
A SysML-Based Methodology for Model Testing of

Cyber-Physical Systems

Carlos A. González, Mojtaba Varmazyar, Shiva Nejati and Lionel Briand
Software Verification and Validation Department, SnT Centre
University of Luxembourg, Luxembourg

Yago Isasi Parache
LuxSpace, Luxembourg

May 9, 2018Version 1.0

Technical Report Number: TR-SNT-2018-2



Contents

1 Introduction 3

2 Requirements to enable model testing of CPSs 4
2.1 R1: Requirements about the model(s) . . . . . . . . . . . . . . . . 4
2.2 R2: Requirements about the modeling language(s) . . . . . . . . . 4
2.3 R3: Requirements about the modeling tool . . . . . . . . . . . . . . 5
2.4 R4: Requirements about model execution . . . . . . . . . . . . . . 5
2.5 R5: Requirements about test automation . . . . . . . . . . . . . . . 6

3 Modeling and specification of CPSs 7
3.1 Selection of the modeling language and tool . . . . . . . . . . . . . 7
3.2 Modeling methodology overview . . . . . . . . . . . . . . . . . . . . 7
3.3 Step 1: Specify the SUT environment . . . . . . . . . . . . . . . . . 9
3.4 Step 2: Specify the SUT architecture . . . . . . . . . . . . . . . . . 18
3.5 Step 3: Specify the SUT behavior . . . . . . . . . . . . . . . . . . . 22

A Guidelines on SysML modeling 30
A.1 Naming convention . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.2 Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.3 Block specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

A.3.1 Specification of block properties . . . . . . . . . . . . . . . . 31
A.3.2 Specification of block ports . . . . . . . . . . . . . . . . . . 31
A.3.3 Specification of block operations . . . . . . . . . . . . . . . 32

A.4 Specification of links between blocks . . . . . . . . . . . . . . . . . 32
A.4.1 Specification of composition links . . . . . . . . . . . . . . . 32
A.4.2 Specification of generalization links . . . . . . . . . . . . . . 33
A.4.3 Specification of association links . . . . . . . . . . . . . . . . 33

A.5 Activity specification . . . . . . . . . . . . . . . . . . . . . . . . . . 34
A.5.1 Specification of inputs and outputs . . . . . . . . . . . . . . 34
A.5.2 Specification of actions . . . . . . . . . . . . . . . . . . . . . 34
A.5.3 Specification of control and data flows . . . . . . . . . . . . 36

A.6 State machine specification . . . . . . . . . . . . . . . . . . . . . . 38

B Model testing SysML profile 40
B.1 The «SUT» Stereotype . . . . . . . . . . . . . . . . . . . . . . . . . 40
B.2 The «Schedulable» Stereotype . . . . . . . . . . . . . . . . . . . . . 40
B.3 The «Initialization» Stereotype . . . . . . . . . . . . . . . . . . . . 40
B.4 The «Background» Stereotype . . . . . . . . . . . . . . . . . . . . . 41
B.5 The «Configuration» Stereotype . . . . . . . . . . . . . . . . . . . . 41
B.6 The «Matrix» Stereotype . . . . . . . . . . . . . . . . . . . . . . . 41
B.7 The «Data» Stereotype . . . . . . . . . . . . . . . . . . . . . . . . . 41
B.8 The «NotLoggable» Stereotype . . . . . . . . . . . . . . . . . . . . 41

2



1 Introduction

A Cyber-Physical System (CPS) is an integration of computation with physical
processes [2]. CPSs are characterized by the presence of a, potentially large number
of embedded computing and communication devices, which monitor and control
the physical world through sensors and actuators. These devices interact and ex-
change data with each other through networks, that might be potentially extended
over a large geographical area. CPSs are already present in sectors such as trans-
portation, energy, medicine, space or manufacturing, and they are expected to
become ubiquitous in a near future. CPSs have the potential to revolutionize how
we construct and operate engineered systems, thus transforming the way in which
we interact with the physical world. Applications of CPSs are expected to have
an enormous impact on society and the economy.

Considering the expected impact and pervasiveness of CPSs, ensuring their
dependability is a matter of the utmost importance. Validation and Verification
(V&V) is essential to ensure dependability of software systems. Among all V&V
techniques, the most prevalent one is testing. Unfortunately, aspects that char-
acterize the behavior of a CPS, such as the continuous and complex interactions
with the physical world, or the deep intertwining of hardware and software, turn
the testing of these systems into a highly expensive, time-consuming process, at
best, or make testing infeasible, at worst. These challenges in the application of
existing testing techniques, render CPSs untestable in practice.

To enable testing of untestable systems, such as CPSs, model testing [1] was
recently proposed as a vision, in which the key idea is to frame testing on models
rather than operational systems. The goal of model testing is to raise the level
of abstraction of testing from operational systems to models of their behaviors
and properties. The models that underlie model testing should be executable
representations of the relevant aspects of a system and its environment. It is
expected that model testing would bring early and cost-effective automation to
the testing of many critical systems that defy existing testing techniques, thus
significantly improving their dependability.

This document is a joint study by LuxSpace SARL (LuxSpace) and the Soft-
ware Verification and Validation department (SVV) from the SnT Centre at the
University of Luxembourg on how to enable model testing of CPSs. It starts by
eliciting the requirements that must be fulfilled to conduct model testing in an
effective manner. Once the requirements have been elicited, they are used to both
identify what modeling language and modeling tool are most suitable for the job,
and specify a modeling methodology for the creation of executable, model testing-
enabled models. The study is complemented with the application of the modeling
methodology to a satellite’s attitude control system currently being developed by
LuxSpace.

3



2 Requirements to enable model testing of CPSs

In order to conduct model testing of a CPS, the first step is to create one or more
models gathering all the relevant1 aspects about the CPS and its environment.
Once created, those models will then be executed as part of the testing process.
These models, along with the tools and artifacts used to create them and execute
them, as well as the testing process itself, must feature certain characteristics,
in order to be considered valid for conducting model-testing, or “model testing-
enabled”. In the rest of this section, we present what is required from models,
modeling languages, modeling tools, model execution tools, and the testing pro-
cess, in order to be considered suitable for model testing.

2.1 R1: Requirements about the model(s)

(a) Structural information: Model(s) shall describe the internal structure of
the CPS. That is, its software and hardware units; the interfaces among
them, and with elements external to the CPS; as well as any internal data
they manipulate.

(b) Behavioral information: Model(s) shall describe the internal behavior of
the CPS. That is, the abstract states of the system; the transitions among
these states and their triggering events; the algorithms or mathematical com-
putations characterizing its software and hardware units; and, in general, any
other aspect related to the way they are executed, such as execution rates,
scheduling policies, etc.

(c) Environmental information: Model(s) shall describe the external envi-
ronment that can impact or be impacted by the execution of the CPS. This
might include engineered systems, external to the CPS, or natural phenom-
ena.

(d) Uncertainty: Model(s) shall describe any uncertainties that could impact
the behavior of the CPS, e.g., accuracy issues with sensor readings, unreli-
able data transmission channels, rounding error propagation in mathematical
calculations, etc.

2.2 R2: Requirements about the modeling language(s)

(a) Expressiveness: The modeling language(s) shall be expressive enough to
describe all the information needed to specify model testing-enabled models.

(b) Extensibility: The modeling language(s) shall feature mechanisms to ex-
tend their semantics, if deemed necessary to build model testing-enabled
models.

1Only those aspects that are of relevance for the testing activity should be taken into account
during the modeling stage.

4



(c) Industrial popularity and acceptance: The modeling language(s) shall
be widely accepted by the industry and have comprehensive, high-quality
tool support.

2.3 R3: Requirements about the modeling tool

(a) Language support: The modeling tool shall provide complete support
for the modeling language features required to create model testing-enabled
models.

(b) Model execution support: The modeling tool shall provide support for
model execution either through a model execution engine, or by facilitating
mechanisms to enable code generation.

2.4 R4: Requirements about model execution

(a) Co-Simulation: The model execution tool shall support the integrated ex-
ecution, i.e. co-simulation, of software models and function models. Hence-
forth, we will refer to this model execution tool as the co-simulation frame-
work.

(b) Efficiency: The co-simulation process shall be efficient enough to facilitate
running thousands of test cases within practical time.

(c) No user intervention: The co-simulation framework shall be capable of
automatically running series of co-simulations without user intervention, to
facilitate the automation of the testing process.

(d) Observability: As a result of the co-simulation process, the co-simulation
framework shall provide an execution trace containing “snapshots” of the
CPS at each step of the execution process, plus any data relevant to steer
the testing activity, e.g., external events received; data gathered/produced
by the different CPS subsystems; current state of the CPS and its internal
units; internal algorithms or mathematical/physical calculations that have
been scheduled for execution, or just executed (along with their inputs and
outputs); simulation time, etc. The amount, level of detail and nature of the
data collected in the execution trace shall be configurable according to the
testing goals.

(e) Controllability: The co-simulation framework shall enable the execution
of models in a way that complies with the expected behavior of the future
deployed system and its environment, at the level of abstraction required
for conducting model testing. This requires the precise simulation of the
scheduling of system tasks, and the data flows among subsystems and be-
tween the system and its environment.

5



2.5 R5: Requirements about test automation

(a) Test case generation: The generation of test cases shall be guided by the
automatic analysis of the data collected in the execution traces produced by
the model execution tool.

(b) Test oracles: Test oracles shall be able to automatically check whether a
test case has passed or not, and do so by analyzing the corresponding execu-
tion trace. This analysis shall allow oracles to evaluate temporal properties
(e.g., order in the execution of tasks), timing properties (e.g., task execution
rates), state properties (e.g., illegal state transitions), data properties (e.g.,
correctness of data sent/received by a subsystem) and, in general, any other
type of property relevant for checking the corresponding test case.

6



3 Modeling and specification of CPSs

Once the requirements have been specified, it is the time to start with the modeling
activity. We begin by selecting a modeling language and a modeling tool for the
job. After that, we justify the need for a modeling methodology, and overview our
proposal. In the rest of subsections, this modeling methodology is described in
detail.

3.1 Selection of the modeling language and tool

The modeling language selected for the modeling and specification of CPSs is the
Systems Modeling Language (SysML) [3]. The election of SysML is motivated by
the following facts:

1. SysML supports the specification of complex systems formed by the combina-
tion of hardware, software, information, people, facilities, etc. and therefore,
it features the necessary expressiveness to model CPSs (R2a).

2. The semantics of SysML constructs can be adjusted or extended by using
profiles (R2b).

3. SysML is the OMG2 standard for systems engineering, and a popular and
widely accepted modeling language in industrial settings (R2d).

Even though there is a plethora of open source and commercial tools that
offer SysML support, no one is perfect for the job, the majority of them lacking
the ability to execute models. Among all of them, we have selected MagicDraw.
MagicDraw is a popular modeling tool which provides comprehensive support for
SysML modeling (R3a). On the not so bright side, even though Magic Draw
incorporates a model execution engine, its capabilities fall short to cover complex
model execution scenarios. However, this can be overcome by using an approach
based on code generation, with the help of its model API (R3b).

3.2 Modeling methodology overview

The selection of a modeling language and a modeling tool, though necessary, it
is not enough to conduct the modeling activity in an adequate manner. In order
to effectively model a system (or system-to-be), it is also necessary to define a
modeling methodology. That methodology must be tailored to the domain of the
system under analysis, it must be aligned with the objectives pursued and, above
all, it must provide precise guidance on how to represent the system, its context,
and the relationships between them, with the modeling language of choice.

We propose here a SysML-based methodology for the specification of archi-
tectural and behavioral software models of CPSs, plus the integration of function

2https://www.omg.org

7



models (e.g. Simulink models) describing hardware, software and environment
aspects. These function models must be provided as an input to the modeling
activity, and their specification lies outside the scope of this methodology. In rela-
tion to the requirements that models must fulfill in order to enable model testing
of CPSs (see Subsection 2.1), the current version of this modeling methodology
addresses the fulfillment of the following ones: (R1a) structural information, (R1b)
behavioral information, and (R1c) environmental information. The fulfillment of
the fourth requirement (R1d) uncertainty will be addressed in a future version of
this document. When it comes to the requirements that the co-simulation frame-
work must fulfill, this modeling methodology contributes to the fulfillment of (R4a)
Co-Simulation, (R4d) Observability and (R4e) Controllability.

Figure 1: Information model

Figure 1 shows the concepts modeled with our proposed SysML-based method-
ology. The main concept is the SUT, i.e., the software system under test. The
SUT may be composed by a series of software subsystems. Each of these subsys-
tems is responsible for conducting a series of tasks (the basic units of behavior
that can be scheduled). The SUT may also transition through a series of states.
As part of its normal activity, the SUT may exchange data internally (among its
subsystems), and externally, with other entities within the CPS (sensors, actu-
ators, other CPS software, etc), or outside the CPS (external hardware, human
operators, etc). All these entities, regardless of whether they are external to the
CPS or not, are considered to be part of the SUT environment. Entities in the
SUT environment may also exchange data.

Figure 2 shows the four main modeling steps, namely, the specification of the
SUT environment, the specification of the SUT architecture, the specification of
the SUT behavior and the specification of additional aspects to enable model
testing. Even though an order for the completion of these steps has been set,
it is neither mandatory to follow it, nor necessary to complete one step before
starting the next. However, since each step depends on the previous one for its
completion, and in order to maximize the effectiveness of the modeling effort, it is
recommended to try to complete each step to a certain extent before moving onto
the next.

8



Figure 2: Methodology overview

In order to apply this modeling methodology, the presence of a SysML profile
is required (Appendix B). This profile contains a series of stereotypes and tagged
values, needed to customize some SysML modeling constructs to make them con-
form with the methodology’s guidelines.

In the following subsections, the different modeling steps enforced by this
methodology will be covered in detail. This also includes giving precise infor-
mation on both, how to use the SysML profile, and when it is acceptable to move
from one step to the next one.

3.3 Step 1: Specify the SUT environment

Purpose: The purpose of this step is to specify the boundaries between the sys-
tem and the relevant external environment (hardware, software, people, etc.), the
system interacts with.

Inputs: Requirements, domain documentation, function models.

Outputs: 1 internal block diagram (iBD), 1 or more block definition diagrams
(BDDs), 1 or more activity diagrams (ADs).

Requirements fulfilled: (R1c) Environmental information. (R1a) Structural
information (partially).

Guidelines: Conduct the following substeps to complete the specification of the

9



SUT environment:

1. Create one block3 and name it “Model”. Henceforth, we will refer to this
block as the “model block”.

2. Add the «Configuration» stereotype4 to the model block.

3. Create one iBD for the model block.

4. Create one empty block representing the SUT, name it, and add it to the
iBD. Henceforth, we will refer to this block as the “SUT block”.

5. Add the «SUT» stereotype to the SUT block.

6. Identify the relevant elements (sensors, actuators, people, external software
systems, etc), the SUT must exchange information with. Create one empty
block for each of them, name them, and add them to the iBD. Henceforth,
we will refer to these blocks as “environment blocks”.

7. Complete the following actions for each environment block:

• Identify one way the environment block and the SUT block exchange
information with each other.

• Create one port in the environment block, and one port in the SUT
block.

• Create a connector and use it to link both ports.

• Create one BDD.

• Create one empty block representing the information exchanged, name
it, and add it to the BDD. Add the «Data» stereotype to the block.
Henceforth, we will refer to these blocks as “data blocks”.

• Go back to the iBD, and set the data type of the two ports to the data
block added to the BDD.

• Set the data type of the connector linking both ports, to the data block
added to the BDD. Adjust the direction of the data flow (from the SUT
block to the environment block, or vice versa).

• Repeat the previous six actions until all the relevant interactions be-
tween the SUT block and the environment block have been modeled.

3The reader is referred to Appendix A for detailed guidelines on how to correctly specify the
different SysML constructs supported by this modeling methodology.

4Appendix B provides detailed guidelines on how to use the different stereotypes that support
this modeling methodology.

10



Thus far, we have specified empty blocks for the SUT, the relevant elements from
the environment, and the way the SUT and these elements exchange data. How-
ever, it might also be necessary5 to explicitly specify the way in which some of
these elements from the environment (e.g. sensors and actuators) interact with
the physical world. In that case, we proceed as follows:

8. Create one block to represent the physical world, name it, and add it to the
iBD.

9. Repeat the procedure described in substep 7 to specify the interactions be-
tween the physical world and the relevant elements from the environment.

Now, in order to complete the specification of the context, it is necessary to specify
1) the structure of the data blocks corresponding to the identified data exchanges,
2) the structure and behavior of the environment blocks and 3) the structure and
behavior of the physical world block. We start by describing how to specify the
data blocks.

10. Complete the following actions for each of the empty data blocks created in
substeps 7 and 9:

• Open the BDD containing the data block.
• Identify the pieces of information6 that characterize the data that is

going to be represented by the data block.
• For each of those pieces of information that can be adequately modeled

by using a simple data type7, create a property for it, and add it to the
data block.

• For each of those pieces of information that cannot be adequately mod-
eled by using a simple data type, create a new block for it and link this
block to the data block by means of a composition.

• Apply the previous 3 actions to any newly created block, to complete
the specification of their properties.

Once the data blocks have been specified, we now continue by specifying the struc-
ture of the environment blocks.

11. Complete the following actions, for each of the environment blocks created
in substep 6:

• Create one BDD.
5This can be determined by checking whether the behavior of elements such as sensors and

actuators is specified by means of function models and, if so, by analyzing their expected inputs
and outputs.

6There is no one-size-fits-all rule for this. The modeler can freely group or decompose infor-
mation considering a variety of criteria (e.g. logical relationship, convenience, etc.) as long as
its inner nature is preserved in the process.

7See Appendix A for information about data types

11



• Add the environment block to the BDD.
• For each of the interactions specified in substep 7, between the envi-

ronment block and the SUT block, create a property and add it to the
environment block. Set the data type of this property to the data block
characterizing that interaction.

• For each of the interactions specified in substep 9, between the envi-
ronment block and the physical world block, create a property and add
it to the environment block. Set the data type of this property to the
data block characterizing that interaction.

• Follow the same procedure described in substep 10 to identify and model
any additional internal data that might be necessary to completely spec-
ify the internal structure of the environment lock.

After specifying the structure for each environment block, it is time to specify their
behavior.

12. Complete the following actions, for each of the environment blocks created
in substep 6:

• Open the BDD containing the corresponding environment block.
• Identify one relevant functionality8 of the element of the environment

(sensor, actuator, etc) being analyzed.
• Create an operation to represent that functionality, name it, and add

it to the corresponding block.
• Set neither input parameters nor a return value for the operation. Any

data needed by the operation must be read from the properties of the
block containing the operation, or from the properties of the other block
(SUT or physical world) involved in the interaction. Any data produced
by the operation must be stored in the properties of the block containing
the operation.

• Create an activity, name it with the operation’s name, and add it to
the block.

• Link the operation to the activity.
• Create one AD for the activity.
• Describe9 in the AD the sequence of actions, control and data flows that

characterize the functionality being modeled. In case the functionality
is characterized by an external function model, the AD must contain
the sequence of actions, control and data flows, necessary to specify the
integration of that function model.

8In this context, a relevant functionality is something that the element from the environment
does when interacting with the SUT or the physical world, and that if it is not specified in the
model, then the testing activity cannot be conducted properly.

9Detailed information on how to specify activities can be found in Appendix A.

12



• Repeat the previous 7 actions until all the relevant functionality of that
element from the environment has been modeled.

Once the structure and behavior of environment blocks have been specified, the
only remaining steps are the specification of the structure and behavior of the
physical world block. When it comes to specifying its structure, proceed as follows:

13. Create one BDD.

14. Add the physical world block to the BDD.

15. For each of the interactions between environment blocks and the physical
world block specified in substep 9, create a property and add it to the phys-
ical world block. Set the data type of this property to the data block char-
acterizing that interaction.

16. Follow the same procedure described in substep 10 to identify and model
any additional internal data that might be necessary to completely specify
the internal structure of the block.

17. Finally, the behavior of the physical world block can be specified in the
same manner described in substep 12 for the specification of the behavior of
environment blocks.

At this point, the specification of the SUT environment has been completed.

Remarks:

• This modeling methodology does not provide any mechanism to explicitly
differentiate hardware and software elements.

• Once the SUT block has been created and stereotyped, the modeler can also
start working on step 2 (Section 3.4: Specify the SUT architecture).

• Even though following the instructions would result in creating one BDD
per data block (environment block), it is up to the modeler to evaluate the
real need for this. This methodology does not impose constraints on the
number of BDDs needed to represent data blocks (environment blocks) and
therefore, multiple data blocks (environment blocks) can also be grouped
in the same BDD. The decision of whether to use one or more BDDs can
be made attending to factors such as the number of relevant elements from
the environment, the number of interactions between the SUT and these
elements, as well as the complexity of the data exchanged.

• Interactions between blocks cannot be bidirectional. If the SUT interacts
with one element from the environment by both sending and receiving data,
the modeler should specify this as two one-direction interactions.

13



• When identifying the functionality of environment blocks, only the one re-
lated to the interactions the block is involved in should be considered. In
general, when modeling the SUT environment, only those aspects that are
relevant for testing the SUT should be taken into account.

Examples: In what follows, we are going to show how to apply these guide-
lines to specify the environment of a satellite’s attitude control software system
(ADCSSW). Figure 3(a) shows what the iBD looks like after completing the first
5 substeps. It can be seen that it contains an empty block called “ADCSSW”,
which has been stereotyped as «SUT». This is the SUT block.

Substep 6 is about identifying the relevant elements from the environment and
creating empty blocks for each of them. In the example, the satellite’s attitude
control software system will interact with the satellite’s on board computer, the
satellite’s sensors (sun sensors, magnetometers and gyroscopes), and the satellite’s
actuators (reaction wheels and magnetorquers). Figure 3(b) illustrates how several
empty blocks representing these elements have been added to the iBD.

With the relevant elements from the environment in place, it is the time to
specify how the SUT block (ADCSSW) interacts with them. The satellite’s at-
titude control software system interacts with sensors and actuators by command
them and, in the case of sensors, by receiving their readings. The interaction with
the on board computer consists in sending status reports and receiving commands.
Figure 3(c) shows the iBD resulting from completing substep 7. The system block
has been linked to the blocks representing sensors, actuators and the on board
computer by means of ports and connectors. The connectors represent data ex-
changes and therefore each of them is characterized by an empty data block (only
the names of these blocks are shown to reduce clutter).

Substeps 8 and 9 address the specification of what we have called the physical
world. In the example, as it will be seen later on, the behavior of sensors and
actuators is specified by means of function models. These functional models work
by receiving some of their inputs from some other function models, responsible for
simulating some physical phenomena and conducting some complex mathematical
calculations. Since the behavior of sensors and actuators could not be specified
properly without taking these dependencies into account, it is necessary to reflect
this in the iBD. We do this in substep 8 by creating a new block, which will gather
the behavior corresponding to physical phenomena and mathematical calculations
characterizing the physical world. After this, in substep 9, this block is linked to
the blocks corresponding to sensors and actuators, again, by means of ports and
connectors. The iBD resulting from completing substeps 8 and 9 can be seen in
Figure 3(d). In this case, the block characterizing the physical world has been
called “Physics”.

Once substep 9 is completed, it is the time to specify the internal structure
and behavior of the existing blocks. We start with the specification of the internal
structure of data blocks in substep 10. Each of these data blocks characterize
one interaction between two blocks. Therefore, the properties defined in each
data block specify the data that will be exchanged between two blocks when the

14



(a) (b)

(c)

(d)

Figure 3: Evolution of the iBD of the example as substeps 1 to 9 are completed.

corresponding interaction takes place. Figure 4(a) shows the internal structure
of some of the data blocks characterizing the interactions between the satellite’s

15



attitude control software system and the satellite’s sensors. For example, the
block called “MagnetometerMeasuredData” specifies the data that the satellite’s
attitude control software system will receive from the magnetometer when both
interact. Similarly, Figure 4(b) show the internal structure of the data blocks
that characterize the data exchanged between the physical world block and the
satellite’s sensors and actuators.

(a)

(b)

Figure 4: Internal structure of some of the data blocks specified in substep 10.

Figure 5: Internal structure of the blocks corresponding to the satellite’s sensors.

After specifying the internal structure of data blocks in substep 10, substep 11
focuses on modeling the internal structure of those blocks representing the relevant
elements from the environment. Figure 5 shows the internal structure of the blocks
characterizing the satellite’s sensors. It can be seen how the “parts” compartment,
in each of these blocks, contains properties for the data blocks corresponding to
the interactions in which these blocks are involved. It can also be seen how the
“values” compartment includes a number of additional properties. These proper-
ties represent additional data needed by the functional models characterizing the
sensors’ behavior, such as sensor configuration data.

To complete the specification of the relevant elements from the environment, we
also need to specify their behavior. We do this in substep 12. Figure 6 shows how

16



Figure 6: Operations added to the blocks corresponding to the satellite’s sensors.

Figure 7: Activity diagram describing the read() operation for the magnetometer.

the same blocks characterizing the satellite’s sensors from Figure 5 now include
another compartment called “operations”, and that one operation called “read()”
has been added. The idea here is that, when invoked, these operations will execute
the behavior of the corresponding sensor. Figure 7 shows the activity diagram
describing the behavior of the “read()” operation for the magnetometer. In this
particular case, that behavior is decomposed is 4 action items:

1. With the first “addStructuralFeatureValue” action, the property called “mag-
netoMeterPhysicsData” is filled with the data stored in the property of the
same name in the physics block. This is because, as it was mentioned ear-
lier, sensors depend on certain data from the physical world. That data is
produced and stored when the behavior of the “physics” block is executed,

17



which is independent of the sensor’s behavior being described here.

2. One of the inputs for the function models describing the behavior of the mag-
netometer is the value of the last read made by the sensor. With the second
“addStructuralFeatureValue” action, the property
“last_earth_mag_field_in_body_measured” is filled with that value.

3. Once the first two actions are completed, the first of the two function models
characterizing the magnetometer behavior is launched. The action describes
in a textual form the model being launched as well as its inputs and outputs.
For the case of the inputs, each line corresponds to a parameter. The left
side is the name of the parameter in the function model, and the right side
is the name of the property in the magnetometer block from which the cor-
responding value can be retrieved. For the case of the outputs, the left side
corresponds to the properties in the magnetometer block where the output
data must be stored, and the right side corresponds to the output parameter
in the function model, where the actual data is located.

4. Finally, the fourth action launches the second function model. Once com-
pleted, the “magnetoMeterMeasuredData” property of the magnetometer
block will contain the information read by the sensor.

The behavior for the rest of relevant elements from the environment, as well as
the structure and behavior of the physical world block are not shown, since they
are specified in the same manner.

3.4 Step 2: Specify the SUT architecture

Purpose: The purpose of this step is to describe the subsystems representing the
internal structure of the SUT block introduced in the previous step.

Inputs: The iBD from step 1 (Section 3.3: Specify the SUT environment), the
BDDs from step 1, requirements, domain documentation, function models.

Outputs: 1 or more BDDs.

Requirements fulfilled: (R1a) Structural information (partially).

Guidelines: Conduct the following substeps to complete the specification of the
SUT architecture:

1. Create a BDD.

2. Add10 the SUT block to the BDD.
10Modern modeling tools such as Magic Draw keep a repository with all the modeling elements

added to the model. This repository is the place where to look for modeling elements that must

18



3. Identify the subsystems11 of the SUT based on the analysis of the SUT’s
responsibilities. Create an empty block for each of them, name them, and
add them to the BDD. Henceforth, we will refer to these blocks as “subsystem
blocks”.

4. For each subsystem block, create a composition link and connect the SUT
block and the subsystem block with it.

Once all the subsystem blocks have been created and properly linked, the modeler
must proceed as follows, to specify the data manipulated by both the SUT block
and the subsystem blocks.

5. For each data block created in step 1, during the specification of the interac-
tions between the SUT and its environment, identify the subsystem blocks
that will manipulate that information, and create a property in each of them,
its corresponding data type being that data block. There is one exception to
this, though: if the modeler detects that two or more subsystem blocks are
responsible for manipulating a given data block then, instead of creating a
property in each of them, that property must be created in the SUT block.

6. If, after completing the previous substep, there still are data blocks for which
no subsystem block is responsible, then the property corresponding to that
data block must be created in the SUT block.

Once the previous two substeps are completed, the SUT block and the subsystem
blocks will feature a series of properties, corresponding to the data blocks identified
in step 1. However, chances are that some of those blocks will also be responsi-
ble for manipulating some other, additional “internal data”. In what follows we
describe how to proceed to specify such internal data.

7. For each subsystem block, identify the additional internal data, that block
should be responsible for, and for each piece of data identified, find out
whether it can be adequately modeled by using a primitive data type. If
that is not the case, then that piece of data must be characterized by a new
data block. In order to specify it, the modeler must follow here, the same
instructions described in step 1, substep 10, to specify data blocks.

8. Once each piece of data has been identified and characterized with either a
simple data type or a data block, the modeler must create a property for it
in the subsystem block being analyzed. In the particular case that a given
property is found to be needed in more than one subsystem block, then that
property should be moved to the SUT block.

be reused across multiple diagrams (such as the SUT block). Avoid duplicating existing modeling
elements. This modeling methodology clearly states when modeling elements must be created
by using the word “Create”. For the rest of cases, it is assumed that the modeling element being
mentioned was created before and therefore, it must be reused. The only exception to this,
already mentioned, has to do with the creation or re-utilization of diagrams.

11See the first entry in the “Remarks” subsection for more on this.

19



Remarks:

• This modeling methodology imposes some constraints in relation to how to
decompose the SUT block:

– Subsystem blocks cannot contain other subsystem blocks. Therefore
the SUT block cannot be decomposed in multiple levels.

– Subsystem blocks must feature some behavior12 when step 3 (Section 3.5:
Specify the SUT behavior) is completed.

– The responsibility to manage state transitions, in case the SUT features
a state-based behavior, should not be shared across more than one
subsystem block.

• Once the modeler has identified at least one subsystem block, she can also
start working on step 3 (Section 3.5: Specify the SUT behavior).

• The modeler is free to determine the number of BDDs resulting from the
completion of this step. Depending on the number of blocks created, it
might be a good idea to distribute the decomposition of the SUT block
across several BDDs.

• Step 2 has been described as a series of substeps to be carried out in sequen-
tial order, but this is only to help the reader to understand what it takes
to specify the SUT architecture. In general, experienced modelers do this in
no particular order and through a series of refinements, as they gain more
understanding of the system.

Examples: It is the time now to specify the subsystems of the satellite’s attitude
control software system (ADCSSW). Figure 8(a) shows the BDD resulting from
the application of the first four substeps from the guidelines above. It can be
seen that the system has been decomposed in four subsystems, namely “APDM”,
“ACM”, “DEM” and “MM”. The “APDM” subsystem will group the tasks for
determining the satellite’s attitude and position, which among others, include the
acquisition of sensors’ readings. The “ACM” subsystem will group the tasks for
adjusting the satellite’s attitude, which among others, include the commanding of
the satellite’s actuators. The “DEM” subsystem will group the tasks that allows
the SUT to exchange information with the satellite’s on board computer. Finally,
the“MM” subsystem will be responsible for managing the different states the SUT
can be in.

With the empty subsystem blocks in place, we can now proceed with substep 5,
and identify which of these subsystem blocks will be responsible for handling the
data blocks created, when specifying how the SUT interacts with its environment.
Figure 8(b) shows how some properties have been added to the “APDM”, “ACM”

12Behavior here refers to either operations or signal receptions, other than “getters” and “set-
ters”

20



(a) (b)

(c)

Figure 8: Evolution of the BDD of the example as substeps 1 to 8 are completed.
and “DEM” blocks to reflect this. In particular, the “APDM” block features the
properties corresponding to the data blocks specifying how the SUT interacts with
sensors; the “ACM” block features the properties corresponding to the data blocks
specifying how the SUT interacts with actuators; and finally, the “DEM” block
features the properties corresponding to the data blocks specifying how the SUT
interacts with the on board computer. Since properties for all the data blocks
characterizing the interactions between the SUT and the environment have been
defined, there is no need to apply substep 6, and define additional properties in

21



the system block (ADCSSW).
Finally, to complete the specification of the SUT architecture, in substeps 7

and 8 we must identify any additional internal data that the subsystem blocks
are going to be responsible for. Figure 8(c) shows the additional properties added
to the different subsystem blocks. It can be seen that some properties have also
been added to the SUT block. As stated in substep 8, instead of duplicating these
properties in each of the subsystem blocks where they are necessary, they were
directly specified in the SUT block.

3.5 Step 3: Specify the SUT behavior

Purpose: The purpose of this step is to describe the tasks, each of the subsystem
blocks introduced in step 2 (Section 3.4: Specify the SUT architecture) is respon-
sible for. The combination of all these tasks is what will characterize the SUT’s
behavior.

Inputs: The BDDs from step 2 (Section 3.4: Specify the SUT architecture),
requirements, domain documentation, function models.

Outputs: 1 or more BDDs, 1 or more ADs, 1 state machine (SM).

Requirements fulfilled: (R1b) Behavioral information.

Guidelines: We begin the specification of the SUT’s behavior, by describing the
tasks not directly related to managing SUT’s states. In order to do this, proceed
as follows:

1. Complete the following actions, for each subsystem of the SUT:

• Open the BDD containing the corresponding subsystem block.
• Identify one relevant task13 conducted by the subsystem being analyzed.
• Create an operation to represent that task, name it, and add it to the

corresponding block.
• Add the «Schedulable» stereotype14 to the operation.
• Set neither input parameters nor a return value for the operation. Any

data needed by the operation must be read either from the properties
of the block containing the operation, or from the properties of any
other subsystem block, or from the properties of the SUT block, or
from the properties of any of the environment blocks. This last case
only applies when the operation in question is part of the specification

13In this context, a relevant task is something that the subsystem does, and whose execution
must be scheduled..

14Appendix B provides detailed guidelines on how to use the different stereotypes that support
this modeling methodology.

22



of an interaction between the SUT and its environment. When it comes
to the data produced by the operation, if any, it must be stored in the
properties of the block where the operation is specified.

• Create an activity, name it with the operation’s name, and add it to
the subsystem block.

• Link the operation to the activity.
• Create one AD for the activity.
• Describe15 in the AD the sequence of actions, control and data flows

that characterize the behavior of the task. In case the behavior of
the task is characterized by an external function model, the AD must
contain the sequence of actions, control and data flows, necessary to
specify the integration of that function model.

• Repeat the previous 8 actions until all the tasks that subsystem is re-
sponsible for have been specified.

Sometimes, the modeler may discover that some behavior is repeated across
several tasks. In these occasions, the modeler can create a separated operation16,
inside the subsystem block to encapsulate that piece of behavior, but without
adding the «Schedulable» stereotype. That operation can then be used to com-
plete the specification of those tasks, like any other modeling construct. This
strategy can also be applied to simplify the specification of a complex task with-
out cluttering the corresponding AD.

At this point, the tasks not related to managing SUT’s states have been mod-
eled. If the SUT features a state-based behavior, then we proceed as follows:

2. Create a BDD.

3. Identify the internal states of the SUT. Create an empty block for each of
them, name them, and add them to the BDD. Henceforth, we will refer to
these blocks as “state blocks”.

4. Create one abstract block, name it, and add it to the BDD. This block will
be used as some sort of generic state to group all the state blocks under.
Henceforth, we will refer to this block as the “generic state block”

5. For each state block, create a generalization link and use it to connect that
state block to the generic state block.

6. For each state block, create an association link and use it to connect that
state block to the system block.

7. Identify the subsystem block responsible for managing the SUT’s states.
Create a composition link and connect this subsystem block to the generic
state block with it.

15Detailed information on how to specify activities can be found in Appendix A.
16Along with its corresponding activity.

23



After specifying the blocks for the SUT’s states, and before specifying the state
transitions, it is necessary to specify the events the SUT must react to.

8. Identify the subsystem block responsible for managing the SUT’s states.

9. Do as follows, for each of the events the SUT must react to.

• Add a property to that subsystem block. Name it after the event. Set
its type to “Boolean”.

• Create an operation with neither parameters nor returned value in the
generic state block, and name it after the property created previously.

Once the events have been specified, it is the moment to specify how the SUT
transitions from one state to another.

10. Create an operation with neither input parameters nor returned value, name
it, and add it to the subsystem block that manages the SUT’s states. The
behavior of this operation will specify how the SUT transitions from one
state to another.

11. Add the «Schedulable» stereotype17 to the operation.

12. Specify how the SUT transitions among the different states by completing
the following actions:

• Create an SM and add it to the subsystem block responsible for man-
aging the SUT’s states.

• Add to the SM an “Initial node”.
• Add to the SM one state for each of the state blocks and name them

the same.
• Analyze the way the SUT must transition among the different states,

and link the states in the SM accordingly by means of transitions.
• Link each transition with the property created in substep 9, that cor-

responds to the event that triggers that transition.

13. Link the SM to the operation created in substep 1018.

At this point, events, states and transitions have been specified. In order to
complete the specification of the state-based behavior, two additional operations
must be specified.

17Appendix B provides detailed guidelines on how to use the different stereotypes that support
this modeling methodology.

18The specifics on how a state machine can be linked to an activity can be found in Appendix
A.

24



14. Create an operation with neither input parameters nor returned value, name
it, and add it to the subsystem block responsible for managing the SUT’s
states.

15. Add the «Schedulable» stereotype to the operation.

16. Create an activity, name it with the operation’s name, and add it to the
block.

17. Link the operation to the activity.

18. Create one AD for the activity.

19. Describe in the AD the sequence of actions, control and data flows that
characterize the reception of any of the events modeled (e.g., when one of
the properties in a subsystem block is above/below a given threshold). As a
result, this AD must activate/deactivate the properties created in substep 9.
Once any of the properties is activated, it is assumed that the corresponding
event has been triggered.

20. Create an operation with neither input parameters nor returned value, name
it, and add it to the subsystem block that manages the SUT’s states. This
operation will be responsible for executing the behavior that the SUT must
feature when entering into a given state.

21. Add the «Schedulable» stereotype to the operation.

22. Create an activity, name it with the operation’s name, and add it to the
block.

23. Link the operation to the activity.

24. Create one AD for the activity.

25. Describe in the AD the sequence of actions, control and data flows that
characterize the behavior of the SUT when entering in any of the modeled
states, including the deactivation of the property that was activated, when
the event was triggered.

At this point, there is only one pending task to complete the specification of
the system’s behavior, that is, describing how the system’s tasks are going to be
scheduled. In order to do this, proceed as follows:

26. Set the tagged definition “timeStepSize” in the SUT block to the number of
milliseconds that each time slot of the scheduler is going to last.

27. Set the tagged definition “executionRateHz” for each operation stereotyped
as «Schedulable».

25



28. Set the tagged definition “estimatedCompletionTime” for each operation
stereotyped as «Schedulable».

29. Set the tagged definition “executionOrder” for each operation stereotyped
as «Schedulable». The order of execution of tasks (1, 2, 3...) must be set
globally (at the SUT level, not at the subsystem level).

Remarks:

• The SUT block should not have tasks associated to it. Tasks should be
distributed across the subsystem blocks.

• Only one SM should be specified to describe state transitions. This SM must
be invoked from only one operation in the subsystem block responsible for
managing the SUT’s states.

• Step 3 has been described as a series of substeps to be carried out in sequen-
tial order, but this is only to help the reader to understand what it takes
to specify the SUT’s behavior. In general, experienced modelers do this in
no particular order and through a series of refinements, as they gain more
understanding of the system.

Examples: We begin the specification of the SUT’s behavior, by creating opera-
tions in the subsystem blocks, for those tasks not directly related to managing the
states of the ADCSSW system. Figure 9 shows the operations defined for the sub-
system blocks “APDM”, “ACM” and “DEM”. In the case of the “APDM” block,
these are the operations that must be conducted to determine satellite’s position
and attitude. When it comes to “ACM”, the operations displayed in the figure are
the ones conducted to control satellite’s attitude. Operations defined in “DEM”
allow the system to interact with the on board computer. Finally, no operations
have been added to the “MM” since is the subsystem responsible for managing the
states of the SUT.

Figure 9: Definition of tasks not related to managing SUT’s states.

The behavior of each of these operations has been defined by means of ADs.
Figure 10 displays the AD corresponding to the activity “controlAttitude”, linked
to the operation with the same name in the block “ACM”. In this particular case,

26



Figure 10: Behavior of the task “controlAttitude” in the “ACM” subsystem.

some of the behavior for this activity has been encapsulated in separated operations
(not shown in figure 9), as indicated in the guidelines.

Substeps 2 to 7 are about specifying the states of the SUT. Figure 11(a)
shows the result of applying these substeps to the SUT of the example. Blocks
named “IdleMode”, “SafeSpinMode”, “NormalModeCoarse” and “NormalMode-
Fine” have been created to represent these states (or modes). They are specializa-
tions of the generic state block called “ADCSMode’, which is linked to the “MM”
block by means of a composition link. Finally, the state blocks are linked to the
SUT block by means of associations.

Once the blocks for the different states have been created, in substeps 8 and
9, we identify the events that can cause the SUT to transition from one state to
another. In our example, the SUT responds to the following events: “Separation
from Launcher”, “Pointing Error Under 15 degrees”, “Pointing Error above 20
degrees”, and the reception of telecommands forcing the SUT to transition to any
of the supported states. Figure 11(b) shows how a Boolean property for each of
these events has been added to the “MM” subsystem. Also, operations named
after these properties have been added to the generic state block.

After specifying the events, we can now model the transitions between the
different states (substeps 10 to 13). Figure 11(c) shows how an operation called
“executeTransitions()” has been added to the “MM” block. This operation will
be responsible for transitioning the SUT from one state to another, anytime one
of the previous events is triggered. The behavior of the “executeTransitions()”
operation is specified by means of the SM in figure 12. It can be seen how the
boolean properties previously added to the “MM” block have been linked to the
different transitions defined.

To complete the specification of the state-based behavior of the SUT (sub-

27



(a)

(b)

(c)

Figure 11: Specification of the states of the SUT.

Figure 12: State transitions of the SUT of the example.

steps 14 to 25), we must specify two additional operations. One to check whether
any of the events have been triggered, and another one to determine the behavior
of the SUT when entering into a specific state, once a transition has been exe-
cuted. Figure 11(c) shows how two operations called “checkPreconditions()” and

28



“manageUnits()” have been added to the “MM” block. The behavior of these
two operations is specified by means of two ADs (not shown here). In partic-
ular, the AD for the “checkPreconditions()” operation checks out whether the
property “tcmdReceived” of the DEM subsystem is enabled. If so, it means that
one telecommand was received and stored in the “teleCommand” property of the
“DEM” block. That property is then inspected, to enable the corresponding flag
in the “MM” block. The rest of preconditions are checked out in a similar way.
When it comes to “manageUnits()’, the corresponding AD checks out what is the
current state of the SUT, and invokes some operations in the different subsystem
blocks. It also deactivates the flag from the “MM” block that was activated to
indicate the triggering of the event.

29



A Guidelines on SysML modeling

A.1 Naming convention

Except for a few cases, most of the modeling elements added to the model must
be given a name. There are different ways to name a model element, but a simple
one that is common to all of them is to access to its property page, and fill in the
“name” property. However, at the time of choosing the right name, there are a
series of constraints that must be satisfied:

• Valid names must be composed by a combination of alphabetic characters
and numbers, the first one being a letter.

• Do not name two blocks with the same name.

• Do not name two properties, two operations, or two signal receptions in the
same block with the same name. In general, avoid name duplication within
the boundaries of a block.

• The naming system is case-insensitive.

• Name’s length is limited to 1024 characters.

A.2 Data types

Some modeling elements, in order to be properly specified, must have a data type.
The data types that can be used when specifying block properties, operations and
signal receptions are:

• Real

• String

• Boolean

• Integer

• Any of the previous four stereotyped as «Matrix»

• A data block19

The first five data types in the list are considered simple data types.

19Avoid recursion when assigning data blocks as data types.

30



A.3 Block specification

Specifying a block implies giving it a name, specifying whether it is an abstract
block, specifying its properties (if any), specifying its operations (if any), specifying
its ports (if any), specifying its stereotypes and tagged definitions (if any), and
specifying how the block must be linked to other blocks. In the rest of this section,
we will provide guidelines for the specification of all these modeling elements,
except for the specification of links between blocks, that will be covered later on.

A.3.1 Specification of block properties

When it comes to the specification of block properties, the following rules apply:

• Properties must be given a name.

• Properties must have a data type.

• Properties must have a multiplicity of one (1).

A.3.2 Specification of block ports

Block ports are used for the specification of the interactions between the SUT and
its environment. At the time of specifying block ports, the following rules apply:

• Ports must be given a name.

• Do not use “Proxy” ports, “Full” ports or “Flow” ports. Only regular ports
are supported.

• Multiplicity of ports must be one (1).

• Ports must have a data type.

• Block ports must be connected in pairs. No block ports must remain discon-
nected once the model is finished.

• Two block ports must be connected by means of a “Connector” link20.

• Every link connecting two ports must have associated a data block through
its “Item Flow” property. Flow direction must be specified as well.

20Do not confuse with association links, composition links or generalization links. This is an
specific connector available when modeling iBDs.

31



A.3.3 Specification of block operations

When specifying block operations, the following rules apply:

• Operations must be given a name.

• Operations cannot be abstract unless they are affected by a generalization
link (see the specification of generalization links to find out more about this).

• Operations have at most one “return” parameter.

• Operations cannot have “in”, “inout”, or “out” parameters.

• Multiplicity of parameters must be one (1).

• Operations can have associated at most one behavioral element (one activity
or one state machine). This is done by setting the field “Method” to the
name of the corresponding behavioral element.

• There cannot be more than one operation in the whole model whose behav-
ioral element is a state machine.

A.4 Specification of links between blocks

There are a number of different links that can be used to connect two blocks,
namely, association links, generalization links, and composition links. In the rest
of this section, we will describe how to use each of them.

A.4.1 Specification of composition links

Composition links are used for:

• Connecting the SUT block to its subsystem blocks.

• Connecting a data block to another, second, data block describing a data
type, that is necessary to complete the specification of the first data block.

• Connecting the subsystem block responsible for handling the states of the
SUT to the generic state block .

In order to specify a composition link, the following rules apply:

• Both ends of the composition link must be given a name.

• Both ends of the composition link must be navigable.

• When connecting the SUT block to its subsystem blocks, the end with the
solid diamond must be connected to the SUT block.

32



• When connecting a subsystem block to the generic state block, the end with
the solid diamond must be connected to the subsystem block.

• The cardinality of the end with the solid diamond must be one (1).

• The cardinality of the end without the solid diamond must be one (1).

A.4.2 Specification of generalization links

Generalization links are used for connecting the generic state block to the state
blocks. When doing so, the arrowhead must point to the generic state block.

The utilization of generalization links has an impact on how blocks are specified.
In particular, on whether a block can be abstract or not, and on how properties
and block operations must be specified:

• Blocks cannot be abstract unless they are affected by a generalization link.

• Only blocks pointed by the arrowhead of a generalization link can be ab-
stract.

• Multiple inheritance is not allowed.

• Chaining generalization links is not allowed.

• One block cannot be affected by more than one generalization link (followed
from the previous two).

• Properties specified in a block pointed by a generalization link cannot be
duplicated in the block at the other end of the link.

• Operations specified in a block pointed by a generalization link can be rede-
fined in the block at the other end of the link by creating an operation with
the same name.

A.4.3 Specification of association links

Association links are used for establishing other types of dependencies between
blocks. There are two main reasons to do this:

• Connecting the state blocks to the SUT block.

• Connecting data blocks to the SUT block, the subsystem blocks, the state
blocks or the generic state block.

In order to specify a association link, the following rules apply:

• Both ends of the association link must be given a name.

• Only one end of the association link must be navigable.

33



• The cardinality of both association ends must remain unspecified.

• When connecting the state blocks to the SUT block, the association end
connected to the state block must be navigable.

• When connecting a data block to any other block, the association end con-
nected to the data block must be navigable.

A.5 Activity specification

Specifying an activity implies giving it a name, specifying its inputs and outputs,
specifying its actions, and specifying its control and data flows.

A.5.1 Specification of inputs and outputs

An activity can have inputs and/or outputs in two cases:

• When the activity is linked to an operation which features a return value.
In this case, the activity will feature one output parameter, with the same
type as the value returned by the operation.

• When the activity is not linked to an operation. In this case the activity
will feature as many input and output parameters as needed to specify its
behavior.

A.5.2 Specification of actions

Actions are the fundamental units to describe behavior in an AD. At the time of
specifying an action, it is necessary to select the type of the action, give the action
a name21, and specify their inputs and outputs. In order to accomplish this last
step, actions feature pins to receive or return data, the number of pins and their
kind depending on the semantics (type) of the action being specified. Therefore,
to specify the inputs and outputs for an action, it is necessary to fully specify the
corresponding pins. A pin is specified by giving it a name, and by setting its data
type accordingly, that is, the modeler must indicate for each pin, the nature of the
data the action expects to receive (or is going to return) throughout that pin.

Among all the actions described in the SysML specification, this modeling
methodology supports the following ones:

• Read Self Action: To access the object containing the activity being executed
(also known as the context for the activity). It features no input pins and
one output pin, to return this object.

21Actions and action pins can receive duplicated names.

34



• Read Structural Feature Action: To get the value of a given property. It
features one input pin to receive the instance of the object which contains
the property, and one output pin to return the value of the property from
the object passed as context. In order to complete the specification of this
action, it is necessary to fill in the field “Structural Feature” with the name
of the property that has to be accessed.

• Add Structural Feature Action: To change the value of a given property.
It features two input pins, one to receive the instance of the object which
contains the property to be modified, and one to receive the value that must
be assigned to that property. As in the previous case, in order to complete
the specification of this action, it is necessary to fill in the field “Structural
Feature” with the name of the property that has to be accessed. Additionally,
the field “Is Replace All” must be set to “true”.

• Call Operation Action: To execute the behavior of an operation. It features
one input pin to receive the instance of the object in which the operation
is defined. If the operation returns a value, then it also features an output
pin of the corresponding type. The specification of the action is completed
when the field “Operation” is assigned with the name of the operation being
called.

• Call Behavior Action: To execute an activity or state machine not directly
linked to an operation in a block. The process to specify this action is the
same described for the case of a “Call Operation Action”.

• Value Specification Action: To specify constant values. It features one output
pin to return the constant. To specify the constant, the modeler must fill
in the field “Value” with a literal expression of any of the supported simple
data types.

• Opaque Action: To execute a function model. It contains a block of text
in the “Body” property specifying what is necessary to execute the function
model. The text is structured in four sections:

– Operation: It contains the type of operation being executed. Only
“ExecuteExternalModel” is supported for now.

– Model: It contains data about the model to be executed. Three lines
expressed as assignment (=) statements. The left side of the first line
is the fixed word “modelName”. The right side of this line is the name
of the external model to be executed. The left side of the second line is
the fixed word “modelType”. The right side of this line is the fixed word
“Simulink”, since this is the type of function model supported for now.
The left side of the third line is the fixed word “modelExecutionType”.
The right side of this line is set as follows:

35



* “NotInteractive” for Simulink models in which, the computation of
the outputs only depends on the inputs passed onto the model.

* “InteractiveAndSynchronized” for Simulink models in which, the
computation of the outputs at a certain point during the simulation,
depends on the previously computed outputs, and on the time step
size, which, in its turn, represents a certain amount of time elapsed
in the physical world.

* “InteractiveAndNotSynchronized” for Simulink models not falling
into the previous two groups.

– Input: Input parameters for the model. One per line expressed as
assignment statements. The left side represents the name of the pa-
rameter in the function model. The right side represents the name of
the property in the SysML model from which the value is retrieved.

– Output: Data returned. One per line expressed as assignment state-
ments. The left side represents the name of the property in the SysML
model where the value will be stored. The right side represents the
name of the output parameter in the function model.

Each section starts with the name of the section between brackets in a sep-
arated line.

Figure 13: Behavior of the task “controlAttitude” in the “ACM” subsystem.

A.5.3 Specification of control and data flows

Apart from the actions described above, the following elements are supported at
the time of specifying the data and control flow of an activity.

36



• Initial node

• Final node

• Decision node

• Merge node

• Fork node

• Join node

• Input parameter node

• Output parameter node

• Data flow link

• Control flow link

Decision nodes and merge nodes, as well as fork nodes and join nodes must be
used in pairs. It is not necessary for an activity to feature an initial node or a final
node, as long as it features input and output parameters. In general, either an
initial node or an input parameter must exist, and the same applies to final nodes
and output parameters.

Before specifying how to use control flow links and data flow links, it is neces-
sary to make a remark on how actions can be used. As indicated above, actions
serve the purpose of describing the behavior of activities. However, at the time of
doing this, actions can be used in two different ways: to model the actual behavior
of the activity (calling an operation, reading a value, modifying a value, etc.), or
to conduct a series of auxiliary steps needed to provide the right context for the
actions in the first group. As an example of this, figure 13 shows that the behavior
of the “controlAttitude’ task is to execute the operation “isOn” and then, if the re-
turned value is “true”, to execute the operation “getADCSMode”. Then, depending
on the returned value, one of the activities “integrateSafeSpinController”, “inte-
grateQuaternionController”, or “integratePDController” is executed. However, in
order to execute the operations “isOn” and “getADCSMode”, it is necessary to
provide the right context for them. This is done with the actions that can be
seen at the left of these two operations. Whether the actions are used to provide
context for other actions or not, has an impact on how data flow links and control
flow links are used:

• When several actions are chained to define the context for another action,
they all must be linked throughout their input and output pins by means of
data flows.

• In general, when data must be sent from one action to another, regardless of
their purpose, these two actions must be linked throughout the appropriate
pins by means of a data flow.

37



• The flow outgoing from a “Value Specification Action” must always be a
data flow.

• When an action provides the input for a decision node, the output pin of
that action and the decision node must be linked by means of a data flow.

• A decision node must be connected to the first action of each outgoing branch
by means of a data flow. In this case, that data flow must point to an input
pin in the linked action, only if the linked action expects that input and
features the necessary input pin. Otherwise, the data flow must point to the
action itself.

• When an action provides the input data for a number of actions to be ex-
ecuted in parallel, the output pin of the action and the fork node must be
linked by means of a data flow. In this case, each outgoing flow from the
fork node must also be a data flow, and must point to the appropriate input
pin in the action being linked.

• Decision nodes and fork nodes cannot feature more than one incoming flow
link.

• All the branches outgoing from a decision node must be of the same type,
and of the same type than the incoming flow.

• All the branches outgoing from a fork node must be of the same type, and
of the same type than the incoming flow.

• Flows outgoing from an input parameter must be data flows.

• Incoming flows of an output parameter must be data flows.

• For the rest of cases not explicitly stated before, control flows must be used.

In general, when connecting actions to the elements used to specify how data
and control will flow (initial or final nodes, decision or merge nodes, etc). Only the
actions modeling the actual behavior of the activity should be considered (do not
connect these elements to the actions used to provide context for other actions).

A.6 State machine specification

Specifying a state machine implies giving it a name, specifying its states, and
specifying its transitions.

At the time of specifying states, the following apply:

• The SM must feature as many states as state blocks have been defined in
the model.

• Each state in the SM must have the same name than the corresponding state
block.

38



Additionally, the SM should feature an “Initial node” and, depending on the
behavior being modeled, it might also feature a “Final node”.

At the time of specifying state transitions, each transition among two states,
other than the initial node and the final node, must be linked to the boolean
property triggering that transition. This is done by setting the “Event type” field
to the value “ChangeEvent”, and by filling in the “ChangeExpression” field with
an “ElementValue” expression corresponding to the property. For the transitions
outgoing the initial node or reaching the final node, whether they must be linked
to a property or not will depend on the behavior being modeled. Finally, the SM
must be linked to the operation responsible for invoking its behavior.

39



B Model testing SysML profile

This SysML modeling methodology requires the presence of a SysML profile, in
order to effectively create model testing-enabled models. In this Appendix we
present this profile, along with some guidelines describing how to use it. The
profile will help modelers to provide some specific data needed to steer the model
execution process, as well as to define additional data types that are needed to
interface with function models.

B.1 The «SUT» Stereotype

The «SUT» stereotype is used to identify the block representing the system under
test. Only one block in the model must be stereotyped as «SUT». This stereotype
includes two tagged definitions:

• taskSchedulerFunction: It sets the name for the routine that will contain the
scheduler’s code. That name should not collide with the names of any of the
modeling elements defined in the stereotyped block, and must comply with
the naming convention described in Appendix A.

• timeStepSize: It sets the scheduler time step size in milliseconds.

B.2 The «Schedulable» Stereotype

It is used to specify the SUT’s tasks. This stereotype contains three tagged defi-
nitions:

• executionRateHz: It sets how many times per second the task must be sched-
uled. This value must be a multiple of “timeStepSize”.

• executionOrder: It sets when the task must be scheduled in relation to the
rest of tasks being scheduled. The order is global.

• estimatedCompletionTime: It sets the estimated duration of the execution
of the task in milliseconds.

B.3 The «Initialization» Stereotype

It is used to specify auxiliary operations that must be executed only once, at
the beginning of the co-simulation process. This stereotype contains one tagged
definition:

• Order: It sets when the operation must be executed in relation to the rest
of initialization operations. The order is global.

40



B.4 The «Background» Stereotype

It is used to specify the operations from the SUT environment blocks that must
be executed alongside the SUT tasks, throughout the simulation time span. A
typical example of background operation is an operation describing the behavior
of the physical world block. This stereotype contains one tagged definition:

• Order: It sets when the operation must be executed in relation to the rest
of background operations. The order is global.

B.5 The «Configuration» Stereotype

This stereotype is used to define a global configuration attribute needed for the
co-simulation framework to work. Only the “model” block should be stereotyped
as «Configuration». The tagged definition “functionalModelsPath” should reflect
the location of the folder with all the function models the simulation depends on.

B.6 The «Matrix» Stereotype

This stereotype helps to define matrices, needed to interact with Simulink models.
It can be applied to any property whose type is a primitive type with multiplicity
1. It defines three tagged values:

• numberOfRows: Number of rows of the matrix.

• numberOfColumns: Number of columns of the matrix.

• defaultValue: A comma-separated list of values enclosed between brackets.

B.7 The «Data» Stereotype

This stereotype is used to identify the data blocks in the model. It features no
tagged values.

B.8 The «NotLoggable» Stereotype

This stereotype is used to control the verbosity of the execution trace produced
by the co-simulation framework. By default, all the actions in ADs are logged. If
an action is stereotyped as «NotLoggable» then its execution is not registered in
the execution trace.

41



References

[1] Lionel C. Briand, Shiva Nejati, Mehrdad Sabetzadeh, and Domenico Bianculli.
Testing the untestable: model testing of complex software-intensive systems.
In 38th International Conference on Software Engineering, ICSE 2016, pages
789–792. ACM, 2016.

[2] Edward Ashford Lee and Sanjit Arunkumar Seshia. Introduction to Embedded
Systems: A Cyber-Physical Systems Approach, 2nd Edition. MIT Press, 2017.

[3] OMG. OMG Systems Modeling Language (SysML) 1.4 Specification, 2015.

42


