
2018 IEEE International Conference on Computer Vision and Pattern Recognition Workshop (CVPRW): Efficient Deep
Learning for Computer Vision, Salt Lake City, Utah, US, June 18–22, 2018

Highway Network Block with Gates Constraints for Training Very Deep
Networks

Oyebade K. Oyedotun, Abd El Rahman Shabayek, Djamila Aouada, Björn Ottersten
Interdisciplinary Centre for Security, Reliability and Trust (SnT),

University of Luxembourg, L-1855 Luxembourg
{oyebade.oyedotun, abdelrahman.shabayek, djamila.aouada, bjorn.ottersten}@uni.lu

Abstract

In this paper, we propose to reformulate the learning of
the highway network block to realize both early optimiza-
tion and improved generalization of very deep networks
while preserving the network depth. Gate constraints are
duly employed to improve optimization, latent represen-
tations and parameterization usage in order to efficiently
learn hierarchical feature transformations which are cru-
cial for the success of any deep network. One of the earli-
est very deep models with over 30 layers that was success-
fully trained relied on highway network blocks. Although,
highway blocks suffice for alleviating optimization problem
via improved information flow, we show for the first time
that further in training such highway blocks may result into
learning mostly untransformed features and therefore a re-
duction in the effective depth of the model; this could nega-
tively impact model generalization performance. Using the
proposed approach, 15-layer and 20-layer models are suc-
cessfully trained with one gate and a 32-layer model us-
ing three gates. This leads to a drastic reduction of model
parameters as compared to the original highway network.
Extensive experiments on CIFAR-10, CIFAR-100, Fashion-
MNIST and USPS datasets are performed to validate the ef-
fectiveness of the proposed approach. Particularly, we out-
perform the original highway network and many state-of-
the-art results. To the best our knowledge, on the Fashion-
MNIST and USPS datasets, the achieved results are the best
reported in literature.

1. Introduction

Many computer vision applications now rely on learning
important features from data via deep neural networks [1]
[2] as opposed to handcrafting such features. Over time,
there has been a consistent challenge for better vision sys-
tems; for example, vision systems with lower error rates on
image classification problems. Moreover, the complexity

of the classification problems to be solved has consistently
increased. For instance, about a decade ago, the MNIST
handwritten digits dataset1 was considered quite hard to
learn. However, in the last 5 years, many deep learning
based works [3] [4] have reported error rates in the range
0.5%-0.21%. Nevertheless, tackling more complex classifi-
cation tasks has evolved a new direction for deep networks.
This is in line with many theoretical works [5] [6] [7] that
show the benefit of depth for learning complex and com-
positional target functions. Consequently, there are many
works [8] [9] that have explored very deep models with up
to 200 layers of feature abstractions. It has been identified
that a major problem in the training of very deep networks2

is the consistent dilution of features over the several layers
of transformations as we go deeper3 into the model [8] [10].
Therefore, many of the works [8] [9] [10] that have success-
fully trained very deep networks have relied on some ways
of routing untransformed features from the earlier layers
through the model. One of the earliest works referred to as a
highway network [10] employed highway blocks with gat-
ing mechanism for routing untransformed lower layer fea-
tures through the model to alleviate the problem of model
optimization. In [8], residual network with shortcut connec-
tions of identity mappings for bridging the hidden layers of
the model was proposed; this was shown to alleviate the dif-
ficulty of model optimization and also achieving impressive
results.
The problem with very deep networks that rely on high-
way network blocks is that the network may find it diffi-
cult to learn feature transformations (new latent represen-
tations) which are important for generalization as training
progresses. The biases of gating units of the highway net-
work block are initialized to negative values at the start of
training; this positions the gating units close to saturation.
Although, this alleviates the difficultly of model optimiza-
tion by mostly routing untransformed features via the high-

1http://yann.lecun.com/exdb/mnist/
2Deep models with over 10 layers
3We refer to layers closer to the output layer

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/157830235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


way block, the gating units further go into saturation as
training progresses. It is observed that this was reported
in the same work [10]. Consequently, there is a reduction in
the effective depth of models constructed using such high-
way blocks. In addition, employing a gate for a layer means
roughly doubling the number of parameters for that partic-
ular layer. Hence, model overfitting is a concern.
In this paper, the problem of learning very deep networks
using gating mechanisms as in the highway network blocks
[10] is revisited. In particular, we address the aforemen-
tioned problems by learning the highway network block via
the use of gate constraints such that new feature transforma-
tions can be effectively extracted. Also, we do not sacrifice
the ease of model optimization. Our contributions are sum-
marized as follows:

1. Effective use of model depth, since there is a natural
learning of new latent representations for data as train-
ing progresses.

2. Drastic reduction in the size of model parameters and
therefore potential to over-fit, since far lesser number
of gates are required for learning.

3. Improve both model optimization and regularization,
considering the required number of training epochs
and test performance, respectively.

The proposed approach is validated on the CIFAR-10,
CIFAR-100, Fashion-MNIST and USPS datasets. The re-
sults obtained show improvements over the original high-
way network and many state-of-the-art results. The rest of
this paper is organized as follows. In Section 2, we discuss
related works. Section 3 gives the background on highway
networks along with the problem statement. In Section 4,
we provide details of the proposed approach. Section 5
contains experimental results. The paper is concluded in
Section 6.

2. Related work
2.1. Depth impact on model performance

Deep networks of few layers (i.e. 3-7 layers ) have been
successfully used for learning different tasks [11] [12] with
interesting results. However, tackling more difficult tasks
requires that we review the learning characteristics of exist-
ing models, with a view to extending their capacity for im-
proved performance. For example, as at 2012, the state-of-
the-art top-5 error rate reported on the ILSVRC2012 dataset
was 15.3%, and was achieved with the AlexNet [13] with
60 million parameters. The AlexNet is a modest model
with 5 convolution layers, 3 max pooling layers, 3 fully
connected layers and ‘interspersed’ local constrast normal-
ization and dropout layers. The winner of ILSVRC2013

Figure 1. Depth impacts top-5 error rate (%) on the ILSVRC

object classification challenge relied on a modification of
the AlexNet model, extending it up to 8 convolution lay-
ers; the model was referred to a ZFNet [14] with a top-
5 error rate of 14.8%. The GoogleNet [15] with consid-
erably extended model depth in comparison to the ZFNet
won the ILSVRC2014 object classification challenge; the
GoogleNet is a 22 layer model with different smaller con-
volutions that are called inception modules. The GoogleNet
achieved an impressive top-5 error rate of 6.67%. It is in-
teresting to note that the ILSVRC2014 object classification
challenge runner up employed a 16 layer model that was
referred to as VGG16 with a top-5 error rate of 7.3%. For
the ILSVRC2015 object classification challenge, the best
performance was achieved using the ResNet [16] with 152
layers; the model achieved an astounding top-5 error rate
of 3.57%. A quick evaluation of how depth has impacted
results on the ILSVRC object classification challenge is
shown in Figure 1.
Considering the discussion above on the evolution of the
state-of-the-art results on the ILSVRC object classification
challenge, the role of depth for deep networks in the learn-
ing of complex target functions becomes evident. We note
that the same can be said for the impact of model depth on
other popular and hard benchmarkinng datasets such as the
CIFAR-10 and CIFAR-100 [8] [9] [17].

2.2. Very deep networks

Deep networks with few layers perform well on relatively
simple tasks. For more complex tasks, empirical and the-
oretical evidences (as in Section 2.1) show that depth im-
proves model performance; therefore, models with consid-
erable depth (i.e. very deep networks) are required. How-
ever, different works [8] [9] [10] have reported training
problems on models with more than 20 layers; specifically,
fitting the training data (model optimization) is difficult.
Generally, the problem is that learned features from the in-
put layer get diluted over the many layers of feature trans-



formation; that is, the features that reach the output layer
are considerably unreflective of the input signal. There-
fore, computed error gradients for updating model parame-
ters have little impact in driving the model towards conver-
gence. In [18], experiments showing that different model
parameters initialization schemes and batch normalization
do not resolve the difficulty of training very deep networks
beyond some layers.
Consequently, the different works [8] [9] [10] that have suc-
cessfully trained models with several layers have relied on
different approaches for bypassing some feature transfor-
mations as information is routed from the input to the out-
put layer. One of the pioneering works on very deep net-
works is the highway network [10] that successfully trained
up to 50 layers. He et al. [8] proposed the residual network
(ResNet) which employed shortcut connections of identity
mappings for alleviating model optimization with depth; re-
sults for ResNets with over 100 layers were reported on the
CIFAR-10 dataset. Also, Haung et al. [9] proposed to ran-
domly drop a subset of the hidden layers of the ResNet by
bypassing them using shortcut connections of identity map-
pings. The training scheme was reported to have improved
training time and model regularization.

3. Background and problem statement
In this section, the background on the model that we build
on is given; that is, the highway network [10]. Subse-
quently, the problem statement is presented.

3.1. Background: highway network

Training very deep networks has been a relatively long
standing problem. Although, theory [6] [7] (and intuition)
suggests that extending the levels of latent representations
for deep models can lead to a more compact (or efficient)
representation of highly varying target functions. The high-
way network is one of the first models with up to 50 layers
to be successfully trained. The work [10] was reported to
have taken inspiration from the Long Short Term Memory
(LSTM) recurrent network [19] for constructing the high-
way network, as the model employs gating mechanisms for
routing information from lower layers to higher layers.
The highway network block relies on gating mechanisms
for controlling information flow via the model. Given that
H(x)l−1 is the information on the highway at layer l − 1,
the gating module outputs a signal Gl(H(x)l−1) for con-
trolling what information is routed to succeeding highway
network block. F l(H(x)l−1) is the transformation learned
at the hidden layer l for input H(x)l−1; H(x)l is the final
output of the highway network block at layer l and can be
written as

H(x)l = F l(H(x)l−1)Gl(H(x)l−1)+

H(x)l−1(1−Gl(H(x)l−1)).
(1)

The form of information routing given in (1) was pro-
posed and demonstrated to give promising results in [10].
In this formulation, the gate Gl at layer l can either al-
low or impede the flow of incoming signals H(x)l−1 and
F l(H(x)l−1), depending on the current state of the gating
units; the gates can be either opened or closed. A diagram
illustrating a block of a highway network is shown in Fig-
ure 2. In order to alleviate the difficultly of model opti-
mization due to signal ‘attenuation’ with depth as discussed
in Section 2.2, it follows that the gate units are initialized
such that most of H(x)l−1 (untransformed incoming fea-
tures) are routed via the block early in training. That is,
gates are opened early in training and therefore favour early
model optimization. To achieve this, we have that:

• The gating units use the Log-Sigmoid function as the
activation function so that units’ outputs are rescaled
to be within the range 0 to 1; where, states 0 and 1
denote closed and open gates, respectively. Note that
the transformation path employs rectified linear units
(ReLUs) or similar, as is typical for deep networks.

• At the start of training, the biases of the gating units
are initialized to negative values such as -1 or -3 [10]
so that Gl(H(x)l−1) is very small (i.e. close to 0) and
therefore most of H(x)l−1 is routed via the highway
block without transformation as the output H(x)l.

The highway block shown in Figure 2 can be stacked to
facilitate model optimization of very deep networks, since
features routed from lower layers do not always undergo
transformation.

3.2. Problem statement

In [8], the problem of fast model convergence and general-
ization was considered for proposing the residual network
for which we learn a transformation of the form

H(x)l = F l(H(x)l−1) +H(x)l−1, (2)

where the notations are the same as in (1).
One of the arguments presented in [8] for proposing the
residual network is that both the transformed and untrans-
formed features from lower layers are always routed via the
model and therefore aid learning. In contrast, the highway
network block transforms some features, but routes others
through the model without transformation. This smooth
transitioning from routing untransformed features to
routing transformed features is a desirable property of the
highway network. Particularly, [10] observed that gates
deeper into the network are selective; that is, they perform
some sort of feature filtering. We note that the residual
network lacks this interesting attribute. Nevertheless, there
are some concerns with learning the highway network as



Figure 2. Highway network block [10]

discussed below.

First, we argue that the form of learning a highway block
proposed in [10] and given in (1) is less natural. Initializing
the gating units (that use Log-Sigmoid activation functions)
to negative values at the start of training keeps the units con-
siderably close to the saturation regime at the start of train-
ing. Although, this suffices for routing untransformed fea-
tures from the lower layers to higher layers, this may not be
the optimal way to employ the gates since it is well known
that Log-Sigmoid units typically go into the lower end of the
saturation ‘spectrum’ during training. Consequently, learn-
ing new transformations is largely impeded, since the gates
mostly remain around the saturation regime (i.e. have very
small output values) and therefore route only a small por-
tion of the transformed features. Hence, Gl(H(x)l−1) con-
verges to zero as training progresses and subsequently we
can write (1) as

H(x)l ≈ H(x)l−1 for i� 1 | 1 ≤ i ≤ t, (3)

where i is the epoch index and t is the number of maximum
epochs. This can impact model generalization since new
features are not being effectively learned for data. Conse-
quently, more training epochs can be required to drive the
model to good convergence.
Furthermore, the original highway network [10] employed
gates for every layer of feature transformation to alleviate
the difficultly of model optimization. This considerably in-
creases the parameters of the model, since a gate doubles
the overall size of any layer where it is employed. As such,
there is a huge risk of overfitting the training data. More-
over, employing many gates for highway networks could
mean that the transformation path is less constrained to cap-
ture very important features in the training data, since there
are enormous gate parameters that can hold data representa-
tions. Again, we note that this may impact the performance
of the model at test time.

Figure 3. Proposed highway network block

4. Proposed approach
In this section, the details of the proposed approach are
given, along with the different model components for ad-
dressing the problems of learning very deep networks that
employ highway network blocks as mentioned in Sec-
tion 3.2. In particular, the learning of the highway network
block is reformulated to achieve the following:

(i) Favour optimization early in training; that is, the gates
mostly route untransformed features at the start of
training.

(ii) Focus on learning feature transformations later in
training; that is, the gates mostly route transformed
features.

(iii) Rely on far fewer gates for learning several layers
of feature transformations, since gate transitioning is
more effective for model optimization and generaliza-
tion.

The interesting characteristic transitioning mentioned in (i)
& (ii) allows the efficient use of model parameters and fewer
gates for training as in (iii). As such, there is a lower risk
of model over-fitting and therefore improved generalization.
In order to achieve the aforementioned learning character-
istics, we propose a new highway block of the form

H(x)l = F l(H(x)l−1)(1− (Gl(H(x)l−1))m)+

H(x)l−1(Gl(H(x)l−1))n,
(4)

where m and n are model parameters which are intro-
duced for remapping the gating function. The proposed
model is shown in Figure 3. Note that the information on
the highway is now gated by (Gl(H(x)l−1))n as against



1− (Gl(H(x)l−1)) that was proposed for the original high-
way network block [10]. In order to learn the highway block
proposed in (4), and address the aforementioned challenges,
we detail in what follows three necessary model compo-
nents, namely, initialization, feature remapping, and gate
constraining.

4.1. Model initialization

Gates initialization is very important to the training of high-
way networks as it determines the states of the gates for
model optimization. At the start of training, it is usually
desirable that the gates are open to favour early optimiza-
tion. As with the earlier work [10], we rely on the biases
of gating units for controlling the regime of operation of a
highway block; that is, essentially routing untransformed or
transformed features from the lower layers. However, our
formulation requires that the biases of the gating units are
initialized to relatively small values within the range 1 to 3.
This places the gating units in the open state at the start of
training. As it is conventional for Log-Sigmoid units, the
biases of the gating units decrease as training progress and
tend towards saturation. In order to increase the operation
time of the proposed highway block for early optimization,
a simple gating remapping discussed in Section 4.2 is per-
formed.

4.2. Feature gating and re-mapping

In the proposed highway block, model parameters m and
n as in (4) are used for constraining the gates to oper-
ate longer in the open state regime to favour optimization.
The gating units use the Log-Sigmoid function as activa-
tion function, therefore gate units have outputs bounded as
0 < Gl(H(x)l−1) < 1. To ensure that model optimiza-
tion prevails early in training, we constrain n < 1 ≤ m;
that is, gate closure is delayed as the gating units go into
saturation. The remapping (or scaling) of gating outputs
from Gl(H(x)l−1) to (Gl(H(x)l−1))n for the information
highway path H(x)l−1 for different values of n is shown
in Figure 4. The arrows in Figure 4 show that going with
the initialization method given in Section 4.1, the output of
a gating unit and its remapped value decreases as training
progresses. The values of m and n can be set during train-
ing by using a validation set. Note that m and n determine
how much of transformed and untransformed features are
routed via the highway block, respectively.

4.3. Gate constraint

The motivation for reversing the gating of the highway fea-
tures and transformed features is that it allows us to easily
put learning constraints on the gates. For the proposed high-
way block, the weights of the gating units are constrained
to a max–norm of zero; that is, ‖ −→w ‖< 0, where w is
the weight vector of an arbitrary gating unit. This consider-

Figure 4. Gate remapping

ably limits the representations that the gating units can learn
and subsequently enforces the transformation path to learn
important features (or representations). Consequently, the
gating units essentially perform gating operation. Putting
together the components of our proposed approach, it can
be seen that much later in training, the gating units go
into saturation (as it is typical for deep networks); that is,
Gl(H(x)l−1) −→ 0. Hence, we can write (4) as

H(x)l ≈ F l(H(x)l−1) for i� 1 | 1 ≤ i ≤ t, (5)

where notations remain the same as previously stated.
The important implications of the proposed highway block
are as follows:

(i) Further in training, the highway block essentially
learns feature transformations as in (5) which are criti-
cal for model generalization at test time. This contrasts
with the original highway network block that mostly
learns untransformed features and essentially remains
in the optimization regime even much further in train-
ing.

(ii) The extreme scenario of our approach suggests that
the proposed model starts out as a relatively ‘shallow’
model and mostly routing untransformed features.
However, the model depth grows towards the effective
depth as training progresses. At the end of training, we
can ‘roughly’ recover a deep model without the effects
of the gates as given in (5).

5. Experiments
In order to validate the learning capacity of the proposed
highway block, very deep networks are constructed for
performing extensive experiments using CIFAR-104 and
CIFAR-1004. This allows the direct comparison of results
of the very deep models that are learned using the proposed
highway network blocks with the models learned using the
original highway blocks [10]. Subsequently, we use other

4https://www.cs.toronto.edu/ kriz/cifar.html



32-layer highway architecture
Output size Input: 32×32×3

32×32 Conv1-64(3×3)
32×32 Conv2-32(1×1)
32×32 Conv3-32(3×3)
32×32 Conv4-64(1×1)
32×32 Conv5-48(1×1)
32×32 Conv6-48(3×3)
32×32 Highway conv7-64(1×1)
32×32 Conv8-96(3×3)
16×16 MP 1(2×2); stride=2
16×16 Conv9-96(1×1)
16×16 Conv10-96(3×3)
16×16 Conv11-128(1×1)
16×16 Conv12-96(1×1)
16×16 Conv13-96(3×3)
16×16 Conv14-128(1×1)
16×16 Conv15-96(1×1)
16×16 Conv16-96(3×3)
16×16 Highway conv17-128(1×1)
16×16 Conv18-192(3×3)

7×7 MP 2(3×3); stride=2
7×7 Conv19-192(1×1)
7×7 Conv20-192(3×3)
7×7 Conv21-256(1×1)
7×7 Conv22-192(1×1)
7×7 Conv23-192(3×3)
7×7 Conv24-256(1×1)
7×7 Conv25-192(1×1)
7×7 Conv26-192(3×3)
7×7 Highway conv27-256(1×1)
7×7 Conv28-256(3×3)
2×2 MP 3(3×3); stride=3
1×1 2×2 global average pool

C-way softmax
Table 1. Proposed 32-layer highway network architecture

standard datasets such as the Fashion-MNIST5 and USPS6

to further demonstrate the consistency of performance of
the models learned using our approach; results comparison
against state-of-the-art results are provided. The architec-
ture of the 32 layer model used in this paper is given in
table 1; where for convL-M(s×s), L denotes the convolu-
tion layer, M is the number of output feature maps and s
is the size of convolution filter; Highway convL-D(s×s)
is a highway layer at layer L and with D output feature
maps. For MP N(k×k), N denotes the index of the max
pooling layer and k is the size of the pooling window. For
C-way softmax, C is the number of classes; for CIFAR-10
and CIFAR-100, C is 10 and 100, respectively. For the sake

5https://github.com/zalandoresearch/fashion-mnist
6http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html

of compactness in reporting experimental results, we label
the very deep networks learned using the proposed high-
way blocks with gate constraints as ‘highway net.+GC’ and
the original highway network as ‘highway net.’. The rest of
this section contains the training settings of the constructed
models for the different datasets used in this paper. In ad-
dition, experimental results, comparison with the state-of-
the-art results and high level discussions are presented.

5.1. Training settings

We construct very deep networks using the proposed high-
way network block. Particularly, we experiment with 15,
20 and 32 layer networks. For the 15 and 20 layer net-
works, only a single gating layer is used for learning the
whole model. For the 32 layer network, three gating lay-
ers are used for learning the whole model. For the con-
structed models, it is found that using the proposed high-
way block after every 8-13 layers suffices for alleviating the
difficulty of model training. All the models are trained us-
ing mini-batch gradient descent optimization with a batch
size of 128. For all our experiments, the biases of all gat-
ing units are initialized to 3. Also, using validation sets,
it is found that setting m=1 and n=0.1 works well, giving
very promising results on all the datasets; see tables 2 to 5.
Dropout of various rates are applied only in the transforma-
tions layers for model regularization. In order to constrain
the gating layers from learning important features but per-
form essentially feature gating, a max-norm of zero is ap-
plied on the weights of all gating layers. It is observed that
though [10] did not report on the number of model parame-
ters, our model uses 1 and 3 gates for learning the reported
20 and 32 layers models, respectively. Consequently, the
highway networks that employ gates for every layer of fea-
ture transformation should have an overall larger number
of model parameters as compared to the model proposed in
this paper.

5.2. CIFAR-10

The CIFAR-10 dataset contains natural and colour images
of size 32× 32 pixels belonging to 10 different categories of
objects for classification. The training set contains 50,000
samples, while the test set contains 10,000 samples. The
results of our experiments without and with data augmen-
tation are given in table 2 as C10 and C10+, respectively.
For data augmentation, we follow the common protocol [8]
[9] [10] of random horizontal flipping, translation by 4 pix-
els and reflection. Also, we did not whiten the images.
The 20 and 32 layer models are trained for 200 and 250
epochs, respectively. Table 2 shows that the very deep net-
works learned using the proposed highway blocks outper-
form the very deep model learned using the original high-
way blocks. Figure 5 shows the train and test errors against
training epochs for the 32-layer model with and without



Figure 5. Train and test error on CIFAR-10

data augmentation. Our 32 layer model achieves error rates
of 8.27% of 5.44% without and with data augmentation, re-
spectively. We outperform the baseline model with a higher
error rate of 7.72%. In addition, baseline model required
400 epochs for training, while the proposed models require
much lesser number of epochs. Note that the result for the
baseline model without data augmentation was not reported
[10]. In addition, we outperform many state-of-the-art re-
sults. Since our aim is to demonstrate the effectiveness of
the proposed highway blocks for learning very deep net-
works, we trained models of moderate depth and parame-
ters. Nevertheless, the proposed models achieve very com-
petitive results with extremely deep [8] [9] and wide [24]
models. It is well known that the performance of deep
models can be significantly improved by increasing model
depth [8] [9] or width [24]. Consequently, the results given
in table 2 can be improved by learning much deeper or
wider models. However, this is at the cost of huge com-
putational requirement. Although DenseNets [28] achieved

Models Param. Depth C10 C10+

Network in network [20] – – 10.41 8.81
Recurrent CNN [21] – – 8.69 7.09
Deeply supervised [22] – – 9.69 7.97
All-CNN [23] – – 9.08 7.25
ResNet [9] 1.7M 110 13.63 6.41
Stochastic depth [9] 10.2M 110 11.66 5.23
Wide ResNet [24] 36.5M 28 – 4.17
Wide ResNet [24] 2.2M 40 – 5.33
Weighted ResNet [17] 19.1M 1192 – 5.10
FractalNet [25] 38.6M 21 7.33 4.60
DiracNet [26] 59M 34 – 4.54
DiracNet [26] 3.7M 34 – 5.60
Maxout [27] >6M – 11.68 9.38
DenseNet (k=24) [28] 27.2M 24 5.83 3.74
Baseline: Highway net. [10] �2.6M 32 – 7.72
Ours: highway net.+GC 1.7M 20 9.88 7.08
Ours: highway net.+GC 2.6M 32 8.27 5.44

Table 2. Error rate (%) on the CIFAR-10 dataset

Figure 6. Train and test error on CIFAR-100

lower error rates, we note that they requires much higher
GPU (Graphics Processing Unit) memory [29].

5.3. CIFAR-100

The CIFAR-100 dataset contains natural and colour images
of size 32 × 32 pixels belonging to 100 different cate-
gories of objects for classification. The training set con-
tains 50,000 samples, while the test set contains 10,000
samples. The results of our experiments without and with
data augmentation are given in table 3 as C100 and C100+,
respectively. For data augmentation, the same protocol as
in CIFAR-10 is followed. The 20 and 32 layer models
are trained for 300 epochs. Table 3 shows that the very
deep networks learned using the proposed highway blocks
outperform the very deep model learned using the origi-
nal highway blocks. Figure 6 shows the train and test er-
rors against training epochs for the 32-layer model with and
without data augmentation. Our 32 layer model achieves
error rates of 29.26% and 25.26% without and with data

Models Param. Depth C100 C100+

Network in network [20] – – 35.68 –
Recurrent CNN [21] – – 31.75 –
Deeply supervised [22] – – – 34.57
All-CNN [23] – – – 33.71
ResNet [9] 1.7M 110 44.76 27.22
Stochastic depth [9] 10.2M 110 37.80 24.58
Wide ResNet [24] 36.5M 28 – 20.50
Wide ResNet [24] 2.2M 40 – 26.04
Fractional pooling [30] – – – 27.60
FractalNet [25] 38.6M 21 29.05 23.73
DiracNet [26] 59M 34 – 20.96
DiracNet [26] 3.7M 34 – 26.72
Maxout [27] >6M – 38.57 –
DenseNet (k=24) [28] 27.2M 24 23.42 19.25
Baseline: Highway net. [10] �2.6M 32 – 32.39
Ours: highway net.+GC 1.7M 20 29.81 26.15
Ours: highway net.+GC 2.6M 32 29.26 25.26

Table 3. Error rate (%) on the CIFAR-100 dataset



Models Param. Depth Fashion-
MNIST

2C1P2F+Drouout [31] 3.27M – 8.40
3C1P2F+Dropout [31] 7.14M – 7.40
GoogleNet [31] 101M 22 6.30
AlexNet [31] 60M 8 10.10
SqueezeNet-200 [31] 0.5M 18 10.00
VGG16 [31] 26M 16 6.50
EvoCNN [31] 6.68M – 5.47
Ours: highway net.+GC 1.7M 20 5.26

Table 4. Error rate (%) on the Fashion-MNIST dataset

augmentation, respectively. Again, the baseline model re-
quired 400 epochs for training, while the proposed mod-
els require 300 epochs.Note that the result for the baseline
model without data augmentation was not reported [10]. We
outperform the baseline model with a higher error rate of
32.39%. In addition, we outperform many state-of-the-art
results. Also, note that the results that outperform ours have
either significantly more depth [8] [9] or parameters [24].
We posit that the large improvement in performance as com-
pared to the baseline model could be that since CIFAR-100
is a more difficult classification dataset, the proposed model
allows the effective learning of feature transformations that
are critical for model generalization. This contrasts with the
baseline model that may find it difficult to learn new latent
representations as training progresses.

5.4. Fashion-MNIST

The Fashion-MNIST dataset is a recent dataset for bench-
marking learning algorithms. It was inspired from the fact
that the popular MNIST handwritten digits dataset is now
considered easy to learn considering recent reported results.
The Fashion-MNIST dataset is similar to the MNIST, con-
taining 50,000 and 10,000 training and testing samples, re-
spectively. However, it contains images of fashion out-
fits belonging to 10 different classes which include T-shirt,
trouser, pullover, dress, coat, sandal, shirt, sneaker, bag and
ankle boot. The images are grayscale and of size 28×28
pixels. We consider the Fashion-MNIST dataset to be sim-
pler as compared to CIFAR-10 and CIFAR-100, therefore
we train only a 20 layer model. Also, we perform no data
augmentation. Table 4 shows that the model learned using
the proposed highway blocks outperforms the state-of-the-
art results including those with much more model param-
eters. Our 20 layer model achieves an error rate of 5.26%
which to the best of our knowledge, this is the best result
reported on the Fashion-MNIST dataset.

5.5. USPS

The USPS dataset contains handwritten digits from 0 to
9. Considering the state-of-the-art results [32] [18] [33]
that have been reported so far on the USPS dataset, we

Models Param. Depth USPS

Invariant vector supports [34] – – 3.00
LeNet [35] – 5 4.20
NN + boosting [35] – 2.60*

Manifold constraint transfer [36] – – 2.99
Evolutionary embedding [37] – – 3.90
Polynomial kernel SVM [38] – – 3.20
Tangent distance [32] – – 2.50*

Human performance [32] – – 2.50
Invariant scattering net.+PCA [33] – – 2.30
Residual network (ResNet) [18], [8] – 54 3.34
Stochastic ResNet [18] – 54 2.69
Ours: highway net.+GC 0.2M 15 1.99
*Result use data augmentation

Table 5. Error rate (%) on the USPS dataset

note that this dataset is harder to learn as compared to
the MNIST dataset. The USPS dataset contains 7,291 and
2,007 training and testing samples, respectively. The im-
ages are grayscale and of size 16×16 pixels. Again, we
consider the USPS dataset to be simpler as compared to
CIFAR-10 and CIFAR-100, therefore we train only a 15
layer model. Also, we perform no data augmentation. Table
5 shows the result of the model learned using the proposed
highway blocks. Our 15 layer model achieves an error rate
of 1.99% without data augmentation. We outperform sev-
eral state-of-the-art results including human performance
and those that employed data augmentation.

6. Conclusion

Very deep networks allow us to learn highly informative
features from data. Training very deep networks is chal-
lenging due to model parameter optimization problems.
One solution is to construct very deep networks by stack-
ing several highway blocks to alleviate the difficulty of
model optimization. Although the original highway block
suffices for tackling the difficulty of model optimization,
we argue that as training progresses, such highway blocks
may mostly learn untransformed features and therefore neg-
atively impact generalization capacity. In this paper, we
reformulate the learning of highway blocks by employing
gate constraints to improve model optimization and gen-
eralization. The proposed highway block for constructing
very deep networks naturally lends itself to learning feature
transformation as model training progresses. We perform
experiments on CIFAR-10 and CIFAR-100 datasets to show
that the very deep networks learned using the proposed
highway block outperform very deep networks learned with
the original highway blocks. Additionally, the results of
the proposed model is competitive with respect to the state-
of-the-art results for similar model depth and parameters.
On the Fashion-MNIST dataset and USPS datasets, the pro-
posed model achieves the best results.



Acknowledgments

This work was funded by the National Research Fund
(FNR), Luxembourg, under the project reference R-AGR-
0424-05-D/Bjorn Ottersten. This work was also sup-
ported by the National Research Fund (FNR), Luxembourg,
under the project C15/IS/10415355/3D-ACT/Bjorn Otter-
sten, and FNR project IDform under the agreement C-
PPP17/IS/11643091/IDform/Aouada.

References
[1] G. Papandreou, L.-C. Chen, K. P. Murphy, and A. L. Yuille,

“Weakly-and semi-supervised learning of a deep convolu-
tional network for semantic image segmentation,” in Pro-
ceedings of the IEEE International Conference on Computer
Vision, 2015, pp. 1742–1750.

[2] Z. Liu, X. Li, P. Luo, C.-C. Loy, and X. Tang, “Semantic im-
age segmentation via deep parsing network,” in Proceedings
of the IEEE International Conference on Computer Vision,
2015, pp. 1377–1385.

[3] L. Hertel, E. Barth, T. Käster, and T. Martinetz, “Deep con-
volutional neural networks as generic feature extractors,” in
Neural Networks (IJCNN), 2015 International Joint Confer-
ence on. IEEE, 2015, pp. 1–4.

[4] J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid, “Convo-
lutional kernel networks,” in Advances in Neural Information
Processing Systems, 2014, pp. 2627–2635.

[5] O. Delalleau and Y. Bengio, “Shallow vs. deep sum-product
networks,” in Advances in Neural Information Processing
Systems, 2011, pp. 666–674.

[6] H. Mhaskar, Q. Liao, and T. Poggio, “Learning func-
tions: when is deep better than shallow,” arXiv preprint
arXiv:1603.00988, 2016.

[7] M. Bianchini and F. Scarselli, “On the complexity of neu-
ral network classifiers: A comparison between shallow and
deep architectures,” IEEE transactions on neural networks
and learning systems, vol. 25, no. 8, pp. 1553–1565, 2014.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2016, pp.
770–778.

[9] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger,
“Deep networks with stochastic depth,” in European Confer-
ence on Computer Vision. Springer, 2016, pp. 646–661.

[10] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training
very deep networks,” in Advances in neural information pro-
cessing systems, 2015, pp. 2377–2385.

[11] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolu-
tional networks for biomedical image segmentation,” in In-
ternational Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, 2015, pp. 234–
241.

[12] A. de Brebisson and G. Montana, “Deep neural networks
for anatomical brain segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, 2015, pp. 20–28.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in neural information processing systems, 2012,
pp. 1097–1105.

[14] M. D. Zeiler and R. Fergus, “Visualizing and understanding
convolutional networks,” in European conference on com-
puter vision. Springer, 2014, pp. 818–833.

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
“Going deeper with convolutions,” in Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 2015, pp. 1–9.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification,” in Proceedings of the IEEE international con-
ference on computer vision, 2015, pp. 1026–1034.

[17] F. Shen, R. Gan, and G. Zeng, “Weighted residuals for very
deep networks,” in Systems and Informatics (ICSAI), 2016
3rd International Conference on. IEEE, 2016, pp. 936–941.

[18] O. K. Oyedotun, A. E. R. Shabayek, D. Aouada, and B. Ot-
tersten, “Training very deep networks via residual learning
with stochastic input shortcut connections,” in Neural Infor-
mation Processing: 24th International Conference, ICONIP
2017, Guangzhou, China, November 14-18, 2017, Proceed-
ings, vol. 10635. Springer, 2017, p. 23.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural computation, vol. 9, no. 8, pp. 1735–1780,
1997.

[20] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv
preprint arXiv:1312.4400, 2013.

[21] M. Liang and X. Hu, “Recurrent convolutional neural net-
work for object recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2015, pp. 3367–3375.

[22] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu,
“Deeply-supervised nets,” in Artificial Intelligence and
Statistics, 2015, pp. 562–570.

[23] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Ried-
miller, “Striving for simplicity: The all convolutional net,”
arXiv preprint arXiv:1412.6806, 2014.

[24] S. Zagoruyko and N. Komodakis, “Wide residual networks,”
arXiv preprint arXiv:1605.07146, 2016.

[25] G. Larsson, M. Maire, and G. Shakhnarovich, “Fractal-
net: Ultra-deep neural networks without residuals,” arXiv
preprint arXiv:1605.07648, 2016.

[26] S. Zagoruyko and N. Komodakis, “Diracnets: Training
very deep neural networks without skip-connections,” arXiv
preprint arXiv:1706.00388, 2017.



[27] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,
and Y. Bengio, “Maxout networks,” arXiv preprint
arXiv:1302.4389, 2013.

[28] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten,
“Densely connected convolutional networks,” in Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, vol. 1, no. 2, 2017, p. 3.

[29] Y. Zhu and S. Newsam, “Densenet for dense flow,” arXiv
preprint arXiv:1707.06316, 2017.

[30] B. Graham, “Fractional max-pooling,” arXiv preprint
arXiv:1412.6071, 2014.

[31] Y. Sun, B. Xue, and M. Zhang, “Evolving deep convolutional
neural networks for image classification,” arXiv preprint
arXiv:1710.10741, 2017.

[32] P. Simard, Y. LeCun, and J. S. Denker, “Efficient pattern
recognition using a new transformation distance,” in Ad-
vances in neural information processing systems, 1993, pp.
50–58.

[33] J. Bruna and S. Mallat, “Invariant scattering convolution net-
works,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 8, pp. 1872–1886, 2013.

[34] B. Schölkopf, P. Simard, A. J. Smola, and V. Vapnik, “Prior
knowledge in support vector kernels,” in Advances in neural
information processing systems, 1998, pp. 640–646.

[35] P. Simard, Y. LeCun, J. Denker, and B. Victorri, “Transfor-
mation invariance in pattern recognitiontangent distance and
tangent propagation,” Neural networks: tricks of the trade,
pp. 549–550, 1998.

[36] B. Zhang, A. Perina, V. Murino, and A. Del Bue, “Sparse
representation classification with manifold constraints trans-
fer,” in Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, 2015, pp. 4557–4565.

[37] L. Liu, L. Shao, and X. Li, “Evolutionary compact embed-
ding for large-scale image classification,” Information Sci-
ences, vol. 316, pp. 567–581, 2015.

[38] S. Maji, A. C. Berg, and J. Malik, “Efficient classification for
additive kernel svms,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 1, pp. 66–77, 2013.


