matchings resulting the oriented coloring 𝐹J, 𝐹;, … , 𝐹;IRJ. 
Therefore, the schedule covers half-season of a competition. The 
following procedure of constructing the schedule is based on the 
review of Froncek (2010).  

To begin, we give a label 𝑙 for each team, where 𝑙 : 
1, 2, 3, … , 2𝑛. The labels can be considered as numbers so it can 
be mathematically operated. Indeed, every team is represented 
as a vertex and arbitrary match between two teams is 
represented as an edge. Then we set a formation for the position 
from the vertex 1 to the vertex 2𝑛 − 1 consecutively in a circle at 
a similar distance such that if we connect each edge to the next 
edge using a segment it will form a regular 2𝑛 − 1-gon. 
Meanwhile, vertex 2𝑛 is placed in the center of the circle. We 
define a match (𝑘 → 𝑗) as a match between team 𝑗 and team 𝑘 
in the home-stadium of team 𝑗. In the first match-day, we form 
an edge connecting the vertex 2𝑛 and vertex 1 by setting the 
team 1 as the home team notated by edge (2𝑛	 → 	1). Moreover, 
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the other edges are perpendicular to the edge (2𝑛	 → 	1), i.e. the 
edges respectively are incident to the vertex 2 and 2𝑛 − 1, the 
vertex 3 and the vertex 2𝑛 − 2, and so on till the vertex 𝑛	and 
the vertex 𝑛 + 1. In the matches represented by these edges, 

teams 2, 3, ..., 𝑛 play a home-match then it results 𝐹J: 
2𝑛	 → 	1 , 2𝑛 − 1 → 	2 , 2𝑛 − 2 → 	3 , … , ((𝑛 + 1	) → 𝑛). In 

the second match-day, the label of the opponent of the team 2𝑛 
is obtained by adding the label of the opponent team in the first 
match-day by 𝑛 using mod (2𝑛 − 1) system. In general, the label 
of the opponent team of team 2𝑛 in the p+1-th match-day is 
obtained by adding its opponent team label in the p-th match-
day  by 𝑛 using mod (2𝑛 − 1) system. For any two teams 
matching in the other matches, each label of any two vertices 
connected by an edge in the p-th match-day is added by 
𝑛	using mod (2𝑛 − 1) system for the p+1-th match-day. This 
system has to be set such that ℎ(;I)Õ 𝑆 ≠ ℎ ;I (ÕHJ) 𝑆 . From 
this condition, the team 𝑛 + 1 having an away match in the first 
match-day has an away match again in the second match-day 
since its opponent is the team 2𝑛.  

For the illustration of the method using graph, eight teams 
are taken as the samples. The teams are respectively given labels 
1, 2, 3, 4, 5, 6, 7, and 8 (Froncek, 2010). Consecutively,  the 
graphs for the first match-day, the second match-day, and the 
third match-day are shown in the figure 5.1., figure 5.2., and 
figure 5.3. 
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Figure 5.1 Graph representation for the first match-day 
 
 
 
 
 
 
 

 
Figure 5.2 Graph representation for the second match-day 

 
Figure 5.3 Graph representation for the third match-day 
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In a full season competition with 2𝑛 teams, the total of 
match-days is 4𝑛	– 	2. Furthermore,  there are 𝑛 matches in every 
match-day. Therefore, there are totally 4𝑛;	– 2𝑛 matches in the 
competition. If it is counted till the half-season, then there are 
2𝑛 − 1 match-days and 2𝑛;	– 𝑛 matches.  
 
5.7.5. Discussions  

Each factor 𝐹Õ in the competition with 2𝑛	teams is a graph 
𝐻 in the form of matching with 𝑛 edges. Let 𝑛 edges formed in 
each factor  are 𝑒J, 𝑒;, … , 𝑒I	. In the 𝐹Ü	, 𝑒J 	is the edge incident to 
vertex	2𝑛	dengan vertex 1 i.e. 𝑒J = 2𝑛 → 1 , 𝑒;, connect vertex 
2𝑛-1 with vertex 2, and so forth till 𝑒I connecting vertex 𝑛 + 1 
and vertex 𝑛. Now, define 𝑣ÕÝ	as the team incident to 𝑒Ý in the 
match-day p which  is related to the following theorems.  
Theorem 5.17. For arbitrary 𝑒Ý, where 2 ≤ 𝑠 ≤ 𝑛, and for each 
match-day p where 1 ≤ 𝑝 ≤ 2𝑛 − 1, there is no two 𝑣ÕÝ	which are 
alike both as a home-team and as away team in the construction 
of Kirkman.  
Proof : 
Specifically, theorem 5.17. means that every team except team 
2𝑛 is incident to an edge 𝑒Ý twice, 2 ≤ 𝑠 ≤ 𝑛, namely once when 
the team has a home-match and once when it has an away-
match.  
(i) Without loss of generality, consider in the match-day p = 1, 

the team with a home-match incident to 𝑒Ý is n. As the 
method of the schedule construction states that in each next 



introduction to Discrete Mathematics with an Application of Graph Theory 

	
	

  147 

match-day, every number/label is added by 𝑛 using mod 
(2𝑛 − 1) system, let a function 𝜏 𝑥 ≡ 𝑛 + 	𝑥𝑛 	≡

𝑘	mod	 2𝑛 − 1 , where 𝑥 ≥ 1, 𝑥 ∈ 𝑁 . By mathematics 
induction it can be shown that for all odd 𝑥 ≥ 1 then 𝜏 𝑥 =

𝑛 + 	𝑥𝑛 	≡ �HJ
;
mod	 2𝑛 − 1    

For the base case 𝑥 = 1, 𝜏 1 ≡ 2𝑛 ≡ 1	mod	 2𝑛 − 1  which 
is true. 
If 𝑥 is odd then 𝜏 𝑥  can be written as 𝜏 2𝑚 − 1 ,𝑚 ≥ 1,𝑚 ∈

𝑁.    
It is assumed that for 𝑥 = 2𝑘 − 1, 

 𝜏 2𝑘 − 1 ≡ 𝑛 + 2𝑘 − 1 𝑛 ≡ (;nRJ)HJ
;

 ≡ 𝑘	mod(2n − 1) is 

true 
For the inductive step, 𝑥 = 2(𝑘 + 1) − 1, 

𝜏 2(𝑘 + 1) − 1 ≡ (𝑛 + 2𝑘 + 1 𝑛 ≡ ;nHJ HJ
;

≡ 𝑘 +

1	mod(2n − 1) is true. 
In addition, it can be shown that for all even 𝑥 ≥ 2 , 𝑛 +

	𝑥𝑛 ≡ 𝑛 + �
;
	mod	 2𝑛 − 1  

For the base case 𝑥 = 2, 𝜏 2 ≡ 3𝑛 ≡ 𝑛 + 1	mod	 2𝑛 − 1  
which is true. 

For the induction hypothesis, it is assumed that for 𝑥 = 2𝑘, 
 𝜏 2𝑘 ≡ 𝑛 + 2𝑘𝑛 ≡ 𝑛(2𝑘 + 1) ≡ 𝑛 + 𝑘	mod(2𝑛 − 1) is true. 
For the inductive step which is for 𝑥 = 2𝑘 + 2 
𝜏 2𝑘 + 2 ≡ 𝑛 + (2𝑘 + 2𝑛) ≡ 𝑛 + 𝑘 + 1 	mod(2𝑛 − 1) is true.  
Then, one can verify that the list of  teams with a home 
match incident to 𝑒Ý are as follows : 
𝑣JÝ	 = 𝑛,    𝑣;Ý = 1, 
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𝑣DÝ	 = 𝑛 + 1,  𝑣CÝ	 = 2, 
𝑣@Ý	 = 𝑛 + 2,  𝑣LÝ	 = 3, 
It can be seen in the pattern that for p is odd 𝑣ÕÝ	 = 𝑛 +

𝑘, 𝑘 = 0,1,2, … , 𝑐 with bound c and for p is even, 𝑣ÕÝ	 =
𝑚,𝑚 = 1,2,3, … , 𝑑	 with bound d which are all different. 
Since 𝑣;IÝ	 = 𝑛, then 𝑣 ;IR; Ý = 𝑛 − 1 and 𝑣 ;IRJ Ý = 2𝑛 − 1, 
then 𝑐 = 𝑑 = 𝑛 − 1. 

(ii) From (i), it can be seen that 𝑣 ;IRJ Ý = 2𝑛 − 1 and 𝑣;IÝ	 = 𝑛, 
then if we form a graph 𝑊 =

𝑣JÝ	𝑒J𝑣;Ý	𝑒;𝑣DÝ	 … 𝑣(;IRJ)Ý	𝑒;IRJ𝑣;IÝ	 where 𝑒n connects 
𝑣nÝ	and 𝑣(nHJ)Ý	then W is a walk in the form of cycle since 
𝑣JÝ	 = 𝑣;IÝ	 = 𝑛.      

(iii) The section (ii) means that for arbitrary team j with a home-
match for example connected by 𝑒Ý in the first match-day 
implies 𝑣JÝ	 = 𝑗. Since 𝑣JÝ	 = 𝑗 then  𝑣;IÝ	 = 𝑗	. furthermore, a 
walk 𝑊	 can be formed, i.e. 	𝑊 =

𝑣JÝ	𝑒J𝑣;Ý	𝑒;𝑣DÝ	 … 𝑣(;IRJ)Ý	𝑒;IRJ𝑣;IÝ	 where 𝑣JÝ	 = 𝑣;IÝ	 = 𝑗. If 
𝑊 = (𝑉, 𝐸), a path then can be set from 𝑊 by eliminating 
the elements 𝑣;IÝ	and 𝑒;IRJ from respectively 𝑉and 𝐸. 
Therefore,  there is no two 𝑣ÕÝ		which are alike where 1 ≤
𝑝 ≤ 2𝑛 − 1 for arbitrary 𝑒Ý	, where 2 ≤ 𝑠 ≤ 𝑛.  

A path set from vertex 𝑣ÕÝ	both as a home team and away 
team connected by 𝑒Ý	and connecting edges 𝑒n  where 𝑒n 
incident to 𝑣nÝ	and 𝑣(nHJ)Ý	 is said 𝑒Ý	-generated open path   
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Corollary 5.2. In the Kirkman construction, there are different 2𝑛 −
2 generated open path set from edges 𝑒Ý	, where 2 ≤ 𝑠 ≤ 𝑛. 
Proof : 
There are 𝑛 − 1 edges i.e. 𝑒;	, 𝑒D, 𝑒C, … , 𝑒I and each edge 
connects one home-team and one away-team. It then implies 
that there are 2𝑛 − 2 different teams in the first match-day 
connected by 𝑒;	, 𝑒D, 𝑒C, … , 𝑒I. By the theorem 5.17, for arbitrary 
team in the first match-day, a generated open path can be 
formed. Since 𝑣J;	 ≠ 𝑣JD	 ≠ ⋯ ≠ 𝑣JI , there are different 2𝑛 − 2 
generated open path which can be formed. 
Theorem 5.18. In the tournament construction of Kirkman for a 
half-season competition, each team meets another team exactly 
once. (Froncek, 2010) 
Proof : 
(i) In the edge 𝑒J, the opponent of the team 2𝑛 in the first 

match-day is the team 1. Since the  label of the opponent 
team should be added by	𝑛	with mod(2𝑛 − 1) system to 
determine the opponent of the team 2𝑛 in each next match-
day, then one can verify that from the 1stmatch-day to the 
2n-1-th match-day, the opponents of the team 2𝑛 are 
respectively 1, 𝑛 + 1, 2, 𝑛 + 2, 3, 𝑛 + 3, … , 2𝑛 − 1, 𝑛. 
Therefore, the team 𝑐 plays against the other teams exactly 
once. Besides that, because of the vertices position of the 
team 2n-1’s opponents are different on graph, there is no 
two edges in 𝑒J e.g. 𝑒J� = (2𝑛, 𝑥) and 𝑒Já = (2𝑛, 𝑦) for 
respectively a match between 2n and x and a match 
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between 2n and y which are parallel or coincidence in the 
graph construction 

(ii) For the other edges besides 𝑒J, if team 𝑗 has a match against 
team 𝑘 in the match-day x, then the edge (𝑗, 𝑘) is 
perpendicular to an edge connecting the team 2𝑛 and 
another team 𝑎 i.e. (2𝑛, 𝑎). If the team 𝑗 has a match against 
team 𝑘 in another match-day, e.g. in the match-day y, then 
the edge 𝑗, 𝑘  is perpendicular to an edge connecting the 
team 2𝑛 and another team 𝑏 i.e. (2𝑛, 𝑏). If the edge 𝑗, 𝑘  is 
perpendicular to the edges (2𝑛, 𝑎) and (2𝑛, 𝑏) then the edge 
(2𝑛, 𝑎) and the edge (2𝑛, 𝑏) is parralel or coincide which 
implies a contradiction. It follows that team 𝑗 meets team 𝑘 
exactly once. 

Theorem 5.19 For 2 ≤ 𝑠 ≤ 𝑛, if 𝑣JÝ is a team with a home-match, 
then the order of the team team n in an 𝑒Ý	-generated open path 
is odd, meanwhile if 𝑣JÝ is a team with an away-match, the order 
of the team n in an 𝑒Ý	-generated open path is even. 
Proof : 
In other words, the theorem 5.19. means that the team n plays 
a home-match and an away- match in the g-th match-day 
where g is odd and even respectively is an 𝑒Ý	-generated open 
path. Trivially, in the edge 𝑒I, the team n is a team with a home-
match in the first match-day. Then the order of the team n in the 
𝑒I	-generated open path is odd. For the edges besides 𝑒I, let 
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each team 𝑣JÝ with a home-match be 𝑛 − 𝑥, where 1	≤ 𝑥 ≤ 𝑛 −

2. It follows then: 
𝑛 − 𝑥	 + 	𝑐𝑛 ≡ 𝑛	mod	(2𝑛 − 1)	, where 𝑐 ∈ 𝑁, meaning that 
2𝑛 − 1 |𝑐𝑛 − 𝑥. Indeed 𝑐𝑛 − 𝑥 ≥ 0. Since a number 𝑐𝑛 − 𝑥 which 

is more than 0 divisible by 2𝑛 − 1 can be represented in the 
form of 𝑧 2𝑛 − 1 , 𝑧 ∈ 𝑁	, then : 
𝑐𝑛 − 𝑥 = 𝑧 2𝑛 − 1 = 2𝑧𝑛 − 𝑧. 
It means that 𝑐 = 2𝑥 which implies c is an even number. Since 
c is even, then the match-day for 𝑛 − 𝑥	 + 	𝑐𝑛 using modulo 2𝑛 −
1 which is equal n is odd.  
Furthermore, for each team 𝑣JÝ with an away-match can be 
represented as 𝑛 + 𝑦,	where 1 ≤ 𝑦 ≤ 𝑛 − 1. Since 2𝑛 − 1	 + 	𝑛 ≡
𝑛	mod	(2𝑛 − 1), then for each y, 𝑛 + 𝑦	 + 	𝑛 ≡ (𝑛 − 𝑥)mod	 2𝑛 −

1 ,	where 0	≤ 𝑥 ≤ 𝑛 − 1. It means that each team 𝑣;Ý with an 
away math is a team with label 𝑛 − 𝑥 ≤ 𝑛. Since the vertex of 
each team 𝑛 − 𝑥 occupies the second order in arbitrary 𝑒Ý	-
generated open path, 2 ≤ 𝑠 ≤ 𝑛 , then n has an away match in 
the even match-day.. 
Q.E.D.  
The theorem 5.19 also signify that, for the edge 𝑒J of which 𝑣JÝ 
with a home-match i.e. 𝑣JÝ = 1, the team n also plays a home-
match in the odd match-day since 1	 + (2𝑛 − 2)𝑛 ≡

𝑛	mod	(2𝑛 − 1)	 meaning that 1	 + 	2𝑛; − 2𝑛 − 𝑛 = 1 + 2𝑛; − 3𝑛 
divisible by 2𝑛 − 1. The following theorem relates to 
complementary teams. 
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Theorem 5.20 In the construction of Kirkman tournament, for 
arbitrary team 𝑗 with label 𝑗 ≤ 𝑛, has a complement team  𝑗 + 𝑛. 
Proof : 
(i) Case 𝑗 = 	𝑛 

Based on the description of Kirkman tournament, for the 
team 2𝑛 has regular home-away pattern without break. 
Therefore, in the 2𝑛 − 1-th match-day, the team 2𝑛 has a 
home match in each match-day p, where p is even and an 
away match in each match-day 𝑝 where 𝑝 is odd. Based 
on the theorem 3.5., the team n has a home-match in each 
match-day p, where p is odd and an away-match in each 
match-day p where p is even.  Therefore, the complement 
team of the team n is the team 2𝑛. 

(ii) Case 𝑗 < 𝑛, j  is a home team. 
In the 1-st match-day, each team 𝑗 < 𝑛 plays a home-
match. Conversely, each of its complement 𝑗 + 𝑛 plays an 
away-match. For the other match-days, suppose a team 𝑘 <
𝑛 is the initial vertex of  𝑒�-generated open path. If 𝑘 + 𝑐𝑛 ≡

𝑗	mod	 2𝑛 − 1 , 𝑐 ∈ 𝑁  then there exist an 𝑒â	-generated 
open path with initial vertex 𝑙 ≠ 𝑘 such that 𝑙 + 𝑐𝑛 ≡ (𝑗 +

𝑛)	mod	(2𝑛 − 1). Suppose 𝑙 is in the range [1, 𝑛]. Then 𝑙 can 
be written as 𝑙 = 𝑘 + 𝑚 ≤ 𝑛 where 𝑚 ≤ 𝑛 − 𝑘 implying 𝑚 ≠

𝑛. Based on the equivalence form (1), it is equivalent to 
𝑘 + 𝑚 + 𝑐𝑛 ≡ 𝑙 + 𝑐𝑛 ≡ (𝑗 + 𝑚)	mod	(2𝑛 − 1) which is a 

contradiction since 𝑗 + 𝑚 ≠ 𝑗 + 𝑛 . It means that 𝑙 is not in 
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the range [1, 𝑛] implying 𝑙 is an away team. Therefore, team 
𝑗 + 𝑛 plays an away match when team j plays a home match.   

(iii) Case 𝑗 < 𝑛, 𝑗 + 𝑛 is a home team. 
If team 𝑗 plays an away match in the match-day p, 2 ≤ 𝑝 ≤

2𝑛 − 1, then team 𝑗 is at an 𝑒�-generated open path with an 
initial vertex 𝑘 > 𝑛. Therefore, there exist 𝑐 ∈ 𝑁 such that 
𝑘 + 𝑐𝑛 ≡ 𝑗	mod	 2𝑛 − 1 , 𝑐	 ∈ 𝑁	 2 . In the same match-day 

for team 𝑗 + 𝑛 < 2𝑛, there exist initial vertex 𝑙 ≠ 𝑘 of an 𝑒â-
generated open path such that 𝑙 + 𝑐𝑛 ≡ 𝑗 + 𝑛	mod	(2𝑛 −

1). Suppose 𝑙 is in the range (𝑛, 2𝑛)	 then 𝑙 = 𝑘 + 𝑚 ≤ 2𝑛 −

1 where 𝑚 ≤ 2𝑛 − 𝑘 − 1 implying that 𝑚 < 𝑛. Based on the 
equivalence form (2), it is equivalent to 𝑘 + 𝑚 + 𝑐𝑛 ≡ 𝑙 +

𝑐𝑛 ≡ (𝑗 + 𝑚)	mod	(2𝑛 − 1) which is a contradiction since 𝑗 +
𝑚 ≠ 𝑗 + 𝑛. It means that team l is a team with a home match. 
In conclusion, in the same match-day, team 𝑗 < 𝑛 plays an 
away match.  

Theorem 5.21. There are 2𝑛 − 2 breaks in the Kirkman 
tournament construction.  
Proof : 
(i) Based on the theorem 5.20., in the edge 𝑒J, each team 𝑗 ≤

𝑛 plays a home-match against the team 2𝑛 in the odd 
match-day i.e. team j plays against team 2𝑛 in the match-
day 2𝑗 − 1. It is known that  𝑣JI with a home-match and an 
away match are respectively the team 𝑛 and the team 𝑛 + 1. 
Based on the proof of the theorem 3.1. it can be showed 
that in the match-day 2𝑗, a team 𝑗 plays a match against a 
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team 𝑗 + 1 in the home-stadium of the team j where 1≤ 𝑗 ≤

𝑛 − 1. The schedules cause 𝑛 − 1 breaks. Since team 𝑗 + 𝑛 
is the complement of team 𝑗 ≤ 𝑛, then the total of the breaks 
is 2𝑛 − 2. The addition of these 𝑛 − 1 breaks is obtained in 
the edge 𝑒J, exactly in the even match-day where team 𝑗 +
𝑛 < 2𝑛 has a match against the team 2𝑛 in the home-
stadium of the team 2𝑛 i.e. in the match-day 2𝑗 because in 
the previous match-day in the edge 𝑒I, a team 𝑗 + 𝑛 plays 
an away-match in the match-day 2𝑗 − 1. 

(ii) As previously described, 𝐹J consists of the edges 
2𝑛 → 1 , 2𝑛 − 1 → 	2 , 2𝑛 − 2 → 	3 , …, dan ((𝑛 + 1	) →
𝑛). Thus, for arbitrary edge 𝑒Ý , 𝑣JÝ with a home-match is 
team 𝑗 ≤ 𝑛. Based on the theorem 3.1. part (i), 𝑣(;IRJ)Ý, for 
𝑠 = 𝑛 is 2𝑛 − 1 meaning  

𝑛	 + 2𝑛; − 2𝑛 ≡ (2𝑛 − 1)mod	 2𝑛 − 1 	
Hence, for 𝑗 = 𝑛 − 𝑘, where 1 ≤ 𝑘 ≤ 𝑛 − 1 it satisfies: 
 𝑛 − 𝑘	 + 2𝑛; − 2𝑛 ≡ 2𝑛 − 1 − 𝑘 	mod	 2𝑛 − 1    
Therefore, 𝑣(;IRJ)Ý with a home match for each 𝑒Ý, 𝑠 =
1,2,3, … , 𝑛 are consecutively 𝑛, 𝑛 + 1, 𝑛 + 2, … , 2𝑛 − 1. For the 
edges except the edge 𝑒J, these 	𝑣(;IRJ)Ý are the team with 
away match in the first match-day. Let 𝑣(;IRJ)� be a team 
with a home-match in an edge 𝑒�. In addition, 𝑣(;IRJ)� is 𝑣Jâ 
with an away match in the edge 𝑒â which is likely 𝑢 = 𝑡. 
Since 𝑣J�, 𝑒J�, 𝑣;�, 𝑒;�, 𝑣D�, … , 𝑒 ;IR; �, 	𝑣(;IRJ)�, 𝑒 ;IRJ �, 𝑣J�	is a 
cycle where 𝑒j� connects 𝑣j� and 𝑣(jHJ)�, it means that 𝑣J� 
is 𝑣;â in the edge 𝑒â. Then the form of the 𝑒â-generated 
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open path where 𝑣Jâ = 𝑣(;IRJ)� is 𝑣(;IRJ)�, 
𝑒Jâ, 𝑣J�𝑒;â, 𝑣;�, … , 𝑒 ;IR; â, 𝑣(;IR;)�. Therefore, each team with 
a home-match in the edge 𝑒Ý, 2 ≤ 𝑠 ≤ 𝑛 in a match-day will 
become a team with an away match in the next match-day. 
In conclusion, there is no break.  

(iii) Team 𝑣JÝ with an away match in an edge 𝑒Ý, 2 ≤ 𝑠 ≤ 𝑛 is 
team 𝑘, 𝑛 + 1 ≤ 𝑘 ≤ 2𝑛 − 1. One  can verify that, for example, 
for 𝑘 = 2𝑛 − 1 as 𝑣Já then 𝑣;á = 𝑛. Therefore,  if 𝑣(;IRJ)á =
𝑥, it satisfies:   
2𝑛 − 1	 + 2𝑛 − 2 𝑛 ≡ 𝑛	 + 2𝑛 − 3 𝑛 ≡ 𝑥	mod	 2𝑛 − 1 	 

It is known that 𝑣JI = 𝑛	 with a home-match and 
𝑣JI + 𝑐𝑛 ≡ 𝑣 JH� Imod	 2𝑛 − 1   Then in 𝑛	 + 2𝑛 − 3 𝑛 ≡

𝑥	mod	 2𝑛 − 1 , 𝑥 is 𝑣 JH;IRD I = 𝑣 ;IR; I. Based on the 
proof of the theorem 3.3., 𝑣(;IR;)I = 𝑛 − 1. Thus, 𝑣(;IRJ)á =
𝑥 = 𝑛 − 1.  It follows that  for  team 𝑘 = 2𝑛 − 1 − 𝑙, where 
1≤ 𝑙 ≤ 𝑛 − 2 it satisfies :  

 2𝑛 − 1 − 𝑙	 + 2𝑛 − 2 𝑛 ≡ (𝑥 − 𝑙)mod	 2𝑛 − 1 . Therefore each 
team 𝑣(;IRJ)Ý with an away match for 2 ≤ 𝑠 ≤ 𝑛 are 𝑛 − 1, 𝑛 −
2, 𝑛 − 3, … . ,3, 2, 1. These teams play a home-match in the first 
match-day in edge 𝑒Ý, 1 ≤ 𝑠 ≤ 𝑛 − 1 . Besides the edge 𝑒J, for 
example team 𝑣(;IRJ)ã is the team with an away-match in edge 
𝑒ã. 𝑣(;IRJ)ã is 𝑣Jä with a home-match in edge 𝑒ä which is likely 
that 𝑧 = 𝑤. Since  

𝑣Jã, 𝑒Jã, 𝑣;ã, 𝑒;ã, 𝑣Dã, … , 𝑒 ;IR; ã, 	𝑣(;IRJ)ã, 𝑒 ;IRJ ã, 𝑣Jã	 
is a cycle where 𝑒jã connects 𝑣jã and 𝑣(jHJ)ã, it implies that 𝑣Jã 
is 𝑣;ä in the edge 𝑒ä. Then the form of 𝑒ä-generated open path 
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with 𝑣Jä = 𝑣(;IRJ)ã is 𝑣(;IRJ)ã, 
𝑒Jä, 𝑣Jã𝑒;ä, 𝑣;ã, … , 𝑒 ;IR; ä, 𝑣 ;IR; ã. Therefore each team with an 
away match in edge 𝑒Ý, 2 ≤ 𝑠 ≤ 𝑛 − 1 in a matchday will become 
a team with a home-team in the next matchday. Therefore, in 
this case, no break occurs. 
Based on (i), (ii), and (iii) the total of breaks in the Kirkman 
tournament is 2𝑛 − 2. 
 
Application to the Construction of Italia Serie A Soccer League 
Schedule  

Since there are twenty teams competing in the soccer 
league, in this case 𝑛=10, and particularly in the season of 
2015/2016, there are five complementary teams, i.e. Milan-Inter, 
Roma-Lazio, Chievo-Hellas Verona, Sampdoria-Genoa, Torino-
Juve then one of the team at each complementary team should 
be attributed distinct labels 𝑗V ≤ 𝑛, for example 𝑗J, 𝑗;, 𝑗D, 𝑗Cand 𝑗@ 
respectively. Conversely each of 𝑗V‘s complements is 
automatically attributed with labels  𝑗V + 𝑛. However, the 
explanation about Kirkman construction in the previous section 
covers only the half of the season. Consequently, the second 
half of the season schedules should be determined. This study 
proposes two distinct systems i.e. repetition system and two-
way around system to regulate the schedule in the second half 
of the season.  

The repetition system means that for 𝐹Ü where 1 ≤ 𝑖 ≤ 2𝑛 −

1, arbitray two teams, e.g. team j and k set an edge (𝑘 → 𝑗), 
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then team j and k set an edge (𝑗 → 𝑘) in 𝐹ÜH(;IRJ). This kind of 
way causes the addition of 2𝑛 − 2 breaks. Moreover, since 
ℎXÕ 𝑆 = ℎX(ÕHJ) 𝑆 = 𝐾 for j : 1, 2, … . , 𝑛 − 1 respectively in the 
match-day - 2, 4, … . , 2𝑛 − 2 and ℎXÕ 𝑆 = ℎX(ÕHJ) 𝑆 = 𝑇 for j : 
𝑛 + 1, 𝑛 + 2, … 2𝑛 − 1 also respectively in the match-day- 
2, 4, … . , 2𝑛 − 2, then the addition of breaks occurs since ℎXÕ 𝑆 =

ℎX(ÕHJ) 𝑆 = 𝑇	for j : 1, 2, … . , 𝑛 − 1 and ℎXÕ 𝑆 = ℎX(ÕHJ) 𝑆 = 𝐾 for 
j : 𝑛 + 1, 𝑛 + 2, … 2𝑛 − 1 respectively in the match-day	2𝑛 +
1, 2𝑛 + 3, … , 4𝑛 − 3. Then the total of breaks using this system is 
2 2𝑛 − 2 + 	2𝑛 − 2 = 6𝑛 − 6. Specifically, using this system, in 
the competition of Italia Serie-A soccer league, there are 54 
breaks in total.  

On the other hand, two-way around system means for each 

𝐹Ü where 1 ≤ 𝑖 ≤ 2𝑛 − 1, if team j and k sets an edge (𝑘 → 𝑗) 

then in 𝐹;IH(;IRJRÜ)  they set an edge (𝑗 → 𝑘). By this rule, there 
is no break in the match-day 2n since the teams which play a 
home-match (or away-match) in the match-day- 2n-1 will play 
an away-match (or  a home-match) in the match-day 2𝑛. Unlike 
the repetition system, for the second half of the season, the 
breaks take place only in the match-day 2𝑛 + 1, 2𝑛 + 3, …,	and 
4𝑛 − 3. Consequently, the total of breaks for this system is 
2 2𝑛 − 2 = 4𝑛 − 4 which is less than those of repetition system. 
In specific, the total of breaks occurring in the Italia Serie-A 
soccer league using this system is 4×10 − 4 = 36.  

   Based on the data from 
http://www.flashscore.com/soccer/italy/serie-a/, the teams 
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competing in the Serie-A soccer league in the season 2015-
2016 can be shown in the table 5.2. 

Table 5.2. Teams of Serie A 2015-2016 
Bologna Empoli 
Carpi Juventus 
Roma Genoa 
Atalanta Napoli 
Fiorentina Chievo 
Verona Sassuolo 
Frosinone AC Milan  
Sampdoria Palermo 
Torino Udinese 
Inter Lazio 

For one of the alternatives, Milan, Roma, Chievo, Genoa, and 
Juventus are subsequently given labels 1, 2, 3, 4, and 5. 
Meanwhile Inter, Lazio, Verona, Sampdoria, and Torino are 
assigned to labels 11, 12, 13, 14, dan 15. Concurrently, each of 
the other teams are given label besides 
1, 2, 3, 4, 5, 11, 12, 13, 14,	and 15. The example of label distribution 
for the 20 teams is shown in the table 5.3. 
Table 5.3. Example of label distribution for Serie A Italia Soccer 

League Teams 
Label Team Label Team 
1 Milan  11 Inter 
2 Roma 12 Lazio 
3 Chievo 13 Verona 
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4 Genoa 14 Sampdoria 
5 Juventus 15 Torino 
6 Carpi 16 Napoli 
7 Frosinone 17 Sassuolo 
8 Atalanta 18 Empoli 
9 Fiorentina 19 Udinese 
10 Bologna 20 Palermo 

 
This application suggests that the concept of graph and the 
method of Kirkman tournament construction can be applied in 
constructing a compact schedule used for specially the Serie-A 
Italia Soccer League. Notably, the method creates a schedule of 
which for each matchday, every team plays exactly one match 
and each team of the complementary teams never plays a home 
match and an away match in the same time with its complement.  
Furthermore, based on the construction, it just results 2𝑛 −
2	breaks until the half of the season which is precisely the same 
as the minimum number of breaks. Therefore, till the end of the 
entire season, the number of breaks can be optimized up to 
4𝑛 − 4. The number of the minimum breaks can take place if the 
scheduling for the second half of the season apply, one of them, 
two-way around system. 
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Exercises 5 
1. What does it mean for 𝑣 and 𝑤 to be adjacent vertices ? 
2. What does it mean for 𝑒J and 𝑒; to be adjacent edges? give 

an example! 
3. What are parallel edges? 
4. What is a loop? Give an example! 
5. In the example 5.7, depict several other subgraphs.  
6. Give two examples for open walk and closed walk 

respectively in the following figure! 
 

 
 

 
 
 
7. Draw the union and the intersection for the two following 

graphs: 
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8. Give an example for each separable graph and 

nonseparable graph! 
9. Give and example of two graphs which is isomorphic to 

each other 
10. Give an example of tree and forest! 
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Circuit : a path that begins and ends at the same vertex. 
Combination: an arrangement of objects without considering the 

order. 
Derangement: a kind of permutation of which there is no object 

in its original position. 
Edge: a connection between two vertices.  
Forest: a circuitless graph / disjoint union of trees. 
Graph: a pair of sets (V,E), where 𝑉 is the set of vertices and 𝐸 

is the set of edges, formed by pairs of vertices. 
Inclusion Exclusion Principle: A technique of counting used to 

determine the number of elements in the union of any 
number of sets. 

Loop: an edge that links a vertice to itself. 
Mathematics Induction: a method of proof consisting of basis step 

and inductive step  used to prove mathematical 
statements related to series involving natural numbers. 
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Ordinary Generating Function: a power series in the form of 
𝐺 𝑥 = 𝑎t + 𝑎J𝑥+𝑎;𝑥; + 𝑎D𝑥D + ⋯ 

Permutation: an arrangement of objects in a particular order. 
Pigeonhole Principle: a principle that states If n pigeons fly into k 

pigeonholes and k<n, some pigeonhole contains at 
least two pigeons. 

Spanning Tree: minimum set of edges that can connect all 
vertices in a graph. 

Strong Mathematics Induction: a kind of mathematics induction of 
which, when we want to prove for the truth of a particular 
statement 𝑆 𝑘 + 1 	in inductive step, we assume that the 
particular statment holds at all the steps from the base 
case to k-th step. 

Recurrence Relation: an equation that states a term using one or 
more some previous terms. 

Trails : a walk which has edges which are all different. 
Tree:   a graph in which any two vertices are connected by 

one simple path. 
Walks : an alternating sequence of vertices and edges, beginning 

and ending with a vertex. 
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