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Abstract

Raman spectroscopy has become one of the most important techniques for the char-

acterization of materials, as it allows the simultaneous probing of several properties,

such as electronic and vibrational excitations, at once. This versatility, however, makes

its theoretical description very challenging and, up to now, no fully satisfactory and

general way for the calculation of Raman spectra from first principles exists. In this

thesis, we aim to fill this gap and present a coherent theory of Raman scattering within

the framework of many-body perturbation theory. We develop a novel and general, cor-

relation function-based approach for the calculation of Raman scattering rates that can

potentially also be applied to ultra-fast Raman spectroscopy out of equilibrium. Be-

sides these theoretical developments, we present concrete computational recipes for the

calculation of Raman intensities that allow the inclusion of both excitonic effects and

non-adiabatic effects of lattice vibrations. The latter has so far not been possible with

state-of-the-art methods, which can only take into account one of the two effects. As a

first test case, we apply our theory to graphene, for which we use it to study the laser

frequency and Fermi energy dependence of the Raman G-peak intensity. The flexibility

of our approach also allows us to demonstrate that non-resonant processes and quantum

mechanical interference effects play a significant role in Raman scattering. This applies

not only to graphene but also to other two-dimensional materials of current interest,

such as MoTe2 and MoS2. In addition to the development of a consistent and compre-

hensive description of Raman scattering, we derive a novel approach for the calculation

of phonon frequencies and the screened electron-phonon coupling. It can be applied

also to strongly correlated systems, for which the currently used methods are not en-

tirely satisfactory or insufficient. Our new method goes beyond the limitations of the

methods currently in use and will permit the computation of phonon-related quantities

also in systems with strong correlation effects such as Kohn anomalies (e.g., graphene)

or Peierls instabilities. Lastly, we present work on the application of (magneto-)Raman

spectroscopy as a probe for many-body effects in graphene. Here we focus on the de-

scription of the phenomenon of magneto-phonon resonances and how it can be used to

probe electronic excitation energies and to extract electron and phonon lifetimes.
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Zusammenfassung

Raman-Spektroskopie ist zu einer der bedeutendsten Methoden zur Materialcharakte-

risierung geworden, da sie die gleichzeitige Untersuchung von mehreren Eigenschaften,

wie z. B. elektronische Anregungen und Gitterschwingungen, erlaubt. Diese Vielseitig-

keit macht ihre theoretische Beschreibung jedoch sehr herausfordernd, sodass bis heute

kein allgemeiner ab initio Zugang existiert. Mit dieser Arbeit versuchen wir diese Lücke

zu schließen und stellen eine kohärente Theorie der Raman-Streuung im Rahmen der

Vielteilchenstörungstheorie vor. Wir entwickeln einen neuartigen Zugang für die Berech-

nung von Raman-Streuraten, der potenziell auch auf ultra-schnelle Raman-Streuung au-

ßerhalb des Gleichgewichts angewandt werden kann. Neben dieser theoretischen Arbeit

präsentieren wir auch konkrete Ausdrücke für die computergestützte Berechnung von

Raman-Intensitäten, die es erlauben, sowohl exzitonische Effekte als auch dynamisch

behandelte Gitterschwingungen in die Rechnung miteinzubeziehen. Die gleichzeitige

Berücksichtigung letzterer Aspekte ist mit bisherigen Methoden nicht möglich gewe-

sen. Als ersten Test wenden wir unsere Theorie auf Graphen an und untersuchen die

Abhängigkeit der Intensität der Raman G-Linie von der Laser- und Fermi-Energie. Un-

ser flexibler Zugang erlaubt es uns außerdem zu zeigen, dass nicht-resonante Prozesse

und Quanteninterferenzeffekte eine wesentliche Rolle im Raman-Streuprozess spielen.

Dies trifft auch auf andere zweidimensionale Materialien zu, wie z. B. MoTe2 und MoS2,

die im Fokus der aktuellen Forschung stehen. Zusätzlich zur Entwicklung einer umfas-

senden Beschreibung der Raman-Streuung leiten wir einen neuartigen Ansatz zur Be-

rechnung von Phononenfrequenzen und der abgeschirmten Elektron-Phonon-Kopplung

her. Dieser kann auch auf stark korrelierte Systeme angewandt werden, für die die bis-

lang benutzten Methoden nicht zufrieden stellend sind. Unsere neue Methode erlaubt

es, die Einschränkungen aktueller Methoden zu überwinden, auch in Systemen mit

starken Korrelationseffekten wie z. B. Kohn-Anomalien (wie z. B. in Graphen) oder

Peierls-Instabilitäten. Zum Abschluss untersuchen wir Vielteicheneffekte in Graphen

mittels (Magneto-)Raman-Spektroskopie. Hierbei liegt der Schwerpunkt auf Magneto-

Phonon-Resonanzen und wie diese dazu genutzt werden können, um elektronische An-

regungsenergien und die Lebenszeiten von Elektronen und Phononen zu untersuchen.
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Chapter 1

Introduction

Since its first exfoliation and the demonstration of its high electronic mobility and

tunable conductivity in 2004 [1], graphene, a one-atom-thick layer of graphite, has

received an ever increasing amount of attention. The reason for this lies in its remarkable

electronic [2] and mechanical [3] properties. However, despite its many virtues, graphene

in not without flaws when it comes to practical applications and functional devices. For

example, its lack of an electronic band gap prohibits its usage as a logic transistor and

all approaches to induce a band gap whilst retaining its outstanding electronic mobility

have not led to a competitive on/off ratio [4].

This has sparked a desire for a “graphene-like” material with a sizable band gap.

Combined with the increasing amount of expertise in exfoliating or growing graphene

and in graphene device fabrication, it has led to a strong increase in attention devoted

to the study of other two-dimensional materials [5, 6]. These materials, like graphene,

consist of thin layers of atoms that are weakly held together by van der Waals forces,

while the bonds between the atoms within each layer are of a strong, covalent nature.

Two examples of this kind of materials are the insulating hexagonal boron nitride (hBN)

and the family of transition metal dichalcogenides (TMDs), the most widely studied of

which is the semi-conducting molybdenum disulfide (MoS2) [7].

Although these materials are already of interest on their own, the most intriguing

aspect of two-dimensional materials is the possibility to stack layers of different mate-

rials. Such a heterostructure can have new and sometimes surprising properties. One
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of the earliest and by now widely used examples of these kinds of heterostuctures is a

stack of hexagonal boron nitride and graphene [8], in which boron nitride layers serve

as a substrate and cover for a single layer of graphene. The latter is thereby effec-

tively shielded from detrimental environmental influences, yet still remains atomically

flat due to the flatness of the hBN surface. Furthermore, by carefully adjusting the

orientation of the graphene lattice with respect to the underlying hBN lattice, Moiré

patterns can be created, which modify the electronic properties of the heterostructure

considerably [9]. The possibility to influence the electronic properties of graphene by

putting it on an hBN substrate is just one example of tailoring the properties of these

van der Waals heterostructures to one’s needs. More sophisticated examples that also

allow the fine-tuning of the heterostructure’s properties soon followed [10, 11] and today

there is a large amount of effort being invested into the research of such tailor-made

van der Waals heterostructures [12].

However, the option to fabricate a wide variety of heterostructures with a correspond-

ingly wide spectrum of electronic and mechanical properties comes with a need for a

fast, effective, reliable, and minimally invasive method to characterize them. Transport

measurements can serve as a comprehensive way to study the electronic properties of

such devices. However, they necessitate further processing of the material stack, for

example, due to the necessity of contacting the sample. As such, they require a sizable

amount of effort and are also highly invasive. A far less invasive way for characterization

is optical spectroscopy. Already optical absorption and photoluminescence experiments

can yield a certain amount of information about optical and electronic properties. How-

ever, the most important optical tool for sample characterization nowadays is Raman

spectroscopy, a light scattering experiment in which a part of the incident light is scat-

tered inelastically. This effect was first observed and reported on in a series of Letters

by C. V. Raman and K. S. Krishnan in 1928 [13–15].

In their original experiments, Raman and Krishnan observed that the spectrum of

light from a quartz vapor lamp scattered by a fluid features lines that are not present

in the spectrum of the unscattered light (see Fig. 1.1a). Already in their first Let-

ter, Raman and Krishnan linked the appearance of these additional spectral lines to

2



Figure 1.1: Raman spectroscopy in the past and present. (a) Original Raman
experiment by Raman and Krishnan (1928). Panel (1) shows the spectrum of light
emitted from a quartz vapor lamp whereas panel (2) shows the spectrum of the same
light scattered by a fluid. (b) Modern-day Raman spectrum of an hBN-graphene-hBN
heterostructure (2015). Shown is the recorded intensity of the scattered light as a
function of the difference of the inverse wave lengths of the incoming and scattered
light. (Figure of panel (a) reprinted by permission from Springer Nature from Raman,
C. V. et al., Nature 121, 711 (1928). Copyright 1928 by Springer Nature. Figure of
panel (b) reprinted from Neumann, C. et al., Appl. Phys. Lett. 107, 233105 (2015),
with the permission of AIP Publishing.)

“fluctuations [of the atoms] from their normal state” [13]. Their further, more detailed

studies supported this assertion as they noticed that “the diminution in frequency is

of the same order of magnitude as the frequency of the molecular infra-red absorption

line” [15]. This was even further supported by the fact that the shift in wavelength

differed from molecule to molecule. They also noted that the frequency of the infra-

red absorption line was determined by the molecule’s vibrational eigenfrequencies. By

combining this information, they were able to establish a first, coherent picture of the

inelastic scattering process which is nowadays known as Raman scattering : the incom-

ing quantum of light interacts with the molecule and is scattered inelastically, with the

lost energy having gone into a molecular excitation. This picture, for which Raman

received the Nobel prize in 1930, is still the established interpretation used today. It

is one of the main reasons why Raman spectroscopy has become an indispensable tool

for the characterization of a wide variety of materials and substances, as it probes both

optical, electronic, and vibrational/mechanical properties at once.
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Experimental techniques have advanced a lot since then and today’s Raman spec-

troscopy experiment most often consists of exciting the sample with a potentially

tunable, monochromatic laser beam. The scattered light is typically recorded with

a charge-coupled device (CCD) camera after having been directed through a diffrac-

tive grating. An example of such a Raman spectrum recorded with state-of-the-art

equipment is shown in Fig. 1.1b. The modern way to display such a spectrum consists

of plotting the recorded light intensity as a function of the difference of the inverse

wavelengths of the incoming and the scattered light,

Raman shift ≡ ∆
1

λ
≡ 1

λin

− 1

λout

, (1.1)

and is usually given in units of cm−1. Depending on the number of grooves on the

diffractive grating, the resolution achieved with such a setup can range up to 0.5 cm−1.

This is precise enough to extract some properties of the sample, such as vibration,

i.e., phonon, frequencies and related quantities such as mechanical strain with useful

accuracy.

One of the prime examples for the use of Raman spectroscopy in this respect is its

utilization in the characterization of graphene [16]. The relative simplicity of graphene’s

electronic and vibrational band structure leads to only a small number of sizable lines

in the Raman spectrum that nevertheless contain a comparatively large amount of

information. Among the properties that can be extracted from the Raman peaks of

graphene are the number of layers [17, 18], the average amount of mechanical strain

and its short-range fluctuations [19–25], the amount and nature of charge carrier dop-

ing [23, 26–29], and the lattice temperature [30, 31]. The use of a focused laser beam

in modern-day experiments also means that these properties can be probed locally,

in contrast to the nature of a transport experiment, which is only sensitive to global

properties of a sample. This can be exploited in a confocal setup, in which the sample

can be moved relative to the laser beam, to create entire “maps” of the strain distri-

bution [25, 32, 33], of doping domains [29, 34], or to specifically probe the edges of a

sample [18, 35, 36]. More complicated Raman setups in which the sample is also ex-

posed to a magnetic field even permit the study of many-body effects such as electronic
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correlation and of electronic and phonon lifetimes [37–49]. Beyond graphene, finally,

the dependence of the Raman spectrum on the frequency of the incident light can also

be used to extract information on optical transition energies, i.e., to probe excitons [50].

In order to be able to extract any of the above mentioned properties of the sample

from its Raman spectrum, however, a thorough theoretical understanding is required.

In the case of graphene, the theoretical modeling of Raman spectra has so far been

based on tight-binding or effective, relativistic Fermi liquid models for the electronic

band structure [51, 52] and semi-empirical models for the vibrational band structure and

the electron-phonon coupling [53]. The actual calculation of the Raman spectrum itself

has usually been done within the framework of time-dependent perturbation theory

[54–59] or within a simplified “double-resonance model” [17, 60–62]. These approaches

led to a detailed conceptual understanding of the Raman spectrum of graphene, which

has been summarized in a number of review articles and book chapters [16, 26, 63–67].

Despite the large amount of effort devoted to the study and computation of the

Raman spectrum of graphene, the theoretical description is still not in an entirely sat-

isfactory state, neither from a conceptual point of view nor from a quantitative one.

Among the open problems are a proper description of the electron-phonon coupling and

the phonon dispersion as well as a more complete approach to the actual calculation of

the one- and two-phonon contribution to its Raman spectrum.

In the case of the electron-phonon coupling and the phonon dispersion, the main dif-

ficulty in their description lies in the sensitive dependence of the electronic screening

of the Coulomb interaction between the electrons and the nuclei on the wave vector of

the phonon. At certain phonon wavelengths, this screening decreases rapidly, a phe-

nomenon that is nowadays known as a Kohn anomaly [68]. The fact that the breakdown

of the screening only occurs within a small region around certain critical wave vectors

in wave vector (i.e., reciprocal) space hints at the long-range correlation origin of the

anomaly. Long-range correlation effects, however, are very difficult to capture within

common ab initio approximation schemes such as density functional perturbation the-

ory (DFPT), which often rely on local and oversimplified descriptions of the electronic

5



screening. These approximations are often based on the free electron gas and thus over-

estimate the mobility of electrons in the lattice potential of a solid and, in consequence,

their screening capabilities. So far, no fully satisfying approach has been developed

to deal with this problem, which is not only relevant for graphene, but concerns any

metallic material with strong correlation effects. The currently accepted best attempt

to describe the phonon dispersion and the electron-phonon coupling in graphene was

presented by Lazzeri et al. [53] and yielded results that could be reconciled with ex-

perimental data for the phonon dispersion of graphite. However, as will be discussed

later on in this thesis, the approach is conceptually not entirely consistent and hence

an alternative approach is required.

Concerning the calculation of the Raman spectrum of graphene itself, the currently

used approaches feature similar problems or are only valid within certain boundaries,

such as a limited excitation frequency range. For the case of one-phonon Raman scat-

tering, the main theoretical works so far are those of Basko [55] and Hasdeo et al. [58].

Both rely on a tight-binding model for the description of the electronic band structure

and the electron-phonon coupling. While this semi-empirical approach works for the

phonons that can partake in one-phonon Raman scattering, both works make some

approximations for the calculation of the actual Raman intensity. As a result, they are

not completely general and valid over the entire range of incident light frequencies.

A similar statement holds true for the previous studies of the two-phonon part of the

Raman spectrum featured in the papers by Venezuela et al. [56] and Herziger et al. [57].

From a computational point of view, these works present an excellent first attempt at

a perturbative calculation of two-phonon-induced Raman intensities. However, the ap-

proximations employed therein are rather inconsistent from a theoretical perspective.

Conceptually, the two main problems lie in (i) the approximation to the electron-phonon

coupling, which follows the one from Lazzeri et al. [53] and hence involves the same

problems, and in (ii) the expressions given for the actual Raman intensities. For the

latter, the selected approach consists of neglecting 75% of the terms appearing in the

leading order of perturbation theory and modifying the remaining expressions in order

to compensate for the omitted terms. While this approach yields results that are in

reasonable agreement with experiment, the applied approximations have not been ad-
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dressed. It therefore still remains to be understood why such an approach can describe

the Raman spectrum of graphene with reasonable accuracy.

Thus, already for the relatively simple case of graphene there are several unsolved

problems regarding the calculation of the Raman spectrum. For the general case of any

two-dimensional material, or indeed any material in general, there does not yet exist

an efficient, parameter-free, and entirely comprehensive approach to the computation

of resonant Raman spectra entirely from first principles. The two main advantages

of the semi-empirical, perturbative approach applied so far to graphene – the fast,

tight-binding-based model and the leading-order expansion of the perturbative series

– cannot simply be applied to other, more complicated two-dimensional materials. A

semi-empirical tight-binding description becomes increasingly complicated the more in-

tertwined the electronic band structure is, to the point where it can no longer be sensibly

used for systems such as multi-layered TMDs. Meanwhile, the leading-order expansion

of the perturbation series is inherently unable to capture non-perturbative effects such

as the formation of excitons, for which an infinite series of terms of the perturbative

series needs to be summed.

Up to now, there does not yet exist a comprehensive approach to the computation

of Raman scattering that is able to both capture the strong excitonic effects that are

important in many low-dimensional materials and also properly take into account the

screening and the inherently non-adiabatic nature of the electron-phonon coupling. In-

stead, several approximative approaches have been suggested and applied to a variety

of materials, all of them limited to the study of the one-phonon contribution to the

Raman spectrum. Among these approaches are, in increasing order of complexity and

accuracy: the so-called bond polarizability model, in which the polarizability of the inter-

atomic chemical bonds is parametrized and fitted to experiment [69–72]; an approach

based on density functional perturbation theory for the calculation of the mixed third

derivative of the total ground state energy with respect to two external electric fields

and a lattice distortion [73, 74]; and finally the computation of the first derivative of the

dielectric susceptibility with respect to static atomic displacements via the method of

finite differences [50, 75]. It should be noted that the first two of these methods assume
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static electric fields. Hence they are not applicable in the resonant regime, where the

finite frequency of the incoming light is important. The third approach is able to de-

scribe these resonance effects and thus also allows the study of excitonic effects, which

are dominant in 2D materials such as TMDs. It is, however, unable to capture effects

due to the non-static nature of lattice vibrations. Furthermore, it is computationally

very expensive as it relies on the construction of supercells.

Beyond one-phonon Raman scattering, not many works have been devoted to other

mechanisms of Raman scattering so far, with the exception of the above-mentioned

works on the two-phonon contribution to the Raman spectrum of graphene [56, 57]. The

latter has also been studied for silicon via the computation of the second derivative of the

dielectric susceptibility [76]. In addition, inelastic light scattering via the excitation of

an electronic transition has been studied within a tight-binding model for graphene [77].

But so far, no unified and comprehensive theoretical approach has been suggested.

1.1 Aims and scope of this work

Up to this point, we discussed the various ways in which Raman spectroscopy can be

used for sample characterization and also summarized the state-of-the-art theoretical

and computational approaches to the calculation of Raman spectra. In particular, we

identified the main problems and challenges that still remain to be solved in order to

arrive at a general, theoretically consistent, and computationally feasible description

of Raman scattering. It is the main aim of our work to significantly advance the state

of the art of the theoretical and computational calculation of Raman spectra and also

further contribute to the use of Raman spectroscopy as a means for sample charac-

terization. Note that many of our results and contributions to this field have already

been disseminated elsewhere1 and this thesis itself only represents a part of our work

on these topics. In this work, we focus on our most recently developed theoretical ap-

proach to Raman scattering, first computational calculations, and work on the use of

Raman spectroscopy within a magnetic field for probing many-body effects in graphene.

1A full list of our contributions can be found in the List of Publications.
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In regards to the latter, we have seen in the summary above that Raman spectroscopy

is a very versatile tool for the characterization of materials. This is especially true for

graphene, for which its phenomenology has been well understood. Here, we will further

explore how Raman spectroscopy in a magnetic field (also known as magneto-Raman

spectroscopy) can serve as a probe for many-body effects. To this end, we present re-

sults of studies done in close collaboration with an experimental group. In particular,

we show how magneto-Raman spectroscopy can be used to probe electronic excitation

energies. In graphene, these are conventionally described in terms of an effective Fermi

velocity. The latter has been shown to diverge in the absence of a magnetic field when

the charge carrier density is tuned towards the charge neutrality point [78]. In the work

presented here [79], we probe the charge carrier dependence of the Fermi velocity for the

first time in a finite magnetic field and show that it remains finite, even at the charge

neutrality point. Our calculations allow us to give a simple physical picture for this

behavior. The insight gained in this way may also be of use for the understanding of

many-body effects in other two-dimensional materials. Finally, we also show results of

a study in which we used magneto-Raman spectroscopy to probe electronic and phonon

lifetimes [48].

Besides this, it is one our main goals to address some of the open theoretical problems

that plague the current theoretical approaches to the calculation of Raman spectra. As

such, we will present a novel method for the calculation of Raman intensities, which is

based on correlation functions. This approach permits the computation of Raman scat-

tering rates and can be used, in principle, at finite temperature and in out-of-equilibrium

situations, such as present in ultra-fast optical experiments. The main focus, however,

will be on the equilibrium, zero-temperature case, for which we will apply the formalism

of the Lehmann-Symanzik-Zimmermann reduction [80]. It reduces the problem of the

calculation of Raman intensities to the calculation of electronic correlation functions

and in this way allows us to present a concrete and practically useful approach for the

general calculation of Raman scattering rates.

The perturbative technique we use moreover provides a maximum of flexibility and

permits both the inclusion of excitonic effects and the correct description of the screen-
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ing of the electron-phonon coupling. We thus present for the first time a concrete,

practical, and sound theoretical description of one-phonon-induced Raman scattering

including both excitonic and non-static phonon effects. The inclusion of both of the

latter at the same time is not possible in currently used approaches, but can be very

important for Raman scattering at the onset of resonant regime in lower-dimensional,

semi-conducting systems, such as transition metal dichalcogenides. In addition, our ap-

proach also offers major computational advantages over popular finite difference meth-

ods. As such, our novel theory of Raman spectroscopy significantly advances the state

of the art and allows the description of all relevant physical effects within a unified

framework.

Another major aspect of the theoretical work presented in this thesis is our develop-

ment of a method for the calculation of phonon frequencies and the screened electron-

phonon coupling both in and beyond the adiabatic, Born-Oppenheimer approximation.

As already mentioned in the introduction above, currently used methods for the cal-

culation of phonon frequencies and the screened electron-phonon coupling either rely

on density functional perturbation theory or on static, finite difference techniques that

are not always entirely consistent. Furthermore, these methods struggle to deal with

systems with strong correlation effects, such as Kohn anomalies. We thus developed a

novel, general approach based on first principles that overcomes these limitations and

paves the way, for instance, for a first consistent calculation of the phonon dispersion

of graphene.

However, it is beyond the scope of this thesis to also treat a full computational im-

plementation of all of these developments. Instead, we focus the largest part of our

computational efforts on the implementation of our approach for the calculation of

one-phonon-induced Raman scattering rates on the level of the independent-particle

approximation, i.e., neglecting excitonic effects. For many materials of interest, this is

already sufficient to understand the qualitative behavior of the Raman intensity as a

function of various tunable parameters.

We will demonstrate the validity of our approach foremost with a detailed study

of the one-phonon Raman scattering intensity of graphene. Here, we will first ana-
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lyze and explain its dependence on the frequency of the incident light. Our detailed

study allows us to identify and investigate some of the key concepts underlying the

microscopic description of Raman scattering: the presence of quantum interference ef-

fects and approximate symmetries. The former have been probed experimentally via

tuning of an external electro-chemical potential [81] and our approach enables us to

study this dependence on the variation of the Fermi level ab initio. In particular, our

flexible approach allows us to study the combined dependence of the Raman intensity

on the excitation energy and the Fermi level. Finally, we are able to address the open

question of the importance of the contributions of non-resonant electronic transitions

to the Raman intensity. Concretely, we will demonstrate that, contrary to the common

belief that only resonant transitions contribute significantly, in graphene, a large range

of transitions is important, which is again the result of quantum interference effects.

We have also applied the same analysis techniques to the case of transition metal

dichalcogenides, in particular triple-layer MoTe2 [50], for which we will summarize our

most important findings. Lastly, we will also present preliminary results of ongoing

work on the comparison of our new perturbative approach to the established method

of finite differences of the transverse dielectric susceptibility for the case of MoS2 [82].

As these results have already been partly disseminated elsewhere [50], we will keep the

discussion of these two topics brief.

1.2 Structure of the thesis

Although we have already outlined some of the contents of this thesis in the previous

section, we still want to give a more detailed overview over its structure.

We start with a discussion of light scattering by matter in Chapter 2. After reviewing

the purely quantum mechanical description of free electromagnetic fields and their cou-

pling to matter, we present our original work on the derivation of a general, correlation

function-based approach to light scattering. As this approach is currently unfeasible

to for a computational implementation, we also present work on an approach based on

a generalized version of Fermi’s golden rule. This method allows us to give concrete
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recipes for the computation of Raman scattering rates for one-phonon-induced Raman

scattering in the second half of this thesis.

Having discussed the description of free electromagnetic fields and their coupling to

matter, we will treat the matter system in more detail starting with Chapter 3. There,

we discuss the treatment of the electron-nuclei system in the clamped nuclei approxi-

mation. To obtain an effective description of a system of strongly interacting electrons,

we will make use of density functional theory (DFT) within the Kohn-Sham scheme.

To this end, we discuss the Kohn-Sham ansatz to density functional theory and briefly

review common approximations for effective exchange-correlation potentials. The chap-

ter concludes with a perturbative treatment of electronic correlation functions, which

play an important role in all further topics presented in this thesis.

After this discussion of a purely electronic system, we will show how an effective

description of the system of interacting nuclei can be obtained within the adiabatic,

Born-Oppenheimer approximation in Chapter 4. Similarly to how the Kohn-Sham

ansatz yields an effective description of the electronic system, we will review the har-

monic approximation for the adiabatic potential for the nuclei, which leads to the notion

of phonons. We then briefly review the density functional perturbation theory (DFPT)

method for the calculation of the effective, harmonic potential. It is a computationally

efficient way to gain a first, and in not too strongly correlated systems also accurate,

estimate of the phonon frequencies. However, as there is currently no method available

to calculate accurate phonon frequencies in strongly correlated systems, we will present

a novel way to compute the exact phonon frequencies from many-body perturbation

theory (MBPT). In the final section of this chapter, we will establish a link between

our new, MBPT-based approach and the approximative DFPT method. Furthermore,

we will discuss and compare a few other approximations for the calculation of adiabatic

phonon frequencies.

In Chapter 5, we will go beyond the adiabatic approximation and return to the

full electron-nuclei Hamiltonian. By rewriting it in a basis of phonon and Kohn-Sham

electron states, we identify the electron-phonon, electron-electron, and phonon-phonon

interacting Hamiltonians, which will serve as the basis for a perturbative treatment
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of the fully interacting electron-nuclei system. One of the main results presented in

this chapter is the derivation of a description of the screened electron-phonon coupling

from MBPT. The diagrammatic description will also be compared to the treatment of

the screening in DFPT, which is known to underestimate the screened electron-phonon

coupling in strongly correlated systems such as graphene. Finally, we will discuss the

effects of the non-adiabatic electron-phonon interaction on the exact phonon frequen-

cies. The main focus here will lie on the a discussion of the exact one-phonon Green’s

function and the calculation of phonon frequencies beyond the Born-Oppenheimer ap-

proximation.

After the discussion of the basic theory and suggested improvements to the theory

of the coupled electron-nuclei system, we move on to the description of Raman spec-

troscopy in Chapter 6, which comprises the heart of this thesis. Here, we discuss the

analytical and computational calculation of one-phonon-induced Raman intensities from

first principles. We start by deriving an analytical expression for the scattering matrix

element in terms of a correlation function via the Lehmann-Symanzik-Zimmermann

reduction formula. The needed correlation function will then be calculated diagram-

matically, which leads to an explicit formula for the one-phonon Raman scattering rate

that includes the correct screening of the electron-phonon interaction and takes into

account excitonic effects. In addition to the theoretical developments, we also present

results of concrete calculations on the level of the independent-particle approximation.

Here, the full power of the perturbative formalism will be put to use in the study of

the one-phonon Raman intensity of graphene. In this context, we study the laser and

Fermi energy dependence of the Raman intensity and investigate the role of quantum

interference effects, which play an important role in one-phonon Raman scattering in

general. In the final section of this chapter, we summarize our collaborative work on

the frequency dependence of the Raman spectrum of triple-layer MoTe2. Lastly, we

briefly present ongoing work on the numerical comparison of the perturbative and fi-

nite difference methods for the calculation of Raman intensities for single-layer MoS2.

In the penultimate chapter of this thesis, Chapter 7, we will study the use of Ra-
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man spectroscopy as a tool for sample characterization, using graphene as an example.

We will focus on how Raman spectroscopy in a magnetic field can be used to examine

many-body interaction effects. To this end, we use the phenomenon of magneto-phonon

resonances (MPRs) as a probe and study many-body effects on the position and width

of the one-phonon-induced Raman peak of graphene. After summarizing the theoret-

ical background, we present results of a joint experimental and theoretical study of

the effects of electron-electron interaction on the electronic band structure of graphene.

Furthermore, we will show how MPRs can serve as a probe for electron and phonon

lifetimes.

Finally, this thesis concludes with Chapter 8, in which we summarize the most impor-

tant results presented in this thesis and point out various avenues for future research.
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Chapter 2

Light Scattering by Matter

The focus of this chapter will be the derivation of a general and computationally feasible

approach to Raman scattering, i.e., the inelastic scattering of light by matter. The

main result presented here is a novel and general correlation-function-based approach to

Raman scattering that, in principle, will allow the calculation of the Raman scattering

rate for arbitrarily short time scales and out-of-equilibrium conditions and furthermore

automatically takes into account all possible excitations of the matter system. However,

as the general, non-equilibrium, and ultra-short time scale case is beyond the scope

of this thesis, we will also offer an alternative approach based on a generalization of

Fermi’s golden rule. This approach is computationally feasible to realize and in addition

allows the inclusion of only specific contributions to the Raman spectrum, by selectively

computing only the desired contributions of matter excitations to the scattering rate. It

hence permits the separate study of different mechanisms for inelastic light scattering,

such as phonon-induced or electronic excitation/exciton-induced Raman scattering.

We employ an entirely quantum mechanical formalism to light scattering and will

describe both the light and the matter degrees of freedom within the framework of

quantum mechanics. As such, we will at first briefly review the quantization of the

electromagnetic field before discussing its coupling to a system consisting of a fixed

number of interacting electrons and nuclei. The final two sections contain original work

on the derivation of the correlation function-based approach to Raman scattering and

the alternative formalism based on a generalized version of Fermi’s golden rule, which
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is computationally feasible to realize.

2.1 Quantization of the electromagnetic field

We start with a brief review of the quantization of the electromagnetic field. We

will only sketch the most important steps and introduce the quantities and notations

needed for the following discussions. For a more comprehensive treatment, including a

discussion of the subtleties associated with the quantization of fields describing massless

particles of spin higher than 1/2, the reader is referred to the literature [83].

Since we are interested in the quantization of the free electromagnetic field, we start

from Maxwell’s equations in vacuum:1

∇ · E = 0,

∇×B− 1

c

∂

∂t
E = 0,

∇ ·B = 0,

∇× E +
1

c

∂

∂t
B = 0.

(2.1)

These equations can be partially decoupled by introducing scalar and vector potentials

via

B(r, t) = ∇×A(r, t), E(r, t) = −1

c

∂

∂t
A(r, t)−∇φ(r, t). (2.2)

The four Maxwell equations then reduce to a set of two equations only:

∇2φ+
1

c

∂

∂t
(∇ ·A) = 0,

∇2A− 1

c2

∂2

∂t2
A−∇

(
1

c

∂

∂t
φ+∇ ·A

)
= 0.

(2.3)

In order to simplify these equations even further, we note that the set of potentials

(φ,A) is not unique. Any other set (φ′,A′) that is related to (φ,A) by a gauge trans-

formation

φ′(r, t) = φ(r, t)− 1

c

∂

∂t
χ(r, t), A′(r, t) = A(r, t) +∇χ(r, t), (2.4)

1We use Gaussian units for electrodynamics, with the symbol c representing the speed of light in
vacuum.
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with an arbitrary function χ(r, t), leads to the same electromagnetic fields E(r, t) and

B(r, t). We can use this gauge freedom to demand that the vector potential A(r, t)

obey the Coulomb gauge condition

∇ ·A(r, t) = 0. (2.5)

In this gauge, Eq. 2.3 reduces to

∇2φ = 0,

∇2A− 1

c2

∂2

∂t2
A−∇

(
1

c

∂

∂t
φ

)
= 0.

(2.6)

If we further demand that the scalar potential φ(r, t) vanish for |r| → ∞, then Laplace’s

equation for φ(r, t) has the unique solution φ(r, t) ≡ 0. In this case then, the vector

potential obeys the homogeneous wave equation[
1

c2

∂2

∂t2
−∇2

]
A(r, t) = 0. (2.7)

Note that due to the Coulomb gauge condition, only two of the three components of

A(r, t) are independent. If we treat the system as being embedded in a large but finite

volume V , the general solution for the equation of motion for A(r, t) reads:

A(r, t) =
1√
V

∑
k,µ

(
ak,µεk,µei(k·r−ωkt) + a∗k,µε

∗
k,µe−i(k·r−ωkt)

)
, (2.8)

where ωk ≡ c|k| and ak,µ ∈ C. The sums run over all possible wave vectors k that

are compatible with the boundary condition A(r, t)|∂V ≡ 0 and over the two possible

polarizations labeled by µ and described by two orthonormal vectors εk,µ=1,2 that obey

k · εk,µ=1,2 = 0 by virtue of the Coulomb gauge condition. In terms of the vector
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potential and the eigenmodes, the Hamilton function for light reads [84]:

HL =

∫
d3r

1

8π

[
(E(r, t))2 + (B(r, t))2]

=

∫
d3r

1

8π

[(
1

c

∂

∂t
A(r, t)

)2

+ (∇×A(r, t))2

]

=
∑
k,µ

ω2
k

2πc2
a∗k,µak,µ.

(2.9)

In order to pass to the quantum theory, we promote HL to an operator ĤL, i.e., we

let ak,µ → αk,µâk,µ and a∗k,µ → α∗k,µâ
†
k,µ, where αk,µ is a complex constant, chosen such

that the Hamiltonian takes on the canonical form

ĤL =
∑
k,µ

~ωk,µâ
†
k,µâk,µ, (2.10)

with ~ being the reduced Planck constant. This determines the constant up to a phase

(which we set to zero) to αk,µ =
√

(2π~c2)/ωk. In the following we will simplify the

notation by adopting units in which ~ ≡ 1. The operators âk,µ and â†k,µ are defined to

obey the canonical commutation relations

[âk,µ, âk′,µ′ ] = [â†k,µ, â
†
k′,µ′ ] = 0, [âk,µ, â

†
k′,µ′ ] = δk,k′δµ,µ′ . (2.11)

The vector potential also becomes an operator, which, in the Schrödinger picture, reads:

Â(r) =
∑
k,µ

√
4πc2

2ωkV

(
âk,µεk,µeik·r + â†k,µε

∗
k,µe−ik·r

)
(2.12)

Finally, we note that the eigenvalues and eigenvectors of the free light Hamiltonian are

given by

En,k,µ = nωk = nc|k|, |n,k, µ〉 ≡ 1√
n!

(
â†k,µ

)n
|0,k, µ〉, (2.13)

where n ∈ N0 and the state of lowest energy for fixed (k, µ) is defined by âk,µ|0,k, µ〉 = 0.

The state |n,k, µ〉 is said to contain n photons of wave vector k and polarization µ.
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While so far we focused on the description of free electromagnetic fields and its de-

scription in a quantum theory, we will now turn to the description of the interaction of

photons with matter.

2.2 Light-matter coupling

To define the coupling of matter to light, we start from the matter Hamiltonian

ĤM =
∑
i

p̂2
i

2m
+

1

2

∑
i,j
i 6=j

e2

|r̂i − r̂j|
+
∑
I

P̂2
I

2MI

+
1

2

∑
I,J
I 6=J

ZIZJe
2

|R̂I − R̂J |
+
∑
i,I

−ZIe2

|r̂i − R̂I |
, (2.14)

which describes a system of a fixed number of electrons, labeled by i, and nuclei, labeled

by I, interacting with each other via the Coulomb interaction, where the nuclei carry

the charges ZIe. The mass of the electrons and the masses of the nuclei are denoted by

m and MI , respectively, while the electron charge is given by −e < 0.

To introduce a gauge-invariant coupling of the electrons and the nuclei to an external

electromagnetic field, described in Coulomb gauge by a (quantized) vector potential,

the momentum operators are replaced according to the minimal coupling prescription2

p̂i → p̂i +
e

c
Â(r̂i), P̂I → P̂I −

ZIe

c
Â(R̂I), (2.15)

where the hat on the vector potential is understood to refer to the operator nature of

the vector potential as acting on the Hilbert space of photons. Expanding the squares

of the momentum operators in the matter Hamiltonian, we obtain

ĤM → ĤM +
∑
i

e

mc
Â(r̂i) · p̂i −

∑
I

ZIe

MIc
Â(R̂I) · P̂I

+
∑
i

e2

2mc2
Â2(r̂i) +

∑
I

Z2
I e

2

2MIc2
Â2(R̂I),

(2.16)

2Note that this prescription leads to a Hamilton function in the classical limit that yields the
experimentally established Lorentz force law [84].
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where we made use of the Coulomb gauge condition ∇ · Â(r) = 0 to combine the

terms of the form Â(r̂) · p̂ + p̂ · Â(r̂), which involve both Â(r̂) and p̂, operators which

would normally not commute (see also the last remark in Footnote 3). We will only be

interested in the scattering of photons with wave lengths on the order of several hundred

nm from crystalline solids with characteristic length scales on the order of several Å, i.e.,

scales which are much smaller than the wave length of the incoming photon. For the

purpose of taking matrix elements of the terms in the second line between eigenstates of

the matter (crystal) Hamiltonian then, we can neglect the spatial variation of the vector

potential. In this approximation, often referred to as the dipole approximation [85], the

terms in the second line simply amount to a constant and will be dropped in the

following. The terms in the first line can be written in a more familiar form if we define

the total matter current density operator

Ĵ(r) ≡
∑
i

(−e)δ(3)(r− r̂i)
p̂i
m

+
∑
I

(ZIe)δ
(3)(r− R̂I)

P̂I

MI

, (2.17)

where δ(3)(r) is the three-dimensional Dirac δ-distribution. Note that each term in it

has the schematic form J(r) ∼ %(r−r0)v, where %(r−r0) represents the charge density

of a point particle at position r0 and v its velocity, which is familiar from the classical

electrodynamics of point particles.3

In terms of the matter current operator and the vector potential, the Hamiltonian

for the interaction between light and matter in the approximation of neglecting the

Â2-terms reads:

ĤLight−Matter =
1

c

∫
d3r Â(r) · Ĵ(r). (2.18)

Despite both symbols carrying the same kind of hat, we note that Â(r) acts only on

3Note that, in general, the operators δ(3)(r − r̂i) and p̂i do not commute and that, in principle,
a correct passing from the classical expression to the quantum mechanical one would require one to
invoke Weyl’s symmetrization postulate f(r)g(p) → [f(r̂)g(p̂) + g(p̂)f(r̂)]/2. The application of this
postulate to the current would lead to the familiar form of the probability current times the electric
charge, when taking the expectation value of Ĵ(r) in a state |ψ〉: ~/(2mi)[ψ∗(r)∇ψ(r)−ψ(r)∇ψ∗(r)].
In Coulomb gauge, however, an integration by parts of the second term reduces this expression to the
non-symmetrized one of Eq. 2.17. We have already made use of this argument in the derivation of the
light-matter Hamiltonian, by using the fact that Â(r̂) · p̂ = p̂ · Â(r̂) in Coulomb gauge.
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the Hilbert space of photons, while Ĵ(r) is entirely restricted to the Hilbert space on

which the matter Hamiltonian acts. To emphasize that this Hamiltonian acts on the

direct product of the light and matter Hilbert spaces, we write the corresponding sym-

bol in calligraphic font. We will use this notation throughout this thesis, whenever it

becomes necessary to distinguish between operators acting on a single Hilbert space or

on a direct product of two different Hilbert spaces.

Having specified the total Hamiltonian in the form

Ĥ = ĤLight + ĤLight−Matter + ĤMatter, (2.19)

with ĤLight ≡ ĤL⊗1M and ĤMatter ≡ 1L⊗ĤM and the three terms being given, in order,

by Eqs. 2.10, 2.18, and 2.14, respectively, we can now pass on to the actual description

of light scattering within the framework of quantum mechanical perturbation theory.

2.3 Correlation function approach to inelastic light

scattering

For the description of light scattering, we will employ a formalism that is based on the

density matrix ρ̂(t). We consider a system of light and matter at a time t0, at which

the matter system shall be in thermal equilibrium with a heat bath at temperature

T = (kBβ)−1 while the light system shall be in a one-photon state with momentum kin

and polarization µ, which represents the incoming photon to be scattered. The total

light-matter system can then be described by an initial density matrix

ρ̂(t0) = |kin, µ〉〈kin, µ| ⊗
1

ZM

e−βĤM , (2.20)

where the correct normalization of ρ̂(t0) requires ZM = tr ĤM, with ĤM being the matter

Hamiltonian as given in Eq. 2.14.

We are interested in the probability for the inelastic scattering of the incoming

photon. Assuming the interaction of light with matter to be weak, so that it can be
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well approximated with the probability for the scattering of the initial photon state into

one other photon state only, irrespective of the final state of the matter system. The

total probability that at time t > t0 the light-matter system is in a state of one photon

with momentum kout and polarization ν and an arbitrary matter state is given by

Pscatter =
∑
α

(〈kout, ν| ⊗ 〈α|) ρ̂(t) (|kout, ν〉 ⊗ |α〉) , (2.21)

where the sum over α runs over a complete set of matter states.

To find the density matrix at time t, we note that its time evolution is governed by

the von Neumann equation [86]

i
∂

∂t
ρ̂(t) = [Ĥ, ρ̂(t)], (2.22)

with the total Hamiltonian Ĥ being given in Eq. 2.19. As the total Hamiltonian is

time-independent, its solution is simply given by

ρ̂(t) = e−iĤ(t−t0)ρ̂(t0)e+iĤ(t−t0). (2.23)

If we expand the matter part of ρ̂(t0) in a complete set of matter states, i.e.,

1

ZM

e−βĤM =
1

ZM

∑
γ

e−βEγ |γ〉〈γ|, (2.24)

where |γ〉 is an eigenstate of ĤM to the eigenvalue Eγ, the scattering probability reads:

Pscatter =
1

ZM

∑
α,γ

e−βEγ
∣∣∣(〈kout, ν| ⊗ 〈α|) e−iĤ(t−t0) (|kin, µ〉 ⊗ |γ〉)

∣∣∣2 . (2.25)

This expression is the intuitive generalization of the basic quantum mechanical rule to

calculate probabilities: Starting from a state |ψ(t0)〉 = |kin, µ〉 ⊗ |γ〉, it evolves from

time t0 to time t, i.e., |ψ(t)〉 = exp(−iĤ(t− t0))|ψ(t0)〉, and one obtains the probability

of finding the system in the state |kout, ν〉 ⊗ |α〉 by calculating |(〈kout, ν| ⊗ 〈α|)|ψ(t)〉|2.

If one is not interested in the matter state |α〉, these probabilities have to be summed

over α, and, assuming that the probability to find a particular matter state |γ〉 in the
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initial state is given by the Boltzmann factor Z−1
M exp(−βEγ), also summed over γ with

the Boltzmann factor as weight.

To evaluate the matrix elements of the time-evolution operator, we will employ a

perturbative approach. To this end, we first note that the matrix elements of the light-

matter Hamiltonian can be expected to be small compared to matrix elements of the

free Hamiltonian Ĥ0 ≡ Ĥ − ĤLight−Matter, since, in addition to matrix elements of the

charge density operators, which are also present in Ĥ0, they involve a factor of v/c� 1.

We would then like to expand the Hamiltonian formally into a Taylor series around

ĤLight−Matter = 0. However, a näıve and straightforward expansion of the exponential

function is futile as a term involving Ĥn contains terms up to order n in ĤLight−Matter

and it is not easy to extract all terms of a given order in ĤLight−Matter in a closed form.

While this problem could, in principle, be circumvented by making use of the Baker-

Campbell-Hausdorff identity, this method is still rather cumbersome. Instead, a much

simpler solution is provided by an approach based on passing to the interaction picture

[83, 87–91]. The basic idea is to treat the free part of the Hamiltonian exactly, in the

sense that terms of arbitrarily high power in Ĥ0 are retained automatically. For this

purpose, we re-write the matrix element of the time-evolution operator as

(〈kout, ν| ⊗ 〈α|) e−iĤ(t−t0) (|kin, µ〉 ⊗ |γ〉)
= (〈kout, ν| ⊗ 〈α|) e−iĤ0te+iĤ0te−iĤ(t−t0)e−iĤ0t0e+iĤ0t0 (|kin, µ〉 ⊗ |γ〉)
= e−i(Eα+ωout)te+i(Eγ+ωin)t0 (〈kout, ν| ⊗ 〈α|) ÛI(t, t0) (|kin, µ〉 ⊗ |γ〉) .

(2.26)

Here we used the fact that the two states are each eigenstates of the free Hamiltonian

Ĥ0 and introduced the abbreviations ωin ≡ ωkin
and ωout ≡ ωkout . In addition, we

defined the time-evolution operator in the interaction picture as

ÛI(t, t0) ≡ e+iĤ0te−iĤ(t−t0)e−iĤ0t0 . (2.27)

Since the oscillating exponential factors in front of the matrix element drop out after

taking the absolute value, the problem of calculating the scattering probability is thus

reduced to finding the matrix elements of the time-evolution operator in the interaction

picture.
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As is easily verified, the latter obeys the differential equation

i
∂

∂t
ÛI(t, t0) = Ĥ1,I(t)ÛI(t, t0), (2.28)

where we defined the interaction Hamiltonian in the interaction picture as

Ĥ1,I(t) ≡ eiĤ0tĤLight−Mattere
−iĤ0t. (2.29)

Solving the differential equation by iteration, one finds that ÛI(t, t0) can be written in

the form [83, 87–90]

ÛI(t, t0) = T exp

{
−i
∫ t

t0

dt′ Ĥ1,I(t
′)

}
, (2.30)

with T being the time-ordering symbol, which prescribes that operators in a product

are to be placed with operators at later times written to the left of those at earlier

times. Most importantly though, ÛI(t, t0) can conveniently be expanded into a Taylor

series by simply expanding the exponential.

Since we need the matrix elements of ÛI(t, t0) between states that include one photon

only, all odd powers of Ĥ1,I in the expansion vanish in the matrix element as Ĥ1,I

changes the number of photons by one. Furthermore, in the context of this thesis,

we are only interested in inelastic light scattering, i.e., kin 6= kout. The lowest-order

non-vanishing contribution to the scattering matrix element is then given by the second-

order term in the Taylor expansion:

(〈kout, ν| ⊗ 〈α|) ÛI(t, t0) (|kin, µ〉 ⊗ |γ〉)

' (〈kout, ν| ⊗ 〈α|)
(−i)2

2!

∫ t

t0

dt1

∫ t

t0

dt2 T
[
Ĥ1,I(t1)Ĥ1,I(t2)

]
(|kin, µ〉 ⊗ |γ〉) .

(2.31)
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Inserting the explicit form of Ĥ1,I , given in Eq. 2.18, the matrix element factorizes:

(〈kout, ν| ⊗ 〈α|) ÛI(t, t0) (|kin, µ〉 ⊗ |γ〉)

'
∑
i,j

∫ t

t0

dt1

∫ t

t0

dt2

∫
d3r1

∫
d3r2

(−i)2

2!c2

× 〈α|T
[
Ĵi,I(r1, t1)Ĵj,I(r2, t2)

]
|γ〉 × 〈kout, ν|T

[
Âi,I(r1, t1)Âj,I(r2, t2)

]
|kin, µ〉.

(2.32)

Here, the sums over i, j run over the three cartesian components of the vector operators.

We have thus managed to decompose the problem into that of finding the matrix ele-

ments of a time-ordered product of current density operators between eigenstates of the

free matter Hamiltonian and that of calculating the matrix elements of a time-ordered

product of vector potential operators between eigenstates of the free light Hamiltonian.

The evaluation of the former will require a more elaborate discussion that will com-

prise Chapters 3 through 5 and parts of Chapter 6. The latter, by contrast, is easily

evaluated by applying Wick’s theorem [83, 87–90] and is found to be the sum of three

contributions:

〈kout, ν|T
[
Âi,I(r1, t1)Âj,I(r2, t2)

]
|kin, µ〉

= δkin,koutδµ,ν〈0L|T
[
Âi,I(r1, t1)Âj,I(r2, t2)

]
|0L〉

+
2πc2

√
ωinωoutV

e−i(kout·r1−ωoutt1)e+i(kin·r2−ωint2)
(
εikout,ν

)∗
εjkin,µ

+
2πc2

√
ωinωoutV

e−i(kout·r2−ωoutt2)e+i(kin·r1−ωint1)
(
εjkout,ν

)∗
εikin,µ

.

(2.33)

The first term only contributes to elastic scattering and hence we will not discuss it

further. The second and third terms, however, do give a contribution to the inelastic

scattering matrix element. Noting that the sum of the second and third term is sym-

metric under the exchange (r1, t1, i) ↔ (r2, t2, j), we see that the pairs of sums and
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integrations yield two times the same result:

(〈kout, ν| ⊗ 〈α|) ÛI(t, t0) (|kin, µ〉 ⊗ |γ〉)

'
∑
i,j

∫ t

t0

dt1

∫ t

t0

dt2

∫
d3r1

∫
d3r2

−2π

V
√
ωinωout

(
εikout,ν

)∗
εjkin,µ

× e−i(kout·r1−ωoutt1)e+i(kin·r2−ωint2)〈α|T
[
Ĵi,I(r1, t1)Ĵj,I(r2, t2)

]
|γ〉.

(2.34)

We can simplify the notation by introducing the spatially Fourier-transformed and

projected current operators via

Ĵk,µ,I(t) ≡ ε∗k,µ ·
∫

d3r e−ik·rĴI(r, t), (2.35)

whereupon the matrix element for inelastic light scattering takes on the simple form

(〈kout, ν| ⊗ 〈α|) ÛI(t, t0) (|kin, µ〉 ⊗ |γ〉)

' −2π

V
√
ωinωout

∫ t

t0

dt1

∫ t

t0

dt2 ei(ωoutt1−ωint2)〈α|T
[
Ĵkout,ν,I(t1)Ĵ†kin,µ,I

(t2)
]
|γ〉.

(2.36)

Using this expression for the scattering matrix element, we arrive at the following

approximation for the probability4 for inelastic light scattering:

Pinel. '
1

ZM

∑
α,γ

e−βEγ
(2π)2

V 2ωinωout

∫ t

t0

dt1

∫ t

t0

dt2

∫ t

t0

dt′1

∫ t

t0

dt′2 eiωout(t1−t′1)e−iωin(t2−t′2)

× 〈γ|T
[
Ĵ†kout,ν,I

(t′1)Ĵkin,µ,I(t
′
2)
]
|α〉〈α|T

[
Ĵkout,ν,I(t1)Ĵ†kin,µ,I

(t2)
]
|γ〉.

(2.37)

Here, we evaluated the squared modulus of the matrix element by multiplying it with

its complex conjugate. In the complex conjugated matrix element, the time-ordering

4It should be noted that this expression can only be interpreted as a probability for a small
time span t − t0. When Taylor expanded, the time-evolution operator seizes to be unitary and, as
a consequence, the matrix element squared is no longer guaranteed to be equal to or less than one.
Compare this to the oscillating exponential exp(−iET ), whose modulus squared is always equal to
one, irrespective of the size of ET , but when Taylor-expanded diverges for large ET . We will not
discuss this issue in more detail and instead refer the reader to the literature [86].
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symbol T becomes the anti-time-ordering symbol T , which orders the operators it acts

upon so that operators at later times stand to the right of those at earlier times. Finally,

we can simplify this expression by using the completeness relation for the intermediate

matter states and by identifying the operation of taking the trace:

Pinel. '
(2π)2

V 2ωinωout

∫ t

t0

dt1

∫ t

t0

dt2

∫ t

t0

dt′1

∫ t

t0

dt′2 eiωout(t1−t′1)e−iωin(t2−t′2)

×
〈
T
[
Ĵ†kout,ν,I

(t′1)Ĵkin,µ,I(t
′
2)
]
T
[
Ĵkout,ν,I(t1)Ĵ†kin,µ,I

(t2)
]〉

M
,

(2.38)

where we identified the thermal and quantum mechanical expectation value of an op-

erator acting on the matter part of the Hilbert space as 〈Ô〉M ≡ Z−1
M tr [exp(−βĤM)Ô].

Equation 2.38 is one of the major results of this thesis. It expresses the probability

for inelastic light scattering in a finite time interval in terms of a thermal correlation

function of operators acting in the matter part of the Hilbert space only. As such,

it provides a means to calculate the intensity of inelastically scattered light, i.e., the

Raman intensity, on arbitrarily short time scales and out of equilibrium. Also note that

it does not make any use of specific intermediate or final states of the matter system

and hence it provides the complete Raman scattering probability, including all possible

matter excitations, and not only, for instance, the contribution due to the excitation of

a lattice vibration. Therefore, it can be of great value in a theoretical description of

Raman spectroscopy. It can also be very useful for potential future theoretical studies

of Raman scattering on ultra-short time scales, which is a likely future field of re-

search after the advent of ultra-short pump-and-probe absorption and transmittance

spectroscopy.

The needed matter correlation function, however, depends on four different time

variables. Factoring in the time-independence of the total Hamiltonian, it can hence

be considered to be a function of three time differences. Furthermore, it is neither the

thermal average of a simple time-ordered product of operators, but instead is comprised

of four terms with various time orderings. As such, it is not easy to calculate with

standard, equilibrium Green’s function techniques. Potentially, the Keldysh-Schwinger

contour formalism for non-equilibrium Green’s functions can be applied to arrive at
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a practically useful expression for it. So far, however, this formalism has only been

applied to correlation functions that depend on one time-difference and their products

and convolutions only [91]. A detailed theoretical study of this correlation function,

while highly desirable, is beyond the scope of this thesis and will be the subject of future

work. Instead, we will focus on providing a detailed treatment of the equilibrium, zero-

temperature case. This case is mathematically easier to handle and allows us to give

concrete recipes for the computational study of Raman intensities.

2.4 Generalized Fermi’s golden rule approach to

Raman scattering

In order to overcome the problem of evaluating the complicated correlation function of

Eq. 2.38, we will use an approach that can be thought of as a generalization of Fermi’s

golden rule. For this, we go back to Eq. 2.25 and approximate the matrix element for

inelastic light scattering, as done in Eq. 2.36:

Pinel. '
1

ZM

∑
α,γ

e−βEγ
(2π)2

V 2ωinωout

×
∣∣∣∣∫ t

t0

dt1

∫ t

t0

dt2 ei(ωoutt1−ωint2)〈α|T
[
Ĵkout,ν,I(t1)Ĵ†kin,µ,I

(t2)
]
|γ〉
∣∣∣∣2 .

(2.39)

Note that the matrix element of the matter current density operators reads

〈α|T
[
Ĵkout,ν,I(t1)Ĵ†kin,µ,I

(t2)
]
|γ〉

= ei(Eα−Eγ)t2
[
eiEα(t1−t2)θ(t1 − t2)〈α|Ĵkout,νe

−iĤM(t1−t2)Ĵ†kin,µ
|γ〉

+ e−iEγ(t1−t2)θ(−(t1 − t2))〈α|Ĵkin,µeiĤM(t1−t2)Ĵ†kout,ν
|γ〉
]
,

(2.40)

i.e., barring the first exponential factor, it is essentially a function of t1− t2 only. Hence

it is possible and useful to write it as a Fourier integral:

〈α|T
[
Ĵkout,ν,I(t1)Ĵ†kin,µ,I

(t2)
]
|γ〉 = ei(Eα−Eγ)t2

∫
dω

2π
e−iω(t1−t2)J̃αγkout,kin

ν,µ

(ω), (2.41)
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where we defined the Fourier transform by

J̃αγkout,kin
ν,µ

(ω) ≡
∫ +∞

−∞
dt eiωt〈α|T

[
Ĵkout,ν,I(t)Ĵ

†
kin,µ,I

(0)
]
|γ〉. (2.42)

We can then perform the integration over t1 and t2 in Eq. 2.39, which yields∫ t

t0

dt1

∫ t

t0

dt2 ei(ωoutt1−ωint2)〈α|T
[
Ĵkout,ν,I(t1)Ĵ†kin,µ,I

(t2)
]
|γ〉

= e−i(ωin−ωout−Eα+Eγ)(t−t0)/2(t− t0)2∫
dω

2π
sinc

[
ω − ωout

2
(t− t0)

]
sinc

[
ω − ωin + Eα − Eγ

2
(t− t0)

]
J̃αγkout,kin

ν,µ

(ω),

(2.43)

where sinc(x) ≡ sin(x)/x denotes the cardinal sine function and we finally find an

expression for the probability for inelastic light scattering:

Pinel. '
1

ZM

∑
α,γ

e−βEγ
(2π)2

V 2ωinωout

(t− t0)4

∫
dω

2π

∫
dω′

2π
J̃αγkout,kin

ν,µ

(ω)

[
J̃αγkout,kin

ν,µ

(ω′)

]∗
× sinc

[
ω − ωout

2
(t− t0)

]
sinc

[
ω′ − ωout

2
(t− t0)

]
× sinc

[
ω − ωin + Eα − Eγ

2
(t− t0)

]
sinc

[
ω′ − ωin + Eα − Eγ

2
(t− t0)

]
.

(2.44)

If we are only interested in the scattering probability after the system is again in

equilibrium, i.e., for a macroscopically long time interval, which corresponds to the

limiting case (t− t0)� 2/ωin, then we can simplify this expression considerably. In the

limit (t − t0)ωin/2 � 1, the last two cardinal sine functions in the integrand become

highly oscillatory and are sharply centered around ω(′) = ωin − Eα + Eγ. We can then

approximate the integrals over ω and ω′ by evaluating the prefactors in the integrand
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at this value and pulling them outside the integral:

Pinel. −−−−−−−→
(t−t0)� 2

ωin

1

ZM

∑
α,γ

e−βEγ
(2π)2

V 2ωinωout

(t− t0)2

∣∣∣∣J̃αγkout,kin
ν,µ

(ωin − Eα + Eγ)

∣∣∣∣2
× sinc2

[
ωin − ωout − Eα + Eγ

2
(t− t0)

]
×
{

(t− t0)

∫
dω

2π
sinc

[
ω − ωin + Eα − Eγ

2
(t− t0)

]}2

.

(2.45)

The integral in the last line amounts to one and we can simplify the second line with

the help of the identity [86]

sinc2(ωt) =
sin2(ωt)

(ωt)2
−−−→
t� 1

ω

π

t
δ(ω), (2.46)

where δ denotes the Dirac δ-distribution. If we define the scattering rate, i.e., the

probability per unit time for a scattering event to happen, via Ṗinel. ≡ Pinel./(t − t0),

we obtain a much more simplified result, which can be interpreted as a generalization

of Fermi’s golden rule beyond first-order time-dependent perturbation theory:

Ṗinel. −−−−−−−→
(t−t0)� 2

ωin

1

ZM

∑
α,γ

e−βEγ
(2π)2

V 2ωinωout

∣∣∣∣J̃αγkout,kin
ν,µ

(ωin − Eα + Eγ)

∣∣∣∣2
× 2πδ(ωin − ωout − Eα + Eγ).

(2.47)

This expression gives the probability per unit time for one photon with momentum

kin and polarization µ to scatter inelastically, i.e., to a state |kout, ν〉 6= |kin, µ〉 from

a matter system when it interacts with the latter over a macroscopically long time

period t − t0. In an experimental setting, one cannot detect a photon with a precise

momentum, but instead a detector always detects a scattered photon within a certain

direction in a small solid angle ∆ΩD and within a small, but finite frequency interval

[ωD, ωD + ∆ωD]. Therefore we actually need to be interested in the total scattering

rate for any photon satisfying these criteria. A similar logic applies to the source of

the incoming photons, which typically emits photons into a very small, but finite solid

angle ∆ΩL over a finite frequency interval [ωL, ωL + ∆ωL]. If the ∆ΩD,L and ∆ωD,L are
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small enough, we can approximate the total scattering rate by its value evaluated at

ωin ≡ c|kin| = ωL and ωout ≡ c|kout| = ωD and in the direction of kin and kout, specified

by the axis of the incoming light and the position of the detector, respectively, and

multiply by the number of photon states in this frequency interval and solid angle:

Nphoton states(c|k| ∈ [ω, ω + ∆ω],k/|k| ∈ ∆Ω) =
V ω2

(2π)3c3
∆Ω ∆ω. (2.48)

Including this kinematic factor for both the incoming and outgoing light then yields

the following final expression for the scattering rate:

Ṗinel. ≈
1

ZM

∑
α,γ

e−βEγ
ωLωD∆ΩL∆ωL∆ΩD∆ωD

(2π)4c6

∣∣∣∣J̃αγkout,kin
ν,µ

(ωL − Eα + Eγ)

∣∣∣∣2
× 2πδ(ωL − ωD − Eα + Eγ).

(2.49)

To evaluate this expression at a finite temperature, we need knowledge of all non-

vanishing matrix elements J̃αγkout,kin
ν,µ

(ωL−Eα +Eγ) for which exp(−βEγ) is still a sizable

number, i.e., for which the state |γ〉 has an energy Eγ . kBT . Here we will confine

ourselves to the zero temperature limit, i.e., β →∞, in which the sum over γ reduces

to the ground state only (which we assume to be non-degenerate):

Ṗinel. =
∑
α

ωLωD∆ΩL∆ωL∆ΩD∆ωD

(2π)4c6

∣∣∣∣J̃αkout,kin
ν,µ

(ωL −∆Eα)

∣∣∣∣2
× 2πδ(ωL − ωD −∆Eα),

(2.50)

with the understanding that the Fourier-transformed matrix element without a second

state index refers to the ground state |Ω〉 being the initial state.

J̃αkout,kin
ν,µ

(ω) =

∫ +∞

−∞
dt eiωt〈α|T

[
Ĵkout,ν,I(t)Ĵ

†
kin,µ,I

(0)
]
|Ω〉 (2.51)

and ∆Eα ≡ Eα − E0 denotes the excitation energy of the matter system associated

with the transition |Ω〉 → |α〉.

As seen from Eq. 2.50, the inelastic, Raman scattering rate is non-zero only if the

31



excitation frequency ωL and the frequency of the scattered, i.e., the detected light ωD

differ by a possible excitation frequency of the matter system. Compared to the more

general result given in Eq. 2.38, the expression given in Eq. 2.50 is more cumbersome

as each contribution of a state |α〉 to the scattering rate has to be calculated separately,

whereas the correlation function-based approach gives the full result immediately once

the correlation function has been calculated. Still, the less general Eq. 2.50 also offers

some advantages over the correlation function-based approach, as it (i) involves only

the Fourier transform of a function of one time variable and (ii) can be computed with

quantum field theoretical methods borrowed from elementary particle physics.

We also want to point out that both our correlation function-based approach as well

as the Fermi golden rule-like one allow a detailed physics-oriented discussion of the phe-

nomenon of Raman scattering. By considering only certain terms in the perturbation

series for the correlation function or only certain states |α〉 in the Fermi golden rule-like

approach, respectively, different physical processes that contribute to the Raman spec-

trum can be analyzed one by one. Our approaches thus allow the identification of the

most dominant mechanisms for inelastic light scattering. As an example relevant for the

case of metallic solids, our methods permit both the computation of the phonon-induced

part of the Raman spectrum as well as the electronic excitations/exciton-induced part

of it. Within the scope of this thesis, however, we will confine ourselves to a discussion

and the computation of the phonon-induced part only, which in most cases constitutes

the dominant part of the Raman spectrum [85].

In order to make further progress and give concrete expressions that can be used for

computational purposes, we need to find both the eigenstates and eigenvalues of the

matter Hamiltonian ĤM and the matrix elements of the product of two time-ordered

current density operators. We will discuss the former over the course of the next three

chapters, while the latter will be tackled in Chapter 6 for the case in which the state

|α〉 mostly represents a quantized excitation of a lattice vibration, i.e., a phonon.
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Chapter 3

Electronic Structure

The task of finding the spectrum and the eigenstates of the full matter Hamiltonian,

as given in Eq. 2.14, is a highly non-trivial one. The reason for this lies in the strong

Coulomb interaction between the electrons and nuclei, which makes a perturbative

treatment of the electron-nuclei system challenging, as the inter-particle interaction

cannot be considered a small perturbation. The coupled electron-nuclei system behaves

qualitatively very much differently from a system of free particles. Nevertheless, we

shall see over the course of the next three chapters how a perturbative treatment is still

possible by adopting a scheme of successively more accurate approximations.

The basic idea consists of neglecting some part of the full Hamiltonian, such that

the remaining part can be diagonalized exactly. The eigenfunctions of the approxi-

mated Hamiltonian then supply a basis for the full electron-nulcei Hilbert space. After

expressing the exact matter Hamiltonian in this basis, a new approximation can be per-

formed by neglecting a smaller subset of the off-diagonal matrix elements, such that the

new approximated Hamiltonian is again diagonalizable. One can continue this scheme

of approximating the full Hamiltonian, diagonalizing the approximated one, expressing

the full Hamiltonian in terms of the newfound basis and approximating it more precisely

by omitting a smaller amount of non-diagonal matrix elements, until the off-diagonal

matrix elements can be considered a small enough perturbation so that they can be

treated in low-order perturbation theory.

In this chapter, we will focus on the crudest approximation that still yields useful
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results by reviewing the clamped nuclei approximation (CNA), which yields an approx-

imated Hamiltonian that describes a system of interacting electrons in a fixed electro-

static potential. In order to deal with the strong inter-electron Coulomb interaction,

we will then review density funcitonal theory (DFT) in the Kohn-Sham (KS) scheme,

which, in its most basic form, approximates the exact two-body electron-electron inter-

action term of the Hamiltonian by a one-particle potential, which yields a diagonalizable

Hamiltonian. Finally, we go back to the full CNA Hamiltonian and include the residual

electron-electron interaction not considered in the Kohn-Sham approach in a perturba-

tive way to obtain expressions for electronic correlation functions that will be needed

in later parts of this thesis.

3.1 The clamped nuclei approximation

In order to obtain a first, reasonably accurate approximation of the matter Hamiltonian,

we note that it contains a set of inherently small parameters in the form of the reciprocal

masses of the nuclei, M−1
I , which are very small compared to the reciprocal electron

mass: 1/MI . (1/1800) × 1/m. In a first approximation, we thus neglect the kinetic

energy of the nuclei, which is proportional to 1/MI , entirely. In this clamped nuclei

approximation (CNA), the approximated Hamiltonian is defined as [92]1

ĤCNA ≡
∑
i

p̂2
i

2m
+

1

2

∑
i,j
i 6=j

e2

|r̂i − r̂j|
+
∑
i,I

−ZIe2

|r̂i − R̂I |
+

1

2

∑
I,J
I 6=J

ZIZJe
2

|R̂I − R̂J |
. (3.1)

The absence of the nuclear momentum operators, P̂I , means that the approximated

Hamiltonian commutes with all nuclear position operators:[
R̂I , ĤCNA

]
= 0 ∀ I. (3.2)

1We again make use of a calligraphic font to denote operators that act in more than one subspace
of the complete Hilbert space. In this case, ĤCNA acts on both the electronic and the nuclear part of
the Hilbert space. Note that in the context of our discussion of the light-matter system, we used a
non-calligraphic font to denote this kind of operator.

34



The eigenfunctions of ĤCNA can thus be chosen to be simultaneous eigenfunctions of

all the R̂I :
2

|ν, {RI}〉 = |ν({RI})〉e ⊗ |{RI}〉n, (3.3)

where the subscripts “e” and “n” refer to the electronic and nuclei subspace of the

electron-nuclei Hilbert space, respectively. The states |{RI}〉n are appropriately (anti-)

symmetrized simultaneous eigenstates of all the R̂I :

R̂I |{RI}〉n = RI |{RI}〉n ∀ I, (3.4)

while the quantum number ν distinguishes between different electronic states for a fixed

nuclear configuration {RI}. The Schrödinger equation for the eigenstates of the CNA

Hamiltonian then reads

ĤCNA|ν, {RI}〉 = Vν({RI})|ν, {RI}〉 (3.5)

and constitutes a set of independent equations, one for each fixed nuclear configuration

{RI}. The ground state of ĤCNA can be found by first finding the electronic state

|0({RI})〉e that has the lowest energy for a given nuclear configuration {RI} and then

finding the nuclear configuration that minimizes the corresponding energy Vν({RI}).
We will denote the ground state of ĤCNA by |0CNA〉 ≡ |0, {R(0)

I }〉 = |ν({R(0)
I })〉e ⊗

|{R(0)
I }〉n and the corresponding energy by E0,CNA ≡ V0({R(0)

I }), with {R(0)
I } being the

nuclear configuration in the ground state.

From the form of the CNA Hamiltonian it is clear that the eigenvalues Vν({RI})
have the form

Vν({RI}) = V (el)
ν ({RI}) + V (nuc)({RI}), (3.6)

2For instance, in case of a two-nuclei system, we have {RI} = {R1,R2} and the wave function
associated with the state |{RI}〉n, Ψ(r1, r2) ≡ n〈r1, r2|{R1,R2}〉n, would read

Ψ(r1, r2) =
1√
2

(
δ(3)(r1 −R1)δ(3)(r2 −R2)± δ(3)(r1 −R2)δ(3)(r2 −R1)

)
,

where the upper (lower) sign applies to bosons (fermions).
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where

V (nuc)({RI}) ≡
1

2

∑
I,J
I 6=J

ZIZJe
2

|RI −RJ |
(3.7)

is the contribution of the nuclei-nuclei Coulomb repulsion to the total energy. The

electronic part of the total energy is determined from a Schrödinger equation in the

electronic subspace only:

Ĥe({RI})|ν({RI})〉e = V (el)
ν ({RI})|ν({RI})〉e, (3.8)

where the Hamiltonian Ĥe({RI}) is an operator that acts in the electronic subspace

only and parametrically depends on the set of all nuclear coordinates, {RI}:

Ĥe({RI}) ≡
∑
i

p̂2
i

2m
+

1

2

∑
i,j
i 6=j

e2

|r̂i − r̂j|
+
∑
i,I

−ZIe2

|r̂i −RI |
. (3.9)

Within the clamped nuclei approximation, the problem of finding the eigenstates and

-values of the electron-nuclei Hamiltonian is thus reduced to an infinite family of mutu-

ally independent, purely electronic eigenvalue problems. However, the presence of the

inter-electron, two-particle Coulomb interaction term, which is too great to simply be

neglected, requires another approximation if one wants to diagonalize Ĥe({RI}).

3.2 Kohn-Sham density functional theory

One possible and effective way of reducing the complexity of the problem is to replace

the two-body Coulomb interaction term by an effective, one-particle potential and treat

the difference between the exact two-body term and the approximated one as a small

perturbation, which can then be treated within the framework of perturbation theory.

The most simple and straightforward way to approximate a two-body operator with

a one-body one is by means of a mean field approximation, i.e., one replaces the in-

teraction between all different pairs of two electrons by that of one electron moving in

an average, not necessarily local, potential generated by all the other electrons. Math-
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ematically, this physical idea is most easily implemented in the language of second

quantization [90]. In this language, the inter-electron Coulomb interaction is expressed

as
1

2

∑
i,j
i 6=j

e2

|r̂i − r̂j|
=

1

2

∫
d3r

∫
d3r′ ψ̂†(r)ψ̂†(r′)

e2

|r− r′| ψ̂(r′)ψ̂(r), (3.10)

where the electron field operator is defined via ψ̂(r) ≡∑n φn(r)ĉn, with {φn(r)} being

a complete set of one-particle wave functions and the ĉn being the associated fermionic

annihilation operators, which obey the canonical anti-commutation relations

{ĉn, ĉn′} = {ĉ†n, ĉ†n′} = 0, {ĉn, ĉ†n′} = δn,n′ . (3.11)

A first, crude way to approximate the two-body operator, which depends on four elec-

tron field operators, with a one-body operator, which depends on only two electron

field operators, is to replace one pair of field operators in Eq. 3.10 by their expectation

value in the ground state of the resulting Hamiltonian:

ψ̂†(r)ψ̂(r1)
HFA−−→ 〈0HF|ψ̂†(r)ψ̂(r1)|0HF〉, (3.12)

where r1 stands for either r or r′ and |0HF〉 denotes the ground state of the result-

ing Hamiltonian.3 This approximation is known as the Hartree-Fock approximation

(HFA) [93–96]. The two field creation operators can be averaged pairwise with the

two destruction field operators in a total of four different ways. However, due to the

symmetry of the integral under the exchange of r and r′, only two terms are unique:

1

2

∑
i,j
i 6=j

e2

|r̂i − r̂j|
HFA−−→ e2

∫
d3r

∫
d3r′ ψ̂†(r)ψ̂(r)

〈0HF|ψ̂†(r′)ψ̂(r′)|0HF〉
|r− r′|

− e2

∫
d3r

∫
d3r′ ψ̂†(r)ψ̂(r′)

〈0HF|ψ̂†(r′)ψ̂(r)|0HF〉
|r− r′| ,

(3.13)

3Since we are dealing with an entirely electronic problem, we dropped the subscript “e” on the
states, with the understanding that all states reside in the electronic part of the electron-nuclei Hilbert
space.
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where the opposite sign of the second term arises from the fact that ψ̂(r) and ψ̂(r′)

anti-commute. The electronic Hamiltonian in the HFA and in second quantization

then takes on the form

ĤHF =

∫
d3r ψ̂†(r)

(
−∇

2

2m

)
ψ̂(r) +

∫
d3r n̂(r)Vlat(r; {RI})

+

∫
d3r n̂(r)VH(r; {RI}) +

∫
d3r

∫
d3r′ ψ̂†(r)ψ̂(r′)Σx(r, r′; {RI}),

(3.14)

where we defined the potential generated by the nuclei,

Vlat(r; {RI}) ≡
∑
I

−ZIe2

|r−RI |
(3.15)

and introduced the local Hartree potential VH and the non-local (Fock) exchange self-

energy Σx via

VH(r; {RI}) ≡ e2

∫
d3r′

n
(0)
HF(r′; {RI})
|r− r′| , (3.16)

Σx(r, r′; {RI}) ≡ −e2 〈0HF({RI})|ψ̂†(r′)ψ̂(r)|0HF({RI})〉
|r− r′| , (3.17)

with n̂(r) ≡ ψ̂†(r)ψ̂(r) being the charge density operator and

n
(0)
HF(r; {RI}) ≡ 〈0HF({RI})|n̂(r)|0HF({RI})〉 (3.18)

being its expectation value in the self-consistent electronic ground state. Note that the

ground state explicitly depends on the nuclei positions, as they appear as parameters

in the Hamiltonian and hence the Hartree potential and the exchange self-energy do as

well.

While the Hartree-Fock approximation yields excellent results for smaller atoms

and molecules [92], it is much less viable in systems with many and partially mobile

electrons. In these systems, higher-order, i.e., many-particle, correlation effects be-

come more important. Mathematically, these are not captured in a simple mean field

approach, such as the HFA, which is based around expectation values of one-body op-
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erators only. Physically, many-body correlation effects are equivalent to a screening

of the Coulomb interaction, which naturally play an important role in systems with

many and partially mobile electrons, such as solids. As the HFA treats the Coulomb

interaction as being unscreened, it severely tends to overestimate binding energies and

bond strengths in these kinds of systems. For extended systems, therefore, a different

approximation is required as the starting point of an efficient perturbative treatment,

one that goes beyond a mean field approach and also captures higher-order correlation

effects, but that still yields a diagonalizable Hamiltonian.

One such approximation has been first suggested by Kohn and Sham in 1965 [97],

who built upon a work by Hohenberg and Kohn [98] on exact density functional the-

ory (DFT), published a year earlier. An extensive discussion of DFT and its practical

applications can be found, for instance, in Ref. 92. Here we will just restrict ourselves

to those elements of it that are needed for the work presented in this thesis as well as

some motivating ideas.

The most important implication of exact DFT is the statement that all properties

of a system of a fixed number of electrons, mutually interacting with each other via

the pairwise Coulomb interaction and subject to an external electrostatic potential, are

determined entirely by the electron density in the ground state. To put this statement

into perspective, the properties of the system need not be determined from N -particle

many-body wave functions, which depend on the 3N spatial coordinates of all the

electrons, but instead can be treated as functionals of the electron density n(r), which

is a function of only three spatial coordinates. In particular, Hohenberg and Kohn

proved two important theorems for Hamiltonians of the form

Ĥ =

∫
d3r ψ̂†(r)

(
−∇

2

2m

)
ψ̂(r) +

∫
d3r n̂(r)Vext(r)

+
1

2

∫
d3r

∫
d3r′ ψ̂†(r)ψ̂†(r′)

e2

|r− r′| ψ̂(r′)ψ̂(r)

(3.19)

which have a non-degenerate ground state:4

4The theorems also hold for degenerate ground states, as first shown by M. Levy [99–101].
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1. The external potential Vext(r) is uniquely determined, up to a constant, by the

ground state electron density n(0)(r), i.e., two different external potentials lead

to two different electron densities. This implies in particular that all properties

of the system are determined by the ground state electron density alone, since

the latter fixes the external potential and hence the Hamiltonian, which in turn

determines, in principle, all properties of the system.

2. The total energy of the system is a functional of the electron density n(r) and

can be written in the form

E[n] = EHK[n] +

∫
d3r n(r)Vext(r), (3.20)

where, crucially, EHK[n] is a universal functional of the density, which is the

same for all external potentials and can be written as EHK = THK[n] + VHK[n],

with THK[n] and VHK[n] being functionals that yield the kinetic and inter-electron

Coulomb interaction energy of the system, respectively. The ground state density

n(0)(r) minimizes the functional E[n].

Although these two theorems reduce, in principle, the number of degrees of freedom of

the many-electron problem immensely, they do not offer a practical way to calculate

the spectrum and eigenstates of the Hamiltonian, which we need for our description of

inelastic light scattering. However, the fact that a universal energy functional for the

inter-electron Coulomb interaction energy that only depends on the electron density

exists offers new ways to calculate this part of the total energy. It may usefully be

approximated with an expression from another, simpler-to-calculate system, such as the

homogeneous electron gas, for which the Coulomb interaction energy can be calculated

with the methods of perturbation theory.

Still, one needs a procedure to find not only the ground state energy or electron

density of a system, but to also obtain the eigenstates and the corresponding energies

of the Hamiltonian. The sole fact that the ground state electron density determines the

latter in principle is not enough for this and a more concrete scheme is required. To this

end, Kohn and Sham [97] introduced the idea of constructing the electron density from

independent one-particle wave functions φi(r), which are eigenfunctions of an auxiliary
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one-particle Hamiltonian ĤKS. In order to construct the auxiliary Hamiltonian, one

introduces a new functional EKS[{φi}, {φ∗i }] for the universal part of the energy which

depends on φi(r) and φ∗i (r) by demanding that

EKS[{φi}, {φ∗i }] = EHK[nKS], (3.21)

where

nKS(r) ≡
∑
i

|φi(r)|2. (3.22)

Furthermore, in order to arrive at a one-particle system, we introduce the kinetic energy

part, TKS[{φi}, {φ∗i }], of EKS[{φi}, {φ∗i }] via:

TKS[{φi}, {φ∗i }] ≡
∑
i

∫
d3rφ∗i (r)

(
−∇

2

2m

)
φi(r) ≡ THK[n]. (3.23)

It is also customary to split off the classical electrostatic energy, i.e., the Hartree energy

EH[n] ≡ e2

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′| , (3.24)

from the energy functional and define the remaining part as the exchange-correlation

functional :

Exc[n] ≡ EHK[n]− THK[n]− EH[n]. (3.25)

The universal Kohn-Sham energy functional then reads

EKS[{φi}, {φ∗i }] = TKS[{φi}, {φ∗i }] + EH[nKS] + Exc[nKS], (3.26)

with nKS understood to be expressed in terms of the φ
(∗)
i (r). Finally, we define the

external energy functional by

Eext[{φi}, {φ∗i }] ≡
∫

d3r nKS(r)Vext(r) =
∑
i

∫
d3r φ∗i (r)Vext(r)φi(r). (3.27)

Minimizing the total energy, EKS +Eext under the constrain that the φ
(∗)
i (r) remain
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normalized, leads to the variational equation of motion

δ

δφ∗i (r)

{
EKS[{φj}, {φ∗j}] + Vext[{φj}, {φ∗j}]−

∑
j

εj|φj(r)|2
}

= 0, (3.28)

in which the εj take on the role of Lagrange multipliers. Noting that ∂nKS(r)/∂φ∗i (r
′) =

φi(r), we arrive at a set of independent one-particle Schrödinger equations, the Kohn-

Sham (KS) equations :{
−∇

2

2m
+ Vext(r) + VH[nKS](r) + Vxc[nKS](r)

}
φi(r) = εiφi(r). (3.29)

Here, VH and Vxc denote the one-particle Hartree and exchange-correlation potentials,

respectively, given by

VH[n](r) ≡ δEH[n]

δn(r)
= e2

∫
d3r

n(r′)

|r− r′| , Vxc[n](r) ≡ δExc[n]

δn(r)
. (3.30)

As mentioned above, the exchange-correlation functional can in many cases be well

approximated by that of a known system. For solids with mostly mobile electrons, the

exchange-correlation energy of the homogenous electron gas calculated from perturba-

tion theory is often a reasonable approximation and was also suggested in the original

paper by Kohn and Sham [97]. In modern times [92], a popular class of choices for the

exchange-correlation energy functional is the semi-local approximation

EGGA
xc [n] =

∫
d3r n(r)εGGA

xc (n(r),∇n(r) . . .), (3.31)

where the dots represent higher derivatives of the electron density and the exchange-

correlation density εGGA
xc is a function of the charge density and its derivatives at the

same point only. This approximation is known as the generalized gradient approximation

(GGA) and is the most straightforward generalization of the entirely local local density

approximation (LDA)

ELDA
xc [n] =

∫
d3r n(r)εLDA

xc (n(r)). (3.32)
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In the early days of density functional theory, εLDA
xc (n(r)) was suggested to be taken di-

rectly from the corresponding expressions for the homogeneous electron gas [97]. Nowa-

days, many different parameterizations for the exchange-correlation density and func-

tional are available. Amongst the most popular ones for the LDA are the ones by Perdew

and Zunger [102] and Perdew and Wang [103]. For the GGA, the by far most frequently

used one is the parametrization by Perdew, Burke, and Ernzerhof (PBE) [104]. The

calculations in this thesis were also done within one of these two approximations, as

specified on a case-by-case basis.

In practice, the Kohn-Sham equations are solved self-consistently by starting with

an initial guess for the KS electron density nKS, calculating the self-consistent field

(SCF) potential

Vscf(r) ≡ Vext(r) + VH[nKS](r) + Vxc[nKS](r), (3.33)

solving the KS equations for the KS orbitals φi, and then finally calculating the KS

electron density nKS with the newly obtained KS orbitals. If the previous and the

new KS electron density do not agree to within a specified tolerance, this procedure is

repeated using a mixture between the old and the new KS electron density as input

for the calculation of the SCF potential.5 This self-consistency cycle, as illustrated in

Fig. 3.1, is then repeated until nKS is converged. The resulting one-particle Hamilto-

nian can subsequently be used as a first approximation to the real Hamiltonian of the

system under study.

In our case, we seek to approximate the Hamiltonian in the clamped nuclei approx-

imation, for which the external potential is given by the potential of Eq. 3.15. For now

we are interested in the case in which the nuclei are fixed in the ground state configu-

ration {R(0)
I }, which, in the solid phase, typically has the nuclei arranged in a periodic

lattice. In this case, there exists a set of three lattice vectors t1,2,3 that generate a

Bravais lattice and a set of vectors τα that denote the positions of the different atoms

in one unit cell of the lattice, so that every atomic position can be specified by an index

5A mixing of the old and new KS electron density is required to achieve convergence, as simply
using the new density as input for the next step might result in oscillatory instead of converging
behavior of the self-consistency cycle [92].
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Choose initial nKS(r)

Calculate Vscf(r)

Solve ĤKSφi(r) = εiφi(r)

Calculate new nKS(r)

Converged?

Output εi, φi(r), Vscf(r)

Yes

No

Mix old and
new nKS(r)

Figure 3.1: Self-consistency cycle in Kohn-Sham density functional theory.

n for the unit cell and an index α that runs over the different atoms within the unit

cell:

R
(0)
I ≡ R(0)

n,α = Rn + τα, (3.34)

where Rn is a linear combination of the t1,2,3 with integer coefficients. The external

(lattice) potential then can be written as

Vext(r) = Vlat(r) =
∑
n,α

−Zαe2

|r−R
(0)
n,α|

=
∑
n,α

−Zαe2

|r−Rn − τα|
. (3.35)

This potential is invariant under a shift r→ r + Rn as the shift can be absorbed by

the summation over n. The electronic Hamiltonian as a whole and also the one-particle

Kohn-Sham Hamiltonian are then invariant under these shifts, i.e., they commute with

the set of the corresponding translation operators, {exp(ip̂ ·Rn)}. We can then choose

the eigenfunctions of the KS Hamiltonian to be eigenfunctions of all the {exp(ip̂ ·Rn)}.
These eigenfunctions can be labeled by a vector k from within the Wigner-Seitz cell of

the corresponding reciprocal lattice [105]. The latter is spanned by the reciprocal lattice
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vectors b1,2,3, defined via ti ·bj = 2πδi,j and its Wigner-Seitz cell is also called the first

Brillouin zone (BZ). As a consequence, the eigenfunctions of the KS Hamiltonian can

be written in the form

φi(r) ≡ φk,n(r) =
1√
N

eik·rχk,n(r), (3.36)

where n is an additional quantum number that labels the different states at a fixed k,

that is, the different energy bands in a solid, and N denotes the number of unit cells.6

The function χk,n(r) is lattice-periodic, i.e., χk,n(r+Rm) = χk,n(r) for all lattice vectors

Rm, and is normalized with respect to an integration over one unit cell. The fact that

the eigenfunctions of a one-particle Hamiltonian with lattice translation symmetry can

be written in the form given in Eq. 3.36 has first been pointed out by F. Bloch [106] in

1929 and is nowadays known as Bloch’s theorem. To give an example of the application

of KS-DFT, we show the energy dispersion εk,n, i.e., the band structure, for graphene

in Fig. 3.2. The Kohn-Sham system of independent particles is in many cases a very

good approximation for the fully interacting electron system. However, the usage of a

local or semi-local functional to capture the effects of exchange and correlation in an

effective one-particle potential still has a few inherent shortcomings, which we want to

briefly recapitulate, as they are important for some of the later work presented in this

thesis.

The (semi-)local LDA and GGA functionals are modeled after the electron density

dependence of the exchange and correlation energy of a homogeneous gas of free elec-

trons. Compared to electrons under the influence of a lattice potential, electrons in a gas

are much more mobile. As such, the inter-electron Coulomb interaction is significantly

more screened in a gas than in a solid, which leads to larger correlation effects in the

electron gas. The usage of an electron gas-inspired exchange-correlation functional for

a solid-state system thus results in an overestimation of the screening of the Coulomb

interaction between the electrons. In quantum mechanical terms, this has the effect

that the different free-particle states are not coupled as strongly as they are in reality

6We work with periodic boundary conditions.
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Figure 3.2: Band structure of graphene within KS-DFT. Band structure of
graphene along the high-symmetry-line Γ-K-M -Γ of the first Brillouin zone (see Fig. 7.1
for a sketch of the first BZ). The calculation was done within the framework of Kohn-
Sham density functional theory in the generalized gradient approximation (see Ref. 67
for numerical details and convergence parameters). Full lines represent the so-called π-
and π∗-bands, whose wave functions can be well approximated by a linear combination
of carbon pz-like orbitals of the different atoms (also compare Section 7.1). The zero
of the energy scale has been fixed to the Fermi energy, i.e., the largest energy of any
occupied state.

and as a consequence the energy levels do not “repel” each other as strongly as they

actually do. This implies that the use of (semi-local) exchange-correlation functionals

leads to an underestimation of electronic band gaps of semi-conducting and insulating

systems.

One very typical example of this problem is the case of hexagonal boron nitride

(hBN), a material which is often used as a substrate for graphene. Due to the very
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different electronegativities of boron and nitrogen, the electrons in the ground state

tend to be much more localized on the sites of the nitrogen atoms, i.e., the electrons are

much more localized in reality than in a quasi-free electron gas, which features strongly

delocalized electrons. As a result, the screening of the inter-electron Coulomb inter-

action is severely overestimated and the band gap is thus very much underestimated.

Numerically, one finds an indirect band gap of 3.9 eV for bulk hBN within density func-

tional theory in the LDA [107]. By contrast, within many-body perturbation theory in

the “GW approximation” (see next section), which features a more accurate description

of the screening, one finds a sizably larger value of 5.4 eV for the indirect band gap of

bulk hBN [107].

In the case of graphene, which is a semi-metallic system in which the electrons in

the ground state are much more delocalized than in a typical semiconductor, the LDA

and GGA give results that are much closer to the experimentally observed situation.

However, the LDA and GGA still underestimate the slope of the bands near the linear

crossing at the K point by roughly 12% [56]. This can again be interpreted in the

quantum mechanical picture of the energy levels “not repelling each other enough”,

due to a too weak, since overscreened, Coulomb interaction in the LDA and GGA.

Another consequence of the overestimation of the delocalization of the electrons

caused by the use of free-electron gas-inspired functionals is the underestimation of

the strength of the inter-atomic bonds, which, once again, could equally well be re-

garded as a consequence of the overestimation of screening effects. As a result, cal-

culations of lattice constants and bond lengths within a local approximation to the

exchange-correlation functional typically yield values that are too small compared to

those observed in nature [92].

Finally, we would like to mention that the overestimation of the screening of the

Coulomb interaction leads to a suppression of the long-range nature of the Coulomb

interaction. This is especially relevant when considering perturbations of the lattice

structure, such as lattice vibrations, which will be considered in the next chapter. A

perturbation of the lattice structure from its equilibrium configuration manifests itself

as a perturbation of the electrostatic lattice potential. However, due to an overestima-

tion of electronic correlation effects, this perturbing potential will be treated as being

47



much more screened in LDA and GGA than it is in nature. As such, the response of the

electronic system to the perturbation will be too weak. This can then manifest itself

in an incorrect estimate of lattice vibration (phonon) frequencies as, for example, in

the case of graphene [53], or in an underestimation of the influence of lattice vibrations

on the electronic energy bands, such as in titanium diselenide [108]. The fact that it

is mostly metallic or semi-metallic systems that are affected by the underestimation of

the response to a perturbation can be understood from a real-space picture. As the

Coulomb interaction is treated as overscreened, the inherent long-range nature of the

Coulomb interaction is suppressed. As a result, electrons or nuclei located very far away

from the real space location of the perturbation will not be as affected as they could

be. However, in systems in which the electrons are very localized, the effect of a local

perturbation on electrons very far away will not be large in any case. By contrast, in the

more delocalized systems of (semi-)metals, electrons at large distances from the pertur-

bation could in principle be affected by it, if it were not described as too short-ranged,

i.e., too overscreened in local or semi-local approximations to the exchange-correlation

functional.

For the work presented in this thesis, i.e., the inelastic scattering of light, foremost

induced by lattice vibrations, the correct calculation of lattice vibration frequencies

and correct estimation of the strength of the coupling of lattice vibrations to the elec-

tronic system is of vital importance. We will address these points in Chapters 4 and

5, in which we propose a novel theoretical approach and concrete expressions for the

calculation of vibration frequencies and coupling constants. A key ingredient of the

suggested approach will be a better description of electronic correlation effects. This

can be achieved by using KS-DFT as a starting point of perturbation theory and treat-

ing the residual Coulomb interaction effects as a perturbation, which allows an efficient

calculation of needed higher-order electronic correlation effects. We therefore dedicate

the last section of this chapter to a review of the calculation of electronic correlation

functions within many-body perturbation theory (MBPT). As these correlation functions

will play an important role in all of the following chapters, we will review them in some

detail.
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3.3 Many-particle electronic correlation functions

The new theoretical work presented in later parts of this thesis relies extensively on the

formalism of many-particle Green’s and correlation functions, i.e., expectation values

of time-ordered products of electron field operators. As mentioned at the end of the

last chapter, for this pioneering work, we will restrict ourselves to the case of zero

temperature. In this section we shall therefore summarize the most important results

and equations related to the needed electronic correlation functions. More extensive

discussions can be found in the literature [91, 109, 110].

The modern treatment of correlation functions [91, 110] is typically based on a

coupled set of equations known in condensed matter physics as the Martin-Schwinger

hierarchy [111]. It consists of an infinite set of coupled integro-differential equations that

link the various many-particle Green’s functions with each other. The Martin-Schwinger

hierarchy is a special case of the Schwinger-Dyson equations, which have been derived

by Dyson using perturbative methods [112] and later also by Schwinger, who used

functional derivative techniques [113, 114], similar to modern treatments [83, 88, 115].

For our purposes, it will be most convenient to follow Dyson’s perturbative approach

expressed in terms of Feynman diagrams [116], as this method allows us to only consider

the correlation functions required for the development of our theoretical approach to

Raman scattering. In particular, we will only be concerned with the one- and two-

particle Green’s and correlation functions, which we review over the course of the next

two sections.

3.3.1 General considerations and one-particle Green’s func-

tion

The the one-particle Green’s function is defined as

G(1, 2) ≡ (−i)〈0|T
{
ψ̂(1)ψ̂†(2)

}
|0〉. (3.37)

Here and in the following, we use the abbreviated notation 1 ≡ (r1, t1), etc., for the

space-time argument of the electron field operators in the Heisenberg picture, defined
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as

ψ̂(†)(r, t) ≡ e+iĤtψ̂(†)(r)e−iĤt. (3.38)

We also use the shorter notation Ĥ ≡ Ĥe({R(0)
I }) for the exact electronic Hamiltonian

in the lowest-energy nuclear configuration {R(0)
I } as given by Eq. 3.9, the ground state

of which we denote as |0〉 ≡ |0({R(0)
I })〉e.

The one-particle Green’s function is the probability amplitude for an electron to

travel from space-time point 2 to point 1 or vice versa in case of a hole. Its knowledge

allows the calculation of the ground state expectation value of any one-particle operator.

In particular, it contains information on the exact ground state charge density and even

allows the calculation of the exact ground state energy [87]. We are mostly interested

in it because it contains information on the exact one-particle excitation energies of

the electronic system, including, for example, the band gap in a semi-conducting or

insulating extended system. It will also be needed, in principle, for our review of the

two-particle correlation function, presented in the next section.

The time-ordered expectation value of an arbitrary number of Heisenberg picture

operators in the exact ground state of the full Hamiltonian can be calculated within

the framework of time-dependent perturbation theory [83, 87–91], as already used in

the previous chapter. In this formalism, the Hamiltonian is split up into two parts:

Ĥ = Ĥ0 + Ĥ1, where H0 has a known (and presumed non-degenerate) ground state |∅〉.
One then defines the field operators in the interaction picture as

ψ̂
(†)
I (r, t) ≡ e+iĤ0tψ̂

(†)
I (r)e−iĤ0t (3.39)

and the non-interacting Green’s function as

G0(1, 2) ≡ (−i)〈∅|T
{
ψ̂I(1)ψ̂†I(2)

}
|∅〉. (3.40)

It can then be shown [83, 87–91] that the correlation function of two Heisenberg picture
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field operators can be written as

〈0|T {ψ̂(1)ψ̂†(2)}|0〉 =

〈∅|T
{
ψ̂I(1)ψ̂†I(2) exp

[
−i

+∞∫
−∞

dt Ĥ1,I(t)

]}
|∅〉

〈∅|T
{

exp

[
−i

+∞∫
−∞

dt Ĥ1,I(t)

]}
|∅〉

, (3.41)

where Ĥ1,I(t) ≡ exp(iĤ0t)Ĥ1 exp(−iĤ0t) is the interaction Hamiltonian in the interac-

tion picture.

The main challenge of the perturbative approach is then to select the reference

Hamiltonian Ĥ0 such that both the non-interacting Green’s function can be calculated

exactly and the residual part Ĥ1 = Ĥ − Ĥ0 of the full Hamiltonian can be considered

a “small” perturbation, in the sense that the right-hand side of Eq. 3.41 can be well

approximated by an exactly summable subseries of the Taylor series of the exponential

function. In our concrete case, Ĥ is the electronic Hamiltonian of Eq. 3.9, which de-

scribes a system of electrons moving in an external potential provided by a lattice of

nuclei and which mutually interact with each other via the pairwise Coulomb interac-

tion. As discussed in the last section, in many cases a first reasonable approximation

of this system is provided by the non-interacting system of electrons of Kohn-Sham

density functional theory. We will thus take the reference Hamiltonian to be

Ĥ0 ≡ ĤKS({R(0)
I }) ≡

∫
d3r ψ̂†(r)

[
−∇

2

2m
+ Vscf(r; {R(0)

I })
]
ψ̂(r), (3.42)

where Vscf(r; {R(0)
I }) is the self-consistent potential of Eq. 3.33. The corresponding

non-interacting Green’s function can most easily be obtained by expanding the field

operator in terms of the one-particle KS wave functions: ψ̂(r) =
∑

k,n φk,n(r)ĉk,n.7 In

7Here and throughout the remainder of this thesis, we understand summations over wave vectors
k from the first Brillouin zone to be appropriately normalized, such that, in the continuum limit, it
reduces to an integration over the first Brillouin zone divided by the BZ volume:

∑
k ≡ V −1BZ

∫
BZ

d3k =
Vuc(2π)−3

∫
BZ

d3k, with Vuc being the volume of the (real-space) unit cell.
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this basis, the non-interacting Green’s function is diagonal, i.e., it has the form

G0(1, 2) =
∑
k,n

φk,n(r1)φ∗k,n(r2)(−i)〈∅|T
{
ĉk,n,I(t1)ĉ†k,n,I(t2)

}
|∅〉

≡
∑
k,n

φk,n(r1)φ∗k,n(r2)

∫
dω

2π
e−iω(t1−t2)G̃0;k,n(ω),

(3.43)

with the Fourier-transformed Green’s function G̃0;k,n(ω) being given by

G̃0;k,n(ω) ≡
∫ +∞

−∞
dt eiωt(−i)〈∅|T

{
ĉk,n,I(t)ĉ

†
k,n,I(0)

}
|∅〉

=
fk,n

ω − εk,n − iη
+

1− fk,n
ω − εk,n + iη

,

(3.44)

wherein fk,n denotes the occupancy of the state |k, n〉 in the KS ground state |∅〉 and

η is a positive infinitesimal. Note that the exact one-particle Green’s function G(1, 2)

is in general off-diagonal in the KS basis:

G(1, 2) =
∑
k,m,n

φk,m(r1)φ∗k,n(r2)(−i)〈0|T
{
ĉk,m(t1)ĉ†k,n(t2)

}
|0〉

≡
∑
k,m,n

φk,m(r1)φ∗k,n(r2)

∫
dω

2π
e−iω(t1−t2)G̃k,m,n(ω),

(3.45)

where

G̃k,m,n(ω) ≡
∫ +∞

−∞
dt eiωt(−i)〈0|T

{
ĉk,m(t)ĉ†k,n(0)

}
|0〉 (3.46)

is the Fourier-transformed exact one-particle Green’s function in the KS basis.

Finally, with our choice of Ĥ0, the residual part of the Hamiltonian reads

Ĥ1 ≡ Ĥ − Ĥ0 =
1

2

∫
d3r

∫
d3r′ ψ̂†(r)ψ̂†(r′)

e2

|r− r′| ψ̂(r′)ψ̂(r)

−
∫

d3r ψ̂†(r)
{
VH[nKS](r) + Vxc[nKS](r)

}
ψ̂(r),

(3.47)
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or in terms of the creation and annihilation operators for the KS one-particle states:

Ĥ1 =
∑
k,k′,q
a,b,c,d

vk+q,a;k′+q,b
k,c;k′,d

ĉ†k+q,aĉ
†
k′,dĉk′+q,bĉk,c −

∑
k
a,b

v
(Hxc)
k
a,b

ĉ†k,aĉk,b, (3.48)

where the matrix elements of the Coulomb and Hartree+xc potentials are defined as

vk+q,a;k′+q,b
k,c;k′,d

≡
∫

d3r

∫
d3r′ φ∗k+q,a(r)φ∗k′,d(r

′)
e2

|r− r′|φk′+q,b(r
′)φk,c(r) (3.49)

v
(Hxc)
k
a,b

≡
∫

d3r φ∗k,a(r)
{
VH[nKS](r) + Vxc[nKS](r)

}
φk,b(r). (3.50)

Note that due to the fact that the electron density is lattice periodic, the Hartree and

xc-potentials are as well and hence they conserve the (total) crystal momentum k. The

same is true for the Coulomb potential, which also conserves the total momentum of

the two electrons interacting with each other. When passing to the interaction picture,

the interaction Hamiltonian Ĥ1 becomes

Ĥ1,I(t1) =
1

2

∫
d3r1

∫
d3r2

∫ +∞

−∞
dt2 ψ̂

†
I(1)ψ̂†I(2)v(1, 2)ψ̂I(2)ψ̂I(1)

−
∫

d3r1 ψ̂
†
I(1)v(Hxc)(r1)ψ̂I(1).

(3.51)

Here we introduced the short-hand notation

v(1, 2) ≡ v(r1, t1; r2, t2) = v(r1 − r2, t1 − t2; 0, 0) ≡ e2

|r1 − r2|
δ(t1 − t2) (3.52)

v(Hxc)(r1) ≡ VH[nKS](r1) + Vxc[nKS](r1) (3.53)

for the Coulomb and Hartree+xc potential matrix elements in position space. Note that

the instantaneous nature of the Coulomb potential is taken into account by including

a factor of δ(t1 − t2).

According to Feynman [116], we can organize the perturbation series resulting from

the right-hand side of Eq. 3.41 by associating a Feynman diagram with each introduced

quantity, as shown in Table 3.1. In this “diagrammatic” approach, the exact one-
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Table 3.1: Feynman rules for the basic building blocks of electronic correlation
functions and some derived quantities (separated by a horizontal line).9

particle Green’s function is then given by the sum of all fully connected diagrams with

two endpoints, with exactly one electron line and no Coulomb lines emerging from one

of them and exactly one electron line and no Coulomb lines running into the other one.

To organize this series of diagrams, one introduces the (one-particle-) irreducible self-

energy Σ(1, 2), which is defined as i times the sum of all connected Feynman diagrams

that cannot be split into two parts by cutting a single electron line only.10 The sum

of all possible diagrams contributing to the exact one-particle Green’s function then

takes on the form of a geometric series, as shown in Fig. 3.3. On the right hand side,

we can identify the exact Green’s function once again, so that the diagrammatic sum

9Note that the index structure on the matrix elements of v and W in momentum space is different,
as it will be more convenient for the later discussion of the two-particle correlation function.

10The factor of i is included so that the sum of diagrams equals (−i)Σ(1, 2), so that in turn the
factor of (−i) cancels the factor of i from the factor iG0(1, 2) associated with a single electron line.
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Figure 3.3: Diagrammatic representation of Dyson’s equation for the one-
particle electron Green’s function.

is equivalent to Dyson’s equation [112]

G(1, 2) = G0(1, 2) +G0(1, 3̄)Σ(3̄, 4̄)G(4̄, 2), (3.54)

where the bar over a variable indicates that it is integrated over:

f(1̄)g(1̄) ≡
∫

d1 f(1)g(1) ≡
∫ +∞

−∞
dt1

∫
d3r1 f(r1, t1)g(r1, t1). (3.55)

A few of the leading-order terms contributing to the irreducible self-energy are shown

in Fig. 3.4. Note that the exact irreducible self-energy involves subseries of diagrams

Figure 3.4: Leading-order terms in the diagrammatic expansion of the irre-
ducible electron self-energy.

that can be summed up to yield the exact Green’s function again (compare second row

of diagrams in 3.4). It can therefore be regarded as a functional of the exact one-particle

Green’s function and the Kohn-Sham electron density, on which it depends through the

second term in Eq. 3.47: Σ(1, 2) = Σ[G, nKS](1, 2). Since this second term involves only

two electron field operators, the only one-particle-irreducible (sub-)diagram that can

be constructed from it is simply given by the vertex associated with it. The irreducible
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self-energy is then given by the sum of two parts:

Σ[G, nKS](1, 2) = ΣCoul.[G](1, 2) + Σ−Hxc[nKS](1, 2), (3.56)

where11

Σ−Hxc[nKS](1, 2) ≡ −v(Hxc)(r1)δ(1, 2) = −
{
VH[nKS](r1) + Vxc[nKS](r1)

}
δ(1, 2) (3.57)

is the contribution of the Hartree and exchange-correlation potential used in the refer-

ence KS system and ΣCoul.[G](1, 2) is given by the sum of all one-particle irreducible

diagrams that involve at least one Coulomb line. Examples of this kind of diagrams are

given by the last three diagrams of the first row in Fig. 3.4. Just like the exact and KS

one-particle Green’s functions, the irreducible self-energy can also be expanded in the

basis of KS states:

Σ(1, 2) ≡
∑
k,m,n

φk,m(r1)φ∗k,n(r2)

∫
dω

2π
e−iω(t1−t2)Σ̃k,m,n(ω), (3.58)

where the conservation of crystal momentum at each vertex implies that the self-energy

is diagonal in k.

After a Fourier transformation, Dyson’s equation takes on the form of a matrix

equation in the space of electronic bands:

G̃k,a,b(ω) = δa,bG̃0;k,a(ω) + G̃0;k,a(ω)Σ̃k,a,c̄(ω)G̃k,c̄,b(ω), (3.59)

where a bar over a band index implies a summation over it. Solving for the exact one-

particle Green’s function, one obtains the following expression for its matrix inverse in

the η → 0 limit:

G̃−1
k,a,b(ω) = (ω − εk,a)δa,b − Σ̃k,a,b(ω). (3.60)

Thus, the exact one-particle Green’s function is determined from knowledge of the ma-

trix elements of the irreducible self-energy in the KS basis, which can be calculated

diagrammatically. Note that in principle, and especially for the purpose of further

11δ(1, 2) ≡ δ(3)(r1 − r2)δ(t1 − t2) denotes a four-dimensional δ-distribution.
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derivations, it needs to be computed self-consistently, since it depends on the exact

one-particle Green’s function G̃k,a,b(ω). In a practical calculation, however, one almost

never considers the full diagrammatic series for the irreducible self-energy, but instead

considers only certain subsets or subseries of diagrams. The most popular of these

approximations is the so-called GW approximation (GWA) [91, 109, 110, 117], defined

by the series of diagrams depicted in the first row of Fig. 3.5. In the second row of

Figure 3.5: Diagrams representing the terms retained in the GW approxima-
tion to the irreducible self-energy.

Fig. 3.5, we defined the diagrammatic representation of the screened Coulomb interac-

tion W (1, 2) = W (2, 1) in the random phase approximation (RPA)12, which obeys the

Dyson-like equation

W (1, 2) = v(1, 2) + v(1, 3̄)P (3̄, 4̄)W (4̄, 2). (3.61)

Here the irreducible polarizability P (1, 2) is defined in analogy with the irreducible self-

energy as (−i) times the sum of all connected Feynman diagrams that cannot be split

into two by cutting a single Coulomb line.13 In the RPA, it is simply given by

P (1, 2) ' P0(1, 2) ≡ −iG(1, 2)G(2, 1). (3.62)

12Note that the screened Coulomb interaction only appears in the third diagram of Fig. 3.5 and
not in the second, since its inclusion in the latter would lead to a double-counting of diagrams which
have already been taken into account in the diagrammatic expansion of the exact one-particle Green’s
function represented by the loop subdiagram.

13The factor of (−i) is again included in the definition of the polarizability so that the sum of
diagrams equals iP (1, 2), so that in turn the factor of i cancels the factor of (−i) included in the factor
−iv(1, 2) associated with a single Coulomb line.
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In practical calculations, this equation is usually solved by Fourier transforming with

respect to both space and time and then inverting the resulting matrix equation on a

grid of reciprocal lattice vectors [109, 110]. Once the screened Coulomb interaction has

been computed, the irreducible self-energy in the GWA can be calculated from

Σ(1, 2) ' −δ(1, 2)v(Hxc)(1)− iδ(1, 2)v(1, 3̄)G(3, 3̄+) + iG(1, 2)W (1, 2), (3.63)

where 3+ ≡ (r3, t
+
3 ) ≡ (r3, t3 +0+) and 0+ denotes a positive infinitesimal that is needed

in order to ensure the correct ordering of electron field operators in an equal-time

correlation function, which needs to follow the ordering in the interaction Hamiltonian

(ψ̂† to the left of ψ̂). The calculation of the self-energy is also most conveniently done

in reciprocal space, from where it can be written in the KS basis by projecting on the

KS wave functions.

We want to emphasize once more that for the theoretical developments presented in

this thesis, the self-consistent treatment of Dyson’s equation for the exact one-particle

Green’s function will turn out to be crucial. For many practical applications and

computations, however, a self-consistent solution of Eqs. 3.54, 3.61, 3.62, and 3.63 is

not necessary and instead a non-self-consistent calculation according to the scheme

P (1, 2) ' P0(1, 2) ≡ − iG0(1, 2)G0(2, 1) (3.64)

→W (1, 2) ' W0(1, 2) ≡ v(1, 2) + v(1, 3̄)P0(3̄, 4̄)W0(4̄, 2) (3.65)

→Σ(1, 2) ' Σ0(1, 2) ≡ − δ(1, 2)v(xc)(r1) + iG0(1, 2)W0(1, 2) (3.66)

→G(1, 2) ' G0(1, 2) +G0(1, 3̄)Σ0(3̄, 4̄)G(4̄, 2), (3.67)

called the G0W0 approximation, is sufficient for most purposes [109, 110].14

An additional approximation that is also often employed is the so-called quasi-

particle approximation (QPA). It is based on the observation that in many cases [109,

110], the exact Green’s function can reasonably accurately be approximated by a func-

14In the third line, we simplified the expression by noting that in the non-self-consistent case the
Hartree contribution reads −iv(1, 3̄)G0(3̄, 3̄+) = e2

∫
d3r3 nKS(r3)/|r1 − r3|, which exactly cancels the

Hartree part of the v(Hxc)(1) contribution to the self-energy,, so that only the exchange-correlation
potential contribution needs to be computed explicitly.
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tion with a simple pole near the unperturbed one-particle energy:15

G̃k,m,n(ω) ≈ δm,n
Z

(QP)
k,n

ω − ε(QP)
k,n + i

2
γ

(QP)
k,n

. (3.68)

Here, the quasi-particle weight, energy, and decay width are defined by [109, 110]

Z
(QP)
k,n ≡ 1

/1− ∂Σ̃k,n,n(ω)

∂ω

∣∣∣∣∣
ω=εk,n

 (3.69)

ε
(QP)
k,n ≡ εk,n + Re

(
Z

(QP)
k,n Σ̃k,n,n(ω)

∣∣∣
ω=εk,n

)
(3.70)

γ
(QP)
k,n ≡ −2 Im

(
Z

(QP)
k,n Σ̃k,n,n(ω)

∣∣∣
ω=εk,n

)
=

≤ 0, |k, n〉 occupied in |∅〉
≥ 0, |k, n〉 not occupied in |∅〉

, (3.71)

where the sign of the decay width follows the sign of the infinitesimal η in Eq. 3.44. In

the QPA, the exact Green’s function is then simply given by

G(1, 2)
QPA≈ G(QP)(1, 2) ≡

∑
k,n

φk,n(r1)φ∗k,n(r2)

∫
dω

2π
e−iω(t1−t2)

Z
(QP)
k,n

ω − ε(QP)
k,n + i

2
γ

(QP)
k,n

(3.72)

and describes non-interacting (“quasi-”)particles of energy ε
(QP)
k,n , which possess a finite

lifetime τk,n = 1/γ
(QP)
k,n , as easily seen by evaluating the frequency integral. The QPA

is sensible as long as the quasi-particle decay width are reasonably smaller than the

quasi-particle energies. This approximation often serves as the starting point for the

calculation of the two-particle Green’s function, to which we turn in the next section.

15Here we further assumed for simplicity that the exact Green’s function near the quasi-particle
pole can be well approximated as being diagonal in the KS basis, which is often a reasonable approx-
imation [109, 110]. In case this approximation is not good, one first needs to diagonalize the exact
Green’s function by solving the eigenvalue problem given in Eq. 3.60.
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3.3.2 Two-particle correlation function

The one-particle Green’s function, treated in the previous section, contains information

on the propagation of one electron, or, equivalently, on the correlation between the

values of the electron field at one pair of points in space and time. For many topics

discussed in this thesis, higher-order correlations are of even bigger importance, how-

ever, in particular correlations between the values of the electron field at two pairs of

space-time points. In a more intuitive language, this is equivalent to the correlated

propagation of two charge carriers (two electrons, two holes, or one electron and one

hole). This correlated propagation amplitude is given by the two-particle Green’s func-

tion

G(2)(1, 2; 3, 4) ≡ (−i)2〈0|T
{
ψ̂(1)ψ̂(4)ψ̂†(2)ψ̂†(3)

}
|0〉. (3.73)

As it describes the correlated movement of two charge carriers, it also contains infor-

mation on two-particle scattering amplitudes and furthermore also on possible bound

states (called excitons), in case of the two charge carriers being one electron and one

hole. Since it will be needed in several instances throughout this thesis, we will review

the most important aspects of its calculation.

To begin with, we re-write the ground state expectation value of a time-ordered

product of four electron field operators in the Heisenberg picture in the interaction

picture:

〈0|T {ψ̂(1)ψ̂(4)ψ̂†(2)ψ̂†(3)}|0〉

=

〈∅|T
{
ψ̂I(1)ψ̂I(4)ψ̂†I(2)ψ̂†I(3) exp

[
−i

+∞∫
−∞

dt Ĥ1,I(t)

]}
|∅〉

〈∅|T
{

exp

[
−i

+∞∫
−∞

dt Ĥ1,I(t)

]}
|∅〉

,
(3.74)

where the definitions of the various operators were given in the previous section. The

right-hand side can again be expanded in terms of the elementary Feynman diagrams of

Table 3.1. To organize the various diagrams, we employ the skeleton expansion [91, 115],

which consists of summing certain subseries of diagrams exactly and using the result

as part of a larger diagram. For the case of the two-particle Green’s function, this
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amounts to first summing the Dyson series for each appearing non-interacting one-

particle Green’s function and then replacing the latter in larger diagrams with the

exact one-particle Green’s function. This is done with the understanding that all other

one-particle irreducible diagrams are to be omitted, as these have already been taken

into account via Dyson’s equation and the irreducible self-energy. Within the skeleton

expansion, a selection of leading-order diagrams contributing to the two-particle Green’s

function are shown in Fig. 3.6. The first two terms constitute the independent-particle

Figure 3.6: Examples of leading-order terms in the diagrammatic expansion
of the two-particle Green’s function.

approximation:

G(2)(1, 2; 3, 4)
IPA' (−i)2

[
−〈0|T

{
ψ̂(1)ψ̂†(2)

}
|0〉〈0|T

{
ψ̂(4)ψ̂†(3)

}
|0〉

〈0|T
{
ψ̂(1)ψ̂†(3)

}
|0〉〈0|T

{
ψ̂(4)ψ̂†(2)

}
|0〉
]

= −G(1, 2)G(4, 3) +G(1, 3)G(4, 2),

(3.75)

where the minus sign of the first term arises from the anti-commuting nature of the

electron field operators. In this approximation, the propagation of the two charge

carriers is uncorrelated, i.e., the two charge carriers move independent of each other.

From Fig. 3.6 it becomes clear that the second term appears repeatedly as a subdiagram

in the diagrammatic expansion of the two-particle Green’s function, while the first term
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only appears once in the very leading order. It thus has become common [109, 110] to

introduce the two-particle correlation function

L(1, 2; 3, 4) ≡ G(2)(1, 2; 3, 4) +G(1, 2)G(4, 3)

IPA' G(1, 3)G(4, 2) ≡ L0(1, 2; 3, 4),
(3.76)

where in the second line we defined its independent-particle version. We diagrammat-

ically represent the two-particle correlation functions L(1, 2; 3, 4) and L0(1, 2; 3, 4) as

shown in Fig. 3.7.

Figure 3.7: Diagrammatic representation of the two-particle correlation func-
tion.

The perturbation series for L(1, 2; 3, 4) can be organized even further and cast into

a Dyson-like equation by introducing the notion of the (two-particle-) irreducible in-

teraction kernel K(2)(1, 2; 3, 4), akin to the (one-particle-) irreducible self-energy. We

define it as the sum of all diagrams that do not fall into two pieces if only two electron

lines are cut. The leading-order terms contributing to the irreducible interaction kernel

are depicted in Fig. 3.8. As in the case of the irreducible self-energy, we can take more

subseries of diagrams into account by replacing the Coulomb interaction lines by lines

representing the screened Coulomb interaction, in all but the first diagram, as an inclu-

sion of the screened Coulomb interaction there would render the diagram two-particle

reducible. For example, the consideration of the first row of diagrams and including the

screened Coulomb interaction would lead to the following expression for the interaction
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Figure 3.8: Leading order terms in the diagrammatic expansion of the irre-
ducible interaction kernel.

kernel:

(−i)2K(2)(1, 2; 3, 4) ' iδ(1, 2)δ(3, 4)v(1, 3)− iδ(1, 3)δ(2, 4)W (1, 2)

−G(1, 2)W (1, 3)G(4, 3)W (2, 4)−G(1, 2)W (1, 4)G(4, 3)W (2, 3).

(3.77)

Note that we have defined the diagrammatic representation of the two-particle inter-

action kernel to correspond to (−i)2K(2)(1, 2; 3, 4), similar to how we defined the dia-

grammatic representation of the irreducible self-energy to correspond to (−i)Σ(1, 2).16

The additional minus signs in the first, third, and fourth terms arise due to the anti-

commuting nature of the fermion field operators. Equivalently, one notes that these di-

agrams, when inserted into another diagram, would lead to an additional closed fermion

loop, and hence this minus sign corresponds to the minus sign that is normally pre-

scribed to be included for a closed fermion loop [83, 87–89, 91, 115].

The exact two-particle-irreducible interaction kernel obeys the relation

K(2)(1, 2; 3, 4) =
δΣCoul.(1, 2)

δG(3, 4)
, (3.78)

where δ/δG(3, 4) denotes a functional derivative. This identity plays an important role

16This is done so that the factors of ±i cancel between the interaction kernel and the two-particle
correlation function, whose diagrammatic representation corresponds to i2L(1, 2; 3, 4), similar to how
a single-particle line corresponds to iG(1, 2).

63



in later chapters of this thesis. To illustrate its validity, consider the case of the GW

approximation to the self-energy:

ΣCoul.(1, 2)
GWA' −iv(1, 3̄)G(3̄, 3̄+) + iG(1, 2)W [G](1, 2) (3.79)

(compare Eq. 3.63) and hence

K(2)(1, 2; 3, 4)
GWA' − iδ(1, 2)δ(3, 4)v(1, 3) + iδ(1, 3)δ(2, 4)W (1, 2)

+G(1, 2)W (1, 3)G(4, 3)W (2, 4) +G(1, 2)W (1, 4)G(4, 3)W (2, 3).

(3.80)

Here, the functional derivative of W [G](1, 2) was computed via the relation

W−1(1, 3̄)W (3̄, 2) = δ(1, 2) ⇒ δW (1, 2)

δG(3, 4)
= −W (1, 5̄)

δW−1(5̄, 6̄)

δG(3, 4)
W (6̄, 2), (3.81)

with the functional derivative of the inverse of W (1, 2) being easily obtained from

W−1(1, 2) = v−1(1, 2)− P (1, 2)
RPA' v−1(1, 2) + iG(1, 2)G(2, 1), (3.82)

according to Eq. 3.62. This result matches that obtained via the diagrammatic expan-

sion, given in Eq. 3.77. The general proof is best done diagrammatically and can be

found in the literature [91].

In terms of the two-particle-irreducible interaction kernel, the perturbative expan-

sion for the two-particle correlation function L(1, 2; 3, 4) takes on the diagrammatic form

shown in Fig. 3.9. This diagrammatic identity corresponds to the integral equation

L(1, 2; 3, 4) = L0(1, 2; 3, 4) + L0(1, 2; 5̄, 6̄)K(2)(5̄, 6̄; 7̄, 8̄)L(7̄, 8̄; 3, 4), (3.83)

which is known as the Bethe-Salpeter equation (BSE), after E. Salpeter and H. Bethe,

who derived it in 1951 and used it to find the binding energy of the deuteron [118]. It

was also discussed extensively by G. Wick [119] and R. Cutkosky [120], while modern

treatments within the context of condensed matter systems can be found in Refs. 109

and 110.
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Figure 3.9: Diagrammatic representation of the Bethe-Salpeter equation for
the two-particle correlation function.

The BSE describes the correlated movement of two charge carriers by taking into

account all possible ways in which the two particles can interact with each other. While

it was first employed in nuclear physics [118] and relativistic quantum electrodynam-

ics [119, 120], its arguably main application nowadays lies in the domain of condensed

matter physics, where it is almost exclusively used for the study of optical proper-

ties [109, 110]. The prime example for its use in the context of the latter is the

calculation of optical absorption spectra, i.e., the rate with which an incoming light

wave of a certain frequency creates electronic excitations. In materials in which the

inter-electron Coulomb interaction is not highly screened, such as semi-conductors and

low-dimensional materials, the optically excited electron-hole pairs can form bounds

states with a sizable binding energy. By explicitly considering the Coulomb interaction

between the electron and the hole, the BSE allows the inclusion of bound state effects

on the absorption spectrum.

Returning to our technical exposition of the BSE, for the content presented in this

thesis, it is most useful to pass to the KS basis and consider the Fourier transform:

F (1, 2; 3, 4) ≡
∑
k,k′,q
a,b,c,d

φk+q,a(r1)φk′,d(r4)φ∗k′+q,b(r2)φ∗k,c(r3)

∫
dω

2π

∫
dω′

2π

∫
dω′′

2π

× e−iω(t1−t3)e−iω
′(t4−t2)e−iω

′′(t1−t2)F̃ k+q,a;k,c
k′+q,b;k′,d

(ω, ω′, ω′′),

(3.84)

where F is either one of L or K(2), whose Fourier transforms can only depend on three
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different crystal momenta k, k′, and q and three different frequencies ω, ω′, and ω′′,

due to the discrete translational symmetry of the ground state and time translation

invariance, respectively. The three crystal momenta and frequencies are defined such

that the momentum and frequency flows mimic those depicted in the Feynman diagram

for the screened Coulomb interaction W̃ in Table 3.1. They are also also illustrated

in Fig. 3.10. The graphical illustrations provided by the Feynman diagrams can be

interpreted in the following way: On the left-hand side of the graphical equation shown

in Fig. 3.10, an incoming electron line carries (crystal) momentum k and frequency ω

into the interaction process, while the incoming hole carries momentum k′ and frequency

ω′ away from it. The interaction process transfers a momentum q and a frequency ω′′

between the two, so that the outgoing electron line carriers momentum k + q and

frequency ω + ω′′ away from it. Likewise, the outgoing hole carriers momentum k′ + q

and frequency ω′ + ω′′ into the interaction process. Regarding the band indices, the

electron scatters from band c to band a, whereas the hole scatters from band d to band

b.

By contrast, the Fourier transform of the independent-particle correlation function

L0,

L0(1, 2; 3, 4) ≡
∑
k,k′

a,b,c,d

φk,a(r1)φk′,d(r4)φ∗k′,b(r2)φ∗k,c(r3)

∫
dω

2π

∫
dω′

2π

× e−iω(t1−t3)e−iω
′(t4−t2)L̃

0;
k;a,c
k′;b,d

(ω, ω′),

(3.85)

can only depend on two crystal momenta and two time differences, as it is the product

of two separate one-particle Green’s functions:

L̃
0;
k;a,c
k′;b,d

(ω, ω′) = G̃k,a,c(ω)G̃k′,d,b(ω
′). (3.86)
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In Fourier space, the BSE becomes an integro-matrix equation:

L̃ k+q,a;k,c
k′+q,b;k′,d

(ω, ω′, ω′′) = L̃
0;
k;a,c
k′;b,d

(ω, ω′)δq,02πδ(ω′′)

+
∑
q′

∫
dω′′′

2π
L̃

0;
k+q;a,ē
k′+q;b,f̄

(ω + ω′′, ω′ + ω′′)

× K̃(2)

k+q,ē;k+q′,ḡ
k′+q,f̄ ;k′+q′,h̄

(ω + ω′′′, ω′ + ω′′′, ω′′ − ω′′′)

× L̃ k+q′,ḡ;k,c
k′+q′,h̄;k′,d

(ω, ω′, ω′′′),

(3.87)

which is graphically illustrated in Fig. 3.10. As before, a bar over a band index indicates

that it is being summed over.

Figure 3.10: Diagrammatic representation of the Bethe-Salpeter equation in
Fourier space.

The full Bethe-Salpeter equation features quantities that depend on three different

frequencies. Thus it is impossible to solve exactly and hence further approximations are

required to obtain a practically useful equation for the two-particle correlation function

L. The most common approximation nowadays [109, 110] is to approximate the two-

particle-irreducible interaction kernel, usually by employing the GW approximation for

the one-particle-irreducible self-energy and neglecting the functional derivative of the

screened Coulomb interaction:

ΣCoul.(1, 2) ≈ iG(1, 2)W (1, 2)− iG(3̄, 3̄+)v(1, 3̄)δ(1, 2),
δW (1, 2)

δG(3, 4)
≈ 0. (3.88)
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This approximation leads to a particularly simple form of the interaction kernel:

K(2)(1, 2; 3, 4) =
ΣCoul.(1, 2)

δG(3, 4)
≈ iW (1, 2)δ(1, 3)δ(3, 4)− iv(1, 3)δ(1, 2)δ(3, 4). (3.89)

When the BSE is applied to study the correlated propagation of an electron and a

hole, the two terms retained in this approximation have a simple physical interpreta-

tion: the first term describes the screened, electrostatic attraction between the electron

and the hole, while the second term represents an unscreened, “exchange-like” repul-

sion between them. Despite its apparent simplicity, this approximation still captures

the most important effects of electronic correlation and in many cases leads to good

predictions [109, 110].

The simple structure of the interaction kernel becomes even more apparent in Fourier

space, in which it reads:

K̃
(2)
k+q,a;k,c
k′+q,b;k′,d

(ω, ω′, ω′′) ≈ iW̃ k+q,a;k,c
k′+q,b;k′,d

(ω′′)− iv k+q,a;k,c
k′+q,b;k′,d

≡ K̃
(2)
k+q,a;k,c
k′+q,b;k′,d

(ω′′). (3.90)

The matrix elements of the unscreened Coulomb interaction were defined in Eq. 3.52

and the matrix elements and Fourier components of W (1, 2) are defined as

W̃ k+q,a;k,c
k′+q,b;k′,d

(ω) ≡
∫

dt eiωt
∫

d3r1

∫
d3r2 φ

∗
k+q,a(r1)φ∗k′,d(r2)

× φk′+q,b(r2)φk,c(r1)W (r1, t; r2, 0).

(3.91)

Still, this approximation is not sufficient to simplify the BSE to the point where it can

be solved easily, as it still involves a convolution in frequency space. To resolve this

issue, it is common to approximate the interaction kernel as being static, i.e.,

K̃
(2)
k+q,a;k,c
k′+q,b;k′,d

(ω′′) ≈ iW̃ k+q,a;k,c
k′+q,b;k′,d

(0)− iv k+q,a;k,c
k′+q,b;k′,d

≡ K̃
(2)
k+q,a;k,c
k′+q,b;k′,d

. (3.92)

The mathematical and physical justification for this approximation lies in the fact

that the only frequency dependence of K̃(2) is due to the frequency dependence of the

screened Coulomb interaction W̃ . The spectral decomposition of the latter shows that

68



it has an isolated pole at the plasma frequency, which typically possesses by far the

largest spectral weight and it is therefore often a reasonable approximation to describe

the entire frequency dependence of W̃ with a simple pole at the plasma frequency

only [109, 110]. Note that typical plasma frequencies in solids are on the order of

∼25 eV [109], which is much larger than typical frequencies we want to solve the BSE

for. The latter fall into the range of 0-4 eV, as it covers both the typical crystal vibration

frequencies in solids (0-200 meV) as well as the frequency range of visible light (∼1.6-

3.3 eV). It is then often a reasonable approximation to neglect the frequency dependence

of W̃ , which renders the interaction kernel static.

In this approximation of a static interaction kernel, the BSE becomes:

L̃ k+q,a;k,c
k′+q,b;k′,d

(ω, ω′, ω′′) = L̃
0;
k;a,c
k′;b,d

(ω, ω′)δq,02πδ(ω′′)

+
∑
q′

L̃
0;

k+q;a,ē
k′+q;b,f̄

(ω + ω′′, ω′ + ω′′)K̃
(2)

k+q,ē;k+q′,ḡ
k′+q,f̄ ;k′+q′,h̄

×
∫

dω′′′

2π
L̃ k+q′,ḡ;k,c
k′+q′,h̄;k′,d

(ω, ω′, ω′′′),

(3.93)

which does not feature a convolution in frequency space anymore. The full three-

frequency two-particle correlation function can still not be obtained easily, however.

But as we will aww in the next chapters, this is not necessary for the theoretical

approaches discussed in this thesis though.

For the latter, it will be sufficient to have knowledge of the two-particle correla-

tion function with two different time arguments only, which, after some simplification,

reads:17

L(r1, t1; r2, t
+
1 ; r3, t

+
2 ; r4, t2) =

∑
k,k′,q
a,b,c,d

φk+q,a(r1)φk′,d(r4)φ∗k′+q,b(r2)φ∗k,c(r3)

∫
dω

2π
e−iω(t1−t2)

×
∫

dω′

2π

∫
dω′′

2π
L̃ k+q,a;k,c
k′+q,b;k′,d

(ω + ω′, ω′, ω′′).

(3.94)

17t+1,2 ≡ t1,2 + 0+, where 0+ is a positive infinitesimal, included to resolve the equal time ordering
of the fermion field operators.
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Due to time translation invariance, it can only depend on one time difference and its

Fourier transform can therefore depend on one frequency only:

L̃ k+q,a;k,c
k′+q,b;k′,d

(ω) ≡
∫

dω′

2π

∫
dω′′

2π
L̃ k+q,a;k,c
k′+q,b;k′,d

(ω + ω′, ω′, ω′′). (3.95)

Replacing ω → ω+ω′ in Eq. 3.93 and integrating over ω′ and ω′′, the different frequency

components decouple and the BSE becomes an algebraic equation, local in frequency

space:

L̃ k+q,a;k,c
k′+q,b;k′,d

(ω) = L̃
0;
k;a,c
k′;b,d

(ω)δq,0 +
∑
q′

L̃
0;

k+q;a,ē
k′+q;b,f̄

(ω)K̃
(2)

k+q,ē;k+q′,ḡ
k′+q,f̄ ;k′+q′,h̄

L̃ k+q′,ḡ;k,c
k′+q′,h̄;k′,d

(ω), (3.96)

with the one-frequency independent-particle correlation function

L̃
0;
k;a,c
k′;b,d

(ω) ≡
∫

dω′

2π
L̃

0;
k;a,c
k′;b,d

(ω + ω′, ω′). (3.97)

Eq. 3.96 can, in principle, be solved for the matrix inverse of L̃:18

L̃−1
k+q,a;k,c
k′+q,b;k′,d

(ω) = L̃−1

0;
k;a,c
k′;b,d

(ω)δq,0 − K̃(2)
k+q,a;k,c
k′+q,b;k′,d

. (3.98)

The most important approach in practice, however, is to employ the quasi-particle

approximation to the one-particle Green’s function [109, 110]. The independent-particle

18The matrix inverses are understood as∑
q′,e,f

L̃−1
k+q,a;k+q′,e
k′+q,b;k′+q′,f

(ω)L̃ k+q′,e;k,c
k′+q′,f ;k′,d

(ω) = δq,0δa,cδb,d,∑
e,f

L̃−1
0;

k;a,e
k′;b,f

(ω)L̃
0;

k;e,c
k′;f,d

(ω) = δa,cδb,d.
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two-particle correlation function then becomes:

L̃
0;
k;a,c
k′;b,d

(ω)
QPA≈ δa,cδb,d

∫
dω′

2π
G

(QP)
k,c (ω + ω′)G

(QP)
k′,d (ω′)

= iZ
(QP)
k,c Z

(QP)
k′,d δa,cδb,d

{
(fk,c − fk′,d)(ω − ε(QP)

k,c + ε
(QP)
k′,d )

(ω − ε(QP)
k,c + ε

(QP)
k′,d )2 + (γ

(QP)
k,c + γ

(QP)
k′,d )2/4

+
i

2

[fk,c(1− fk′,d) + fk′,d(1− fk,c)](γ(QP)
k,c + γ

(QP)
k′,d )

(ω − ε(QP)
k,c + ε

(QP)
k′,d )2 + (γ

(QP)
k,c + γ

(QP)
k′,d )2/4

}
.

(3.99)

Furthermore, the quasi-particle weight factors Z
(QP)
k,a can in many cases be well approx-

imated with 1, while the decay widths are usually neglected as well:

L̃
(QP)

0;
k;a,c
k′;b,d

(ω) ≈ iδa,cδb,d
fk,c − fk′,d

ω − ε(QP)
k,c + ε

(QP)
k′,d

, (3.100)

when Eq. 3.98 takes on the simplified form

i(fk,c − fk′,d)L̃−1
k+q,a;k,c
k′+q,b;k′,d

(ω) = ω −H(2p.)
k+q,a;k,c
k′+q,b;k′,d

, (3.101)

where the effective two-particle Hamiltonian is defined as (also compare Ref. 110)

H
(2p.)
k+q,a;k,c
k′+q,b;k′,d

≡ δa,cδb,d

(
ε

(QP)
k,c − ε

(QP)
k′,d

)
δq,0 + i(fk,c − fk′,d)K̃(2)

k+q,a;k,c
k′+q,b;k′,d

. (3.102)

This Hamiltonian can be interpreted as describing a system of two particles with dis-

persions +ε
(QP)
k,c and −ε(QP)

k′,d which interact with each other via a static, two-particle

interaction K̃(2) that transfers crystal momentum q between them and furthermore

scatters them to different bands (“species” in the context of particle physics). In the

approximation to the kernel given in Eq. 3.92, the effective two-particle Hamiltonian

simply reads

H
(2p.)
k+q,a;k,c
k′+q,b;k′,d

= δa,cδb,d

(
ε

(QP)
k,c − ε

(QP)
k′,d

)
δq,0

− (fk,c − fk′,d)W̃ k+q,a;k,c
k′+q,b;k′,d

+ (fk,c − fk′,d)v k+q,a;k,c
k′+q,b;k′,d

.
(3.103)
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For the two particles being one electron and one hole, the two-particle interaction

potential is the sum of a screened, attractive part W̃ and an unscreened, repulsive part

v and hence the spectrum of H(2p.) can potentially feature bound states.

In order to find the two-particle correlation function L̃(ω) at a fixed frequency ω,

one first diagonalizes H(2p.), possibly only partially depending on the range of interest

of ω. We denote its eigenvalues and eigenvectors by εS and AS(q)k,a
k′,b

, respectively. The

latter are eigenvectors of H(2p.) in the sense that∑
k,k′

c,d

H
(2p.)
k+q,a;k,c
k′+q,b;k′,d

ASk,c
k′,d

= εSA
S
k+q,a
k′+q,b

. (3.104)

In term of these eigenvalues and -vectors, the two-particle correlation function can be

written as

L̃ k+q,a;k,c
k′+q,b;k′,d

(ω) = i(fk,c − fk′,d)
∑
S,S′

ASk+q,a
k′+q,b

N−1
S,S′A

S′,∗
k,c
k′,d

ω − εS + iη
, (3.105)

where the overlap matrix N is defined as

NS,S′ ≡
∑
k,k′

a,b

AS,∗k,a
k′,b

AS
′

k,a
k′,b

. (3.106)

Note that the effective two-particle Hamiltonian is in general not hermitian [110] and as

a result its eigenvectors are not necessarily mutually orthogonal. In this case, the over-

lap matrix is non-trivial and needs to be included. As first pointed out by I. Tamm [121]

and S .Dancoff [122], in systems with a sizable energy gap, the coupling matrix elements

between electronic transitions of positive and negative energy can be neglected. In this

so-called Tamm-Dancoff approximation, the two-particle Hamiltonian becomes hermi-

tian and the overlap matrix becomes the identity matrix and can hence be omitted.

This approximation is well-justified for semi-conductors and insulators, in which the

positive- and negative-energy transitions are separated by twice the electronic band

gap. The latter is typically much larger than the usual order of magnitude of the

Coulomb matrix elements between these transitions [109].
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Nowadays the Tamm-Dancoff approximation is regularly and successfully employed

in calculations of the optical absorption spectrum of semi-conductors and insulators

[109, 110], for which it reduces the computational cost of solving the BSE enormously.

For (semi-)metallic systems, however, the lack of a band gap casts doubt on the appli-

cability of the Tamm-Dancoff approximation. Since it is one of the central points of

this work to use the BSE also for a better description of the screening of the electron-

nuclei interaction in (semi-)metallic systems, we retain the more general form of the

two-particle correlation function, given in Eq. 3.105.

This concludes our review and discussion of the electronic correlation functions that

will be needed throughout this thesis. In the next chapter, we will move on to study

the electron-nuclei system on a level of theory that goes beyond the clamped nuclei

approximation.
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Chapter 4

Phonons

In this chapter we discuss the treatment of the coupled electron-nuclei system beyond

the clamped nuclei approximation of the previous chapter. To this end, we will now

restore the nuclei kinetic energy part in the full electron-nuclei Hamiltonian of Eq. 2.14

and introduce the adiabatic, Born-Oppenheimer approximation (BOA), which essen-

tially consists of neglecting only certain matrix elements of the nuclei kinetic energy

operator, instead of neglecting the entire operator as in the CNA.

After presenting a brief review of the BOA, the physical motivation behind it, and

how it leads to a purely nucleonic problem, we will treat the latter in the harmonic

approximation (HA), in which the effective potential for the nuclei is approximated by

a quadratic potential. This will allow us to introduce the notion of phonons. However,

contrary to many popular treatments of phonons [105, 123–125], we will all the time

stick to an entirely quantum mechanical description and will treat the nuclei entirely

within the operator and state formalism of quantum mechanics.

To obtain the eigenstates of the phonon Hamiltonian, it will be necessary to calculate

the effective coupling constants between the nuclei, traditionally known as force con-

stants. The interaction between different nuclei is given by the sum of the nuclei-nuclei

Coulomb repulsion and the indirect Coulomb attraction mediated by the electronic

system. The latter is particularly hard to calculate as the screening of the Coulomb

interaction needs to be described properly. The approach that is applied most often

nowadays is the calculation of the force constants via a DFT-based approach, known
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as density functional perturbation theory (DFPT). However, as already discussed in the

last chapter, DF(P)T is in some cases not able to correctly capture the response of the

electronic system to a lattice distortion.

We therefore derive a novel and concrete theoretical approach using many-body per-

turbation theory (MBPT) that allows the calculation of force constants beyond the

approximations employed in DFPT. While an implementation of this approach is be-

yond the scope of this thesis, our concrete expressions will allow a timely test of the

proposed method. For the calculations presented later in this thesis, we instead used

the currently available implementations of DFPT. Finally, we show how and in which

approximation the DFPT approach can be recovered from our newly developed MBPT-

based formalism.

4.1 The adiabatic, Born-Oppenheimer approxima-

tion

While the clamped nuclei approximation is able to capture the mostly electronic part

of the excited states of the matter Hamiltonian, it cannot describe the excitations that

are mostly nucleonic in nature. These excited states correspond to movements of the

nuclei around their equilibrium position, i.e., to vibrations of the lattice in the case

of a solid-state system. For typical systems of interest, such as semi-conductors and

insulators, these vibrational excitations are of much lower energy than the lowest lying

electronic excitations. Typical vibration energies in a solid are on the order of 0-0.2 eV,

whereas typical electronic excitation energies in semi-conductors start from ∼1 eV [85].

Instead of neglecting the vibrational excitations altogether then, as done in the

CNA, we can make use of the information that the two kinds of excitations are ener-

getically separated by a gap of a relative size of one order of magnitude and neglect

the vibration-induced coupling between electronic states. This comprises the adiabatic,

Born-Oppenheimer approximation (BOA).

Note that this approximation is in general questionable in case of (semi-)metals or

systems with small electronic gaps as the vibrational and electronic excitations are no

longer energetically separated by a sizable gap and neglecting the coupling between the
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two can no longer be well motivated a priori on physical grounds. Indeed, it has been

shown that in the case of graphene, a semi-metallic system, the Born-Oppenheimer ap-

proximation fails to capture some effects, such as changes in the vibrational frequencies

when the density of electrons is changed [28]. As a large part of this work also deals with

the application of the developed theoretical and computational methods to graphene,

we want to point out that, contrary to most works that use the Born-Oppenheimer

approximation, we do not consider it to be the final approximation for the treatment

of the electron-nuclear system, but rather we view it as an intermediate step in its

perturbative treatment that provides a better starting point than the clamped nuclei

approximation, even for the case of graphene or other (semi-)metallic systems.

In order to be more precise and introduce the BOA in mathematical terms, we re-

turn again to the full electron-nuclei Hamiltonian, which is given by the sum of the

CNA Hamiltonian and the kinetic energy operator for the nuclei:

ĤM = ĤCNA +
∑
I

P̂2
I

2MI

. (4.1)

We can express the full matter Hamiltonian in the complete basis of the electron-nuclei

system provided by the eigenstates of the CNA Hamiltonian (see Eq. 3.3):

ĤM =
∑
ν

∑
{RI}

Vν({RI})|ν, {RI}〉〈ν, {RI}|

+
∑
ν,ν′

∑
{RI},{R′I}

Tν,ν′({RI}, {R′I})|ν, {RI}〉〈ν ′, {R′I}|,
(4.2)

where we defined the matrix elements of the nuclear kinetic energy operator as

Tν,ν′({RI}, {R′I}) ≡ 〈ν, {RI}|
∑
I

P̂2
I

2MI

|ν ′, {R′I}〉 (4.3)

and the Vν({RI}) are the eigenvalues of the CNA Hamiltonian as defined in Eq. 3.5.

While the CNA consists of neglecting all matrix elements Tν,ν′({RI}, {R′I}) entirely,

in the BOA, we merely neglect the subset of them that corresponds to the coupling of
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electronic and nuclei excitations.

To start with, we directly evaluate the matrix elements by inserting the tensor

product form of the states |ν, {RI}〉 (see Eq. 3.3):

Tν,ν′({RI}, {R′I}) = e〈ν({RI})|ν ′({R′I})〉e × n〈{RI}|
∑
I

P̂2
I

2MI

|{R′I}〉n. (4.4)

The second factor can be evaluated in a position space basis and reads

n〈{RI}|
∑
I

P̂2
I

2MI

|{R′I}〉n =
∑
I

1

2MI

[−∇′ 2I δ(3)(RI −R′I)]×
∏
J 6=I

δ(3)(RJ −R′J), (4.5)

where the prime on ∇′I refers to the derivative with respect to R′I . Applying the usual

rules for the treatment of the derivatives of distributions and products, the nuclear

kinetic energy term in the Hamiltonian can be written as the sum of three contributions:

∑
ν,ν′

∑
{RI},{R′I}

Tν,ν′({RI}, {R′I})|ν, {RI}〉〈ν ′, {R′I}|

=
∑
ν,ν′

∑
{RI},{R′I}

|ν, {RI}〉δ{RI},{R′I}

×
{∑

I

−1

2MI

[ (
e
〈ν({RI})|∇′ 2I |ν ′({R′I})〉e

)
〈ν ′, {R′I}|

+ 2
(

e
〈ν({RI})|∇′I |ν ′({R′I})〉e

)
·
(
∇′I〈ν ′, {R′I}|

)
+
(

e
〈ν({RI})|ν ′({R′I})〉e

)(
∇′ 2I 〈ν ′, {R′I}|

)]}
,

(4.6)

where δ{RI},{R′I} ≡
∏

I δ
(3)(RI −R′I). To make the notation cleaner, we introduce the

abbreviations

(Peff,I)ν,ν′ ({RI}) ≡ e〈ν({RI})|
[
− i∇I |ν ′({RI})〉e

]
, (4.7)

∆Vν,ν′({RI}) ≡
∑
I

1

2MI
e〈ν({RI})|

[
−∇2

I |ν ′({RI})〉e
]
. (4.8)
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It is important to note that both of these quantities are just numbers that depend on

the electronic quantum numbers ν and ν ′ and the nuclear configuration {RI}. Also

note that for ν = ν ′ we have (Peff,I)ν,ν ({RI}) = 0, as follows from the normalization

of the states |ν({RI})〉e (see also Ref. 92). With these abbreviations, the full matter

Hamiltonian becomes the sum of four terms:

ĤM =
∑
ν,{RI}

|ν, {RI}〉
[
Vν({RI}) + ∆Vν,ν({RI})

]
〈ν, {RI}|

+
∑
ν,{RI}

|ν, {RI}〉
[∑

I

(
− ∇

2
I

2MI

)]
〈ν, {RI}|

+
∑

ν,ν′,{RI}
ν 6=ν′

|ν, {RI}〉
[

∆Vν,ν′({RI})
]
〈ν ′, {RI}|

+
∑

ν,ν′,{RI}
ν 6=ν′

|ν, {RI}〉
[∑

I

1

MI

(Peff,I)ν,ν′ ({RI}) · (−i∇I)

]
〈ν ′, {RI}|.

(4.9)

The first of these terms is the matter Hamiltonian in the CNA with the eigenvalues

shifted by ∆Vν,ν({RI}). The term in the second line describes a coupling between states

of different nuclear configuration but involving the same electronic state. By contrast,

the third term describes a coupling between different electronic states with the same

nuclear configuration. Finally, the last line contains all terms involving both a coupling

between electronic states and nuclear configurations.

As discussed and motivated in the introduction to this section, the adiabatic approx-

imation consists of neglecting all couplings between different electronic states. This

approximation is also often called the Born-Oppenheimer approximation (BOA) after

M. Born and R. Oppenheimer, who introduced it in 1927 as part of their work on the

rotational and vibrational spectra of molecules [126]. This approximation has its phys-

ical justification in the picture that the electronic part of many systems adjusts itself

instantaneously to a change of the nuclei positions. In Fourier space, i.e., in terms of

energies, this corresponds to the fact that electronic excitation frequencies and decay

rates are sizably larger than the vibrational frequencies, as mentioned at the beginning
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of this section.

As for the full matter Hamiltonian as written in Eq. 4.9, the BOA consists of neglecting

the terms in the third and fourth line. However, it is also common to neglect the slight

shift to the CNA eigenvalues provided by ∆Vν,ν({RI}), as it is typically very small due

to the smallness of the spatial gradient of the state |ν, {RI}〉 and the smallness of the

inverse nuclei masses [92].1 We then define the electron-nuclei Hamiltonian in the BOA

as

ĤBOA ≡
∑
ν,{RI}

|ν, {RI}〉
[∑

I

(
− ∇

2
I

2MI

)
+ Vν({RI})

]
〈ν, {RI}|. (4.10)

To find the eigenstates and the spectrum of ĤBOA, we note that the BOA Hamilto-

nian is diagonal in the quantum number ν and hence we can label its eigenstates with

the quantum number ν and write it as a superposition of states |ν, {RI}〉 of different

{RI} but same ν:

|α, ν〉 =
∑
{RI}

Aαν ({RI})|ν, {RI}〉, (4.11)

where α labels the different eigenstates of ĤBOA to the same electronic quantum number

ν. Application of the BOA Hamiltonian to |α, ν〉 then yields

ĤBOA|α, ν〉 =
∑
{RI}


[∑

I

(
− ∇

2
I

2MI

)
+ Vν({RI})

]
Aαν ({RI})

|ν, {RI}〉 (4.12)

from where it follows that the Schrödinger equation

ĤBOA|α, ν〉 = Eα(ν)|α, ν〉 (4.13)

is equivalent to an infinite set of independent differential equations for the coefficient

1Some works, e.g., Ref. 92, distinguish between the adiabatic and the frozen phonon approxima-
tions. The former consists of only neglecting terms which involve different electronic quantum numbers,
while the latter further neglects terms diagonal in the electronic quantum number but off-diagonal in
the nuclear configurations. For our purposes, however, this distinction is not important.
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functions Aαν ({RI}), one for each electron quantum number ν:[∑
I

(
− ∇

2
I

2MI

)
+ Vν({RI})

]
Aαν ({RI}) = Eα(ν)Aαν ({RI}). (4.14)

This equation has the form of a many-body Schrödinger equation in nuclear space,

expressed in the eigenbasis of the position operators. If we identify a state |α(ν)〉n
via Aαν ({RI}) ≡ n〈{RI}|α(ν)〉n, we can re-write Eq. 4.14 as an abstract Schrödinger

equation in the nuclear Hilbert space:

Ĥn(ν)|a(ν)〉n = Eα(ν)|a(ν)〉n, (4.15)

where we introduced the purely nucleonic Hamiltonian

Ĥn(ν) ≡
∑
I

P̂2
I

2MI

+ Vν({R̂I}), (4.16)

with the potential function Vν now being evaluated at the set of position operators,

{R̂I}. This Hamiltonian acts in the nuclear subspace of the full electron-nuclei Hilbert

space only, and depends on the electrons only parametrically through the appearance of

the quantum number ν. The BOA thus leads to a similar simplification as the clamped

nuclei approximation does for the electronic subsystem (compare Eq. 3.8), where we

similarly arrived at a family of independent Schrödinger equations for the electrons that

depend on the nuclei only parametrically. We will denote the ground state of the BOA

Hamiltonian by |0BOA〉 ≡
∑
{RI}A

α=0
0 ({RI})

[
|0({RI})〉e ⊗ |{RI}〉n

]
, while its energy

can be written as E0,BOA ≡ E0,CNA + E0,ZP where E0,CNA is the ground state energy of

the Hamiltonian in the clamped nuclei approximation.

The potential operator Vν({R̂I}) effectively couples all nuclei through their electro-

static interaction with electrons and between each other and hence the nuclear Hamil-

tonians Ĥn(ν) describe collective excitations of the nuclei. The potential also con-

tains arbitrarily high powers of the position operators R̂I and thus the many-particle

Schrödinger equation for the nuclei is not easy to solve or to simplify on general grounds.

However, for the purpose of describing only low-energy excitations from the ground
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state, we can focus on the ν = 0-Hamiltonian only, for which the function Vν=0({RI})
has, for a solid-state system, a pronounced minimum at a configuration {R(0)

I }. In a

first approximation then, we can expand the function V0({RI}) into a Taylor series

around {R(0)
I }.

4.2 The harmonic approximation

For many systems, the terms of third or higher order in the Taylor expansion of

V0({RI}) typically have small expansion coefficients and the expansion can in a first

approximation be terminated after the quadratic order. We will focus on the potential

provided by the electrons in their ground state ν = 0 only, as this yields the lowest-

energy excitations. The eigenstates of the nuclei Hamiltonian in this approximation

will later be used to study the fully interacting electron-nuclei system in perturbation

theory.

The ν = 0-potential for the nuclei is given by

V0({R̂I}) = e〈0({R̂I})|

∑
i

p̂2
i

2m
+

1

2

∑
i,j
i 6=j

e2

|r̂i − r̂j|
+
∑
i,I

−ZIe2

|r̂i − R̂I |

 |0({R̂I})〉e

+
1

2

∑
I,J
I 6=J

ZIZJe
2

|R̂I − R̂J |
.

(4.17)

It depends on the R̂I through both the electronic Hamiltonian Ĥe({R̂I}) and the elec-

tronic ground state |0({R̂I})〉e. With the function V0{RI} having a stable minimum

at the equilibrium nuclear configuration {R(0)
I }, we expand the potential up to second

order in the nuclei positions:

V0({RI}) ' V0({R(0)
I }) +

∑
I,i

∂V0

∂R
(0)
I,i

({R(0)
I })(RI,i −R(0)

I,i )

+
1

2

∑
I,J
i,j

∂2V0

∂R
(0)
I,i ∂R

(0)
J,j

({R(0)
I })(RI,i −R(0)

I,i )(RJ,j −R(0)
J,j),

(4.18)
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where the index i runs over the three cartesian directions and the linear term vanishes

on account of {R(0)
I } being the location of a minimum of V0({RI}). We will call this

approximation the harmonic approximation (HA) since such a potential describes a

system of coupled harmonic oscillators, that is, coupled vibrations of the nuclei around

their equilibrium positions, which result in lattice vibrations in case of a solid. As

the latter are responsible for transporting sound through a solid, the eigenstates of

the corresponding Hamiltonian are traditionally called phonons. The approximation of

replacing the full potential with a harmonic one is a very good one for many solids,

in which anharmonic effects, i.e., phonon-phonon scattering, are often very small [105].

They can then be treated perturbatively [127], which, however, is beyond the scope of

this thesis and will not be discussed much further.

Denoting the second derivatives of V0, the so-called force constants, by CI,J
i,j

, the

nuclear Hamiltonian in the harmonic approximation reads

ĤHA = V0({R(0)
I }) +

1

2

∑
I,J
i,j

CI,J
i,j
ûI,iûJ,j ≡ E0,CNA + Ĥph, (4.19)

where we split off the ground state energy of the electron-nuclei system in the CNA

and simplified the notation by introducing the displacement operators

ûI ≡ R̂I −R
(0)
I . (4.20)

Note that the ûI , still obey the canonical commutation relations with the momentum

operators P̂I : [
ûI,i, ûJ,j

]
=
[
P̂I,i, P̂J,j

]
= 0,

[
ûI,i, P̂J,j

]
= iδI,Jδi,j. (4.21)

As noted in the previous chapter, for solid-state systems, each vector describing the

position of a specific nucleus in the equilibrium configuration {R(0)
I } is given by the

sum of a lattice vector Rn and a vector τα describing the position of the nucleus within

the unit cell of the crystal. We will then label the nuclei by a tuple (n, α), i.e., we write

R
(0)
I ≡ R

(0)
n,α ≡ Rn+τα. Due to the discrete translation symmetry of the crystal lattice,
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the force constants can only depend on the differences R
(0)
I −R

(0)
J = R

(0)
n,α−R

(0)
m,β. They

thus remain invariant if both R
(0)
I and R

(0)
J are shifted by the same lattice vector, that

is,

CI,J
i,j
≡ C(n,α),(m,β)

i,j

= C(n−m,α),(0,β)
i,j

≡ Cα,β
i,j

(Rn −Rm), (4.22)

where in the intermediate step n−m is a short-hand notation for Rn −Rm. In terms

of the index tuples (n, α), the phonon Hamiltonian then reads

Ĥph =
∑
n,α

P̂2
(n,α)

2Mα

+
1

2

∑
n,m

∑
α,β
i,j

Cα,β
i,j

(Rn)û(n+m,α),iû(m,β),j. (4.23)

The force constants are defined on the regular grid of lattice points Rn and can

therefore be interpreted as the coefficients of a Fourier series

Dα,β
i,j

(q) ≡ 1√
MαMβ

∑
n

e−iq·RnCα,β
i,j

(Rn), (4.24)

where D(q) is called the dynamical matrix and depends on the vector q, which, due to

the periodicity of the Fourier series, can be restricted to the first Brillouin zone. The

inverse transformation is given by

Cα,β
i,j

(Rn) =
√
MαMβ

1

N

∑
q

eiq·RnDα,β
i,j

(q), (4.25)

where N is the number of unit cells in a system with periodic boundary conditions. By

introducing the normal mode displacement and momentum operators via

ûα,iq ≡
1√
N

∑
n

e−iq·Rnû(n,α),i, P̂α,i
q ≡ 1√

N

∑
n

e−iq·RnP̂(n,α),i, (4.26)

the phonon Hamiltonian can be written in the form

Ĥph =
∑
q

{∑
α,i

P̂α,i
−qP̂

α,i
+q

2Mα

+
1

2

∑
α,β
i,j

ûα,i−q
√
MαDα,β

i,j
(q)
√
Mβû

β,j
+q

}
. (4.27)
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The normal mode position and momentum operators satisfy the commutation relations

[
ûα,iq , ûβ,jq′

]
=
[
P̂α,i
q , P̂ β,j

q′

]
= 0,

[
ûα,iq , P̂ β,j

q′

]
= δα,βδi,jδq,−q′ . (4.28)

We also note that (ûα,iq )† = ûα,i−q and (P̂α,i
q )† = P̂α,i

−q .

While the different normal modes, labeled by q, are now decoupled, the different

coordinate degrees of freedom of each normal mode are still coupled via the dynamical

matrix. To decouple them, one can diagonalize the matrix D(q):∑
β,j

Dα,β
i,j

(q)vβ,jq,λ = ω2
q,λv

α,i
q,λ, (4.29)

where λ labels the different eigenvectors. In a system with Nat atoms in the unit cell,

D(q) is a hermitian (3Nat)×(3Nat)-matrix. Hence there are 3Nat mutually orthogonal

eigenvectors vα,iq,λ and the index λ is said to label the different phonon branches. As-

suming time-reversal symmetry, we have vα,i−q,λ = (vα,iq,λ)
∗ and the hermiticity of D(q)

implies that its eigenvalues ω2
q,λ are real. The fact that the equilibrium configuration

{R(0)
I } is a stable minimum furthermore implies ω2

q,λ ≥ 0, i.e., the phonon frequencies

ωq,λ in a stable system are real.

The normal mode position and momentum operators can in a next step be expanded

in the basis of eigenvectors of D(q):

ûα,iq ≡
M0

Mα

∑
λ

vα,iq,λûq,λ, P̂α,i
q ≡ Mα

M0

∑
λ

vα,iq,λP̂q,λ, (4.30)

where M0 is a fixed, arbitrary reference mass, introduced for later convenience. In terms

of the operators ûq,λ and P̂q,λ, the Hamiltonian becomes

Ĥph =
∑
q,λ

{
P̂−q,λP̂+q,λ

2M0

+
1

2
M0ω

2
q,λ, û−q,λû+q,λ

}
(4.31)

and thus describes a set of independent harmonic oscillators.

To find the spectrum and eigenvectors of Ĥph, the familiar algebraic method of

creation and annihilation operators can be applied. We thus define the phonon creation
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and annihilation operators as

b̂q,λ ≡
√
M0ωq,λ

2

[
ûq,λ + i

1

M0ωq,λ

P̂q,λ

]
,

b̂†q,λ =

√
M0ωq,λ

2

[
û−q,λ − i

1

M0ωq,λ

P̂−q,λ

]
,

(4.32)

which obey the commutation relations[
b̂q,λ, b̂q′,λ′

]
=
[
b̂†q,λ, b̂

†
q′,λ′

]
= 0,

[
b̂q,λ, b̂

†
q′,λ′

]
= δq,q′δλ,λ′ . (4.33)

In terms of these operators, the phonon Hamiltonian factorizes and takes on the well-

known form

Ĥph =
∑
q,λ

ωq,λ

(
b̂†q,λb̂q,λ +

1

2

)
. (4.34)

The eigenstates of the Hamiltonian for each normal mode can be labeled by a non-

negative integer n ∈ N0:

Ĥph|n,q, λ〉n = ωq,λ

(
n+

1

2

)
|n,q, λ〉n, (4.35)

where the states |n,q, λ〉n are defined as

|n,q, λ〉n ≡
1√
n!

(
b̂†q,λ

)n
|0,q, λ〉n, (4.36)

with the energetically lowest eigenstate being determined by the equation

b̂q,λ|0,q, λ〉n = 0. (4.37)

The spectrum of the nuclear Hamiltonian in the harmonic approximation is thus en-

tirely determined from knowledge of the phonon frequencies ωq,λ. As these are directly

experimentally accessible, for example, via Raman spectroscopy or inelastic neutron

or X-ray scattering, it is thus of great interest to have a reliable theoretical method

available that allows their calculation. The main challenge lies in the calculation of
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the dynamical matrix or, equivalently, the force constants. From their definition as the

second derivatives of the effective potential for the nuclei, Eq. 4.17, they are given by

the sum of an electronic and a nuclear contribution:

Cα,β
i,j

(Rn) = C
(el)
α,β
i,j

(Rn) + C
(nuc)
α,β
i,j

(Rn), (4.38)

where the latter is straightforward to calculate and reads

C
(nuc)
α,β
i,j

(Rn) =(1− δn,0δα,β)

[
δi,j

|Rn + τα − τ β|3
− 3(Rn + τα − τ β)i(Rn + τα − τ β)j

|Rn + τα − τ β|5
]

− δn,0δα,β
∑
m6=n
γ 6=β

[
δi,j

|Rm + τ γ − τ β|3
− 3(Rm + τ γ − τ β)i(Rm + τ γ − τ β)j

|Rm + τ γ − τ β|5
]
.

(4.39)

The electronic part of the force constants can be obtained by applying the Hellmann-

Feynman theorem [128, 129] to simplify the first derivative of the electronic part of the

potential:

∂

∂Rn,α,i

V
(el)

0 ({RI}) =
∂

∂Rn,α,i
e〈0({RI})|Ĥe({RI})|0({RI})〉e

H.-F.
= e〈0({RI})|

∂Ĥe

∂Rn,α,i

({RI})|0({RI})〉e

=

∫
d3r

∂Vlat

∂Rn,α,i

(r; {RI})n(r; {RI}).

(4.40)

The electronic part of the force constants is then given by

C
(el)
α,β
i,j

(Rn) =

∫
d3r

[
∂2Vlat(r)

∂R
(0)
n,α,iR

(0)
0,β,j

n(r) +
∂Vlat(r)

∂R
(0)
n,α,i

∂n(r)

∂R
(0)
0,β,j

]
, (4.41)

where the electron density in the equilibrium nuclear configuration has been denoted

by n(r) ≡ n(r; {R(0)
I }). While the derivatives of the lattice potential do not pose any

theoretical or computational problems [130], the ground state electronic charge density

n(r; {R(0)
I }) and its first derivative with respect to the displacement of a nucleus can
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only be calculated in some approximation. In the remainder of this chapter we will

therefore discuss two approaches for their calculation and their comparison.

Firstly, we will review an approach by Baroni et al. [130] based on an extension of

DFT called density functional perturbation theory (DFPT). After briefly describing the

basic approach, we will apply it to the case of graphene. Even though it works very

well for many materials, it gives inaccurate results for systems with strong electronic

correlation effects and in (semi-)metallic systems in which so-called Kohn anomalies

are present [68], of which graphene is one example.

To overcome the shortcomings of DFPT, we propose a novel theoretical approach

based on many-body perturbation theory (MBPT) for the calculation of force constants

and hence of phonon frequencies. Note that the main focus of this thesis is still the study

of Raman spectroscopy and as such a computational application of our new approach

is beyond its scope. Nevertheless, we will still work out a concrete expression for the

dynamical matrix that goes beyond the approximations present in DFPT. On the one

hand, this will allow an easy and timely implementation, which will be the subject of

future work. On the other hand, it permits a discussion of the underlying physics that

is not captured in DFPT. Regarding to the latter, we will also analytically establish a

link between the common DFPT approach and our new MBPT approach and show in

which approximation the latter reduces to the former.

4.3 Phonons in density functional perturbation the-

ory

One efficient, and for many systems very accurate way, of calculating force constants is

based on density functional theory. In Section 3.2, we reviewed how the exact ground

state electron density could be well approximated by an electron density calculated

self-consistently within Kohn-Sham density functional theory:

n(r) = e〈0|ψ̂†(r)ψ̂(r)|0〉e → nKS(r) = e〈0KS|ψ̂†(r)ψ̂(r)|0KS〉e. (4.42)
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In the density functional perturbation theory approach to the calculation of force con-

stants, pioneered by Baroni et al. [130], this approximation is applied to the derivative

of the electron density as well:

∂n(r)

∂R
(0)
0,β,j

→ ∂nKS(r)

∂R
(0)
0,β,j

. (4.43)

While the exact density does usually not differ much from the density of the Kohn-

Sham system, its change under nuclei displacements can be very much different for

some systems, such as graphene, as the failure of this approximation for some phonon

modes reveals [53]. Nevertheless, this approach yields a very good result for many

systems, including most phonon modes of graphene [130, 131] and is computationally

very efficient. Before discussing its shortcomings and a theoretical approach to overcome

them, we will thus firstly briefly review the DFPT approach.

According to Eq. 4.41, the electronic part of the force constants is entirely defined

by the zeroth and first derivative of the charge density. For the auxiliary Kohn-Sham

system of DFT, the ground state charge density is given by

nKS(r) =
∑

(k,n)∈O

|φk,n(r)|2, (4.44)

where O denotes the set of indices of all occupied states, with the KS states being filled

up from lowest to highest energy until
∫

d3r nKS(r) = Nel. The derivative with respect

to A ≡ R
(0)
0,β,j is then given by

∂AnKS(r) = 2 Re
∑

(k,n)∈O

φ∗k,n(r)
(
∂Aφk,n(r)

)
, (4.45)

i.e., it can be computed from the change of the KS orbitals φk,n(r) = e〈r|k, n〉e. The

derivative of the KS orbitals, in turn, can be obtained by taking the derivative on both

sides of the one-particle Schrödinger equation:(
ĤKS − εk,n

)(
∂A|k, n〉e

)
= −

(
∂AĤKS − ∂Aεk,n

)
|k, n〉e, (4.46)
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where we inserted the derivative of the KS Hamiltonian, ∂AĤKS = ∂AV̂scf , and the

derivative of the KS eigenvalue εk,n as given by

(
∂AV̂scf

)
[nKS, ∂AnKS] = ∂AV̂lat +

∫
d3r

δV̂Hxc[nKS]

δnKS(r)

(
∂AnKS(r)

)
, (4.47)

∂Aεk,n = e〈k, n|∂AV̂scf |k, n〉e. (4.48)

The standard perturbation theory approach to the problem consists of solving Eq. 4.46

by inserting the complete set of eigenstates of ĤKS and obtain the expansion coefficients

of ∂A|k, n〉e in the basis {|k, n〉e}. However, this procedure involves a summation over

many states, which is computationally undesirable. In the DFPT approach, by contrast,

the set of equations 4.45, 4.46, and 4.47 is instead treated as a coupled set of equations

for which a self-consistent solution for ∂AnKS(r) and ∂AV̂scf is to be found.

It is noteworthy that the whole procedure of self-consistently solving the coupled

set of equations only involves occupied states, which is a small and computationally

manageable set of states compared to the full set of intermediate states that needs to

be inserted in the traditional perturbation theory approach. In particular, to obtain the

derivative of the states, Eq. 4.46 only needs to be solved for ∂A|k, n〉e for (k, n) ∈ O.2

The self-consistent DFPT algorithm is graphically summarized in Fig. 4.1. Having ob-

tained the self-consistent derivative of the Kohn-Sham electron density, it can then be

inserted into Eq. 4.41 to obtain the electronic part of the force constants. In practice,

one usually directly calculates the Fourier-transformed force constants, i.e., the dynam-

ical matrix, for a desired wave vector q, as in this way, one needs to only consider the

change of the charge density for one specific linear combination of nuclei displacements.

This method thus has a major computational advantage over so-called frozen phonon

methods in which the force constants are calculated by evaluating the first derivatives

2On a technical note, solving Eq. 4.46 for ∂A|k, n〉e involves inverting the operator ĤKS−εk,n, which
appears to cause a problem when acting on the |k, n〉e-component of the right-hand side. However, it is
straightforward to show from the conventional perturbation theory expression [92, 130] that ∂AnKS(r)
stays invariant when the perturbation operator ∂AV̂scf is replaced by P̂non−occ.∂AV̂scf , where P̂non−occ.
is a projection operator that projects into the subspace of non-occupied states, as the contribution
of occupied states vanishes identically. For the purpose of obtaining ∂AnKS(r), it is then permissible
to replace (∂AĤKS − ∂Aεk,n) by P̂non−occ.(∂AĤKS − ∂Aεk,n), when the singularity of the inverse of

ĤKS − εk,n for (k, n) ∈ O does not matter, since it is never applied to an occupied state.
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Choose initial ∂A|k, n〉e for occupied states

Calculate ∂AnKS(r)

Calculate ∂AVscf(r)

Calculate ∂A|k, n〉e

Converged?

Output ∂AnKS(r), ∂AVscf(r)

Yes

No

Figure 4.1: Self-consistency cycle in density functional perturbation theory.

of the forces on an atom in the unit cell. While the forces can be calculated via the

Hellmann-Feynman theorem [128, 129], their first derivatives are calculated with fi-

nite difference methods in the frozen phonon approach, which hence requires multiple

computations.

To give an example for the application of the DFPT method, we show the DFPT

phonon dispersion of graphene in Fig. 4.2a. Note that we follow the historically rooted

spectroscopic custom to give the phonon frequencies and energies in units of cm−1, i.e.,

in terms of the inverse wave length of a corresponding light wave:

1

λ
=

ω

2πc
=

E

2π~c
. (4.49)

For practical uses we also note that the conversion between the most often used units

for phonon frequencies can most easily be done by keeping in mind that

8 cm−1 =̂ 1.51 THz =̂ 1 meV. (4.50)
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Figure 4.2: Phonon dispersion of graphene in DFPT and example of a Kohn
anomaly. (a) Phonon dispersion of graphene along the high-symmetry-line Γ-K-M -Γ
of the first Brillouin zone (see Fig. 7.1 for a sketch of the first BZ). The calculation
was done using the DFPT method within the LDA. (see Ref. 67 for numerical details
and convergence parameters). (b) Zoom-in into the Kohn anomaly of the TO branch
of the phonon dispersion near q = K. Symbols denote experimental data obtained
from inelastic X-ray scattering (IXS) on graphite4 and Raman spectroscopy.5 Lines
represent the results of a calculation by Lazzeri et al. [53] using the DFPT method
(full line) and a method based on finite differences of KS energies corrected within the
GW approximation (dashed line). (Figure of panel (b) reprinted with permission from
Lazzeri, M. et al., Phys. Rev. B 78, 081406 (2008). Copyright 2008 by the American
Physical Society.)

Since graphene features two atoms in the unit cell (compare sketch in Fig. 7.1),

the dynamical matrix is of size 6×6, and hence there are six phonon branches: two

out-of-plane ones, in which the nuclei move perpendicular to the graphene sheet and

of which one is optically active (ZO) and one is not (ZA), and four in-plane ones, of

which two are optically active (LO,TO) and two are not (LA,TA). An illustration of

the vibration patterns for the two degenerate in-plane optical branches at q = Γ, and

the highest optical branch at q = K is shown in Fig. 4.3. The modes are often denoted

by the representation of the point group of the respective wave vectors they transform

in, using the Mulliken notation3 [132]. In this notation, the doubly degenerate in-plane

3In the Mulliken notation, A and B denote a one-dimensional representation with the mode behav-
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Figure 4.3: Illustration of the vibration patterns of two phonon modes of
graphene. Patterns of the nuclei vibrations according to the highest optical phonon
branches at Γ (panel (a)) and K (panel (b)). The red and green dots mark the nuclei
positions in equilibrium (compare Fig. 7.1), while the arrows denote the displacements
of the nuclei according to the respective eigenvector of the dynamical matrix. The
dashed lines in panel (a) trace the Wigner-Seitz cell of the graphene lattice, while the
dotted lines in panel (b) mark a supercell of six atoms, as the wave length of the lattice
vibrations for q = K is three times the lattice constant. Note that both the dashed and
the dotted hexagons also represent the respective unit cells of the vibration patterns.
(Figure inspired by Ref. 53.)

optical mode at the Γ-point is denoted by E2g, while the non-degenerate highest optical

branch at the K-point is characterized by the symbol A′1.

The vibrational band structure shown in Fig. 4.2a is, as a whole, in very good agree-

ment with the experimentally obtained dispersion from both inelastic X-ray scattering

ing in either an even or odd way under rotations, respectively, while E and T denote doubly and triply
degenerate modes, respectively. A subscript 1 is used for modes that are even under reflections with
respect to a C2 axis, while 2 is used for modes that are odd under this operation. For crystals with
inversion symmetry, a subscript of g or u is attached if the mode transforms in an even (gerade) or
odd (ungerade) way under spatial inversion, respectively. Likewise, in crystals with horizontal mirror
plane symmetry, a single prime (′) is used to label modes that are even under reflections at this plane,
while a double prime (′′) is used for modes that are odd under such reflections.
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(IXS) on graphite4 [62, 133, 134] and Raman spectroscopy5 [61, 135] and also agrees

well with previous calculations on the same level of theory [53, 56, 136]. However, both

the DFPT and DFT-based frozen phonon methods have problems in accurately describ-

ing the phonon frequencies near certain points in the first Brillouin zone, at which the

phonon dispersion features anomalies in the form of kinks. For graphene these kinks

appear in the highest optical branches at Γ and K, where the phonon dispersion be-

comes non-analytic. These anomalies have first been discussed by W. Kohn in 1959 [68]

and are nowadays known as Kohn anomalies.

The non-analyticity of the phonon dispersion is a sign of the long-range nature of

the force constants, which decay only very slowly as a function of |Rn|. This directly

follows from the fact that the dynamical matrix depends on q through a sum of the

analytical functions exp(−iq ·Rn), weighted by the force constants C(α,i),(β,j)(Rn). A

sum of a finite number of analytical functions is again analytic and hence a non-analytic

behavior can only result from summing an infinite number of functions, for which it is

necessary that the force constants decay very slowly with |Rn|, i.e., that they are long-

range in nature. As seen from the zoom-in into the TO branch in the region around K

shown in Fig. 4.2, the DFPT approach has problems reproducing the experimentally

observed behavior around the K point. While the Kohn anomaly does appear in the

DFPT dispersion, it appears much less pronounced compared to the one observed in

experiment. The failure of DFPT to correctly reproduce the strength of the anomaly is

directly related to the problem of overscreening of the Coulomb interaction in DFT by

the use of exchange-correlation functionals inspired by the free electron gas. Due to the

overestimation of the screening capabilities of the electronic system, the change of the

lattice potential due to the displacement of one atom is underestimated and as a result

the response of the electronic system to this perturbation is underestimated as well. In

4Due to the generally very small X-ray scattering cross sections for monolayer materials, no IXS
data is available for graphene. Instead, the theoretical phonon dispersion of graphene is usually
compared to IXS data for bulk graphite, which has a sizable IXS cross section. The dispersions of
the in-plane phonon branches (LA,TA,LO,TO) of graphene and graphite are very similar with the
exception of the Khon anomalies in the highest optical branch at Γ and K, where the larger screening
effects of graphite weaken the anomalies compared to the case of graphene.

5The phonon dispersion of graphene can be obtained from Raman spectroscopy only in the region
around the K point and only for the highest optical branch, using the so-called double resonant
model [60, 61]. See also Ref. 67 for an introductory, conceptual explanation.
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particular, the perturbation and the response of the electronic system both appear to

be much more short-ranged. Since it is the response of the electronic system that is

responsible for the electronic part of the force constants, the force constants appear to

be of shorter range in DFPT than they are in reality.

For many materials, in particular insulators and semi-conductors, this problem of

DFPT is of little consequence, as the electrons tend to be localized and thus electrons

very far away from a local perturbation of the lattice potential will not be strongly

affected by it in any case. As a result, the force constants in these kinds of systems are

in general of a short-range nature. Therefore, DFPT is a very accurate way to calculate

phonon frequencies in these kinds of systems and has been applied successfully to a

wide variety of them [130]. For metals and semi-metals such as graphene, however, in

which the electrons are very much delocalized, electrons at a large distance from a local

perturbation can in general be affected by it. Nevertheless, the strong metallic screening

of the perturbation in these systems still leads to force constants that are rather short-

range in general. However, as first pointed out by W. Kohn [68], for perturbations of

a certain wave vector, this screening can be very much decreased and as a result the

force constants become much more long-ranged, which in turn leads to the non-analytic

behavior in the phonon dispersion, as discussed above.

The failure of DFPT to correctly capture the strength of the Kohn anomalies is thus

entirely related to the response of the electronic system to the perturbation potential due

to the displacement of a nucleus. As reviewed above, in the harmonic approximation,

this response is captured in the derivative of the electron density with respect to a

nuclear displacement. In the DFPT approach, the derivative of the exact electron

density is replaced by the derivative of the Kohn-Sham electron density. While the two

electron densities are in many cases very similar themselves, as the KS auxiliary system

is set up with this goal in mind, their derivatives, in general, are not. In the following

section we will therefore propose a new approach based on many-body perturbation theory

(MBPT) that allows a calculation of the derivative of the exact electron density within

perturbation theory, using the Kohn-Sham DFT system only as a starting point.
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4.4 Phonons from many-body perturbation theory

The new theoretical approach we propose for the calculation of phonon frequencies fo-

cuses on a calculation of the electronic part of the force constants within many-body

perturbation theory. The calculation of the electronic part of the force constants, de-

fined in Eq. 4.41, requires the computation of the first and second derivatives of the

lattice potential with respect to nuclear displacements as well as knowledge of the exact

electronic charge density and its first derivative with respect to nuclei displacements.

As stated earlier, the computation of derivatives of the lattice potential does not present

any larger computational or theoretical problems and can easily be done in reciprocal

space [130]. Instead, the main aim of this section is to present an approach based on

the formalism of many-particle electronic Green’s functions [87, 91, 110] for the com-

putation of the zeroth and first derivative of the exact electron density.

We start with the exact electron density, which can be written in terms of the exact

electronic ground state |0〉 ≡ |0({R(0)
I })〉e and the electron field operators:

n(r1) = 〈0|ψ̂†(r1)ψ̂(r1)|0〉. (4.51)

It can equally well be expressed in terms of the exact one-particle Green’s function G

as

n(r1) = (−i)G(r1, t1; r1, t
+
1 ), (4.52)

where G was defined in Eq. 3.37. As before, t+1 ≡ t1 + 0+, with 0+ being a positive

infinitesimal, while the additional minus sign arrises from the standard definition of the

time-ordering symbol for fermionic operators.

The computation of the exact charge density is thus reduced to the calculation of

the exact one-particle Green’s function, which we sketched in Section 3.3.1. It requires,

in principle, a self-consistent solution of Dyson’s equation, in which the irreducible

self-energy can either be approximated by a few selected terms or subseries (as done,

for example, in the GW approximation) or calculated via a self-consistent scheme of

integro-differential equations first derived by Hedin [117]. Still, for practical purposes

and for many materials [92, 109, 110], the exact electron density n(r) can be well
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approximated by the unperturbed Kohn-Sham electron density nKS(r), which avoids

the need to solve Dyson’s equation or the Hedin scheme self-consistently. However, in

case the KS charge density is not a good approximation for the exact charge density,

the latter can also be taken from other reference systems. Examples where KS-DFT

does not yield a good approximation for the true ground state charge density are some

highly correlated materials, such as TiSe2 [108], where a more accurate estimation for

the charge density can often be obtained via more complicated (hybrid) xc-functions.

However, as discussed at the end of the previous section, the derivative of the ex-

act charge density is not always well approximated by the derivative of the Kohn-Sham

charge density, especially in (semi-)metallic systems. Therefore, a better description of

phonon frequencies requires a more accurate calculation of the derivative of the charge

density on a level of theory that goes beyond that offered by density functional pertur-

bation theory. With the charge density being directly related to the exact one-particle

Green’s function, we focus on obtaining a practically useful yet accurate expression for

the derivative of G. Our starting point will be Dyson’s equation for the one-particle

Green’s function, Eq. 3.54:

G(1, 2) = G0(1, 2) +G0(1, 3̄)Σ(3̄, 4̄)G(4̄, 2). (4.53)

As before, we make use of the short-hand notation 1 ≡ (r1, t1), etc., and understand

a bar over an index to imply its being integrated over (see Eq. 3.55). Note that the

irreducible self-energy is a functional of both the exact one-particle Green’s function

G(1, 2) and the Kohn-Sham charge density nKS(r): Σ(1, 2) = Σ[G, nKS](1, 2).

To obtain the derivative of G with respect to the ith cartesian component of the

displacement of the αth atom in the nth unit cell, R
(0)
n,α,i, we take the derivative on both

sides of Dyson’s equation:

∂AG(1, 2) = ∂AG0(1, 2) + [∂AG0(1, 3̄)]Σ(3̄, 4̄)G(4̄, 2)

+G0(1, 3̄)

{
δΣ(3̄, 4̄)

δG(5̄, 6̄)
[∂AG(5̄, 6̄)] +

δΣ(3̄, 4̄)

δnKS(r̄5)
[∂AnKS(r̄5)]

}
G(4̄, 2)

+G0(1, 3̄)Σ(3̄, 4̄)[∂AG(4̄, 2)],

(4.54)
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where we use the abbreviation ∂A ≡ ∂/∂R
(0)
n,α,i. According to Eq. 3.56, the irreducible

self-energy is given by the sum of two parts, each of which is a functional of onlyG or nKS

but not the other. The functional derivatives of Σ(1, 2) are therefore straightforward

to evaluate:

δΣ(3, 4)

δG(5, 6)
=
δΣCoul.(3, 4)

δG(5, 6)
= K(2)(3, 4; 5, 6) (4.55)

δΣ(3, 4)

δnKS(r5)
=
δΣ−Hxc(3, 4)

δnKS(r5)
= −

{
δVH(r3)

δnKS(r5)
+
δVxc(r3)

δnKS(r5)

}
δ(3, 4). (4.56)

In the first line, we identified the two-particle-irreducible interaction kernel

K(2)(3, 4; 5, 6) (see the discussion surrounding Eq. 3.78). The contribution of the second

line can be combined with the derivative of the KS charge density:

δΣ(3, 4)

δnKS(r̄5)
[∂AnKS(r̄5)] = −[∂AVHxc(r3)]δ(3, 4). (4.57)

Rearranging terms, Eq. 4.54 reads:{
δ(1, 4̄)−G0(1, 3̄)Σ(3̄, 4̄)

}
[∂AG(4̄, 2)] = [∂AG0(1, 3̄)]

{
δ(3̄, 2) + Σ(3̄, 4̄)G(4̄, 2)

}
+G0(1, 3̄)

{
K(2)(3̄, 4̄; 5̄, 6̄)[∂AG(5̄, 6̄)]

− [∂AVHxc(r̄3)]δ(3̄, 4̄)
}
G(4̄, 2).

(4.58)

The first two terms in curly braces can be simplified using Dyson’s equation. Mul-

tiplying the latter from the right with G−1 or from the left with G−1
0 yields the two

identities

δ(1, 4)−G0(1, 3̄)Σ(3̄, 4) = G0(1, 3̄)G−1(3̄, 4), (4.59)

δ(3, 2) + Σ(3, 4̄)G(4̄, 2) = G−1
0 (3, 4̄)G(4̄, 2). (4.60)
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Further defining the two useful two-point functions

g(1, 2) ≡ G−1(1, 3̄)[∂AG(3̄, 4̄)]G−1(4̄, 2) (4.61)

g(0)(1, 2) ≡ G−1
0 (1, 3̄)[∂AG0(3̄, 4̄)]G−1

0 (4̄, 2), (4.62)

we find that g(1, 2) obeys an integral equation:

g(1, 2) = g(0)(1, 2)− [∂AVHxc(r1)]δ(1, 2) +K(2)(1, 2; 3̄, 4̄)G(3̄, 5̄)g(5̄, 6̄)G(6̄, 4̄). (4.63)

As will become clear in the next chapter, the two-point functions g(1, 2) and g(0)(1, 2)

can be interpreted as the static, screened electron-nuclei coupling, with the screening de-

scribed exactly (g(1, 2)) or on the level of DFPT (g(0)(1, 2)). The DFPT electron-nuclei

coupling g(0)(1, 2) can be evaluated in terms of ∂AG
−1
0 by noting that the definition of

the inverse Kohn-Sham Green’s function, G−1
0 (1, 3̄)G0(3̄, 2) = δ(1, 2), implies that the

derivatives of G0 and G−1
0 are related by6

∂AG
−1
0 (1, 2) = −G−1

0 (1, 3̄)[∂AG0(3̄, 4̄)]G−1
0 (4̄, 2). (4.64)

It is easily verified that the inverse KS Green’s function is explicitly given by

G−1
0 (1, 2) = δ(1, 2)

{
i
∂

∂t2
+
∇2

2

2m
− Vscf(r2)

}
, (4.65)

from which the DFPT electron-nuclei coupling is immediately obtained as

g(0)(1, 2) = −∂AG−1
0 (1, 2) = δ(1, 2)∂AVscf(r2) = δ(1, 2)

{
∂AVlat(r2) + ∂AVHxc(r2)

}
(4.66)

by noting that the only explicit dependence of G−1
0 on the nuclei positions is through

the self-consistent potential, which is composed of the lattice potential and the sum

of the local Hartree (H) and exchange-correlation (xc) potentials. Defining the bare

6Alternatively, this relation follows from a generalization of the chain rule for derivatives.
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electron-nuclei coupling as

g(b)(1, 2) ≡ δ(1, 2)∂AVlat(r2), (4.67)

we find that Eq. 4.63 takes on the form{
δ(1, 5̄)δ(2, 6̄)−K(2)(1, 2; 3̄, 4̄)L0(3̄, 4̄; 5̄, 6̄)

}
g(5̄, 6̄) = g(b)(1, 2) (4.68)

where we identified the independent-particle two-particle correlation function

L0(3, 4; 5, 6) ≡ G(3, 5)G(6, 4), introduced in Section 3.3.2. Multiplying this equation

from the left with the exact two-particle correlation function L and using the Bethe-

Salpeter equation in the form

L(1, 2; 4, 3)− L(1, 2; 5̄, 6̄)K(2)(5̄, 6̄; 7̄, 8̄)L0(7̄, 8̄; 3, 4) = L0(1, 2; 3, 4), (4.69)

we arrive at

g(1, 2) = L−1
0 (1, 2; 3̄, 4̄)L(3̄, 4̄; 5̄, 6̄)g(b)(5̄, 6̄), (4.70)

where we also multiplied by the inverse of the independent-particle correlation function,

L−1
0 (1, 2; 3, 4) = G−1(1, 3)G−1(4, 2). In the next chapter, we will see how this expression

can indeed be interpreted as the static, screened electron-nuclei coupling and also derive

its non-static version diagrammatically. For the purpose of the present discussion,

however, it is sufficient to obtain the derivative of the exact charge density from it.

Substituting our definition of g(1, 2), we obtain the derivative of the exact one-particle

Green’s function as

∂AG(1, 2) = L(1, 2; 3̄, 4̄)g(b)(3̄, 4̄), (4.71)

from which the derivative of the exact charge density follows as

∂An(r1) = (−i)∂AG(1, 1+) = (−i)L(1, 1+; 2̄+, 2̄)[∂AVlat(r̄2)]. (4.72)

In the last expression, we introduced another positive infinitesimal shift to t2 in order

to fix the time-ordering of the equal-time two-particle correlation function, such that

the ordering of the two electron field operators at equal times follows that of the lattice
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potential part of the Hamiltonian (∼ ψ̂†Vlatψ̂).

Putting everything together, we have derived the following expression for the exact

electronic part of the force constants from many-body perturbation theory:

C
(el)
α,β
i,j

(Rn) =

∫
d3r

∂2Vlat

∂R
(0)
n,α,iR

(0)
0,β,j

(r)(−i)G(r, t; r, t+)

+

∫
d3r

∫
d3r′

∫ +∞

−∞
dt′

∂Vlat

∂R
(0)
n,α,i

(r)(−i)L(r, t; r, t+; r′, t′+; r′, t′)
∂Vlat

∂R
(0)
0,β,j

(r′).

(4.73)

We can obtain a more practically useful expression for it and the electronic part of the

dynamical matrix by expanding the exact one-particle Green’s function and the two-

particle correlation function in the basis of Kohn-Sham states and performing a Fourier

decomposition, as defined in Eqs. 3.45 and 3.84. We also define the matrix elements of

the derivatives of the lattice potential between KS states via

g
(b);(n,α,i)

k′,k
a,b

≡
∫

d3r φ∗k′,a(r)
∂Vlat(r)

∂R
(0)
n,α,i

φk,b(r), (4.74)

g
(b);(2);((n,α),(m,β)

i,j
)

k′,k
a,b

≡
∫

d3r φ∗k′,a(r)
∂2Vlat(r)

∂R
(0)
n,α,iR

(0)
m,β,j

φk,b(r), (4.75)

with φk,a(r) being a one-particle KS wave function. Making use of Bloch’ theorem,

Eq. 3.36, we can write these matrix elements in terms of the matrix elements involving

the n = 0 unit cell only:

g
(b);(n,α,i)

k′,k
a,b

=
1√
N

ei(k−k
′)·Rng

(b);(α,i)

k′,k
a,b

, (4.76)

g
(b);(2);((n,α),(m,β)

i,j
)

k′,k
a,b

= δn,mei(k−k
′)·Rng

(b);(2);(α,βi,j )

k′,k
a,b

, (4.77)

where the “reduced” matrix elements are defined in terms of the lattice periodic part,
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χk,a(r), of the KS wave function only:

g
(b);(α,i)

k′,k
a,b

≡ 1√
N

∫
d3r e−i(k

′−k)·rχ∗k′,a(r)
∂Vlat(r)

∂R
(0)
0,α,i

χk,b(r), (4.78)

g
(b);(2);(α,βi,j )

k′,k
a,b

≡ 1

N

∫
d3r e−i(k

′−k)·rχ∗k′,a(r)
∂2Vlat(r)

∂R
(0)
0,α,iR

(0)
0,β,j

χk,b(r). (4.79)

The particular dependence of the matrix elements on the lattice vector Rn makes it

particularly easy to evaluate the lattice Fourier transform that leads to the dynamical

matrix. After further algebraic simplifications, the electronic part of the dynamical

matrix, defined by letting C → C(el) in Eq. 4.24, takes on the form:

D
(el)
α,β
i,j

(q) =
1√

MαMβ

(−i)
∑
k,k′

a,b,c,d

(
g

(b);(α,i)

k′+q,k′

a,b

)∗
L̃k′+q,a;k+q,c

k′,b;k,d

(0)g
(b);(β,j)
k+q,k
c,d

+
1√

MαMβ

∑
k,a,b

g
(b);(2);(α,βi,j )

k,k
a,b

∫
dω

2πi
eiω0+G̃k,a,b(ω).

(4.80)

This expresses the exact dynamical matrix in terms of the KS matrix elements of the

first and second derivatives of the lattice potential and of the exact one-particle Green’s

function and two-particle correlation function. The matrix elements of the derivatives

of the lattice potential can most conveniently be calculated in a plane-wave basis [130].

The correlation functions G and L can, in principle, be obtained from Dyson’s equa-

tion and the Bethe-Salpeter equation, as discussed in Section 3.3. However, since the

exact solution of these equations is still computationally unfeasible for many solid-state

systems, our suggested practical approach consists of solving the BSE in the approxima-

tions discussed in Section 3.3.2, i.e., deriving the interaction kernel from the self-energy

in the GW approximation, neglecting the functional derivative of the screened Coulomb

interaction, and treating the latter as being static. Under these approximations, the

two-particle correlation function is given by Eq. 3.105. Furthermore, as discussed ear-

lier, the exact charge density itself, which appears in the second term of Eq. 4.80, can

often be well approximated with the Kohn-Sham charge density. Within these approxi-

mations, we find a practically useful expression for the electronic part of the dynamical
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matrix:7

D
(el)
α,β
i,j

(q) =
1√

MαMβ

∑
k,k′

a,b,c,d

(
g

(b);(α,i)

k′+q,k′

a,b

)∗∑
S,S′

ASk′+q,a
k′,b

N−1
S,S′A

S′,∗
k+q,c
k,d

−εS + iη
g

(b);(β,j)
k+q,k
c,d

+
1√

MαMβ

∑
(k,a)∈O

g
(b);(2);(α,βi,j )

k,k
a,a

,

(4.81)

where, as before, O denotes the set of all tuples (k, a) specifying a state |k, a〉 that

is occupied in the KS ground state |∅〉. Introducing the (bare) bilinear exciton-nuclei

coupling

g
(b);(α,i)
q,S ≡

∑
k,a,b

AS,∗k+q,a
k,b

g
(b);(α,i)
k+q,k
a,b

, (4.82)

our proposed expression for the electronic part of the dynamical matrix takes on the

compact form

D
(el)
α,β
i,j

(q) =
1√

MαMβ

∑
S,S′

(
g

(b);(α,i)
q,S

)∗
N−1
S,S′g

(b);(β,j)
q,S′

−εS + iη
+
∑

(k,a)∈O

g
(b);(2);(α,βi,j )

k,k
a,a

 . (4.83)

This expression is one of the central results presented in this thesis.

We can summarize our proposed approach for the calculation of phonon frequencies

as follows:

1. Calculation of a set of Kohn-Sham states and eigenvalues in density functional

theory.

2. Correction of the KS eigenvalues on the level of the GW approximation.

3. Computation of the static two-particle interaction kernel, solving the static (ω =

0) Bethe-Salpeter equation for both the eigenstates and eigenvalues, and calcula-

tion of the overlap matrix.

7To make the expression more compact, we absorbed the occupation factor (fk+q,c−fk,d) appearing
in Eq. 3.105 into the eigenvectors ASk+q,c

k,d

.
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4. Calculation of the matrix elements of the first and second derivatives of the lattice

potential in the KS basis and computation of the bilinear exciton-nuclei coupling.

5. Construction of the electronic part of the dynamical matrix according to Eq. 4.83,

addition of the nuclear part, and subsequent diagonalization.

So far, this approach has not been tested in practice due to the lack of an implementation

that allows both the evaluation of electron-nuclei matrix elements and solving of the

BSE for finite excitation wave vectors q. Its concrete implementation in a computer

code is beyond the scope of this thesis, but will be the subject of further research.

4.5 Physical interpretation and relation between

different approximations for force constants

To conclude this chapter, we discuss the differences between our, in principle exact,

MBPT approach and other approaches, in particular DFPT. Other common approxi-

mations for the electronic part of the force constants that we will discuss are the random

phase approximation (RPA) and a Hartree-Fock-based approximation (HFA).

In order to be able to compare the different approaches and approximations for the

computation of the electronic part of the force constants with one another, it is simplest

to formulate them in the same language, for which the language of many-body pertur-

bation theory suggests itself. The first term appearing in the general expression for the

electronic part of the force constants, Eq. 4.41, involves the charge density itself. It

will usually not vary much from approach to approach, assuming that every approach

for the electronic structure calculation is at least sensible enough to yield a good ap-

proximation of the charge density when it is applied self-consistently. The second term,

which involves the first derivative of the charge density with respect to nuclear displace-

ments, is what varies substantially from approach to approach, as already discussed at

the end of Section 4.3.

To start with, we consider the derivative of the charge density within DFPT and
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re-write it in the MBPT formalism:

∂AnKS(r1) = (−i)∂AG0(1, 1+) = (−i)G0(1, 3̄)[∂AG
−1
0 (3̄, 4̄)]G0(4̄, 1+), (4.84)

where again ∂A ≡ ∂/∂R
(0)
n,α,i. Introducing the independent-particle two-particle corre-

lation function on the Kohn-Sham level,

L
(KS)
0 (1, 2; 3, 4) ≡ G0(1, 3)G0(4, 2) (4.85)

and making use of Eq. 4.66, the derivative of the KS charge density reads

∂AnKS(r1) = (−i)L(KS)
0 (1, 1+; 2̄+, 2̄)[∂AVscf(r̄2)]. (4.86)

The electronic part of the force constants in DFPT is then given by

C
(el)
α,β
i,j

(Rn)

∣∣∣∣
DFPT

=

∫
d3r

∂2Vlat

∂R
(0)
n,α,iR

(0)
0,β,j

(r)(−i)G0(r, t; r, t+)

+

∫
d3r

∫
d3r′

∫ +∞

−∞
dt′

∂Vlat

∂R
(0)
n,α,i

(r)

× (−i)L(KS)
0 (r, t; r, t+; r′, t′+; r′, t′)

∂Vscf

∂R
(0)
0,β,j

(r′).

(4.87)

Note that the second term involves both the derivative of the lattice potential and the

derivative of the self-consistent potential. As will be discussed in the next chapter,

the latter can be interpreted as a screened electron-phonon coupling, while the former

corresponds to the unscreened or bare electron-phonon coupling. Diagrammatically,

the calculation of the force constants in DFPT then involves the product of a vertex for

the bare electron-nuclei interaction, the independent-particle two-particle correlation

function, and a vertex for the screened electron-nuclei interaction.8 This fact is often

ignored in the literature, where both vertices are often treated as being screened, as

done for instance in the work by Lazzeri et al. [53] on the phonon dispersion of graphene,

which we will briefly discuss further in the next chapter.

8This fact also been noticed and pointed out independently by F. Giustino [131].
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To make the approximations implicit in the DFPT description more transparent,

we express the derivative of the self-consistent potential in a different way. Letting

Vscf(1, 2) ≡ δ(1, 2)Vscf(r2) and similarly for the lattice and Hartree+xc potential, we

have:

∂AVscf(1, 2) = ∂AVlat(1, 2) +
δVHxc(1, 2)

δnKS(r̄3)
[∂AnKS(r̄3)]

= ∂AVlat(1, 2) +
δVHxc(1, 2)

δG0(3̄, 4̄+)
δ(3̄, 4̄)[∂AG0(3̄, 4̄+)].

(4.88)

We can cast this equation in a more familiar form by defining the two-particle irreducible

interaction kernel in KS-DFPT via

K(2);(KS)(1, 2; 3, 4) ≡ δVHxc(1, 2)

δG0(3, 4+)
δ(3, 4). (4.89)

Inserting the explicit expression for the Hartree+xc potential (see Eq. 3.30), one finds:

K(2);(KS)(1, 2; 3, 4) = −iδ(1, 2)δ(3, 4)
[
v(1, 3)−∆vxc(1, 3)

]
, (4.90)

where

∆vxc(1, 2) ≡ −δVxc[nKS](r1)

δnKS(r2)
δ(t1 − t2) (4.91)

and we included a minus sign in the last definition to emphasize the fact that the

exchange-correlation potential is mostly attractive. With these definitions and using

Eq. 4.86, the derivative of the self-consistent potential is found to obey the integral

equation

∂AVscf(1, 2) = ∂AVlat(1, 2) +K(2);(KS)(1, 2; 3̄, 4̄)L
(KS)
0 (3̄, 4̄; 5̄, 6̄)[∂AVscf(5̄, 6̄)]. (4.92)

If we further define the exact two-particle correlation function on the KS-DFT level via

the Bethe-Salpeter equation

L(KS)(1, 2; 3, 4) ≡ L
(KS)
0 (1, 2; 3, 4) + L

(KS)
0 (1, 2; 5̄, 6̄)K(2);(KS)(5̄, 6̄; 7̄, 8̄)L(KS)(7̄, 8̄; 3, 4),

(4.93)
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we can solve Eq. 4.92 using the same algebraic manipulations as used in the exact

MBPT case:

∂AVscf(1, 2) =
(
L

(KS)
0

)−1
(1, 2; 3̄, 4̄)L(KS)(3̄, 4̄; 5̄, 6̄)[∂AVlat(5̄, 6̄)]. (4.94)

Putting everything together, the electronic part of the force constants in KS-DFPT can

be written in the form

C
(el)
α,β
i,j

(Rn)

∣∣∣∣
DFPT

=

∫
d3r

∂2Vlat

∂R
(0)
n,α,iR

(0)
0,β,j

(r)(−i)G0(r, t; r, t+)

+

∫
d3r

∫
d3r′

∫ +∞

−∞
dt′

∂Vlat

∂R
(0)
n,α,i

(r)

× (−i)L(KS)(r, t; r, t+; r′, t′+; r′, t′)
∂Vlat

∂R
(0)
0,β,j

(r′).

(4.95)

This expression has the same structure as the exact one obtained from MBPT

(compare Eq. 4.73). The only difference is the replacement of the one-particle Green’s

function and the two-particle correlation function by their counterparts from KS-DFT.

The most important aspect of the approximations implicit in the DFPT approach is the

approximation to the two-particle-irreducible interaction kernel (compare Eq. 4.90). It

is this quantity which governs the screening of the electron-nuclei interaction.

To better understand the DFPT approximation to the kernel, it should be compared

to other approximations, four of which are listed in Table 4.1.

Approach/Approximation K(2)(1, 2; 3, 4)

RPA −iδ(1, 2)δ(3, 4)v(1, 3)
HFA −iδ(1, 2)δ(3, 4)v(1, 3) + iδ(1, 3)δ(2, 4)v(1, 2)

MBPT (GWA, δW/δG=0) −iδ(1, 2)δ(3, 4)v(1, 3) + iδ(1, 3)δ(2, 4)W (1, 2)
DFPT −iδ(1, 2)δ(3, 4)

[
v(1, 3)−∆vxc(1, 3)

]
Table 4.1: Different approximations for the two-particle-irreducible interac-
tion kernel.

In the random phase approximation (RPA), the interaction kernel is derived from
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an electron self-energy on the level of the Hartree approximation:

RPA ←→ ΣCoul.(1, 2)
Hartree' −iδ(1, 2)v(1, 3̄)G(3̄, 3̄+). (4.96)

It corresponds to the simplest non-trivial two-particle-irreducible interaction kernel,

consisting of the unscreened Coulomb interaction only. Physically, the screening of the

electron-nuclei interaction in the RPA is taken into account by describing the irreducible

polarizability of the material on the level of electron-hole pairs, whose dipole moments

serve as a screening medium. While the interaction between the induced electron-hole

pairs is included in the self-consistent Bethe-Salpeter equation, the electron and hole

are treated as not interacting with each other.

Going beyond the RPA, the next-to-leading-order approximation to the irreducible

interaction kernel is derived from the Hartree-Fock approximation (HFA) to the electron

self-energy:

HFA ←→ ΣCoul.(1, 2)
Hartree−

Fock' −iδ(1, 2)v(1, 3̄)G(3̄, 3̄+) + iv(1, 2)G(1, 2). (4.97)

It remedies the problem of the overscreening present in the RPA by taking into account

the interaction between the electron and the hole in the induced electron-hole pairs. In

a real space picture, this reduces the spatial extend of the approximate dipoles formed

by the electron-hole pairs, thus reducing the polarizability of the material. This leads

to a significant reduction of the screening of the effective electron-nuclei interaction

and thereby greatly increases the electronic contribution to the force constants. The

HFA approximation to the interaction kernel treats the electron-hole interaction as

unscreened however. The electron and hole are thus described as being bound too close

together, which reduces the size of their dipole moment and thus the screening of the

effective electron-nuclei interaction too much.

In our proposed MBPT approach to the calculation of the force constants, this

problem is addressed by including the screening of the electron-hole interaction pertur-

batively as the two-particle interaction kernel is derived from the electron self-energy
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in the GW approximation:

MBPT ←→ ΣCoul.(1, 2)
GWA' −iδ(1, 2)v(1, 3̄)G(3̄, 3̄+) + iW (1, 2)G(1, 2). (4.98)

This approach thus includes a screening of the electron-hole interaction on the level of

the RPA. It therefore does not lead to an overbinding of the induced electron-hole pairs

or, equivalently, an underestimation of their dipole moments and of the polarizability

of the material. As a result, the electron-nuclei interaction is expected to be much less

screened than in the HFA and captured more accurately.

The DFPT approach, finally, resembles a conceptually very much different point of

view. Rather than attempting to better describe the magnitude of the induced electron-

hole dipole moments, it replaces the bare Coulomb interaction simply by an effective,

weaker interaction, by subtracting an xc-contribution ∆vxc(1, 2) from it. In the self-

energy/interaction kernel language, we have seen that it makes use of an irreducible

interaction kernel derived from an electron self-energy of the form

DFPT ←→ ΣCoul.(1, 2)
DFT' −iδ(1, 2)

[
v(1, 3̄)−∆vxc(1, 3̄)

]
G(3̄, 3̄+). (4.99)

The irreducible polarizability of the material, i.e., the induced electron-hole dipoles, is

thus described on the same level as in the RPA. However, the coupling between the

different electron-hole dipoles is not given by the standard Coulomb interaction, but

rather by an effective, weaker one. As such, the effective electron-nuclei interaction

appears less screened than in the RPA. Compared to our proposed MBPT approach,

however, this screening is expected to still be overestimated, based on related calcula-

tions of the electron-nuclei coupling by Lazzeri et al. [53]. There, the authors used finite

difference methods to calculate the derivative of the diagonal KS matrix elements of the

non-self-consistently calculated electron self-energy to obtain a better estimate for the

screened electron-nuclei interaction. However, the non-self-consistency of the calcula-

tions by Lazzeri et al. cannot capture the entire series of terms considered and exactly

summed in our MBPT approach, but instead is expected to correspond to the first few

leading-order terms appearing in our proposed method only. An analytic proof for this

statement will be the subject of further research, as will be the concrete implementation
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and comparison of our ansatz.

Figure 4.4: Different approximations for the electronic part of the force con-
stants. Typical diagrammatic contributions to the perturbation series for the electronic
part of the force constants that is quadratic in the first derivative of the lattice poten-
tial in different approximations. From top to bottom: random phase approximation
(RPA), density functional perturbation theory (DFPT), many-body perturbation the-
ory (MBPT) on the level of the GW approximation with δW (1, 2)/δG(3, 4) = 0, and
Hartree-Fock approximation (HFA). From top to bottom, the screening of the effective
electron-nuclei interaction decreases, which leads to a larger electronic contribution to
the force constants. The vertex involving the curly (gluon-type) line represents the
matrix element corresponding to the first derivative of the lattice potential (the bare
electron-nuclei coupling). Dashed and double-dashed lines represent the unscreened and
screened Coulomb interaction, respectively, while dotted-dashed lines denote the differ-
ence of the unscreened Coulomb interaction and a xc-correction ∆vxc(1, 2) as defined
in the text.

We graphically summarize the above discussion in Fig. 4.4, where, for each method

or approximation, we show a typical term in the perturbation series for the electronic

part of the force constants quadratic in the first derivative of the lattice potential. From

top to bottom, the screening of the electron-nuclei coupling decreases.
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This concludes our comparison of the different approaches to the calculation of phonon

frequencies and with that also the discussion of the description of the matter system

in the Born-Oppenheimer approximation. In the next chapter, we will move on and go

beyond the BOA and discuss the coupling between electrons and phonons.
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Chapter 5

Electron-Phonon Interaction

In the previous two chapters we dealt with the problem of finding the eigenstates of the

full matter Hamiltonian (see Eq. 2.14) by approximating it in two different ways: firstly

in the “clamped nuclei approximation” (CNA), in which the nuclei are treated as being

completely static and as providing an effective potential for the electrons, and secondly

in the “adiabatic, Born-Oppenheimer approximation” (BOA), which treats the nuclei as

moving within an effective potential generated by the electrons described in the CNA.

In both cases, the approximative Hamiltonian could still not be diagonalized exactly,

but instead required a further perturbative or approximative treatment, provided by

Kohn-Sham density functional theory and the harmonic approximation respectively. In

the case of the electrons, we were able to obtain a full basis of the one-particle Hilbert

space in the form of the KS states, while for the nuclei, the harmonic approximation

gave rise to the notion of phonon states, which, likewise, provide a basis of the nuclear

part of the Hilbert space. By combining the two bases, we thus have a complete basis

of the full electron-nuclei Hilbert space.

While the approximative electron and nuclei Hamiltonians are, by construction, di-

agonal in the KS and phonon basis, respectively, the full matter Hamiltonian (Eq. 2.14)

is not. Nevertheless, many systems, most prominently a large number of semi-conduct-

ing materials [85], are well approximated in this way and the off-diagonal elements of

the full Hamiltonian are comparatively small and can be treated in perturbation the-

ory. In this chapter, we will discuss the perturbative treatment of the fully interacting
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electron-nuclei system using the KS and phonon states as a starting point.

In a first step, we express the full electron-nuclei Hamiltonian in the KS and phonon

basis. This is most conveniently done within the occupation number formalism using

creation and annihilation operators. We briefly discuss the electron, the phonon, and the

electron-phonon interaction part of the Hamiltonian before summarizing the Feynman

rules for a perturbative treatment of the theory.

The second section deals with a description of the screening of the electron-phonon

coupling. As we will see in the following chapter, whenever a factor for the electron-

phonon coupling appears in perturbation theory, it is accompanied by an entire subseries

of terms that has the physical interpretation of describing the screening of the electron-

phonon interaction. It is then convenient to consider the screened electron-phonon

coupling as a building block for the terms in the perturbation series, similar to how the

non-interacting Green’s function is replaced by the exact Green’s function in a skeleton

expansion (compare Section 3.3). We show how the subseries describing the screening

can be summed up exactly and expressed in terms of quantities introduced in the

previous two chapters. In this way, we provide a practical approach for the calculation

of the screened electron-phonon coupling beyond the commonly used approximation of

density functional perturbation theory. Such an approach is needed in materials such

as graphene, where DFPT has been shown to severely underestimate the coupling of

the electronic system to certain phonon modes [53]. Since the electron-phonon coupling

plays an important role in the perturbative description of various physical processes,

such as the scattering of charge carriers in charge transport and in Raman scattering,

it is thus vital for a wide variety of calculations that a method be developed that goes

beyond DFPT. The theoretical developments presented here provide such a method

and pave the way for the implementation of a more accurate computational approach

to the calculation of the screened electron-phonon coupling, which, however, is beyond

the scope of this thesis.

Finally, the last section of this chapter contains a discussion of the exact one-phonon

Green’s function. This object plays an important role in our novel theoretical approach

to one-phonon-induced Raman scattering. It also contains information on the eigen-

values of the full matter Hamiltonian. After a brief review of its spectral or Lehmann
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representation, we will discuss the calculation of the exact one-phonon Green’s function

in perturbation theory. The perturbative approach in particular allows the correction

of phonon frequencies whilst taking non-adiabatic effects into account. The latter can

potentially play an important role in (semi-)metallic systems, as has been demonstrated

most prominently for graphene [28].

5.1 Electron-phonon interaction Hamiltonian and

Feynman rules

We start setting up the perturbative approach for the fully interacting electron-nuclei

system from the full matter Hamiltonian1

ĤM =
∑
i

p̂2
i

2m
+

1

2

∑
i,j
i 6=j

e2

|r̂i − r̂j|
+
∑
I

P̂2
I

2MI

+
1

2

∑
I,J
I 6=J

ZIZJe
2

|R̂I − R̂J |
+
∑
i,I

−ZIe2

|r̂i − R̂I |
. (5.1)

To treat this system in perturbation theory, we seek to write it in the form ĤM =

Ĥ0 + Ĥ1, where Ĥ0 describes a system of non-interacting (quasi-)particles or collective

excitations and Ĥ1 contains all the interactions among them. More concretely, we will

take Ĥ0 to be given by the sum of a Hamiltonian describing a system of non-interacting

Kohn-Sham electrons and a Hamiltonian describing non-interacting phonons in the

harmonic approximation. The interaction Hamiltonian Ĥ1 can then be obtained by

taking the difference of the full Hamiltonian ĤM and the non-interacting Hamiltonian

Ĥ0.

In oder to identify the concrete parts of ĤM that are included in Ĥ0 and Ĥ1, we first

separate it into a purely electronic part, a purely nuclei part, and a part containing all

the electron-nuclei interaction:

ĤM ≡ Ĥel + Ĥnuc + Ĥel−nuc, (5.2)

1As before, letters in calligraphic font denote operators in the full electron-nuclei Hilbert space,
while operators acting in only the electronic or nuclear subspace will be denoted by non-calligraphic
symbols.
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with the three parts being defined as

Ĥel ≡
∑
i

p̂2
i

2m
+

1

2

∑
i,j
i 6=j

e2

|r̂i − r̂j|
+
∑
i,I

−ZIe2

|r̂i −R
(0)
I |

+
1

2

∑
I,J
I 6=J

ZIZJe
2

|R(0)
I −R

(0)
J |

(5.3)

Ĥnuc ≡
∑
I

P̂2
I

2MI

+
1

2

∑
I,J
I 6=J

[
ZIZJe

2

|R̂I − R̂J |
− ZIZJe

2

|R(0)
I −R

(0)
J |

]
(5.4)

Ĥel−nuc ≡
∑
i,I

[
−ZIe2

|r̂i − R̂I |
− −ZIe2

|r̂i −R
(0)
I |

]
, (5.5)

where the nuclei positions in equilibrium, R
(0)
I , have been introduced in Chapter 3, but

will also be defined later once more. The Hamiltonians in the first and second line only

contain operators acting on the electronic or nuclear subspace only, while the third line

contains the terms that couple the two subspaces. We can then conveniently set up the

perturbative approach for each of the three terms separately, i.e., single out those terms

of each of the three parts written above that are to be included in Ĥ0 or Ĥ1. This will

be done over the course of the next three subsections.

5.1.1 Electronic Hamiltonian

The electronic Hamiltonian of Eq. 5.3 has the form Ĥel =
(
Ĥel

)
e
⊗ 1n, where the

operator Ĥel acts only in the electronic subspace. Ĥel can be written as the sum

of a Hamiltonian describing a non-interacting Kohn-Sham system and a Hamiltonian

describing the residual Coulomb interaction:

Ĥel ≡ ĤKS + Ĥe−e, (5.6)
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as discussed more extensively in Chapter 3. The two operators are defined as

ĤKS ≡
∑
i

[
p̂2
i

2m
+ Vlat(r̂i; {R(0)

I }) + VHxc[nKS](r̂i)

]
+ Vn−n({R(0)

I }), (5.7)

Ĥe−e ≡
1

2

∑
i,j
i 6=j

e2

|r̂i − r̂j|
−
∑
i

VHxc[nKS](r̂i), (5.8)

where the one-particle potentials have partially been in defined in Section 3.2, but for

convenience are given here again:

Vlat(r; {RI}) ≡
∑
I

−ZIe2

|r−RI |
, (5.9)

VHxc[n](r) ≡ VH[n](r) + Vxc[n](r) ≡ e2

∫
d3r′

n(r′)

|r− r′| +
δExc[n]

δn(r)
, (5.10)

Vn−n({RI}) ≡
1

2

∑
I,J
I 6=J

ZIZJe
2

|RI −RJ |
. (5.11)

The ground state |∅〉 of the Kohn-Sham Hamiltonian ĤKS defines the Kohn-Sham charge

density

nKS(r) ≡ 〈∅|ψ̂†(r)ψ̂(r)|∅〉 (5.12)

where ψ̂(r) is the electron field operator. Finally, the set of nuclei positions {R(0)
I } is

defined as the location of the minimum of the function

V0({RI}) ≡ 〈0({RI})|Ĥe({RI})|0({RI})〉+ Vn−n({RI}), (5.13)

with the state |0({RI})〉 being defined as the ground state of the Hamiltonian

Ĥe({RI}) ≡
∑
i

p̂2
i

2m
+
∑
i

Vlat(r̂i; {RI}) +
1

2

∑
i,j
i 6=j

e2

|r̂i − r̂j|
. (5.14)

117



5.1.2 Phonon Hamiltonian

The Hamiltonian Ĥnuc, defined in Eq. 5.4, acts in the nuclear subspace only: Ĥnuc =

1e⊗
(
Ĥnuc

)
n
. We write it as the sum of a Hamiltonian for non-interacting phonons and

a term containing the phonon-phonon interaction terms:

Ĥnuc ≡ Ĥph + Ĥph,int. (5.15)

The non-interacting phonon Hamiltonian is given as

Ĥph ≡
∑
I

P̂2
I

2MI

+
1

2

∑
I,J
i,j

CI,J
i,j

(R̂I,i −R(0)
I,i )(R̂J,j −R(0)

J,j), (5.16)

with the force constants

CI,J
i,j
≡
(

∂2

∂RI,i∂RJ,j

V0({RI})
)∣∣∣∣
{RI}={R

(0)
I }

, (5.17)

as discussed in Section 4.2. To obtain the inter-phonon interaction Hamiltonian Ĥph,int,

we expand the inter-nuclei Coulomb interaction Vn−n({RI}) around {R(0)
I }:

Vn−n({RI}) =
∑
n≥0

1

n!

∑
I1,...,In
i1,...,in

C
(nuc);(n)
I1,...,In
i1,...,in

(R̂I1,i1 −R(0)
I1,i1

) . . . (R̂In,in −R(0)
In,in

). (5.18)

The expansion coefficients C(n) are given by the nth partial derivative of the left hand-

side with respect to the nuclei positions, evaluated at {R(0)
I }:

C
(nuc);(n)
I1,...,In
i1,...,in

≡
(

∂n

∂RI1,i1 . . . ∂RIn,in

Vn−n({RI})
)∣∣∣∣
{RI}={R

(0)
I }

. (5.19)
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Subtracting the force constants term from the expansion of Vn−n({RI}), one finds:

Ĥph,int ≡
∑
n≥3

1

n!

∑
I1,...,In
i1,...,in

C
(nuc);(n)
I1,...,In
i1,...,in

(R̂I1,i1 −R(0)
I1,i1

) . . . (R̂In,in −R(0)
In,in

)

−
∑
I,i

F
(el)
I,i (R̂I,i −R(0)

I,i )−
1

2

∑
I,J
i,j

C
(el)
I,J
i,j

(R̂I,i −R(0)
I,i )(R̂J,j −R(0)

J,j),

≡ Ĥph−ph + Ĥph,ad.

(5.20)

where

C
(el)
I,J
i,j

≡
(

∂2

∂RI,i∂RJ,j

V
(el)

0 ({RI})
)∣∣∣∣
{RI}={R

(0)
I }

(5.21)

denotes the electronic part of the force constants derived from the electronic part of

the potential

V
(el)

0 ({RI}) ≡ 〈0({RI})|Ĥe({RI})|0({RI})〉 (5.22)

and

F
(el)
I,i ≡

(
∂

∂RI,i

V
(el)

0 ({RI})
)∣∣∣∣
{RI}={R

(0)
I }

= −
(

∂

∂RI,i

Vn−n({RI})
)∣∣∣∣
{RI}={R

(0)
I }

(5.23)

denotes the electronic part of the ith cartesian component of the force on atom I in

equilibrium. The Hamiltonian Ĥph,int contains a part Ĥph−ph that accounts for direct

phonon-phonon interaction, i.e., anharmonic effects,2 as well as two correction terms,

included in Ĥph,ad., that play the same role the VHxc-term does for the electronic system.

5.1.3 Electron-phonon interaction Hamiltonian

Finally, we turn to the electron-nuclei interaction Hamiltonian Ĥel−nuc, given in Eq. 5.5.

Expanding it around the equilibrium nuclear configuration {R(0)
I }, it can be written as

2Note that the Hamiltonian Ĥph−ph does not include a term that accounts for indirect phonon-
phonon interaction mediated by electrons. In the treatment presented here, these terms appear in
higher orders in perturbation theory in the electron-phonon interaction, bur may still be of equal
importance for the study of anharmonic effects.
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the sum of electron-n-phonon interaction Hamiltonians

Ĥel−nuc ≡
∑
n≥1

Ĥ(n)
el−ph, (5.24)

with the latter being given by

Ĥ(n)
el−ph ≡

1

n!

∑
I1,...,In
i1,...,in

[∑
i

V
(n)

lat;
I1,...,In
i1,...,in

(r̂i)

]
(R̂I1,i1 −R(0)

I1,i1
) . . . (R̂In,in −R(0)

In,in
). (5.25)

Here, we defined the expansion coefficients as the nth derivative of the equilibrium

potential function Vlat:

V
(n)

lat;
I1,...,In
i1,...,in

(r) ≡
(

∂n

∂RI1,i1 . . . ∂RIn,in

Vlat(r; {RI})
)∣∣∣∣
{RI}={R

(0)
I }

. (5.26)

5.1.4 Feynman rules for perturbation theory

Having discussed the individual parts of the matter Hamiltonian in the first three

subsections, we can now turn to a perturbative treatment of the interacting electron-

phonon system. The standard way to do this is to pass to the interaction picture with

respect to an exactly diagonalizable Hamiltonian. In our case, we can split the total

Hamiltonian into two parts:

ĤM ≡
(
ĤKS + Ĥph

)
+

(
Ĥe−e + Ĥph−ph + Ĥph,ad. +

∞∑
n=1

Ĥ(n)
el−ph

)
≡ Ĥ0 + Ĥ1.

(5.27)

The Hamiltonian Ĥ0 is defined as the sum of the non-interacting Kohn-Sham and

phonon Hamiltonians. In terms of the creation and annihilation operators for the KS

electrons and phonons, introduced in Chapters 3 and 4, it takes on the form

Ĥ0 =
∑
k,n

εk,nĉ
†
k,nĉk,n + Vn−n({R(0)

I }) +
∑
q,λ

ωq,λ

(
b̂†q,λb̂q,λ +

1

2

)
. (5.28)
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We will denote its ground state by |∅〉 ≡ |∅〉e⊗|0ph〉n, where |∅〉e denotes the ground state

of the KS Hamiltonian ĤKS and |0ph〉n is the ground state of the phonon Hamiltonian

Ĥph, i.e., a state of zero phonons.

The interaction Hamiltonian is then given by the rest of the terms in ĤM. For

the content presented in the remainder of this thesis, which will mostly concern the

description of one-phonon-induced Raman scattering and non-adiabatic corrections to

the phonon frequencies, we can focus on the electron-one- and -two-phonon interaction

terms only:

Ĥ1 = Ĥe−e + Ĥph,ad. + Ĥ(1)
el−ph + Ĥ(2)

el−ph + other terms. (5.29)

Note that it is important to retain the adiabatic “counterterm” Hamiltonian Ĥph,ad.

in the perturbation Hamiltonian, in order to ensure that the fully interacting theory

predicts the adiabatic phonon frequencies in the adiabatic limit. We will revisit this

point in the last section of this chapter as well as in Section 7.1.

As already noted during our treatment of electrons and phonons in Chapters 3

and 4, respectively, the residual inter-electron Coulomb interaction is a very important

perturbation and needs to be considered explicitly as well. This especially is true

in the context of processes involving interactions between electrons and phonons. The

electrostatic, i.e., Coulombic, origin of the latter and the non-negligible polarizability of

the electronic system make it necessary to include higher-order terms involving electron-

electron interaction in the perturbation series. A proper description of the screened

electron-phonon interaction is important, as it enters many physical observables, such

as temperature-dependent absorption spectra [137] and Raman spectra [56]. As shown

in a first study of the electron-phonon coupling in graphene using ab initio, finite-

difference methods, the magnitude of the electron-phonon coupling very much depends

on the level of theory on which the screening is described [53].

In order to account for the important role of electron-electron interaction for the

description of the screened electron-phonon coupling, we use a “nested” form of pertur-

bation theory in the interaction picture. In this way, we can account for the difference in

strength and importance of the various terms in the complete interaction Hamiltonian

Ĥ1. Instead of directly splitting up the full Hamiltonian into an exactly diagonalizable
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part and a residual part containing all interactions, we include the electron-electron

interaction in the “unperturbed” Hamiltonian:

ĤM ≡
(
ĤKS + Ĥe−e + Ĥph

)
+

(
Ĥph−ph + Ĥph,ad. +

∞∑
n=1

Ĥ(n)
el−ph

)
≡ Ĥ0 + Ĥ1,

(5.30)

i.e., Ĥ0 is now defined as the sum of the full electronic Hamiltonian Ĥel and the phonon

Hamiltonian in the harmonic approximation. We will denote its ground state by |0〉 ≡
|0〉e ⊗ |0ph〉n, where |0〉e is the ground state of the full electronic Hamiltonian Ĥel.

To pass to the (“first”) interaction picture, we define the interaction picture electron

field operator and nuclei displacement operators as:3

ψ̂I(r, t) ≡ e+iĤ0tψ̂(r)e−iĤ0t = e+iĤeltψ̂(r)e−iĤelt, (5.31)

ûn,α,I(t) ≡ e+iĤ0tûn,αe−iĤ0t = e+iĤphtûn,αe−iĤpht. (5.32)

Note that the electron field operator in the “first” interaction picture can equally well

be regarded as the electron field operator in the Heisenberg picture with respect to

the Hamiltonian Ĥel, as used in Section 3.3. In terms of the Kohn-Sham electron and

phonon creation and annihilation operators, the electron field and nuclei displacement

operators read:

ψ̂I(r, t) =
∑
k,n

φk,n(r)ĉk,n,I(t), ûn,α,I(t) =
∑
q,λ

ξαq,λ(Rn)B̂q,λ,I(t), (5.33)

with the one-particle KS wave function φk,n(r) = N−1/2 exp(ik · r)χk,n(r) with lattice-

periodic part χk,n(r) and the phonon “wave function” and mode operators

ξαq,λ(Rn) ≡ 1√
N

eiq·Rn

√
1

2Mαωq,λ

vαq,λ, B̂q,λ ≡ b̂q,λ + b̂†−q,λ, (5.34)

3We again label the atoms by a tuple (n, α) to distinguish the different unit cells (n) and atoms in
the unit cell (α).

122



where vαq,λ denotes the eigenvectors of the (unperturbed) dynamical matrix (compare

Eq. 4.29).

We also define non-interacting4 electron and phonon Green’s functions as5

G(1, 2) ≡ −i〈0|T
{
ψ̂I(1)ψ̂†I(2)

}
|0〉 (5.35)

DA,B(t1, t2) ≡ −i〈0|T
{
ûA,I(t1)û†B,I(t2)

}
|0〉. (5.36)

To avoid a cluttering of these and similar expressions with too many indices, we use

the short-hand notations 1 ≡ (r1, t1), 2 ≡ (r1, t1), etc. and A ≡ (n, α, i), B ≡ (m,β, j),

etc. We also want to point out that in our perturbation scheme, the “non-interacting”

electron Green’s function still includes all effects of the inter-electron Coulomb inter-

action, as the corresponding Hamiltonian Ĥe−e is included in the “free” Hamiltonian

Ĥ0. The Green’s function G is the same as the “exact” Green’s function discussed in

Chapter 3. It can be treated by passing to a “second” interaction picture by taking

Ĥe−e as the interaction Hamiltonian. This “second-layer” perturbative treatment has

already been discussed in Section 3.3 and we can simply re-use all of the content of

this section. Besides the non-interacting Green’s functions, we will also make use of the

exact Green’s functions, defined as

G(1, 2) ≡ −i〈Ω|T
{
ψ̂(1)ψ̂†(2)

}
|Ω〉 (5.37)

DA,B(t1, t2) ≡ −i〈Ω|T
{
ûA(t1)û†B(t2)

}
|Ω〉, (5.38)

in which all operators are understood to be in the Heisenberg picture with respect to

the full Hamiltonian ĤM. The ground state of the latter was already introduced in

Section 2.4 and is denoted as |Ω〉.
The last ingredient needed for a perturbative treatment of the electron-phonon

4“Non-interacting” here is understood to refer to the non-interacting nature with respect to Ĥ1,
i.e., the electron-phonon interaction.

5The displacement operator ûA is hermitian, i.e., ûA = û†A, and hence the phonon Green’s function
could also be defined without adjoining the second operator in the correlation function. However, to
make the expression look comparable to the one for the electron Green’s function, we explicitly include
the adjoint symbol in the definition.
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system is the interaction Hamiltonian Ĥ1 in the interaction picture, which reads:

Ĥ1,I(t1) =−
∑
A

F
(el)
A ûA;I(t1)− 1

2

∑
A,B

C
(el)
A,BûA;I(t1)ûB;I(t1)

+
∑
A

∫
d3r1 g

(b)
A (r1)ψ̂†I(1)ψ̂I(1)ûA;I(t1)

+
∑
A,B

∫
d3r1 g

(b);(2)
A,B (r1)ψ̂†I(1)ψ̂I(1)ûA;I(t1)ûB;I(t1)

+ other terms.

(5.39)

Here, we set g
(b)
A (r1) ≡ ∂Vlat(r1; {R(0)

I })/∂R
(0)
A and

g
(b);(2)
A,B (r1) ≡ ∂2Vlat(r1; {R(0)

I })/(∂R
(0)
A ∂R

(0)
B ) to reflect the notation for the static, un-

screened electron-phonon coupling from the previous chapter. To organize our pertur-

bation theory calculations, we will again make use of Feynman diagrams. With each

of the terms in the interaction Hamiltonian we associate a vertex diagram, while each

Green’s function will be represented by a straight or wiggly line. We summarize the

Feynman rules for the interacting electron-phonon system together with the Feynman

rules for the perturbative treatment of the purely electronic system in Table 5.1. The

definition of part of the electronic quantities appearing in the table has been given in

Section 3.3 and remains unaltered in our “nested” perturbative approach.

5.2 Screened electron-phonon coupling

As a first application of the diagrammatic, perturbative approach, we will derive an

expression for the screened electron-phonon coupling on a level of theory beyond the one

offered by the commonly applied density functional perturbation theory. As mentioned

in the introduction to this chapter, such a development is necessary if one wants to

obtain a correct quantitative description of the effective electron-phonon coupling that

can be used for the calculation of Raman spectra or electronic band energy corrections

in (semi-)metallic systems, such as graphene. So far, most of the efforts to improve the

DFPT description of the electron-phonon coupling in graphene have been focused on an

approach in which the intra-electron-band electron-phonon coupling is obtained from
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a computation of the derivative of the electronic band energies with respect to nuclei

displacements via the finite difference method [53, 56, 57]. To go beyond the level of

DFPT, previous studies featured calculations of the electron self-energy on the level of

the G0W0 approximation. This approach leads to estimations of the electron-phonon

coupling strength that are larger than those obtained with DFPT but lower than those

obtained in the Hartree-Fock approximation, which hints at this approach offering an

improved description of the screening of the bare electron-phonon coupling.

From a theoretical and conceptual point of view, however, the results obtained with

this method cannot be considered too reliable, due to the non-self-consistent nature of

a G0W0 calculation. As we have already seen in Sections 4.4 and 4.5, a correct theo-

retical description of the screening of the electron-nuclei interaction appearing in the

force constants requires a self-consistent treatment of Dyson’s equation. This is hardly

surprising as the one-particle KS wave functions are not corrected in the G0W0 method

and as such the change of the exact wave functions induced by a nuclei displacement is

not considered. By using the derivative of the corrected band energies to estimate the

electron-phonon coupling, the calculated electron-phonon coupling will be given by the

sum of the DFPT electron-phonon coupling (stemming from the derivative of the KS

band energy) and the derivative of the electronic self-energy calculated on the G0W0

level. The derivative of the latter, however, only contains the derivative of the KS

Green’s function, i.e., the electron-phonon coupling on the DFPT level:

∂AΣG0W0(1, 2) = i[∂AG0(1, 2)]W0(1, 2) +O
(
δW0(1, 2)

δG0(3, 4)

)
= iW0(1, 2)L0(1, 2; 3̄, 4̄)g(0)(3̄, 4̄) +O

(
δW0(1, 2)

δG0(3, 4)

)
.

(5.40)

We see that the only additional term generated by the derivative of the G0W0 self-energy

is the leading-order term appearing in the ladder approximation used in the Bethe-

Salpeter equation, multiplied by the DFPT electron-phonon coupling. This approach

therefore creates a mixture of the DFPT and MBPT approaches and it is thus not clear

whether the results obtained with this method are actually reliable in general.

To remedy the theoretical problems associated with this approach, it is important

to go beyond the G0W0 approximation and treat Dyson’s equation self-consistently,
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as partially discussed in the previous chapter. However, the methods employed there

were entirely static and in the form given there are not directly relatable to a formal

perturbative approach. In this section, we will therefore derive an expression for the

screened electron-phonon coupling using the methods of diagrammatic, time-dependent

perturbation theory. Our derivations will be less detailed than for the case of the force

constants in the preceding chapter, as many of the concepts and techniques have been

utilized before. Likewise, the discussion of the physics underlying our approach will

also be kept brief, as it mimics the one of the physics behind the method we developed

for the force constants.

To start with, we give a diagrammatic definition of the screened electron-phonon

coupling. By “screened electron-phonon coupling”, we refer to a part of a Feynman

diagram that does not fall into two pieces if a single phonon line, a single electron line,

and a single hole line are cut. With this definition, it is clear that such a piece of a

diagram is to be represented by a type of diagram shown in the bottom line of the right

column of Table 5.1. Mathematically, this definition translates to

(−i)gA(1, 2; t3) ≡ (−i)G−1(1, 4̄)(−i)G−1(5̄, 2)(−i)D−1
A,B̄

(t3, t̄6)

× 〈Ω|T
{
ψ̂(4̄)ψ̂†(5̄)ûB̄(t̄6)

}
|Ω〉con.,

(5.41)

where the subscript “con.” refers to the connected part of the correlation function, i.e.,

the sum of all terms in the corresponding perturbation series that are represented by

fully connected Feynman diagrams.6 Note that in a diagrammatic skeleton expansion

of the connected Green’s function in the second line, each contributing diagram will

“end” in one exact phonon Green’s function and two exact electron Green’s function,

which are canceled by the three factors of the first line. This then leaves behind an

amputated version of the diagram, which can be identified with the screened electron-

phonon coupling as defined with the diagrammatic criterion given above.

To generate the exact diagrammatic series for the screened electron-phonon cou-

6Formally, this corresponds to the definition 〈Ω|T {ψ̂(1)ψ̂†(2)ûA(t3)}|Ω〉con. ≡
〈Ω|T {ψ̂(1)ψ̂†(2)ûA(t3)}|Ω〉 − 〈Ω|T {ψ̂(1)ψ̂†(2)}|Ω〉〈Ω|ûA(t3)|Ω〉, as the second term is the only
term in the perturbation series represented by a disconnected Feynman diagram that does not vanish
trivially.
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pling, we proceed in a similar way as we did in Section 3.3 for the one- and two-particle

electron Green’s functions and make use of a skeleton expansion once again. As the

screened electron-phonon coupling vertex by definition connects to exactly one electron

and one hole line, its diagrammatic series takes on a similar form as the one leading to

the Bethe-Salpeter equation, discussed in Section 3.3.2, and is shown in Fig. 5.1. Here,

Figure 5.1: Diagrammatic representation of the perturbation series for the
screened electron-phonon coupling.

we introduced the exact two-particle correlation function L and its independent-particle

counterpart L0 in the electron-phonon system, which are defined as

L(1, 2; 3, 4) ≡ (−i)2〈Ω|T
{
ψ̂(1)ψ̂(4)ψ̂†(2)ψ̂†(3)

}
|Ω〉

+(−i)2〈Ω|T
{
ψ̂(1)ψ̂†(2)

}
|Ω〉〈Ω|T

{
ψ̂(4)ψ̂†(3)

}
|Ω〉,

(5.42)

L0(1, 2; 3, 4) ≡ (−i)2〈Ω|T
{
ψ̂(1)ψ̂†(3)

}
|Ω〉〈Ω|T

{
ψ̂(4)ψ̂†(2)

}
|Ω〉, (5.43)

in analogy with their purely electronically interacting versions L and L0 defined in

Eq. 3.76. The field operators are here again understood to be in the Heisenberg picture,

i.e., they evolve with the full Hamiltonian ĤM. We also define a new two-particle-

irreducible interaction kernel K(2) as shown in Fig. 5.2. The new exact two-particle-

irreducible interaction kernel now also contains contributions from the electron-phonon

coupling Hamiltonians. The exact two-particle correlation functions L0 and L including
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Figure 5.2: Diagrammatic expansion of the two-particle interaction kernel in
the interacting electron-phonon system.

electron-phonon interaction effects are again related by a Bethe-Salpeter equation:

L(1, 2; 3, 4) = L0(1, 2; 3, 4) + L(1, 2; 5̄, 6̄)K(2)(5̄, 6̄; 7̄, 8̄)L(7̄, 8̄; 3, 4). (5.44)

The diagrammatic series for the exact, screened electron-phonon coupling can be

summed exactly by identifying the diagrammatic version of the BSE for L as shown in

the second line of Fig. 5.1 and can hence be calculated from

gA(1, 2; t3) = δ(1, 2)δ(t1 − t3)g
(b)
A (r1) +K(2)(1, 2; 4̄, 5̄)L(4̄, 5̄; (r̄3, t

+
3 ), (r̄3, t3))g

(b)
A (r̄3).

(5.45)

For practical calculations, it is most convenient to work in Fourier space and expand

gA in the basis of KS states and the BOA phonon “wave functions”:

gA(1, 2; t3) ≡ gn,α,i((r1, t1), (r2, t2); t3)

≡
∑
k,a,b

∑
q,λ

φq+k,a(r1)φ∗k,b(r2)ξ∗;α,iq,λ (Rn)

×
∫

dω

2π

∫
dω′

2π
e−ω(t1−t2)e−ω

′(t1−t3)g̃q,λk+q,k
a,b

(ω, ω′).

(5.46)

Note that due to time-translation invariance and crystal momentum conservation, the

expansion coefficients g̃ can only depend on two time differences, i.e., two frequencies,

and two momenta. Likewise, we expand the unscreened electron-phonon coupling as

g
(b)
n,α,i(r1) ≡

∑
k,a,b

∑
q,λ

φq+k,a(r1)φ∗k,b(r1)ξ∗;α,iq,λ (Rn)g
(b);q,λ
k+q,k
a,b

. (5.47)
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Together with the Fourier space decomposition of L and K(2), as given in Eq. 3.84, this

allows us to write Eq. 5.45 in Fourier space:

g̃q,λk+q,k
a,b

(ω, ω′) = g
(b);q,λ
k+q,k
a,b

+
∑
k′,k′′

∫
dω′′

2π

∫
dω′′′

2π
K̃(2)

k+q,a;k′′+q,c̄
k,b;k′′,d̄

(ω′ + ω′′′, ω′′′, ω − ω′′′)

× L̃k′′+q,c̄;k′+q,ē
k′′,d̄;k′,f̄

(ω′ + ω′′, ω′′, ω′′′ − ω′′)g(b);q,λ

k′+q,k′

ē,f̄

,

(5.48)

where overlined band indices are understood to be summed over. The momentum and

frequency flows in this equation are illustrated in Fig. 5.3.

Figure 5.3: Diagrammatic representation of the screened electron-phonon
coupling in Fourier space.

To turn this expression into a practically useful one, the interaction kernel and the

two-particle correlation function need to be approximated. As has been shown in the

literature [53] and already discussed at length in the preceding chapter, a better ap-

proximation of the inter-electron Coulomb interaction-based kernel K(2) will most likely

already be sufficient to better describe the screening of the electron-phonon interaction

as compared to, for example, DFPT. For the purpose of gaining a better description

of the screening of the bare electron-phonon interaction by the electronic system, it is

therefore in a first approximation sufficient to approximate the exact kernel K(2) by its

purely electronic version K(2) that consists of the inter-electron Coulomb interaction

only. In this approximation, the exact BSE including the electron-phonon coupling,

Eq. 5.45, reduces to the BSE with the electronic part of the kernel, K(2), only. In

consequence, we have L = L, where L is the solution of Eq. 3.83. To arrive at a

closed expression, we also approximate the kernel K(2) on the level of the GW approx-

imation, neglecting the functional derivative of the screened Coulomb interaction, and
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furthermore pass to the static limit for the kernel:

K̃(2)
k+q,a;k,c
k′+q,b;k′,d

(ω, ω′, ω′′) ≈ K̃
(2)
k+q,a;k,c
k′+q,b;k′,d

(ω, ω′, ω′′) ≈iW̃ k+q,a;k,c
k′+q,b;k′,d

(0)− iv k+q,a;k,c
k′+q,b;k′,d

≡K̃(2)
k+q,a;k,c
k′+q,b;k′,d

,
(5.49)

where the matrix elements and Fourier components of the bare and screened Coulomb

interaction v andW have been defined in Eqs. 3.49 and 3.91, respectively. The frequency

integrations in Eq. 5.48 then only act on the two-particle correlation function, which

reduces the expression to an algebraic equation that depends on one frequency, ω′, only:

g̃q,λk+q,k
a,b

(ω′) = g
(b);q,λ
k+q,k
a,b

+
∑
k′,k′′

K̃
(2)

k+q,a;k′′+q,c̄
k,b;k′′,d̄

L̃k′′+q,c̄;k′+q,ē
k′′,d̄;k′,f̄

(ω′)g
(b);q,λ

k′+q,k′

ē,f̄

, (5.50)

where the one-frequency Fourier component of L has been defined in Eq. 3.95. In

the approximation of a static kernel, the BSE for L can be solved exactly and L can

be written in the form given in Eq. 3.105, which depends only on the eigenvalues εS

and eigenvectors ASk+q,a;k,b of the effective two-particle Hamiltonian and the overlap

matrix NS,S′ of the latter. In order to simplify the notation, we introduce the exciton-

independent-particle coupling

ΞS
k+q,k
a,b

≡
∑
k′,c,d

iK̃
(2)

k+q,a;k′+q,c
k,b;k′,d

ASk′+q,c
k′,d

(5.51)

and the (bare) bilinear exciton-phonon coupling

g
(b);q,λ
q,S ≡

∑
k,a,b

AS,∗k+q,a
k,b

g
(b);q,λ
k+q,k
a,b

. (5.52)

Note that the bare electron-phonon coupling matrix elements in the KS basis are related

to the previously defined “reduced” electron-nuclei coupling matrix elements (compare
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Eq. 4.78) via

g
(b);q,λ
k+q,k
a,b

=
∑
α,i

√
1

2Mαωq,λ

vα,iq,λg
(b);(α,i)
k+q,k
a,b

=
∑
α,i

√
1

2NMαωq,λ

vα,iq,λ

∫
d3r e−iq·rχ∗k+q,a(r)

∂Vlat(r)

∂R
(0)
0,α,i

χ∗k,b(r).

(5.53)

We then arrive at the following compact, closed-form expression for the screened

electron-phonon coupling:

g̃q,λk+q,k
a,b

(ω′) = g
(b);q,λ
k+q,k
a,b

+
∑
S,S′

ΞS
k+q,k
a,b

N−1
S,S′g

(b);q,λ
q,S′

ω′ − εS + iη
. (5.54)

This equation is another central result presented in this thesis.

To summarize, we propose the following algorithm for an improved calculation of the

screened electron-phonon coupling:

1. Calculation of a set of Kohn-Sham states and eigenvalues in density functional

theory.

2. Correction of the KS eigenvalues on the level of the GW approximation.

3. Computation of the static two-particle interaction kernel, solving the Bethe-

Salpeter equation for both the eigenstates and eigenvalues, and calculation of

the overlap matrix.

4. Calculation of the matrix elements of the first derivative of the lattice potential

in the KS basis and computation of the bilinear exciton-phonon coupling and the

exciton-independent particle coupling.

5. Computation of the screened electron-phonon matrix elements according to

Eq. 5.54.
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Like our proposed novel approach for the calculation of phonon frequencies using many-

body perturbation theory, this approach is yet to be implemented and tested, since,

as of now, no existing ab initio code features both a solver for the BSE at finite-wave

vector excitations and also allows for the computation of the bare electron-phonon in-

teraction matrix elements. The concrete implementation of our proposed methods to

calculate both phonon frequencies and the screened electron-phonon coupling will thus

be the focus of future efforts, but is beyond the scope of this thesis.

Instead, we would like to conclude this section by establishing the link of our pro-

posed approach to the frequently used method of DFPT. As discussed in Section 4.3,

the self-consistent DFPT algorithm generates, amongst other quantities, the derivative

of the self-consistent potential, ∂AVscf(r), which is often taken as an approximation for

the electron-phonon coupling in the static limit [130, 131]. By “static limit”, we refer

to the ω′ → 0 limit of the frequency-dependent, screened electron-phonon coupling.

Note that passing to the ω′ → 0 limit is equivalent to integrating over t3 without any

exponential factor:

g̃A(1, 2;ω′) ≡
∫ +∞

−∞
dt3 eiω

′t3gA(1, 2; t3)
ω′→0−−−→

∫ +∞

−∞
dt3 gA(1, 2; t3) ≡ gA(1, 2), (5.55)

which is easily seen to be consistent with our previous definition of the Fourier com-

ponents of gA in Eq. 5.46. Integrating both sides of Eq. 5.45 over t3, one obtains an

equation for the static, screened electron-phonon coupling:

gA(1, 2) = δ(1, 2)g
(b)
A (r1) +K(2)(1, 2; 3̄, 4̄)L(3̄, 4̄; 5̄+, 5̄)g

(b)
A (r̄5). (5.56)

As discussed before in Section 4.5, the approximations employed in DFPT are equivalent

to approximating the two-particle-irreducible interaction kernel as

K(2)(1, 2; 3, 4)
DFPT' K(2);KS(1, 2; 3, 4) ≡ −δ(1, 2)δ(3, 4)

[
v(1, 3)−∆vxc(1, 3)

]
, (5.57)

where ∆vxc(1, 3) has been defined in Eq. 4.91 as the negative, instantaneous functional

derivative of the exchange-correlation potential with respect to the KS charge density.
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Within this approximation, the BSE for L is solved by the KS two-particle correlation

function L(KS), i.e., the static electron-phonon coupling within DFPT obeys Eq. 5.56

with the replacements K(2) → K(2);KS and L → L(KS). However, as shown in Section 4.5,

a combination of Eqs. 4.92 and 4.94 shows that this equation is solved by gA(1, 2) =

δ(1, 2)∂AVscf(r2).

We have thus shown that in the limit of approximating the two-particle-irreducible

interaction kernel with its KS-DFT-derived equivalent, the derivative of the self-

consistent potential of KS-DFT indeed provides an approximation for the static

electron-phonon coupling. In the same way, different approximations to the two-

particle-irreducible interaction kernel yield different approximations to the electron-

phonon coupling. The entire discussion about the physical interpretation and draw-

backs of various approximations presented in Section 4.5 applies equally well to the

case of the screened electron-phonon coupling and we will therefore not discuss the

physical interpretation of our improved approach here again.

This concludes our treatment of the screened electron-phonon coupling, for which we

presented a novel approach that is expected to yield a much more realistic estimation of

the strength of the effective electron-phonon coupling, which enters various observable

quantities, such as phonon frequencies beyond the adiabatic approximation and Raman

scattering rates. In the final section of this chapter, we will turn to a discussion of the

exact phonon Green’s function, which is another ingredient needed for our treatment

of Raman scattering.

5.3 Phonons beyond the adiabatic, Born-

Oppenheimer approximation

The one-phonon Green’s function plays an important role for the theoretical description

of Raman scattering. As mentioned in the introduction to this thesis, the Raman spec-

trum features sharp peaks at energies corresponding to matter excitation energies, the

lowest of which typically correspond to excitations of lattice vibrations, i.e., phonons.

The position of the Raman peaks therefore corresponds to the exact phonon frequen-

cies, which are closely related to the Fourier-transformed one-phonon Green’s function.
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More generally, the latter also contains information about a large set of excited states of

the full matter Hamiltonian, which are needed for the calculation of Raman scattering

rates within our developed theoretical approach.

In a first step, we will briefly review the spectral or Lehmann representation of the

one-phonon Green’s function, before discussing the calculation of the exact one-phonon

Green’s function within perturbation theory, based on Dyson’s equation and the con-

cept of the phonon self-energy. For the latter, we will suggest an approximation that

leads to a natural extension of our approach for the calculation of phonon frequen-

cies to the non-adiabatic regime. This is important for (semi-)metallic systems, where

the adiabatic approximation is in general not justified. Indeed, as has been shown for

graphene [28], the phonon frequencies in these systems are strongly influenced by non-

adiabatic effects, as electronic excitations in low- or zero-gap systems can resonantly

couple to lattice vibrations. We will revisit this important point once more in Chap-

ter 7, where the phenomenon of “magneto-phonon resonances” will be discussed.

To begin with, we expand the exact phonon Green’s function DA,B(t1, t2) in the ba-

sis of phonon “wave functions”:

DA,B(t1, t2) ≡ D(n,α,i),(m,β,j)(t1, t2) ≡
∑
q,λ,λ′

ξα,iq,λ(Rn)ξβ,j;∗q,λ′ (Rm)Dq,λ,λ′(t1, t2), (5.58)

where

Dq,λ,λ′(t1, t2) ≡ −i〈Ω|T
{
B̂q,λ(t1)B̂†q,λ′(t2)

}
|Ω〉 ≡

∫
dω

2π
e−iω(t1−t2)D̃q,λ,λ′(ω) (5.59)

is the Green’s function for the mode operators B̂q,λ ≡ b̂q,λ+b̂†−q,λ, whose time-dependent

versions are understood to be in the Heisenberg picture. With the last equality, we

also defined the Fourier components of Dq,λ,λ′(t1, t2), which, due to time-translation

invariance, can only depend on the time difference t1−t2. Also note that, in the absence

of “spontaneous symmetry breaking”, the exact ground state |Ω〉 of ĤM has the same

crystal symmetries as the ground state |0〉 of Ĥ0 since the interaction Hamiltonian Ĥ1

only contains terms that respect the symmetries of the crystal, fixed by the equilibrium

135



nuclear configuration {R(0)
I }. We therefore take the phonon Green’s function to be

diagonal in the wave vector q, but note that it will in general not be diagonal in the

space of the phonon branches, labeled by λ.

By inserting a complete set of states {|α〉} of the full matter Hamiltonian ĤM, the

phonon Green’s function in mode space can be written in the form:

Dq,λ,λ′(t1, t2) = −i
∑
α

{
Θ(t1 − t2)e−i(Eα−E0)(t1−t2)〈Ω|B̂q,λ|α〉〈α|B̂†q,λ′|Ω〉

+ Θ(t2 − t1)e−i(Eα−E0)(t2−t1)〈Ω|B̂†q,λ′|α〉〈α|B̂q,λ|Ω〉
}
.

(5.60)

Here, Θ denotes the Heaviside step function and Eα, E0 are the energies of the states

|α〉, |Ω〉, respectively. In Fourier space, this expression reads:

D̃q,λ,λ′(ω) =
∑
α

{
〈Ω|B̂q,λ|α〉〈α|B̂†q,λ′ |Ω〉

ω −∆Eα + iη
−
〈Ω|B̂†q,λ′ |α〉〈α|B̂q,λ|Ω〉

ω + ∆Eα − iη

}
, (5.61)

where η ≡ 0+ is a positive infinitesimal, which is needed to make the Fourier transfor-

mation of the step function well-defined, and ∆Eα ≡ Eα −E0 is the short notation for

the excitation energies of ĤM which we already introduced at the end of Section 2.4.

Eq. 5.61 is known as the spectral or Lehmann representation of the phonon Green’s

function, after H. Lehmann, who introduced it in his 1954 paper on renormalization

constants of quantum fields [138].7

The spectral composition can be written in an alternative way by introducing the

retarded and advanced spectral functions

A(R)
q,λ,λ′(ω) ≡

∑
α

〈Ω|B̂q,λ|α〉〈α|B̂†q,λ′ |Ω〉δ(ω −∆Eα) (5.62)

A(A)
q,λ,λ′(ω) ≡

∑
α

〈Ω|B̂†q,λ′ |α〉〈α|B̂q,λ|Ω〉δ(ω −∆Eα), (5.63)

which will also play a role in our approach to one-phonon-induced Raman scattering pre-

7In the particle physics literature the spectral decomposition is also known as the Källén-Lehmann
representation, as it was independently used by G. Källén in his 1952 work on renormalization constants
in relativistic quantum electrodynamics [139]. In the context of condensed matter physics, the spectral
representation is often associated with the name of Lehmann alone, however.
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sented in the next chapter. In terms of the spectral functions, the Fourier-transformed

Green’s function reads8

D̃q,λ,λ′(ω) =

∫ ∞
0

dω′

{
A(R)

q,λ,λ′(ω
′)

ω − ω′ + iη
−
A(A)

q,λ,λ′(ω
′)

ω + ω′ − iη

}
. (5.64)

In systems with time-reversal symmetry, on which we will focus exclusively, the retarded

and advanced Green’s functions are related to each other by complex conjugation:9

A(A)(ω) =
[
A(R)(ω)

]∗
. It then makes sense to speak of the spectral function A(ω) ≡

A(R)(ω) and omit the superscripts R and A:

D̃q,λ,λ′(ω)
TRS
=

∫ ∞
0

dω′
{ Aq,λ,λ′(ω

′)

ω − ω′ + iη
−
A∗q,λ,λ′(ω′)
ω + ω′ − iη

}
. (5.65)

From the spectral decomposition, we see that the one-phonon Green’s function has

singularities at (±1) times the excitation energies of the full Hamiltonian, with their

residues being given by the matrix elements of the mode operators between the ground

and excited states. The presence of singularities with matrix elements as their residues

is a general feature of Fourier-transformed correlation functions and in the next chap-

ter we will exploit it to obtain the matrix elements for Raman scattering. For now,

however, we confine ourselves to a brief description of how to obtain an expression for

the excitation energies ∆Eα from perturbation theory. The latter play an important

role for the description of Raman scattering, since, as we have seen in Section 2.4, the

Raman scattering rate features sharp peaks whenever the energy difference between

the incoming and scattered light is equal to an excitation energy of the full matter

8Note that, since ∆Eα > 0 for all states |α〉, the δ-function does not contribute to the integral for
ω < 0 and we can hence take the integral to start at 0.

9In time reversal-invariant systems, the Hamiltonian commutes with the anti-unitary time-reversal
operator T̂ : [T̂ , ĤM] = 0. The eigenstates of Ĥ can then be chosen to be eigenstates of T̂ as
well. As T̂ is anti-unitary, its eigenvalues have the form eiηα with a real phase ηα, i.e., the eigen-
states |α〉 of ĤM can be chosen such that T̂ |α〉 = eiηα |α〉. We then have 〈Ω|B̂q,λ|α〉〈α|B̂†q,λ′ |Ω〉 =

〈Ω|T̂ B̂q,λT̂ †|α〉〈α|T̂ B̂†q,λ′ T̂ †|Ω〉. If one uses the anti-linearity of T̂ and the fact that ûa,α,i and P̂a,α,i

are even and odd under time-reversal, respectively, it follows from our definition of B̂qλ in terms of

ûa,α,i and P̂a,α,i that T̂ B̂q,λT̂ † = B̂−q,λ = B̂†q,λ. In systems with time-reversal symmetry, we then

have 〈Ω|B̂q,λ|α〉〈α|B̂†q,λ′ |Ω〉 = [〈Ω|B̂†q,λ′ |α〉〈α|B̂q,λ|Ω〉]∗.
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Hamiltonian. Therefore, the positions of the peaks appearing in the Raman spectrum

can be determined from the poles of the matter Green’s functions, i.e., the many-

particle electron and phonon Green’s functions. In this work, we will confine ourselves

to phonon-induced Raman scattering, i.e., to peaks appearing at excitation energies

of ĤM which can “mostly” be associated with the excitation of phonons, as for many

materials, these kinds of excitations dominate the Raman spectrum [85]. To make this

notion of “mostly” more precise, we assume that the coupling of the electronic and

phonon system can be considered a small perturbation only. In this case, to each ele-

mentary electronic or phonon excitation of the unperturbed system, there then exists

a corresponding excitation of the fully interacting system whose excitation energy is

close to that of the excitation energy of the unperturbed system, in the sense that their

relative difference can be considered to be significantly smaller than one.

In order to find the singularities of the Fourier-transformed phonon Green’s function,

we make use of its series expansion in time-dependent perturbation theory, similarly to

our discussion of the one-particle electron Green’s function in Section 3.3.1. We first

express the needed time-ordered correlation function in terms of interaction-picture op-

erators and the ground state |0〉 of the non-interacting reference system described by

Ĥ0 as defined in Eq. 5.30:

〈Ω|T {ûA(t1)û†B(t2)}|Ω〉 =

〈0|T
{
ûA,I(t1)û†B,I(t2) exp

[
−i

+∞∫
−∞

dt Ĥ1,I(t)

]}
|0〉

〈0|T
{

exp

[
−i

+∞∫
−∞

dt Ĥ1,I(t)

]}
|0〉

. (5.66)

Just as for the electron Green’s function, we can expand the right-hand side in powers of

the interaction Hamiltonian Ĥ1 and organize the arising terms via Feynman diagrams,

according to the rules given in Table 5.1. The perturbation series for the exact one-

phonon Green’s function is then given by the sum of all fully connected Feynman

diagrams with two “phonon endpoints”, represented by open circles.10

10As usual and as is well known [83, 87–89, 91, 115], the denominator on the right-hand side of
Eq. 5.66 serves to cancel the terms arising from the sum of disconnected diagrams, which is known in
the literature as the linked cluster theorem.
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To organize this series of diagrams even further, we introduce the one-particle-

irreducible phonon self-energy ΠA,B(t1, t2) as i times the sum of all one-phonon

-irreducible, fully connected diagrams, i.e., diagrams that do not fall into two pieces

if a single phonon line is cut (also compare the definition of the electron self-energy

in Section 3.3.1).11 The perturbation series for DA,B(t1, t2) then takes on the form of

a geometric series, as shown in Fig. 5.4. This diagrammatic equation is equivalent to

Figure 5.4: Diagrammatic representation of Dyson’s equation for the one-
phonon Green’s function.

Dyson’s equation

DA,B(t1, t2) = DA,B(t1, t2) +DA,C̄(t1, t̄3)ΠC̄,D̄(t̄3, t̄4)DD̄,B(t̄4, t2), (5.67)

where barred indices and time variables are summed or integrated over, respectively.

Expanding the non-interacting phonon Green’s function D and the self-energy Π in

the basis of phonon “wave functions” and defining their Fourier-transformed version

analogously to Eq. 5.59, Dyson’s equation can easily be solved for the inverse Green’s

function

2
√
ωq,λωq,λ′D̃−1

q,λ,λ′(ω) = δλ,λ′(ω
2 − ω2

q,λ)− 2
√
ωq,λωq,λ′Π̃q,λ,λ′(ω)l, (5.68)

whose zeros define the poles of D. Here, we made use of the fact that the Fourier-

11Just as in the case of the electron self-energy, the factor of i is included in the definition of Π so
that the sum of all such diagrams equals (−i)ΠA,B(t1, t2). The factor (−i) then cancels the factor of
i stemming from the factor of iDA,B(t1, t2) associated with a single phonon line.
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transformed and expanded non-interacting Green’s function has the form

D̃q,λ,λ′(ω) = δλ,λ′
2ωq,λ

ω2 − ω2
q,λ + iη

, (5.69)

as is easily shown from its definition.

Figure 5.5: Examples of terms appearing in the diagrammatic expansion of
the irreducible phonon self-energy.

The phonon self-energy Π, in turn, can be obtained from its diagrammatic definition.

In Fig. 5.5, we show a few of the terms appearing in its perturbative expansion. The

terms in the first two lines arise from electron-phonon interaction processes that also

include electron-mediated anharmonic effects, while the first term of the third line is an

example of a term that appears due to pure phonon-phonon interaction. Finally, the

last diagram represents the static counterterm −C(el)
A,B, i.e., the electronic part of the

force constants, in the adiabatic and harmonic approximations. It serves to cancel the

contribution to the self-energy that is already included in the adiabatic and harmonic

phonon frequencies ωq,λ that serve as a starting point for the perturbative treatment.

We will denote this counterterm contribution to the self-energy as Π̃
(ad.)
q,λ,λ′ . Explicitly, it
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is given by

Π̃
(ad.)
q,λ,λ′ =−

∑
A,B

ξA;∗
q,λC

(el)
A,Bξ

B
q,λ′

=− 1

N

∑
n,m

1

2
√
ωq,λωq,λ′

∑
α,β
i,j

1√
MαMβ

e−iq·(Rn−Rm)

× vα,i;∗q,λ

[
Cα,β
i,j

(Rn −Rm)− C(nuc)
α,β
i,j

(Rn −Rm)

]
vβ,jq,λ′ ,

(5.70)

where we replaced the electronic part of the force constants by the difference between

the total force constants and the nuclear part, defined in Eq. 4.39. If we identify the

(unperturbed) dynamical matrix and note that the vα,iq,λ are its mutually orthogonal and

normalized eigenvectors to the eigenvalues ω2
q,λ, this expression simplifies considerably:

Π̃
(ad.)
q,λ,λ′ = −δλ,λ′

ω2
q,λ

2ωq,λ

+
1

2
√
ωq,λωq,λ′

D
(nuc)
λ,λ′ (q), (5.71)

where we defined the mode-projected, nuclear part of the dynamical matrix as

D
(nuc)
λ,λ′ (q) ≡

∑
α,β
i,j

vα,i;∗q,λ

1√
MαMβ

[∑
n

e−iq·RnC
(nuc)
α,β
i,j

(Rn)

]
vβ,jq,λ′ . (5.72)

In terms of the non-adiabatic part of the self-energy, Π̃(NA)(ω) ≡ Π̃(ω)− Π̃(ad.), Dyson’s

equation then reduces to

2
√
ωq,λωq,λ′D̃−1

q,λ,λ′(ω) = δλ,λ′ω
2 −

[
D

(nuc)
λ,λ′ (q) + 2

√
ωq,λωq,λ′Π̃

(NA)
q,λ,λ′(ω)

]
. (5.73)

In a last step, we need to obtain an approximative expression for the non-adiabatic

part of the self-energy. As seen from the diagrammatic expansion shown in Fig. 5.5, the

non-adiabatic part of the self-energy consists of a sum of terms due to electron-phonon

interaction and a sum of terms involving phonon-phonon interaction processes. These

latter terms involve the third derivative of the nuclei-nuclei potential energy and hence

are related to anharmonic effects. In a first approximation, we neglect those and focus
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on the electronic part of the self-energy instead: Π(NA) ≈ Π(el). It is given by the series

Figure 5.6: Diagrammatic expansion of the electronic part of the irreducible
phonon self-energy.

of diagrams shown in Fig. 5.6 and can be summed exactly by making use of the Bethe-

Salpeter equation for the two-particle correlation function. In real space, it is given by:

Π
(el)
A,B(t1, t2) =

∫
d3r1 g

(b);(2)
A,B (r1)(−i)G((r1, t

+
1 ), (r1, t1))δ(t1 − t2)

+

∫
d3r1

∫
d3r2 g

(b)
A (r1)(−i)L((r1, t1), (r1, t

+
1 ); (r2, t

+
2 ), (r2, t2))g

(b)
B (r2)

=

∫
d3r1 g

(b);(2)
A,B (r1)(−i)G((r1, t

+
1 ), (r1, t1))δ(t1 − t2)

+

∫
d3r1

∫
d3r2 gA(r1)(−i)L0((r1, t1), (r1, t

+
1 ); (r2, t

+
2 ), (r2, t2))g

(b)
B (r2),

(5.74)

where in the last equality we traded the product of the bare electron-phonon coupling

g(b) and the exact two-particle correlation function L for the product of the screened

electron-phonon coupling g and the independent-particle two-particle correlation func-
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tion L0, as pointed out in the previous section. Also note that we included an additional

minus sign due to the appearance of a closed fermion loop in both diagrams.

The electronic part of the phonon self-energy consists of two parts. The first one

involves the second derivative of the lattice potential and the exact electron charge

density in the interacting electron-phonon system. Since this term only gives a static

contribution to the self-energy, its effect on the phonon frequencies should not differ

much if the exact density is replaced by the one in the non-interacting electronic sys-

tem, which, in turn, can be reasonably well approximated by the Kohn-Sham density,

as argued in the previous chapter. The second part, by contrast, is dynamic and there-

fore can potentially have a big influence on the phonon frequencies in (semi-)metallic

systems, where the non-interacting phonon and electron systems have similar excitation

energies and thus can be in resonance with one another. To obtain a practically useful

expression for this second part, we use the same approximation as for the description of

the screened electron-phonon coupling in the previous section and let K(2) → K(2) and

L(0) → L(0). This corresponds to neglecting the electron-phonon interaction contribu-

tions to the kernel or electron self-energy. As argued before, this should in general be

a very good approximation for the purpose of describing the screening of the electron-

phonon interaction. Note however, that neglecting the electron-phonon coupling in the

two-particle-irreducible interaction kernel means that dynamic, indirect phonon-phonon

interaction effects are not included anymore. The latter appear, for example, in contri-

butions to the kernel that involve two internal phonon lines. These contributions can

potentially give a sizable contribution to anharmonic effects on the phonon frequencies

and lifetimes and thus our approximation leads to the complete omission of all anhar-

monic effects. If the inclusion of the latter is desirable or necessary, they can still be

included perturbatively by including the respective diagrams just mentioned.

In our approximation then, the Fourier-transformed and mode-projected electronic

part of the self-energy reads:

Π̃
(el)
q,λ,λ′(ω) =

1

2
√
ωq,λωq,λ′

∑
α,β
i,j

vα,i;∗q,λ D
(el,dyn)
α,β
i,j

(q, ω)vβ,jq,λ′ ,≡
1

2
√
ωq,λωq,λ′

D
(el,dyn)
λ,λ′ (q, ω)

(5.75)

where in the first step we defined the electronic part of a dynamic, effective dynamical
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matrix as

D
(el,dyn)
α,β
i,j

(q, ω) ≡ 1√
MαMβ

(−i)
∑
k,k′

a,b,c,d

(
g

(b);(α,i)

k′+q,k′

a,b

)∗
L̃k′+q,a;k+q,c

k′,b;k,d

(ω)g
(b);(β,j)
k+q,k
c,d

+
1√

MαMβ

∑
k,a,b

g
(b);(2);(α,βi,j )

k,k
a,b

∫
dω

2πi
eiω0+G̃k,a,b(ω).

(5.76)

Here, we identified the “reduced”, bare, electron-nuclei coupling matrix elements, as

defined in Eqs. 4.78 and 4.79. Inserting the eigenmode expansion of the two-particle

correlation function and approximating the interacting electron charge density in the

second line with the Kohn-Sham one, we arrive at the concrete expression

D
(el,dyn)
α,β
i,j

(q, ω) =
1√

MαMβ

∑
S,S′

(
g

(b);(α,i)
q,S

)∗
N−1
S,S′g

(b);(β,j)
q,S′

ω − εS + iη
+
∑

(k,a)∈O

g
(b);(2);(α,βi,j )

k,k
a,a

 ,

(5.77)

in which we identified the bilinear exciton-phonon coupling as defined in Eq. 4.82.

If we finally define the dynamic, total, effective dynamical matrix as D(dyn)(q, ω) ≡
D(el,dyn)(q, ω) + D(nuc)(q), we see that the problem of finding the zeros of Dyson’s

equation, which now reads

2
√
ωq,λωq,λ′D̃−1

q,λ,λ′(ω) = δλ,λ′ω
2 −D(dyn)

λ,λ′ (q, ω), (5.78)

is equivalent to solving a non-linear eigenvalue problem. Note that the dynamic, effec-

tive dynamical matrix reduces to the ordinary, static dynamical matrix in the static

ω → 0 limit, as seen from a comparison of Eqs. 5.76 and 4.80. As seen in Section 3.3.2,

the frequency ω appears in the two-particle correlation function only through its differ-

ence with an electronic excitation energy. In systems with a sizable electronic band gap,

we can therefore neglect the frequency dependence of the effective dynamical matrix

if we are only interested in low-energy solutions to Dyson’s equation, i.e., solutions ω

that are much smaller than the smallest electronic excitation energy. This is typically

the case for semi-conducting or insulating systems, but not for (semi-)metallic systems

with small or vanishing band gaps, such as graphene, where the frequency dependence
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of the effective dynamical matrix is usually not negligible.

So far, our treatment of phonons beyond the Born-Oppenheimer approximation was

based on a perturbative approach, starting from a known set of phonon frequencies and

eigenvectors, {ωq,λ, v
α,i
q,λ}. However, in our final expression for Dyson’s equation, the

only remnant of this is the fact that both the exact phonon Green’s function and the

effective dynamical matrix have been projected on the phonon eigenmodes. Instead,

one can equally well write it in a cartesian basis:

D̃−1
α,β
i,j

(q, ω) = δα,βδi,jω
2 −D(el,dyn)

α,β
i,j

(q, ω). (5.79)

This allows a computation of phonon frequencies beyond the adiabatic, Born-

Oppenheimer approximation without the need to first calculate the phonons of a refer-

ence system, such as the one within the BOA.

To conclude, our proposed approach for computing phonons, and in general any excita-

tion energies of the matter Hamiltonian with a non-vanishing one-phonon contribution,

can be summarized as follows:

1. Calculation of a set of Kohn-Sham states and eigenvalues in density functional

theory.

2. Correction of the KS eigenvalues on the level of the GW approximation.

3. Computation of the static two-particle interaction kernel, solving the frequency-

dependent Bethe-Salpeter equation for both the eigenstates and eigenvalues, and

calculation of the overlap matrix.

4. Calculation of the matrix elements of the first and second derivatives of the lattice

potential in the KS basis and computation of the bilinear exciton-phonon coupling.

5. Construction of the electronic part of the effective dynamical matrix according to

Eq. 5.77, addition of the static, nuclear part, and solving the non-linear eigenvalue

problem D̃−1(q, ω) = 0.
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Once again, as of now, no existing ab initio code features both a solver for the BSE at

finite-wave vector excitations and also allows for the computation of the bare electron-

phonon interaction matrix elements. The concrete implementation of our proposed

way of calculating phonons beyond the Born-Oppenheimer approximation will be the

subject of future efforts but is beyond the scope of this thesis.

Our novel and concrete approach for the calculation of phonons beyond the adia-

batic, Born-Oppenheimer approximation combines both the inclusion of non-adiabatic

effects and a description of the screening of the electron-phonon interaction on a level

of theory beyond common modern approaches such as DFPT. It thus constitutes a

significant advancement in the theory of phonons and electron-phonon interaction. So

far, not many works have discussed approaches to this problem. The only other works

of note that are concerned with the calculation of frequencies beyond the BOA are

the works by Pisana et al. on graphene [28] and a recent work by Caruso et al. [140]

on boron-doped diamond. The methods applied in these works, however, make use

of either a semi-empirical analytical model for the electron-phonon coupling or use the

DFPT-level electron-phonon coupling, respectively, and furthermore require a prior cal-

culation of reference phonon frequencies.

In conclusion, this chapter dealt with a discussion of the perturbative treatment of

the exact, full matter Hamiltonian. We applied the methods of time-dependent pertur-

bation theory to obtain concrete expressions for a description of the screened electron-

phonon coupling and for phonon frequencies beyond the adiabatic, Born-Oppenheimer

approximation and beyond the currently often employed level of theory, such as DFPT.

The latter has been shown to not yield satisfactory results in (semi-)metallic systems,

such as graphene [53], in which Kohn anomalies exist and non-adiabatic effects are

important. The theoretical approach we developed over the past two chapters goes

beyond these limitations and our concrete expressions allow a timely implementation,

which will be the subject of future research.

Now that we have reviewed and developed a way to find the energies of excitations

of the full matter Hamiltonian with at least a partial phonon component, we are in a

position to discuss and develop a concrete approach to the calculation of one-phonon-
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induced Raman scattering rates, which will be the subject of the next chapter.
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Chapter 6

One-Phonon Raman Spectroscopy

Parts of the content of this chapter have been published in the following publications:

• Reichardt, S. & Wirtz, L. Raman Spectroscopy of Graphene, Optical Properties

of Graphene, chap. 3, 85–132 (World Scientific, Singapore, 2017)

• Miranda, H. P. C., Reichardt, S., Froehlicher, G., Molina-Sánchez, A., Berciaud,

S. & Wirtz, L. Quantum interference effects in resonant Raman spectroscopy

of single-and triple-layer MoTe2 from first-principles. Nano Lett. 17, 2381–2388

(2017)1

• Reichardt, S. & Wirtz, L. Ab initio calculation of the G peak intensity of graphene:

Laser-energy and Fermi-energy dependence and importance of quantum interfer-

ence effects. Phys. Rev. B 95, 195422 (2017)

1Contributions of the author of this thesis to the cited work:
Provided key ideas for interpretation of the calculations in the form of the concepts of approximate
angular momentum conservation, quantum interference effects, and visualization of the computational
results; extensively discussed the results with the co-authors; co-wrote the manuscript.
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In the preceding chapters we developed a general theory for inelastic light scattering

and presented an approximation to it based on a generalization of Fermi’s golden rule.

As mentioned earlier, the latter approach allows an efficient computation of only parts

of the Raman spectrum, by selecting the states for which the scattering matrix element

is evaluated. In the present chapter, we will now focus on the contribution of one-

phonon-like states to the inelastic scattering rate.

We will present a concrete approach that allows the computation of the needed

scattering matrix element and permits the inclusion of both excitonic and non-adiabatic

effects. Previous approaches only allowed the inclusion of one [75] or the other [50, 59],

but not both at the same time. The means that enables us to overcome this limitation is

the application of the Lehmann-Symanzik-Zimmermann reduction formula [80], which

is widely applied in the field of particle physics but so far has not seen any use in

condensed matter physics. Our approach thus constitutes a major advancement for

both the practical and theoretical side of the description of Raman spectroscopy.

In addition to these theoretical developments, we show results of a first concrete

computation for the case of graphene, which demonstrates the viability of the method,

firstly in the simpler setting of negligible excitonic effects. A computational demonstra-

tion of the viability of the method for materials in which excitonic effects are relevant

will be the subject of future work. However, already the case of graphene demonstrates

the full power and flexibility of our approach, as it allows us to study the dependence

of the Raman intensity on both the frequency of the incoming light and variations of

the Fermi energy in great detail. Furthermore, it permits the identification of the dom-

inant contributions to the scattering matrix element and demonstrate the importance

of quantum interference effects, which were also a subject of experimental interest [81].

6.1 One-phonon Raman scattering in perturbation

theory

We first focus on the theoretical description of one-phonon-induced Raman scattering

at zero temperature and at macroscopically long observation times. In these limits,

the Raman scattering rate was shown in Section 2.4 to be given by a generalization of
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Fermi’s golden rule that involves matrix elements of a time-ordered product of current

density operators in the Heisenberg picture. In the first part of this section, we will

see how these matrix elements appear as residues of poles of higher-order correlation

functions, similarly to how the exact one-particle Green’s functions have poles whose

residues can be written as matrix elements of field operators. The relation between

these kinds of matrix elements and higher-order correlation functions is described by

the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula [80]. Since it is practi-

cally unheard of in the domain of condensed matter physics, we shall briefly review its

derivation in the context of the matrix elements needed for our description of Raman

scattering. The derivation of the LSZ reduction formula reviewed here follows in spirit

that of the books by Peskin and Schroeder [88] and Weinberg [83].

The remainder of this section will be devoted to the discussion of the needed higher-

order correlation function and approximations to it that lead to a concrete approach for

the calculation of the one-phonon-induced Raman scattering rate. The main theoretical

result will be a concrete perturbative expression that allows the computation of the one-

phonon Raman scattering matrix element including excitonic effects, a comprehensive

description of the screening of the electron-phonon coupling, and dynamically treated

phonons. As a first test case that avoids the added complexity arising from the presence

of excitonic effects, we will apply the independent-particle version of our approach to

graphene in the next section.

6.1.1 LSZ reduction formula

As seen in Chapter 2, we can compute the Raman scattering rate, which is directly

proportional to the measured Raman intensity, from knowledge of the matrix elements

J̃αkout,kin
ν,µ

(ω) =

∫ +∞

−∞
dt eiωt〈α|T

{
Ĵkout,ν(t)Ĵ

†
kin,µ

(0)
}
|Ω〉, (6.1)

where the spatially Fourier-transformed and projected current density operators have

been defined in Eq. 2.35, |α〉 is an eigenstate of the full matter Hamiltonian ĤM and
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|Ω〉 is its ground state.2 Note that we omitted the subscript I on the current density

operators, as with respect to the Hamiltonian ĤM they are in the Heisenberg picture.

For the purpose of the work presented in this chapter, i.e., one-phonon-induced

Raman scattering, we will be interested in matrix elements involving states |α〉 that

are largely phononic in character. By this, we mean that we restrict ourselves to

contributions from states for which the matrix elements 〈α|ûA|Ω〉 are sizably different

from zero. Note that in the non-interacting theory we would have 〈α|ûA|0〉 6= 0 if and

only if |α〉 = |q, λ〉, i.e., |α〉 is a state with exactly one phonon. In the full, interacting

theory, the non-interacting one-phonon states will mix with the other non-interacting

states to form the eigenstates |α〉 of the full matter Hamiltonian and the matrix elements

〈α|ûA|0〉 will be non-vanishing for an entire set or continuum of states that will be

energetically close to the one-phonon states if the interactions can be considered small.

For these kinds of states |α〉, the needed matrix elements of a time-ordered product of

current operators can be obtained from the higher-order correlation function

SA(t′, t; kout, ν; kin, µ) ≡ 〈Ω|T
{
ûA(t′)Ĵkout,ν(t)Ĵ

†
kin,µ

(0)
}
|Ω〉, (6.2)

where A ≡ (n, α, i) is the short-hand notation for the indices specifying a displacement

of the αth atom in unit cell n in the ith cartesian direction. We will denote the Fourier

transform of SA with respect to t′ by

S̃A(ω′; t; Φ) ≡
∫ +∞

−∞
dt′ eiω

′t′SA(t′; t; kout, ν; kin, µ), (6.3)

where we introduced the short-hand notation Φ ≡ (kout, ν; kin, µ) in order to avoid an

overloading of the expressions with too many explicitly appearing quantities.

Our main subject of interest will be the singularities of S̃ as a function of ω′. We have

already seen in the previous chapter that correlation functions can exhibit singularities

at exact excitation energies of the interacting system, the residues of which are related

to certain matrix elements. Here, we will exploit this feature to extract the needed

2As in the previous two chapters, we make use of a calligraphic font to denote operators that act
in more than one subspace of the complete Hilbert space. In this case, ĤM acts on both the electronic
and the nuclear part of the Hilbert space. This operator was previously denoted by ĤM in the context
of our discussion of the interacting light-matter system in Chapter 2.
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matrix elements for Raman scattering. To compute the Fourier transform os S, we first

divide the integration interval into three regions:

(−∞,+∞) = (−∞,−T ) ∪ [−T,+T ] ∪ (+T,+∞), (6.4)

where T is an intermediate time chosen such that −T < min{t, 0} ≤ max{t, 0} < +T .

The Fourier integral then splits into three separate integrals, one over each of the three

regions. For the purpose of finding the singularities of S̃ as a function of ω′, the integral

over the finite interval [−T,+T ] can be ignored as the integrand depends on ω′ only

through the analytic exponential function exp(iω′t′) and an integral over t′ over the

finite region [−T,+T ] will yield an analytic function of ω′. We then have

S̃A(ω′; t; Φ) =

∫ −T
−∞

dt′eiω
′t′ SA(t′, t; Φ) +

∫ +∞

+T

dt′ eiω
′t′SA(t′, t; Φ)

+ terms regular in ω′.

(6.5)

The second term reads∫ +∞

+T

dt′eiω
′t′ SA(t′, t; Φ) =

∫ +∞

+T

dt′eiω
′t′
∑
α

〈Ω|ûA(t′)|α〉〈α|T
{
Ĵkout,ν(t)Ĵ

†
kin,µ

(0)
}
|Ω〉,

(6.6)

where we inserted a complete set of eigenstate of ĤM and included the time-ordering

symbol only in the second factor since t′ > T > max{t, 0} everywhere in the integration

region. Inserting the definition of ûA in the Heisenberg picture and letting ω′ → ω′+ iη

with a positive infinitesimal η to ensure the convergence of the integral, we find

∫ +∞

+T

dt′eiω
′t′ SA(t′, t; Φ) =

∑
α

iei(ω
′−∆Eα+iη)T 〈Ω|ûA|α〉

〈α|T
{
Ĵkout,ν(t)Ĵ

†
kin,µ

(0)
}
|Ω〉

ω′ −∆Eα + iη
,

(6.7)

with ∆Eα ≡ Eα − E0 denoting the excitation energies of the full matter Hamiltonian

ĤM. After similar manipulations for the integral over the (−∞,−T )-region, one finds
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for S̃A:

S̃A(ω′; t; Φ) =
∑
α

{
iei(ω

′−∆Eα+iη)T 〈Ω|ûA|α〉
〈α|T

{
Ĵkout,ν(t)Ĵ

†
kin,µ

(0)
}
|Ω〉

ω′ −∆Eα + iη

− ie−i(ω′+∆Eα−iη)T 〈α|ûA|Ω〉
〈Ω|T

{
Ĵkout,ν(t)Ĵ

†
kin,µ

(0)
}
|α〉

ω′ + ∆Eα − iη

}
+ terms regular in ω′.

(6.8)

We see that the Fourier transform of SA(t′, t; Φ) with respect to t′ has poles at the

excitation energies ∆Eα of the full matter Hamiltonian, whose residues are proportional

to the matrix elements needed for Raman scattering. The latter can therefore be

extracted by taking the appropriate limit:

〈α|T
{
Ĵkout,ν(t)Ĵ

†
kin,µ

(0)
}
|Ω〉 =

−i
〈Ω|ûA|α〉

lim
ω′→∆Eα−iη

{
(ω′ −∆Eα + iη)S̃A(ω′; t; Φ)

}
.

(6.9)

By dividing by 〈Ω|ûA|α〉 we implicitly assumed that this matrix element is non-

vanishing, which is reasonable as we are only interested in those states |α〉 that have

a large one-phonon component, i.e., for which this matrix element is precisely sizably

different from zero.

The fact that correlation functions have poles at exact excitation energies of the

fully interacting system whose residues correspond to matrix elements for scattering

processes has first been pointed out by H. Lehmann, K. Symanzik, and W. Zimmermann

in their classic 1955 paper [80]. In the same paper, they also first derived the type of

formula shown in Eq. 6.9, which relates a scattering matrix element to the residue of a

pole in a many-particle correlation function. This formula is hence nowadays known as

the LSZ reduction formula and is widely applied in particle physics [83, 88, 115], yet

does not seem to be all too well-known in the context of condensed matter physics. For

the purpose of formulating a correlation function-based theory of Raman scattering it

is of great use, however.

After applying the LSZ reduction formula, the fully Fourier-transformed Raman
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scattering matrix element reads:

J̃α(ω; Φ) ≡ J̃αkout,kin
ν,µ

(ω) =
−i

〈Ω|ûA|α〉
lim

ω′→∆Eα−iη

{
(ω′ −∆Eα + iη)S̃A(ω′;ω; Φ)

}
, (6.10)

where the fully Fourier-transformed correlation function is given by

S̃A(ω′;ω; Φ) ≡
∫ +∞

−∞
dt eiωt

∫ +∞

−∞
dt′ eiω

′t′〈Ω|T
{
ûA(t′)Ĵkout,ν(t)Ĵ

†
kin,µ

(0)
}
|Ω〉. (6.11)

We have thus managed to reduce the calculation of the Raman scattering matrix ele-

ment to the computation of a correlation function involving two current densities and

a nuclei displacement. This is perfectly reasonable on conceptual grounds, as it links

the probability amplitude for lattice vibration-induced inelastic light scattering to the

correlation between two currents – one light-induced, one light-emitting – and the dis-

placement of an atom. Mathematically, we note that the current density operators can

be expressed in terms of electron field operators and nuclei displacement and momen-

tum operators. Hence we have reduced the task of computing the one-phonon-induced

Raman scattering matrix element to the task of computing a time-ordered correlation

function of electron field and nuclei displacement operators. The latter can be cal-

culated, for example, within perturbation theory. Before we discuss this perturbative

calculation in more detail, however, we will first simplify our expression for the scatter-

ing matrix element and the scattering rate a bit further.

As will become clear from the diagrammatic representation of the perturbation se-

ries for SA(t′, t; Φ) presented in the next section, the “endpoint” of the diagram labeled

by the displacement operator coordinates (A, t′) is connected to the rest of the diagram

by an exact one-phonon Green’s function, i.e., the exact correlation function has the

general form

SA(t′, t; Φ) =
∑
B

∫ +∞

−∞
dt′′ iDA,B(t′, t′′)MB(t′′, t; Φ), (6.12)

which defines the reduced matrix element MB(t′′, t; Φ). Note that this definition is very
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much reminiscent of our definition of the screened electron-phonon matrix element in

Section 5.2. In fact, we could equally well have derived the screened electron-phonon

coupling from an LSZ reduction formula-based approach.

Due to time-translation invariance, the exact one-phonon Green’s function can only

depend on the time difference t′ − t′′ and the time integral in Eq. 6.12 is actually a

convolution in the time domain. In Fourier space, it thus becomes a simple product of

Fourier transforms:

S̃A(ω′;ω; Φ) =
∑
B

iD̃A,B(ω′)M̃B(ω′;ω; Φ), (6.13)

where

M̃B(ω′;ω; Φ) ≡
∫ +∞

−∞
dt eiωt

∫ +∞

−∞
dt′ eiω

′t′MB(t′, t; Φ) (6.14)

is the fully Fourier-transformed reduced matrix element. Note that in a practical,

diagrammatic calculation, it can be obtained from the diagrammatic expansion of S̃A

by simply omitting the factor associated with the one-phonon Green’s function that

ends in the point (the atom) labeled by A.3 Since the Fourier-transformed one-phonon

Green’s function has the Lehmann decomposition (compare Eq. 5.61)

D̃A,B(ω′) =
∑
β

{
〈Ω|ûA|β〉〈β|û†B|Ω〉
ω′ −∆Eβ + iη

− 〈Ω|û
†
B|β〉〈β|ûA|Ω〉

ω′ + ∆Eβ − iη

}
, (6.15)

we can easily perform the limit operation of Eq. 6.10 by making use of the factorization

of S̃A given in Eq. 6.13. One then finds in the η → 0 limit:

J̃α(ω; Φ) =
∑
B

〈α|û†B|Ω〉 M̃B(ω′;ω; Φ)
∣∣∣
ω′=∆Eα

. (6.16)

Besides being very compact, this expression for the Raman scattering matrix element

has an accessible physical interpretation: the reduced matrix element M̃B = M̃m,β,j is

the amplitude for generating a displacement of the atom (m,β) in direction j with the

3The omission of one of the“legs” of a diagram is also known as amputating a diagram in the particle
physics literature [88] and the resulting diagram, drawn without the leg, is known as an amputated
diagram.
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Raman process, while the matrix element 〈α|û†m,β,j|Ω〉 gives the probability amplitude

for this displacement to mediate a transition between the ground state |Ω〉 and the

excited state |α〉 of ĤM. This is what we mean when we call this process “phonon-

induced Raman scattering”.

Finally, we return to our expression for the Raman scattering rate, derived over the

course of Chapter 2 (compare Eq. 2.50):

Ṗinel. =
∑
α

Γkin.(ωL, ωD)
∣∣∣J̃α(ωD; Φ)

∣∣∣2 × 2πδ(ωL − ωD −∆Eα), (6.17)

where we introduced the abbreviation

Γkin.(ωL, ωD) ≡ ωLωD∆ΩL∆ωL∆ΩD∆ωD

(2π)4c6
. (6.18)

for the product of kinematic prefactors and used the defining property of the δ-function

to replace the frequency argument of J̃α by the detector frequency ωD, i.e., the frequency

of the outgoing light for which the scattering rate should be calculated. Inserting

the factorized expression for the scattering matrix element, the one-phonon-induced

scattering rate reads:

Ṗinel.;1−ph = Γkin.(ωL, ωD)
∑
A,B

M̃∗
A(ωL − ωD;ωD; Φ)M̃B(ωL − ωD;ωD; Φ)

× 2π
∑
α

〈Ω|ûA|α〉〈α|û†B|Ω〉δ(ωL − ωD −∆Eα).
(6.19)

We can write this in an even more illuminating way by inserting the mode expansion

of the displacement operators, ûA =
∑

q,λ ξ
A
q,λB̂q,λ and identifying the phonon spectral

function Aq,λ,λ′(ω):

Ṗinel.;1−ph =Γkin.(ωL, ωD)
∑
q,λ,λ′

M̃∗
q,λ(ωL − ωD;ωD; Φ)

× 2πAq,λ,λ′(ωL − ωD)M̃q,λ′(ωL − ωD;ωD; Φ).

(6.20)

Here, we defined the spatially Fourier-transformed and projected version of the reduced
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matrix element as

M̃q,λ(ω
′;ω; Φ) ≡

∑
A

ξA;∗
q,λM̃A(ω;ω′; Φ)

=
∑
n

1√
N

e−iq·Rn
∑
α,i

√
1

2Mαωq,λ

vα,i;∗q,λ M̃n,α,i(ω;ω′; Φ).

(6.21)

In Eq. 6.20, all different unperturbed phonon branches are still, in principle, coupled.

In many systems, however, the spectral function can be approximated by its diagonal

elements only, since the mixing of the unperturbed eigenvectors in the Green’s function

is mediated by non-adiabatic or anharmonic effects only. These either are very much

negligible, or, in a first approximation, can be taken to modify the phonon frequencies

only. Furthermore, even in systems in which non-adiabatic effects are relevant, such as

in graphene, the mixing of the eigenmodes is often irrelevant for the one-phonon Raman

spectrum. This is due to the fact that, as we will see in the next section, the only wave

vector q that gives a sizable contribution to the one-phonon Raman scattering rate is

q = 0, a high-symmetry point in the first Brillouin zone, at which mixing of the phonon

modes is usually symmetry-prohibited.

Approximating the spectral function by its diagonal elements Aq,λ,λ(ω) only, the

expression for the Raman scattering rate takes on the form of the ordinary version of

Fermi’s golden rule:

Ṗinel.;1−ph ≈ Γkin.(ωL, ωD)
∑
q,λ

∣∣∣M̃q,λ(ωL − ωD;ωD; Φ)
∣∣∣2 × 2πAq,λ,λ(ωL − ωD). (6.22)

Note that from the definition of the spectral function, it follows that its diagonal ele-

ments are real and positive and furthermore vanish for negative ω. We can then make

use of Eq. 5.65, which links the one-phonon Green’s function to its spectral function,

to obtain the spectral function from the negative imaginary part of the time-ordered

158



Green’s function:

Aq,λ,λ(ω) = − 1

π
Im D̃q,λ,λ(ω)

=
1

π

−Im Π̃q,λ,λ(ω)(
(2ωq,λ)−1(ω2 − ω2

q,λ)− Re Π̃q,λ,λ(ω)
)2

+
(

Im Π̃q,λ,λ(ω)
)2 ,

(6.23)

where we made use of Dyson’s equation to establish a link between the spectral func-

tion and the phonon self-energy. For frequencies ω = ωL−ωD close to the unperturbed

phonon frequencies ωq,λ, the expression in the numerator and denominator can be ap-

proximated by the first non-trivial terms of their Taylor series. This corresponds to the

quasi-particle approximation (QPA), which we have already introduced in Section 3.3.1

in the context of the one-electron Green’s function. In the QPA, the spectral function

is approximated by

Aq,λ,λ(ω)
QPA≈

Z
(QP)
q,λ

π

γ
(QP)
q,λ /2(

ω − ω(QP)
q,λ

)2

+
(
γ

(QP)
q,λ /2

)2 , (6.24)

where the phonon quasi-particle weight, frequency, and decay width are defined by

Z
(QP)
q,λ ≡ 1

/1− ∂Π̃q,λ,λ(ω)

∂ω

∣∣∣∣∣
ω=ωq,λ

 (6.25)

ω
(QP)
q,λ ≡ ωq,λ + Re

(
Z

(QP)
q,λ Π̃q,λ,λ(ω)

∣∣∣
ω=ωq,λ

)
(6.26)

γ
(QP)
q,λ ≡ −2 Im

(
Z

(QP)
q,λ Π̃q,λ,λ(ω)

∣∣∣
ω=ωq,λ

)
. (6.27)

We thus see that according to Eq. 6.22 and within the quasi-particle approximation, the

one-phonon Raman spectrum is given by the sum of single Lorentzian peaks centered on

the quasi-phonon frequencies, whose full width at half maximum (FWHM) is given by

the quasi-phonon decay width. The height of one of the Lorentzian Raman peaks, which

corresponds to the recorded intensity in experiment, is proportional to the product of

the kinetic factor Γkin. and the square of the reduced matrix element M̃, which are
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the only two factors that depend on the frequency of the incident light, ωL, and on

the frequency ωD, at which the Raman spectrum is probed. The only non-trivial task

remaining is then the calculation of the reduced matrix element, which will be discussed

over the course of the remainder of this section.

6.1.2 Reduced scattering matrix element

In order to calculate the reduced Raman scattering matrix element M̃q,λ(ω
′;ω; Φ), we

can trace its definition all the way back to the Fourier transform of the current-current-

nuclei displacement correlation function SA(t, t′; Φ). Explicitly, the latter is given by

SA(t, t′; kout, ν; kin, µ) =

∫
d3r1 e−ikout·r1

∫
d3r2 e+ikin·r2

∑
i

(
εikout,ν

)∗∑
j

εjkin,µ

× 〈Ω|T
{
ûA(t′)Ĵi(r1, t)Ĵj(r2, 0)

}
|Ω〉.

(6.28)

We can reduce this expression to a more familiar-looking correlation function by ex-

pressing the current density operator, defined in Eq. 2.17, in terms of electron field

operators and nuclear displacement and momentum operators:

Ĵ(r) =
−e
m
ψ̂†(r)(−i∇)ψ̂(r) +

∑
n,α

Zαe

Mα

δ(3)(r−Rn − τα − ûn,α)P̂n,α. (6.29)

Under the assumption that the matrix elements of the nuclei operators in this expression

are at most on the same order of magnitude than the matrix elements of the operators

in the first term, the second term will be relatively smaller by a factor of m/Mα � 1.

Therefore, we choose to neglect the nuclei contribution to the total current density

and take the current density operator to be given in terms of electron fields only. The
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needed correlation function then reads:

SA(t, t′; kout, ν; kin, µ) =

∫
d3r1 e−ikout·r1

∫
d3r2 e+ikin·r2

∑
i

(
εikout,ν

)∗∑
j

εjkin,µ

× e2

m2
lim

r′1→r1
(−i) ∂

∂r′1,i
lim

r′2→r2
(−i) ∂

∂r′2,j

× 〈Ω|T
{
ûA(t′)ψ̂†(r1, t)ψ̂(r′1, t)ψ̂

†(r2, 0)ψ̂(r′2, 0)
}
|Ω〉,

(6.30)

where we introduced two limiting operations in order to be able to pull the derivative

operators out of the actual correlation function.

Figure 6.1: Leading-order expansion of the correlation function needed for
Raman scattering. Wavy lines represent the derivative and limit operations, origi-
nally stemming from the electron-light coupling. The hexagon, labeled by R, denotes
the three-particle electronic correlation function as defined in the text.

To leading order in the electron-phonon coupling, the correlation function has the

diagrammatic expansion shown in Fig. 6.1. We can sum the “phonon leg” of the dia-

gram exactly, using Dyson’s equation. Mathematically, the leading-order, diagrammatic
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expansion corresponds to the factorization approximation

〈Ω|T
{
ûA(t′)ψ̂†(r1, t)ψ̂(r′1, t)ψ̂

†(r2, 0)ψ̂(r′2, 0)
}
|Ω〉

'
∫ +∞

−∞
dt′′
∫

d3r3 (−i)g(b)
A (r3)〈Ω|T

{
ûA(t′)û†B(t′′)

}
|Ω〉

× 〈Ω|T
{
ψ̂†(r3, t

′′)ψ̂(r3, t
′′)ψ̂†(r1, t)ψ̂(r′1, t)ψ̂

†(r2, 0)ψ̂(r′2, 0)
}
|Ω〉con.,

(6.31)

where the subscript “con.” again refers to the fully connected part of the correlation

function as represented by Feynman diagrams. As mentioned in the previous section,

it has the algebraic structure
∑

B

∫
dt′′iDA,B(t′, t′′) ×MB(t′′, t). Defining the three-

particle correlation function as

R(1, 1′; 2, 2′; 3, 3′) ≡ (−i)3〈Ω|T
{
ψ̂†(1)ψ̂(1′)ψ̂†(2)ψ̂(2′)ψ̂†(3)ψ̂(3′)

}
|Ω〉con., (6.32)

we can identify the reduced matrix elementM, whose fully Fourier-transformed version

reads:

M̃q,λ(ω
′;ω; (kout, ν); (kin, µ))

= (−1)
∑
n

1√
N

e−iq·Rn

∫
d3r1 e−ikout·r1

∫
d3r2 e+ikin·r2

×
∑
α,k

√
1

2Mαωq,λ

vα,k;∗
q,λ

∑
i

(
εikout,ν

)∗∑
j

εjkin,µ

× lim
r′1→r1

−e
m

(−i) ∂

∂r′1,i
lim

r′2→r2

−e
m

(−i) ∂

∂r′2,j

∫
d3r3 g

(b)
n,α,k(r3)

×
∫ +∞

−∞
dt eiωt

∫ +∞

−∞
dt′ eiω

′t′R((r3, t
′+), (r3, t

′); (r1, t
+), (r′1, t); (r2, 0

+), (r2, 0)).

(6.33)

This formula for the reduced matrix element in Fourier space has a very simple and

intuitive algebraic structure: The first line contains the spatial and lattice Fourier trans-

forms, while the second line constitutes a projection on the polarization and eigenvectors

of the final state (quasi-)particles, two photons and one phonon. The third line cor-

responds to the bare coupling of the three (quasi-)particles to the electronic system.
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Finally, the last line contains the correlation of the electronic system that mediates the

Raman process, described by the Fourier-transformed three-particle correlation func-

tion. In the language of condensed matter physics, it describes both excitonic effects,

i.e., possible intermediate states of bound electron-hole pairs (excitons), and the screen-

ing of the electron-phonon interaction. Note that both effects can mathematically be

described in the same way and hence, for the purpose of deriving a concrete expression

for the reduced Raman matrix element, we will not distinguish between these two con-

cepts for the time being.

To find a concrete expression for the reduced matrix element, we expand the three-

Figure 6.2: Diagrammatic approximation for the reduced matrix element for
one-phonon-induced Raman scattering.

particle correlation function in a perturbation series. In terms of Feynman diagrams,

we obtain the expansion shown in Fig. 6.2. The leading-order term simply consists

of the bare electron-light and electron-phonon couplings and the independent-particle
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three-particle correlation function:

R0(1, 1′; 2, 2′; 3, 3′) ≡ − [G(1, 2′)G(2, 3′)G(3, 1′) + G(1, 3′)G(3, 2′)G(2, 1′)] , (6.34)

where the minus sign arises due to the anti-commuting nature of the electron field

operators or, equivalently, due to the presence of a closed fermion loop. Note that these

two terms are the only independent-particle-like contributions that yield fully connected

diagrams when (1, 2, 3) → (1′, 2′, 3′). Also note that the only difference between the

diagrams for M representing the two terms in R0 is the exchange of an electron-light

vertex and an electron-phonon vertex. This is equivalent to changing the orientation of

the arrows of the independent-particle Green’s function in the fermion loop and leaving

the order of the vertices unchanged. In Fig. 6.2, we chose to only show one of the two

terms for each possible diagram and include all diagrams involving the other one in the

fifth line under “diagrams with . . .↔ . . .”.

The next-to-leading-order terms involve the two-particle-irreducible interaction ker-

nel K(2) and an independent-particle two-particle correlation function L0. This di-

agrammatic piece can be inserted separately for each of the three vertices. In the

next-to-next-to-leading-order, a second factor of K(2)L0 appears, which can be attached

either to the same vertex, as shown in the second line, or to a different vertex, as in-

dicated in the fourth line. This procedure is then continued for each vertex or “leg”

of the diagram, leading to a sum of terms for each leg that has the form of a ladder

with increasingly more rungs. This kind of diagrammatic structure has been discussed

already in the context of the screened electron-phonon coupling in Section 5.2, where

we showed how a closed expression in the approximation of a static two-particle inter-

action kernel can be obtained. For the electron-light coupling, we can similarly define

a “screened” version, which in this case, however, is more appropriately interpreted as

including the effects of bound electron-hole pairs. Diagrammatically, we define it by

the series of diagrams shown in Fig. 6.3. Mathematically, we first introduce the bare

electron-light coupling as

d
(b)
i (r1) ≡ −e

m

(
−i ∂

∂r1,i

)
, (6.35)
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Figure 6.3: Diagrammatic representation of corrections to the electron-light
coupling matrix element that capture excitonic effects.

with the understanding that the derivative acts on the left-most space-time coordinate

of one of the connecting one-electron Green’s functions. This then allows us to compute

the “screened” electron-light coupling from

di(1, 2; 3) = δ(1, 2)δ(1, 3)d
(b)
i (r1) +K(2)(1, 2; 4̄, 5̄)L(4̄, 5̄; 3+, 3)d

(b)
i (r3). (6.36)

For later use, we also define the KS matrix elements of the bare electron-photon coupling,

which we, in turn, define as the electron-light coupling, Fourier-transformed with respect

to the last coordinate and projected on the photon polarization vector:

d
(b);(kin,µ)

k′,k
a,b

≡ −e
m

εkin,µ ·
∫

d3r eikin·rφ∗k′,a(r) (−i∇)φk,b(r).

= δ
k
(BZ)
in +k,k′

(−e)
m

εkin,µ ·
∫

u.c.

d3r ei(kin+k−k′)·rχ∗k′,a(r) (k− i∇)χk,b(r),

(6.37)

where we exploited the invariance of the lattice periodic part of the KS wave function,

χk,a(r), to extract a crystal momentum-conserving Kronecker-δ and to limit the inte-

gration to one unit cell only. k
(BZ)
in is the part of the light wave vector kin which falls into

the first Brillouin zone.4 Within the approximations for the BSE that we used during

4Note that any wave vector q can always uniquely be decomposed as q = q(BZ) + Gq, with q(BZ)

lying in the first Brillouin zone and Gq being a reciprocal lattice vector.
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the last two chapters, i.e., K(2) → K(2) and a static kernel, the KS matrix elements of

the “screened” electron-photon coupling are then given in closed form by

d̃
(kin,µ)
k+kin,k
a,b

(ω) = d
(b);(kin,µ)
k+kin,k
a,b

+
∑
S,S′

ΞS
k+kin,k
a,b

N−1
S,S′d

(b);kin,µ
kin,S′

ω − εS + iη
. (6.38)

Here, the exciton-independent-particle coupling ΞS
k+kin,k
a,b

has previously been defined in

Eq. 5.51 and we introduced the (bare) bilinear exciton-photon coupling via

d
(b);kin,µ
kin,S

≡
∑
k,a,b

AS,∗k+kin,a
k,b

d
(b);kin,µ
k+kin,k
a,b

. (6.39)

Together with Eq. 5.54, this expression allows the computation of the reduced Ra-

man matrix element in the approximation that only the ladder-like structures on the

legs are retained. The terms in the diagrammatic expansion that are omitted in this ap-

proximation involve the three-particle-irreducible interaction kernel K(3)(1, 2; 3, 4; 5, 6),

which is given by the sum of all diagrams that cannot be split into two by cutting three

pairs of electron lines. While it can be shown diagrammatically that the two-particle

interaction kernel is related to the Coulombic part of the one-particle self-energy via

K(2)(1, 2; 3, 4) = δΣCoul.(1, 2)/δG(3, 4) (see, for example, Ref. 91), this proof can be

generalized to the three-particle interaction kernel to show that K(3)(1, 2; 3, 4; 5, 6) =

δ2ΣCoul.(1, 2)/(δG(3, 4)δG(5, 6)). In the approximation for the two-particle interaction

kernel that we have been using throughout this thesis, i.e., K(2) ∼ iW − iv, with

δW (1, 2)/δG(3, 4) ≈ 0, we need to set K(3)(1, 2; 3, 4; 5, 6) = δK(2)(1, 2; 3, 4)/δG(5, 6) ≈
0 for consistency. In this ladder-like approximation then, the reduced matrix element

can be represented diagrammatically as shown in Fig. 6.4. It should be pointed out that

a complete expression for the three-particle correlation function has also been derived

independently by Saunders and Young using functional methods [141]. However, the

approach presented here allows the derivation of concrete expressions for the computa-

tion of Raman scattering rates including excitonic effects and using modern and general

ab initio computational methods, while the cited work confined itself to a discussion of

a rough analytical model for the independent-particle case.
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Figure 6.4: Partially summed diagrammatic expression for the reduced matrix
element for one-phonon-induced Raman scattering.

Explicitly, the reduced Raman matrix element in our suggested ladder-like approx-

imation reads:

M̃q,λ(ω
′;ω; (kout, ν); (kin, µ))

'
[∫ +∞

−∞
dt eiωt

∫
d3r eikin·r

∑
i

εikin,µ
di(1̄, 2̄; (r, t))

]

×
[∫

d3r′ e−ikout·r′
∑
j

εj;∗kout,ν
dj(3̄, 4̄; (r′, 0))

]

×
[∫ +∞

−∞
dt′ eiω

′t′
∑
n

1√
N

e−iq·Rn
∑
α,k

vα,k;∗
q,λ gn,α,k(5̄, 6̄; t′)

]
×R0(1̄, 6̄; 3̄, 2̄; 5̄, 4̄).

(6.40)

To turn this expression into one that is more useful for computational purposes, we

express it in the KS basis. For this, we need the Fourier transform of the independent-

particle three-particle correlation function:

R̃0(ω1;ω2;ω3)k1;a,b
k2;c,d
k3;e,f

≡ G̃(ω1)k1,a,bG̃(ω2)k2,c,dG̃(ω3)k3,e,f . (6.41)

We will also employ the so-called dipole approximation for the electron-photon matrix

elements. For the typical case of visible light, with wave lengths much larger than the

dimensions of the unit cell, |kin| and |kout| are much smaller than the typical exten-
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sion of the first Brillouin zone. For the purpose of evaluating the electron-light matrix

elements given in Eq. 6.37, we can then let kin → 0, when the reduced matrix ele-

ment ceases to explicitly depend on kin and kout. Due to overall crystal momentum

conservation, the reduced matrix element can then only be non-zero for q = 0, which

we could call the “one-phonon Raman selection rule”. The dipole approximation has

the main practical advantage that it eliminates the q-integration over the first Bril-

louin zone, as only the BZ center phonons have to be considered explicitly. Within

the dipole approximation and after some simplifications, the reduced matrix element

M̃µ,ν,λ(ω
′;ω) ≡ M̃q=0,λ(ω

′;ω; (kout = 0, ν); (kin = 0, µ)) can then be written as

M̃µ,ν,λ(ω
′;ω) =

∑
k

a,...,f

∫
dω′′

2π

{
d̃kin=0,µ
k,k
a,b

(ω)d̃kout=0,ν;∗
k,k
d,c

(ω − ω′)g̃q=0,λ;∗
k,k
f,e

(ω′)

× G̃k,d,a(ω′′ + ω)G̃k,f,c(ω′′ + ω′)G̃k,b,e(ω′′)
+ d̃kin=0,µ

k,k
a,b

(ω)g̃q=0,λ;∗
k,k
d,c

(ω′)d̃kout=0,ν;∗
k,k
f,e

(ω − ω′)

× G̃k,d,a(ω′′ + ω)G̃k,f,c(ω′′ + ω − ω′)G̃k,b,e(ω′′)
}
.

(6.42)

Note that the index structure in this equation is that of a trace of a product of matrices

in band space. It then makes sense to introduce matrices dµk(ω), gλk(ω′), and Gk(ω) for

the electron-photon coupling, the electron-phonon coupling, and the electron Green’s

function, respectively, according to:

(dµk(ω))ab ≡ d̃kin=0,µ
k,k
a,b

(ω),
(
gλk(ω′)

)
ab
≡ g̃q=0,λ

k,k
a,b

(ω′), (Gk(ω))ab ≡ G̃k,a,b(ω). (6.43)
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The expression for the reduced matrix element then takes on a much simpler form:

M̃µ,ν,λ(ω
′;ω)

=
∑
k

∫
dω′′

2π

{
tr

[
Gk(ω′′ + ω)dµk(ω)Gk(ω′′)gλ;†

k (ω′)Gk(ω′′ + ω′)dν;†
k (ω − ω′)

]

+ tr

[
Gk(ω′′ + ω)dµk(ω)Gk(ω′′)dν;†

k (ω − ω′)Gk(ω′′ + ω − ω′)gλ;†
k (ω′)

]}
.

(6.44)

Note that the integral over ω′′ concerns only the three one-electron Green’s functions.

Within the quasi-particle approximation,

G̃k,a,b(ω)
QPA≈

δa,bZ
(QP)
k,a

ω − ε(QP)
k,a + i

2
γ

(QP)
k,a

=
fk,aδa,bZ

(QP)
k,a

ω − ε(QP)
k,a − i

2

∣∣∣γ(QP)
k,a

∣∣∣ +
(1− fk,a)δa,bZ(QP)

k,a

ω − ε(QP)
k,a + i

2

∣∣∣γ(QP)
k,a

∣∣∣ ,
(6.45)
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it can be evaluated exactly using the residue theorem for each of the poles:5,6

(−i)(Z(QP)
k,a Z

(QP)
k,b Z

(QP)
k,c )−1R̃(QP)

0;k;a,b,c(ω1, ω2)

≡(Z
(QP)
k,a Z

(QP)
k,b Z

(QP)
k,c )−1

∫
dω′′

2πi
G(QP)
k,a,a(ω)G(QP)

k,b,b (ω − ω1)G(QP)
k,c,c (ω − ω2)

=− fafbf̄c

[−ω2 −∆ε
(QP)
c,a + i

2
γ̄

(QP)
c,a ][−ω2 + ω1 −∆ε

(QP)
c,b + i

2
γ̄

(QP)
c,b ]

− faf̄bfc

[−ω1 −∆ε
(QP)
b,a + i

2
γ̄

(QP)
b,a ][−ω1 + ω2 −∆ε

(QP)
b,c + i

2
γ̄

(QP)
b,c ]

− f̄afbfc

[ω1 −∆ε
(QP)
a,b + i

2
γ̄

(QP)
a,b ][ω2 −∆ε

(QP)
a,c + i

2
γ̄

(QP)
a,c ]

+
f̄af̄bfc

[ω2 −∆ε
(QP)
a,c + i

2
γ̄

(QP)
a,c ][ω2 − ω1 −∆ε

(QP)
b,c + i

2
γ̄

(QP)
b,c ]

+
f̄afbf̄c

[ω1 −∆ε
(QP)
a,b + i

2
γ̄

(QP)
a,b ][ω1 − ω2 −∆ε

(QP)
c,b + i

2
γ̄

(QP)
c,b ]

+
faf̄bf̄c

[−ω1 −∆ε
(QP)
b,a + i

2
γ̄

(QP)
b,a ][−ω2 −∆ε

(QP)
c,a + i

2
γ̄

(QP)
c,a ]

.

(6.46)

Here, fa ≡ fk,a and f̄a ≡ 1− fa are abbreviations for the occupation numbers of state

|k, a〉, ∆ε
(QP)
a,b ≡ ε

(QP)
k,a − ε

(QP)
k,b denotes the excitation energy for an excitation from state

|k, b〉 to state |k, a〉, and γ̄
(QP)
a,b ≡ γ

(QP)
k,a + γ

(QP)
k,b is defined as the total decay width of

the states |k, a〉 and |k, b〉.
In terms of the quasi-independent-particle three-particle correlation function, the

5For the application of the residue theorem, the integration path has to be completed to form a
closed contour, i.e., in this case a semi-circle in either the lower or upper half-plane. The product of
the three Green’s functions yields a total of eight terms, two of which involve either three occupied or
three empty states. In these two cases, the imaginary parts of the pole of each of the three Green’s
functions have the same sign and closing the contour in the opposite half of the complex plane leads
to a vanishing of these two contributions. The other six terms each feature one pole in one half of the
complex plane and two in the other. The contour is then best chosen to include only the single pole
and in the case of this procedure leading to a clockwise contour, an additional minus sign has to be
included.

6In case the quasi-particle approximation cannot be justified, the integration over ω′′ can still be
carried out by writing the electron Green’s function in terms of its (non-diagonal) spectral function,
which, however, we will not pursue here in detail.
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reduced Raman scattering matrix element takes on the final form:

M̃µ,ν,λ(ω
′;ω) = i

∑
k

a,b,c

{
(dµk(ω))ab

(
gλ;†
k (ω′)

)
bc

(
dν;†
k (ω − ω′)

)
ca
R̃(QP)

0;k;a,b,c(ω, ω − ω′)

+ (dµk(ω))ab

(
dν;†
k (ω − ω′)

)
bc

(
gλ;†
k (ω′)

)
ca
R̃(QP)

0;k;a,b,c(ω, ω
′)

}
.

(6.47)

This concludes the technical treatment of the calculation of the reduced Raman matrix

element.

Note that despite the apparent independent-particle nature of the last line, it fully

includes excitonic effects via the frequency-dependent “screened” electron-photon cou-

pling (compare Eq. 6.38) as well as a description of the screening of the electron-phonon

coupling on a level beyond the currently state-of-the-art DFPT via the computation

of the screening on the MBPT level as given in Eq. 5.54. Our diagrammatic approach

allowed the separation of the these two effects from the “actual” correlated Raman

process, described by the independent-particle three-particle correlation function. We

can summarize our suggested approach for the calculation of Raman scattering rates

including excitonic effects and a dynamical treatment of phonons as follows:

1. Calculation of a set of Kohn-Sham states and eigenvalues in density functional

theory.

2. Correction of the KS eigenvalues on the level of the GW approximation and

calculation of the quasi-particle weight if desired or required.

3. Computation of the static two-particle interaction kernel, solving the Bethe-

Salpeter equation for both the eigenstates and eigenvalues, and calculation of

the overlap matrix and the exciton-independent-particle coupling.

4. Calculation of the bare electron-photon matrix elements and computation of the

bilinear exciton-photon coupling.
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5. Inclusion of excitonic effects via computation of the “screened” electron-photon

matrix elements according to Eq. 6.38.

6. Calculation of the matrix elements of the first and second derivatives of the lattice

potential in the KS basis and computation of the bilinear exciton-phonon coupling.

7. Construction of the electronic part of the dynamical matrix according to Eq. 4.83,

addition of the nuclear part, and subsequent diagonalization.

8. Computation of the screened electron-phonon matrix elements according to

Eq. 5.54.

9. Computation of the Fourier-transformed independent-particle three-particle cor-

relation function via Eq. 6.46.

10. Calculation of the reduced matrix element according to Eq. 6.47 for the desired

ranges of ω = ωL and ω′ = ωL − ωD.

This algorithm is computationally very expensive and for many systems of current

interest not all of the steps are necessary. In many cases, several of the above steps can

be skipped or replaced by approximative approaches. For example, in low-dimensional,

semi-conducting materials, such as some transition metal dichalcogenides, excitonic

effects are known to be relevant whereas phonon frequencies and the electron-phonon

coupling are rather accurately described already on the level of DFPT [50]. In this

case, the screened electron-phonon coupling can be replaced by the one calculated with

DFPT and does not need to be computed via our computationally expensive approach.

In other cases, for instance in (semi-)metallic systems, such as graphene, excitonic

effects do not play any role, but the electron-phonon coupling is not described very

accurately by DFPT [108]. Then the calculation of the excitonic effects in the above

algorithm can be skipped, but the MBPT calculation of the electron-phonon coupling

may be kept. Our suggested approach therefore also has the practical advantage that it

is highly modular and different effects can be selectively included in the calculation.

A concrete implementation of the parts of our scheme that involve the use of the

solutions of the Bethe-Salpeter equation is still work in progress. However, as a first
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test, we apply our suggested computational scheme to graphene, where excitonic effects

are negligible for frequencies of visible light [142]. Furthermore, the simplicity of the

band structure of graphene allows us to illustrate the full power and flexibility of our

approach in one of the most simple settings.

6.2 Application to graphene: laser and Fermi en-

ergy dependence of the Raman scattering rate

and importance of quantum interference effects

As mentioned in the introduction to this thesis, the Raman spectrum of graphene

has been the subject of considerable attention over the past few years. Particular

efforts have been devoted to study the two-phonon-induced contribution to the Raman

spectrum, which, for the most part, results in a broadened peak around a particular

frequency difference ωL − ωD, to which a continuum of pairs of phonons contribute.

The two-phonon part of the Raman spectrum has been discussed in several works

[56, 57, 60, 62, 67] and can nowadays be considered to be reasonably well understood

from the resonant behavior of the scattering matrix element as a function of the phonon

and light frequencies.

By contrast, the one-phonon-induced part of the Raman spectrum features only

one Lorentzian-shaped peak, the so-called G-peak, in agreement with the quasi-particle

approximation discussed in the preceding section. Note that out of the six phonon

branches of graphene, four branches at q = 0 are rendered Raman-inactive by crystal

symmetries. The remaining two branches are degenerate and hence the one-phonon

Raman spectrum features only one peak at the corresponding phonon frequency. While

the position and width of the peak are determined entirely by the frequency and decay

width of the phonon, the height of the peak, corresponding to the measured Raman

intensity and being proportional to the scattering rate, is given by the interaction of

two photons and one phonon with the system of electronic transitions. Naively, one

would expect that the only relevant transitions are those in resonance with the light,

i.e., laser, frequency as the latter is the driving force of the Raman process. Hence one
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would expect that all other transitions play a rather negligible role in the scattering

process. However, as we shall see in this section, quantum effects render this simplistic

picture false and non-resonant transitions also play a crucial role.

This point has been first discussed by Basko [55], who, for his calculation, used an

analytical, low-energy, and tight-binding-based model for the description of the elec-

tronic band structure and the electron-photon and electron-light coupling. However,

the low-energy nature of the model does not allow one to study the one-phonon pro-

cess in detail over a wider range of light frequencies, which has also been the focus

of some experimental work [143]. Our general, first principles approach allows us to

overcome this problem and look at both the dependence of the G-peak intensity on the

laser frequency as well as the importance of quantum effects and the contributions of

the different electronic transitions. Furthermore, it also allows us to study the depen-

dence of the Raman intensity on the Fermi level, which has recently been investigated

experimentally [81].

6.2.1 Theoretical details

Before we discuss the results of our calculation according to the theoretical approach de-

veloped in Section 6.1.2, we briefly summarize the further approximations employed for

the specific case of graphene and the computational details of the numerical calculation

over the course of the next two sections.

The calculations of the reduced matrix elements for one-phonon Raman scattering

in graphene have been done without the inclusion of excitonic effects, i.e., by approx-

imating the “screened” electron-light coupling di by its bare version: di ≈ d
(b)
i . For

the low- to mid-level frequency regime of visible light, excitonic effects on the optical

properties were previously shown to be negligible [142]. Only when the laser frequency

approaches the transition energy of the van Hove singularity in the density of states,

i.e.,7 at around ωL ≈ 4.1 eV, do excitonic effects start to play a role. However, while

excitonic effects might affect the quantitative results for the upper end of the laser en-

ergy range we will study, the qualitative picture and conceptual understanding of the

7The van Hove singularity arises due to the flat shape of the π(∗) bands around the M -point,
compare Fig. 3.2.
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G-peak process are not affected by them.

The screened electron-phonon coupling matrix elements were calculated on the level

of DFPT. As mentioned in previous chapters and demonstrated by Lazzeri et al. [53],

DFPT overestimates the screening of the electron-phonon coupling and thus underesti-

mates its magnitude, in particular for phonons with momenta near the Γ- and K-points

of the first Brillouin zone. Within the dipole approximation and due to selection rules,

however, the only phonons that contribute to the one-phonon Raman spectrum are

the two degenerate branches at the Γ-point. Since the underestimation of the electron-

phonon coupling matrix elements is due to their sensitivity on q only, it can be corrected

by a simple rescaling of the matrix elements. In our discussions below, however, we will

exclusively compare the calculated Raman intensities to a calculated reference value

(for example, at a fixed value of the laser frequency or Fermi energy). In these ratios,

the rescaling factor would always cancel and we will therefore not include it in our

calculations.

Finally, the one-particle Green’s functions appearing in the independent-particle

three-particle correlation function have been approximated by the KS Green’s functions.

As such, the band energies are also not corrected for electron-electron interaction effects.

In graphene, these effects were shown to mainly lead to a stretching of the π- and π∗-

bands [52, 144]. This will change the quantitative results, but does not impact the

qualitative discussion below.

Before we go into more detail on the concrete numerical calculation, we want to

point out two features of the reduced matrix element that play important roles in

the discussion of the results. Firstly, the total matrix element can be viewed as an

integration of k-dependent matrix elements over the first Brillouin zone: M =
∑

kMk.

The modulus of the total matrix element is then squared to obtain the Raman scattering

rate. As each matrix element Mk is a complex number carrying a k-dependent phase,

the different matrix elementsMk can interfere with each other in both a destructive or

constructive way, leading to a reduction or even extinction of the Raman intensity or an

enhancement of it, respectively. Since the coherent summation of the matrix elements

over all k-points is a characteristic of quantum mechanics, we refer to these interference

effects as quantum interference effects in the following.
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Secondly, we address the question of whether the näıve notion of only those electronic

transitions that are in resonance with the incoming light being relevant for an accurate

description is correct. For this, we write the k-dependent matrix element as the sum

of three terms:

Mk =M(aDR)
k +M(SR)

k +M(NR)
k , (6.48)

where the superscripts refer to, in order, the almost double-resonant, the single-resonant,

and the non-resonant part of the matrix element. By “resonant”, we refer to the

resonance of an electronic transition with the incoming or scattered light. As such, we

define the aDR contribution to Mk as

M(aDR)
k ≡

(
dν;†)

π,π∗

(
gλ;†
k

)
π∗,π∗

(dµk)π∗,π

[ωL −∆εk;π∗,π + i
2
γ̄k;π∗,π][ωD −∆εk;π∗,π + i

2
γ̄k;π∗,π]

, (6.49)

where we assumed zero doping for simplicity. This amplitude has a simple interpreta-

tion: An electron from the occupied π-band is excited to the π∗-band by the incoming

light. There, it is subsequently scattered to an intermediate π∗-band state via emission

of a phonon, before it finally radiatively recombines with the hole in the π-band it left

behind. Note that the factors in the denominator become minimal when the π-to-π∗

transition energy equals the frequency of the incoming light ωL or the frequency of the

outgoing light ωD. For laser energies ωL that are much larger than the phonon energy,

we have ωL ≈ ωD and this expression describes a double-resonant behavior. The SR

term, on the other hand, is defined as

M(SR)
k ≡

∑
s=π,π∗

{ (
dν;†)

π,π∗
(dµk)π∗,s

(
gλ;†
k

)
s,π

[ωD −∆εk;π∗,π + i
2
γ̄k;π∗,π][ωD − ωL −∆εk;s,π + i

2
γ̄k;s,π]

+

(
gλ;†
k

)
π,s

(
dν;†)

s,π∗
(dµk)π∗,π

[ωL − ωD −∆εk;s,π + i
2
γ̄k;s,π][ωL −∆εk;π∗,π + i

2
γ̄k;π∗,π]

}
.

(6.50)

Here, one of the factors involves the difference between the in- and outgoing light

frequencies, i.e., approximately the phonon frequency, and hence it can become only

single-resonant. We summarily include all other terms appearing in Mk in M(NR)
k .
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Note that these contain terms that go resonant when the transition energy matches

ωL − ωD, i.e., roughly the phonon energy. However, the number of states that can be

in resonance with the light is much higher than the number of states that can be in

resonance with an energy ωL − ωD close to the phonon energy (compare the density of

states shown in the inset of Fig. 6.5 further below) and we hence do not include them

in the single-resonant category. We will make use of this categorization of terms in our

later discussion of the importance of the contributions of non-resonant transitions to

the Raman scattering rate.

6.2.2 Computational details

Having discussed the theoretical concepts that are needed for the further discussion, we

now give the details of our numerical calculations.

The initial self-consistent DFT calculation has been done using the PWSCF code

included in the Quantum ESPRESSO suite [145], making use of an ultrasoft pseudopo-

tential to describe the influence of core electrons. We employ the generalized gradient

approximation to the exchange-correlation potential in the parametrization of Perdew,

Burke, and Ernzerhof (PBE) [104], include plane-wave components up to an energy

cutoff of 80 Ry, and use a regular 60×60×1 k-point mesh to sample the first Brillouin

zone for k-space integrations. The chosen values lead to converged results for a vacuum

spacing of 14 Å, which separates periodic copies of the graphene sheet in the direction

perpendicular to the sheet. The in-plane lattice constant of 2.46 Å was obtained from a

prior structure relaxation calculation. Finally, the electronic occupations were smeared

out with a Fermi-Dirac distribution using a thermal broadening of 0.002 Ry =̂ 315 K,

which is necessary due to the semi-metallic nature of graphene.

As mentioned before, only optical, Raman-active phonons from the Γ-point of the

first BZ contribute to the Raman scattering matrix element in the dipole approxima-

tion. Out of the three optically active phonon branches of graphene at Γ, only the

doubly-degenerate E2g phonon can participate in the one-phonon Raman process, as

the horizontal mirror plane symmetry forbids the partaking of the out-of-plane B2g

phonon branch.8 We fix the phonon frequency of the doubly-degenerate, in-plane opti-

8We refer to the different phonon modes by the Mulliken symbol of the representation of the
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cal phonon at 1581 cm−1=̂ 196 meV. This value has been obtained from experiments [23]

on pristine, freestanding graphene and is in excellent agreement with ab initio calcu-

lations on the DFPT level, as presented in Section 4.3. It should be noted that the

frequency of the E2g phonon depends on the Fermi level, as changes of the electronic

occupations can suppress resonance effects in the non-adiabatic part of the phonon

self-energy. Typical experimentally achievable chemical potentials lead to shifts on the

order of a few cm−1, i.e., on the order of 1-2 meV [28]. However, for the Fermi energy-

dependent calculations of the Raman intensity, we ignore this slight shift, since the

phonon frequency only enters through the denominator of the electronic Green’s func-

tions, which in turn are dominated by the energy scale of the light (1-4 eV for visible

light, in our case).

The calculation of the reduced scattering matrix elements has been implemented in

a self-made Python code that is not restricted to the calculation of graphene, but is

kept completely general, requiring only the electronic band structure, the electron-light

and electron-phonon couplings, and the phonon and light frequencies as input. For this

first application of our approach, the electronic decay widths were approximated with

a constant value of 100 meV for all states. For the numerical integration over the first

BZ appearing in the expression of the one-phonon Raman matrix element, we note that

a very fine sampling in k-space is required to obtain converged results. The reason for

this lies in the importance of resolving resonances between electronic transitions and

the incoming and outgoing photons accurately, which is only possible if the electronic

transition energies are available on a very fine k-point grid. To this end, we chose

to interpolate the electronic band energies using maximally localized Wannier func-

tions [146–149]. Likewise, we interpolate the electron-light coupling matrix elements in

the dipole approximation and the static, DFPT-level electron-phonon coupling matrix

elements. In practice, we first obtained the band energies and Bloch wave functions on

a coarse 12×12×1 k-point grid using the PWSCF code and then used a modified form

of the EPW code [150, 151] to obtain the electronic Hamiltonian and the electron-light

and electron-phonon coupling Hamiltonians in a basis of localized Wannier functions

on a corresponding coarse grid in real space. From there, we Fourier transformed the

symmetry group in which the eigenvectors transform; also see Footnote 3 of Chapter 4.

178



electronic Hamiltonian back to reciprocal space onto a very fine mesh of 480×480×1

k-points, which leads to converged results for the Raman matrix element. After di-

agonalizing the Hamiltonian at each k-point, we use the Bloch functions in the basis

of Wannier functions to calculate the interpolated electron-light and electron-phonon

coupling matrix elements from the respective Fourier-transformed interaction Hamilto-

nians. For graphene, we only consider the Wannier functions corresponding to localized

pz-orbitals in the calculation, as these make up the π- and π∗-bands, in which the Fermi

level of pristine graphene lies and which are optically decoupled from the neighboring

σ-bands by parity selection rules.

Finally, it should be pointed out that our choice to not calculate the interpolated

quantities with the EPW code but instead use a self-made interface and code allows for

greater flexibility and control, for instance in the choice of light and phonon polarization

vectors, and furthermore allows the interpolation to non-uniform grids and k-point

paths.

6.2.3 Laser energy dependence

Now that we specified the further theoretical approximations and computational details

for the case of graphene, we finally move on to a discussion of various results obtained

with our perturbative approach. We start with a discussion of the dependence of

the one-phonon Raman intensity on the frequency of the incoming photon. Since in

experiment, the incoming photon is normally provided by a laser, we will use the terms

“incoming-photon energy” and “laser frequency” interchangeably. Experimentally, one

finds a strong dependence of the Raman intensity on the laser frequency, which is found

to scale like ω4
L in the range 1.8 < ωL < 2.8 eV [143]. Contrary to the case of optical

absorption, however, this behavior can not be understood in terms of the joint density of

states (JDOS) alone. Our perturbative approach allows us to give an explanation for the

observed strong behavior. In Fig. 6.5a we show the calculated intensity of the Raman

G-peak, IG, as a function of the laser frequency ωL. The Raman intensity strongly peaks

at a laser energy corresponding to the van Hove singularity in the JDOS at 4.1 eV, which

is connected to the flat shape of the transition energy band structure at the M -point

(see inset of Fig. 6.5a). While this behavior is generally expected for optical spectra, at
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Figure 6.5: Laser-energy dependence of the intensity of the Raman G-peak.
(a) Intensity IG as a function of laser frequency ωL (blue, full line) and joint density of
states (JDOS) as a function of transition energy (red, dashed line). The shaded regions
correspond to the three different ωL-regimes discussed in the text. Inset: Transition
energy ∆εk = εk,π∗ − εk,π on part of the high-symmetry line Γ-K-M -Γ. The right
panel show the JDOS. (b,c) Zoom-in into the low- (red-shaded) and mid-range (green-
shaded) ωL-regime of panel (a). The green dashed lines depict an ω2

L- (panel (b)) and
ω4

L-behavior (panel (c)). (Figure reprinted with permission from Reichardt, S. et al.,
Phys. Rev. B 95, 195422 (2017). Copyright 2017 by the American Physical Society.)
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low- and mid-range energies, the Raman intensity is suppressed, however, even though

there is still a sizable number of optically active transitions available, as seen from the

non-vanishing JDOS. This behavior is in contrast to the case of optical absorption,

which shows sizable, finite intensity, whenever dipole-allowed electronic transitions are

available. Indeed, within the approximation of k-point- and state-independent electron-

light coupling matrix elements, the independent-particle optical absorption spectrum

is directly proportional to JDOS(ωL)/ωL, i.e., it is constant for graphene in the low- to

mid-level energy regime, while the Raman intensity is not (see Fig. 6.5b and c). The

more complex behavior of the latter can be better understood if we distinguish between

three different energy regimes (compare colored shades in Fig. 6.5a) and consider each

of them in turn.

In the first regime up to a laser energy of 1.5 eV, we find that the Raman intensity

follows an ω2
L-behavior (see Fig. 6.5). This prediction is in agreement with an earlier

analytical calculation by Basko [55], who used a tight-binding model in the low-energy,

Dirac electron approximation. Compared to the case of higher laser energy, however,

the intensity is strongly suppressed. This relative suppression can be understood in

terms of approximate angular momentum conservation, a concept that can be applied to

any material with degenerate phonon branches and approximately circularly symmetric

bands in some energy regime, such as, for instance, MoTe2 [50]. As seen in the inset of

Fig. 6.5a, the transition energy band structure is in a very good approximation circularly

symmetric in the low-energy regime (compare the “Dirac cone” around the K-point

in k-space). This continuous in-plane rotation symmetry implies the conversation of

the z-component of the angular momentum. As a consequence, the initial and final

states must carry the same total angular momentum. As the state of the electronic

system is the same in the initial and final state, its contribution to the total angular

momentum of theses states can be ignored. A (circularly polarized) photon coming

in or going out perpendicular to the graphene flake (i.e., along the z-axis) contributes

±~ of angular momentum, while the doubly degenerate E2g phonon transforms as a

vector under in-plane rotations and hence also carries an angular momentum of ±~ if

its polarization vectors are chosen to describe circular polarization. The final state,

which consists of one photon and one phonon thus can have a total angular momentum
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of +2~, 0~, or −2~, which differs from the total angular momentum of the initial state,

consisting of one photon, as it has angular momentum ±1~. Therefore, for a perfectly

circularly symmetric band structure, this process would be disallowed. This explains

why, in the low-energy regime, where the electronic band structure of graphene only

weakly deviates from the circular, conic shape, the Raman G-peak intensity is relatively

suppressed. Only the presence of weak trigonal warping effects that break the full

rotation symmetry leads to a non-vanishing signal.

These trigonal warping effects get stronger the higher the excitation energy. In

the second energy regime (1.5 . ωL . 2.5 eV), the band structure already is strongly

trigonally warped and strongly deviates from its circularly symmetric shape at lower

energies. The continuous rotation symmetry is hence broken down to the discrete 120◦

rotation symmetry of the graphene lattice. This discrete rotation symmetry implies

that angular momentum is no longer exactly conserved but only up to integer multiples

of 3~. As a result, an initial state with a total angular momentum of ±1~ can scatter

to a final state with total angular momentum ∓2~. In terms of (exact) selection rules,

this means that incoming light with circular polarization σ± undergoing the one-phonon

Raman process is scattered with opposite polarization (σ∓) under the emission of one

phonon of polarization σ∓. By taking appropriate linear combinations, we arrive at the

well-known selection rules for cartesian polarizations [152]:

R(x) =

(
0 c

c 0

)
, R(y) =

(
c 0

0 −c

)
, (6.51)

with c ∈ R being the Raman matrix element, which can be shown to be real. Here, the

argument in parenthesis refers to the cartesian polarization of the E2g-phonon. The rows

(columns) refer to the cartesian components of the polarization of the incoming (out-

going) light, so that the Raman matrix element can be obtained via
∑

i=x,y(v
∗
ph)i ε

∗
out ·

R(i) · εin.9 We verified that the results of our calculations respect these selections rules

up to a relative factor on the order of 10−6.

9vph = vα=Aq=0,λ=LO,TO in the notation of the past chapters, where the two atoms in the unit cell
of graphene are conventionally labeled α = A,B. Note that for the doubly degenerate optical phonon
mode at Γ, we have vα=Bq=0,λ=LO,TO = −vα=Aq=0,λ=LO,TO (also compare Fig. 4.3).
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Figure 6.6: k-point dependence of the contributions to the Raman matrix el-
ement. Upper panels: Absolute value (in logarithmic scale) and phase (color-encoded)
of the k-point-dependent contribution Mk to the total Raman matrix element on the
high-symmetry line Γ-K-M -Γ for ωL =1.5, 2.5, and 4 eV (in order from left to right).
The top horizontal axis gives the corresponding electronic transition energy ∆εk. The
shaded area represents the JDOS evaluated at the value of ∆εk of the respective k-
point. Lower panels: Zoom-in into the section of the path between K and M . (Figure
reprinted with permission from Reichardt, S. et al., Phys. Rev. B 95, 195422 (2017).
Copyright 2017 by the American Physical Society.)

As seen in Fig. 6.5c, our calculations reproduce the observed (see Ref. 143) ω4
L-

behavior of the G-peak intensity in the mid-energy range quite well. However, when

compared to higher excitation energies (& 2.5 eV), the intensity is still very small,

despite the presence of strong trigonal warping effects. To understand this behavior, we

focus on the interplay of the contributions of the different k-points to the total Raman

matrix elementM =
∑

kMk. To this end, we visualize the k-point dependence of the

individual contributions to the total matrix element on the high-symmetry line Γ-K-

M -Γ, as shown in Fig. 6.6 for three different values of ωL. The absolute value ofMk is

given in a logarithmic scale on the vertical axis, while its phase is represented by color

using a cyclic color scale. For further orientation, the electronic transition energy ∆εk
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is displayed on the top horizontal axis. This is possible in graphene, where there is only

one relevant electronic band transition and hence there is a well-defined mapping from

k-points to electronic transition energies. Finally, we can exploit the relative simplicity

of the electronic band structure of graphene even further by plotting the joint density

of states as a function of k as a shaded area. For this, we evaluate the JDOS at the

electronic transition energy of each k-point. In this way, we are able to represent the

relative weight of each k-point on the high-symmetry line in the total matrix element

when a full 2D integration over the first BZ is performed.

In Fig. 6.6 we can clearly identify the resonant states from the local maxima of

|Mk| (also see the zoom-in shown in the lower panels). For both ωL = 1.5 and 2.5 eV,

we see that the resonant states are sharply centered around one point on each side of

K. The phase, meanwhile, undergoes a continuous change of π when passing over this

“resonance peak”. As a consequence, contributions from k-points on opposite sides of

the resonance peak cancel each other (see, for example, the blue and yellow dots in

the first two panels of Fig. 6.6). This phase change of π across the resonance peak is

typical for a driven system and indeed is well-known from the classic example of a driven

and damped harmonic oscillator. However, this characteristic behavior is particularly

important in the case of Raman scattering, as the total Raman matrix element is the

sum of the contributions from different k-points and a relative phase of π between two of

these contributions leads to destructive interference, as exemplified by the states to both

sides of the resonance peak. Besides the destructive interference of the states around

the resonant k-point to both sides of K, it should be noted that the “inner” flanks (i.e.,

towards K) of the two resonance peaks also carry opposite phase and similar weight

and magnitude and hence also cancel each other. These opposite phases of the matrix

elements around the K-point is an effect of the approximate full rotational symmetry

in the vicinity of the K-point. A final point worthy of note concerns the contribution

of the non-resonant states near the van Hove singularity at the M -point. While the

amplitude of these contributions is smaller by two orders of magnitude compared to

the contributions of the resonant states, the corresponding k-points are broadly spread

along the K-M -part of the high-symmetry line. This can be seen from the flat, red

part of the curve in the first two panels of Fig. 6.6, which furthermore implies that
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these states are all in phase and have a similar amplitude. In addition, the fact that

the JDOS peaks at the M -point further implies that these states enter with a large

weight in a full 2D-integration over the first BZ. As a consequence, the contribution

from the region around the van Hove singularity at the M -point is far from negligible,

even though it is non-resonant. However, this contribution is to a large part canceled

by the contribution from the non-resonant states from the bulk of the Brillouin zone

(represented by the cyan parts of the curve in the Γ-K- and M -Γ-directions in the first

two panels of Fig. 6.6), which have opposite phase. We will demonstrate this statement

more conclusively in Section 6.2.5.

While so far we have seen that in the low- to mid-energy regime the total Raman ma-

trix element is strongly governed by destructive quantum interference effects, for higher

laser energies, i.e., ωL & 2.5 eV, this picture changes significantly (compare third panel

of Fig. 6.6). While the flanks of the two resonance peaks still destructively interfere with

each other (see blue and yellow parts of the curve), the resonance peak on the K-M -

section becomes very broad along the high-symmetry line and these contributions are

all largely in phase (cyan to green part of the curve). Combined with the high JDOS at

the corresponding electronic transition energies, these resonant contributions dominate

the total Raman matrix element for higher laser energies. While in the low-energy case,

the contribution of the non-resonant states near the van Hove singularity was canceled

by the non-resonant states from the bulk of the first BZ, here, the states near the Hove

singularity become resonant and due to their large number, their contribution to the

total matrix element cannot be canceled anymore by the non-resonant states from the

bulk of the first BZ. Ultimately, this behavior is thus a consequence of the flatness of

the transition energy band structure near the transition energies corresponding to the

laser energy.

We can summarize the laser energy dependence of the one-phonon Raman intensity

in graphene as follows: For low laser energies, the G-peak intensity is suppressed by

an effective selection rule due to angular momentum conservation associated with the

continuous rotation symmetry for low excitation energies. With increasing excitation

energy the intensity still remains low, but in this regime the reason is to be found in

destructive quantum interference effects, i.e., separate cancellations between the con-
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tributions of both the resonant and non-resonant states. At even higher laser energies

(ωL & 2.5 eV), the resonant, in-phase contributions along the K-M -direction even-

tually dominate the Raman matrix element due to their increased weight in the 2D

integration over the first BZ, caused by the presence of a van Hove singularity at M .

Finally, it should be pointed out that the resonant states, in fact, do not, in general,

dominate the Raman matrix element, as one would näıvely expect, but the sum of all

non-resonant states also plays an important role for the Raman process. Only when

the laser energy approaches the transition energy at which the JDOS peaks does the

picture of the resonant states dominating the Raman matrix element actually hold.

6.2.4 Fermi energy dependence

With the conclusion of our analysis of the ωL-dependence of the Raman G-peak inten-

sity, we now move on to study its dependence on the Fermi level εF. To this end, we

varied the Fermi level from -3 to +3 eV relative to that of pristine graphene. We use

the rigid band approximation, i.e., we do not renormalize the electronic bands with εF,

but we do include the effect of the change of εF on the electronic occupations by incor-

parating them in the electronic Green’s functions, via changing the occupation factors

fa, etc., in Eq. 6.46. For each value of εF and for several different values of ωL, we

calculate the Raman G-peak intensity. The calculated intensities, for each value of ωL

normalized to the respective intensity for pristine graphene, are depicted in Fig. 6.7a.

We represent the different laser energies by color, ranging from red for ωL = 1.5 eV to

violet for ωL = 4 eV. For both positive (corresponding to electron or n-type doping)

and negative (hole or p-type) values of εF, we find a strong increase of IG, when εF

approaches a critical value. As seen in Fig. 6.7b, this value matches the energy of the

electronic state at a k-point along the K-M -direction that is in resonance with the

average of the incoming and outgoing light, (ωin + ωout)/2 (compare colored full and

dashed lines). The strong increase that we find in our calculation has been observed

in experiment [81], although so far only for one fixed laser energy. Our calculations

go beyond this limitation and predict a strong variation of the strength of the relative

increase of IG with laser energy (compare the peak heights of the red and violet curves

in Fig. 6.7a). We also find that the electron-hole asymmetry of the critical value of
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Figure 6.7: Fermi energy dependence of the intensity of the Raman G-peak.
(a) Intensity of the G-peak as a function of Fermi energy εF and laser energy ωL (color-
encoded). All curves are normalized to the intensity at the Fermi energy of pristine
graphene, separately for each value of ωL. (b) Fermi energy at which IG becomes
maximal for both electron (full blue line) and hole doping (full red line). The colored
dashed (dotted) lines represent the conduction (blue lines) and valence (red lines) energy
at the k-point along the K-M(Γ-K)-direction which is in resonance with (ωin +ωout)/2.
The black lines represent the sum of the respective blue and red lines, i.e., the electron-
hole asymmetry. (c) Electronic band structure of graphene around the Fermi level
of pristine graphene on part of the high-symmetry line Γ-K-M -Γ. The dashed line
depicts the electron-hole asymmetry of the band structure. The red, green, and violet
lines represent the positive Fermi level that maximizes the Raman intensity for laser
energies of 1.5, 2.5, and 4 eV, respectively. The shaded areas mark those k-points that
do not contribute to the Raman amplitude due to the Pauli exclusion principle. (Figure
reprinted with permission from Reichardt, S. et al., Phys. Rev. B 95, 195422 (2017).
Copyright 2017 by the American Physical Society.)
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εF at which the intensity increase occurs increases with laser energy (full black line in

Fig. 6.7b). This behavior can be understood from the increasing electron-hole asym-

metry of the resonant k-points in the K-M -direction (dashed black line in Fig. 6.7b).

A conceptual explanation for this sharp increase of IG at a certain critical value of

εF had already been suggested in the original paper by Chen et al. [81]. There, the

authors attributed the observed behavior to the blocking of destructive quantum inter-

ference effects due to the Pauli exclusion principle. When the Fermi level is increased,

increasingly more electronic states in the π∗-band become occupied and these states

are then no longer available for electronic transitions. Likewise, when the Fermi level is

lowered, electronic states in the π-band become empty and can no longer partake in any

optical transition (“Pauli blocking”). In Fig. 6.7c, this concept is illustrated for three

different laser energies and the associated positive value of εF that leads to a maximum

of IG. The shaded regions underneath the horizontal, colored lines mark those k-points

which do not contribute to the total Raman matrix element due to Pauli blocking. At

the depicted critical values of εF, a large part of the destructive quantum interference

effects are suppressed and the G-peak intensity increases as a result. As seen from

Fig. 6.7b, the magnitude of this increase depends on the laser energy. To understand

this dependence on ωL, we consider the two most extreme values of ωL considered in

our calculation (ωL = 1.5 and 4 eV) in more detail.

In the case of ωL = 1.5 eV, we can see from Fig. 6.7a that, on either side of the charge

neutrality point, IG goes through a sequence of maxima and minima: At first, IG sharply

increases, then drops to a minimum, before going through another small maximum

which finally trails off for even larger values of εF. We can understand this behavior

in terms of the concept of quantum interference discussed in the previous section for

the mid-range energy regime. There, we stated that the total matrix element in this

regime is suppressed because of two effects: firstly, almost-resonant contributions from

k-points around the resonance points (flanks of the resonance peaks in Fig. 6.6) cancel

each other to a large degree and secondly, non-resonant contributions from k-points near

the van Hove singularity are mostly canceled by the sum of non-resonant contributions

from within the bulk of the first BZ. When the Fermi level is now increased away from

the charge neutrality point at K, more and more k-points around K do not contribute
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anymore because of Pauli blocking. The first transitions to be blocked are the ones

on the “inner” flanks of the resonance peaks (as viewed from K), depicted in Fig. 6.6.

The suppressive effect of the cancelation between the inner and outer flanks of the two

resonance peaks is thus switched off, as the electronic states of the inner flanks do no

longer contribute to the total matrix element. With the contributions of each outer flank

being mostly in phase and not canceled anymore, the intensity of the G-peak reaches

a maximum once the Fermi level is tuned such that all contributions from the inner

flanks are blocked, i.e., when the Fermi level reaches the transition energy at which the

resonance peak in Fig. 6.6 occurs. For a laser energy of ωL = 1.5 eV and electron doping

this occurs at a Fermi energy of εF = 0.71 eV. When εF is now tuned towards even

higher values, i.e., across the resonance peak, the contributions from the constructively

interfering outer flank become more and more Pauli blocked and as a result the G-peak

intensity decreases again. Once all almost-resonant electronic transitions on the outer

flank of the resonance peak have been blocked, the intensity of the G-peak reaches a

minimum (see dip in red curve in Fig. 6.7a at around εF = 1.55 eV). At this point,

all almost-resonant contributions are suppressed by the Pauli principle and the only

contributions to the total Raman matrix element stem from the non-resonant transitions

near the van Hove singularity and from the bulk of the first BZ, which almost cancel

each other. A further increase of εF then leads to the Pauli blocking of the transitions

near the van Hove singularity, leaving the non-resonant, but in-phase states from the

bulk of the first BZ unopposed and as a result the G-peak intensity as a function of

εF goes through a second, albeit smaller, maximum (see small bump in red curve in

Fig. 6.7a at around εF = 1.97 eV). Finally, an even further increase of the Fermi level

only leads to an increasing suppression of the in-phase contributions from the bulk of

the first BZ and in consequence IG simply trails off with increasing εF.

By contrast, the behavior of IG under changes of the Fermi level is much simpler

for higher laser energies and becomes also less strong. Considering the case ωL =

4 eV explicitly, we see that when εF is increased away from the charge neutrality

point, IG shows almost no response over a large range of εF values. Only when the

Fermi energy approaches a value of approximately εF = 1.65 eV does the intensity

go through a slight maximum, before it quickly reduces to zero when εF is increased
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even more. This is again consistent with our observation detailed in the previous

section that for higher laser energies, the G-peak is mostly carried by resonant electronic

transitions, with quantum interference effects only playing a minor role. This explains

why, when the Fermi level is first increased, the G-peak intensity remains almost entirely

unaffected, as only non-resonant transitions around the K-point become blocked. It

is only when εF approaches the resonant states near M when IG does show a sizable

response, when once more the destructive quantum interference effects from the inner

flank are suppressed. However, compared to the case of lower laser energy, the response

of IG is now significantly weaker. This can be related to the fact that for ωL = 4 eV,

the resonance peak in k-space is broad and mostly in phase (see broad plateau near

M in the right-most panel in Fig. 6.6). In contrast to this, at lower laser energy, the

resonance peaks in k-space are very narrow and hence destructive interference effects

between the flanks of the peaks play a much bigger role. After the G-peak intensity

for ωL = 4 eV reached a maximum when the Fermi energy is tuned to a value of

approximately εF = 1.65 eV, any further increase of εF only results in a blocking of

more and more resonant transitions. This leads to a sharp decrease of IG, as seen in the

violet curve in Fig. 6.7. After all of the resonant transitions have been Pauli-blocked,

i.e., the entire resonance peak in k-space does no longer contribute, the value of IG

relative to that of pristine graphene remains insensitive to any further change of εF,

which confirms our previous finding that non-resonant states from the bulk of the first

BZ only play a minor role at higher laser energies.

To summarize this section, we found that our ab initio calculations confirm the

suggestion of Chen et al. that the blocking of destructive quantum interference effects

by shifting the Fermi level is the driving mechanism behind the observed strong increase

of the G-peak intensity for certain critical values of the Fermi energy. In addition, we

went beyond the case of fixed ωL and calculated the combined dependence of IG on

both εF and ωL. In this context, we demonstrated that the relative increase of IG at

the critical values of εF strongly depends on the laser energy, since quantum interference

effects play a less important role for higher values of ωL, as already established in the

previous section. Furthermore, we also predict that for small values of ωL, the intensity

of the G-peak will resurge when εF approaches the van Hove singularity, even after all

190



resonant states have been Pauli-blocked.

6.2.5 Relevant states for the G-peak process

In the last part of this section, we will address the question of which electronic transi-

tions are relevant for the G-peak process, i.e., which electronic states need to be taken

into account in a theoretical description, a question first raised by Basko [55], who in-

vestigated it by means of a tight-binding model in the low-energy regime. However, as

has become clear in the preceding two sections, the influence of quantum interference

effects and of non-resonant states strongly depends on the laser energy. Hence it is not

surprising that the states that need to be considered for a correct description of the

G-peak intensity also vary with ωL.

In order to approach this question from a quantitative side, we calculated the G-peak

intensity for different values of ωL and with increasingly more electronic transitions,

starting with the ones that are in resonance with the incoming and/or outgoing light.

More precisely, we select the included electronic states by introducing a transition

energy window width εcut. We include only those electronic transitions whose transition

energy obeys ∣∣∣∣∆εk − ωin + ωout

2

∣∣∣∣ < εcut. (6.52)

In order for a transition to be included, its transition energy needs to lie in a window

of width 2εcut around the average resonance frequency (ωin + ωout)/2. This criterion

is illustrated in the inset of Fig. 6.8a. We calculate the G-peak intensity with only

the states within a specified energy window. The graph of the corresponding function

IG(εcut) for different values of the laser energy (color-encoded) is depicted in Fig. 6.8a.

For each value of ωL, we normalized the respective curve to the value of IG obtained by

considering all electronic transitions.

The behavior we observe is consistent with the points discussed in the previous two

sections. When εcut is first increased from zero, by definition, the first states that are

included are the ones that are in resonance with the incoming and/or the outgoing light.

These states contribute with a large amplitude to the total Raman matrix element. As

a result, all curves in Fig. 6.8a feature a strong peak near εcut = 0. As εcut is increased
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Figure 6.8: Relevant electronic states for the G-peak process. (a) G-peak inten-
sity as a function of transition energy window width εcut (see main text for description).
All lines are normalized to the intensity calculated with all states included. The laser
energy is color-encoded. Inset: Illustration of the transition energy window width. The
thin, dark-shaded region highlights the energy window in which the electronic states are
in resonance with the in- or outgoing light for ωL = 2.5 eV for an electronic broadening
of 2γ̄k. The broad, light-shaded region marks the electronic states which are included
at εcut = 1 eV. (b) Intensity of the Raman G-peak as a function of laser energy with
certain (non-)resonant contributions only. All curves are normalized with respect to the
intensity from the full calculation, including all contributions. The dashed blue, red,
and black lines represent the values of IG obtained with only the almost double-resonant
(“aDR”), the single-resonant (“SR”), and the non-resonant (“NR”) terms, respectively.
The full green line depicts the result obtained by taking into account the sum of the
aDR and SR contributions. Inset: Graphical representation of the relevant electronic
states (as defined in the text) for ωL = 1.5 (left panel) and 4 eV (right panel). (Figure
reprinted with permission from Reichardt, S. et al., Phys. Rev. B 95, 195422 (2017).
Copyright 2017 by the American Physical Society.)
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further, the next states to be included stem from the flanks of the resonance peaks

in k-space (compare also Fig. 6.6). Since these states have partially opposite phase

compared to the fully resonant ones, they destructively interfere in part with the latter

and hence the intensity as a function of εcut decreases at first when these states are

included in the calculation.

The behavior of IG for higher values of εcut after this first drop depends on the laser-

energy. For lower values of ωL, IG(εcut) increases once more when εcut is increased even

further (see red to green curves in Fig. 6.8a). The reasons for this secondary maximum

is to be found in the inclusion of the states near the van Hove singularity, which, as

established in the previous sections, are all in phase and hence interfere constructively.

Indeed, the point of steepest ascend in the red to green curves corresponds precisely to

those values of εcut at which the energy window first includes the M -point. When the

energy window in extended beyond this point, the destructively interfering states from

the bulk of the first BZ are starting to be included and as a result IG decreases once

more. After a sufficient amount of these non-resonant transitions is included in the

calculations, IG(εcut) finally converges to the value of IG obtained by taking all states

into account.

For higher values of ωL, however, IG(εcut) does not change anymore after the in-

clusion of the resonant states (see blue to violet curves in Fig. 6.8a). Indeed, IG(εcut)

converges straight to the value of IG obtained from a full calculation. This is yet an-

other proof of the fact that non-resonant states do not play any noticeable role in this

laser energy regime.

This last statement can further be elaborated upon by considering the resonant and

non-resonant terms separately and calculating the G-peak intensity with only some

of them. As mentioned at the end of Section 6.2.1, the total matrix element can be

written as the sum of an almost double-resonant (aDR), a single-resonant (SR), and a

non-resonant contribution (NR). Each of them is understood to already be summed over

k-points. A calculation of IG with only one of these three contributions as a function of

ωL leads to the dashed lines in Fig. 6.8b, where the values of IG are always normalized

to the full calculation with all three contributions. Evidently, a calculation with only

the aDR (blue line) or the NR terms (black line) severely overestimates the Raman
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intensity in the low-laser energy regime, while it underestimates it for higher values of

ωL. This shows that the often-employed and -suggested textbook approximation of only

retaining the aDR terms (see, for example, the book by Yu and Cardona [85]) fails in

graphene. On the other hand, if the calculation is done with only the SR contribution,

one always underestimates the G-peak intensity.

More interesting, however, is the result of a calculation with both the aDR and SR

contributions only, that is, we include all terms that feature a resonance with either the

incoming or outgoing light (full green line in Fig. 6.8b). The resulting curve confirms

the previously made statements about the laser energy dependence of the importance of

resonant transitions. For higher laser energies (ωL & 2.5 eV), the resonant contributions

to the total Raman matrix element are indeed the dominant ones and a calculation that

takes only these terms into account yields very good results in this ωL-regime.

On a final note, we can visualize the electronic states that need to be taken into

account for an accurate quantitative description for different values of ωL. To identify

the necessary states, we go back to our results for IG(εcut) and start from a calculation

including all states, i.e., εcut equals the full π-band width. We then gradually lower

the cutoff εcut until IG(εcut) differs from the full result by more than 2%. This way, we

obtain a minimum transition energy window width around the resonant states needed

to achieve 2% accuracy. Given this minimum value of εcut, we can visualize the corre-

sponding k-points within the corresponding energy window in a band structure plot,

as shown for ωL = 1.5 and 4 eV in the inset of Fig. 6.8b. From this representation,

it immediately becomes clear that the relevant states for the G-peak process for lower

values of the laser energy come from a large part of the first Brillouin zone. This is

in agreement with Basko’s finding, who obtained the same result using an analytical

approach in the low-energy limit [55]. Our method, however, allows us to go beyond

the low-energy limit and investigate also the mid- and high-ωL-regime. In particular,

we find that for larger values of ωL, this picture changes qualitatively, as the relevant

states are localized in a broad band of width 2 eV around the resonance energy. How-

ever, we want to stress that in no laser energy regime is it sensible to approximate the

Raman scattering matrix element with an expression that only considers the resonant

electronic transitions (i.e., in a narrow energy band of ± the electronic decay width
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around the resonance energy).

6.2.6 Summary of the results for graphene

In this section we focused on illustrating both the flexibility and power of our approach

by analyzing the processes underlying the G-peak in the Raman spectrum of graphene

and calculating the laser and Fermi energy dependence of its intensity. Our results

compare very favorably to experimental observations and go beyond them by predicting

and explaining the dependence of the G-peak intensity on a combined variation of both

the laser and Fermi energy. In particular, we explicitly demonstrated the importance

of quantum interference effects for the Raman scattering amplitude.

This concludes the application of our newly developed method to graphene. In the

next section, we will summarize in what way the developed analysis techniques and the

concept of quantum interference can be applied to other materials as well. However, we

will not present any detailed results, but rather confine ourselves to a brief summary

of the published results only.

6.3 Application to other 2D materials: triple-layer

MoTe2 and single-layer MoS2

In the final section of this chapter, we will address the application of both the developed

analysis techniques and our computational approach to other materials, choosing triple-

layer MoTe2 and MoS2 as examples. Our coverage of these two topics will be kept short,

however, as the main results have already been disseminated elsewhere [50, 153] or will

be in the near future [82].10

10All computations with the method of the static first derivative of the transverse dielectric suscep-
tibility referenced in this section were carried out by H. Miranda, who also participated equally in all
discussions summarized in this section.
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6.3.1 Triple-layer MoTe2

The importance of quantum interference effects that we demonstrated for graphene is

something that is not restricted to graphene alone, but also applies to many other ma-

terials. Another class of materials in which they sizably influence the Raman scattering

rate is the family of single- and multi-layer transition metal dichalcoginides. To give

one concrete example, we briefly review the case of triple-layer MoTe2 in this section.

A single layer of MoTe2 possesses three phonon modes which are active in one-

phonon Raman scattering: one doubly degenerate in-plane one and one non-degenerate

out-of-plane one. When passing from a monolayer to a trilayer crystal, the number

of phonon modes triples and each monolayer mode exists in three copies that weekly

interact with each other due to the interlayer van der Waals interaction, resulting in a

splitting of each set of three copies into Davydov triplets. For the modes that are Raman-

active in the single-layer crystal, each Davydov triplet now contains two Raman-active

modes and one Raman-inactive one.

Recently, the laser frequency-dependent Raman intensity for triple-layer MoTe2 has

been measured experimentally [72, 154, 155]. It was observed that the in-plane modes

remain silent for light frequencies not much bigger than the band gap, while the out-of-

plane modes are bright right away. Secondly, the ratio of the intensity associated with

the two Raman-active members of the out-of-plane Davydov triplet become inverted

above a certain excitation frequency. This behavior cannot be understood within simple

models, such as the bond polarizability model [69–71], which can only describe Raman

scattering in the non-resonant regime, i.e., for excitation energies below the band gap

energy.

To explain the observed behavior, we calculated the Raman scattering rate using

the approach of the first derivative of the transverse dielectric susceptibility, which we

mentioned as a possible alternative method for the calculation of Raman scattering rates

in Chapter 1. We note that this approach can be proven to be completely equivalent

to our perturbative method if in the latter the limit ωD → ωL is taken.11 We then

11The most simple and straightforward proof starts from the Bethe-Salpeter equation for the two-
particle correlation function in real space. Taking derivatives with respect to a nuclei displacement
on both sides, further elementary algebraic manipulations lead to an expression that matches our
ladder-like approximation derived from perturbation theory up to a term that involves the functional
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applied the same analysis techniques as shown for graphene above to the results of our

calculation.

Firstly, the difference in behavior between the non-degenerate out-of plane mode and

the doubly degenerate in-plane mode can be understood from the fact that the MoTe2

band structure is also approximately invariant under arbitrary in-plane rotations near

the location of the band gap, similar to the band structure of graphene. As discussed

for the case of graphene, the approximate continuous rotation symmetry renders a

doubly degenerate in-plane phonon mode silent, while the out-of-plane mode is not

affected by this. Thus, the different behavior of the in- and out-of-plane phonon modes

for excitation energies near the band gap can be understood by applying the same

symmetry principles that we pointed out for graphene.

The second experimental observation of an intensity inversion of the two Raman-

active members of the out-of-plane Davydov triplet cannot be explained in terms of

symmetry principles alone, however, as the modes transform in the same way under

crystal symmetry operations. Instead, we applied the same k-point-resolved analysis

technique we developed and used for our graphene calculation. In this way, we were

able to provide an explanation of the observed behavior based on quantum interference

effects. However, since we have already illustrated the use of approximate symmetry

principles and of our k-point-resolved analysis technique for the case of graphene, we

will not go into any further detail here, but instead refer the reader to Ref. 50 for the

details.

6.3.2 Single-layer MoS2

Finally, we would like to briefly mention ongoing work on the application of our pertur-

bative method to single-layer MoS2 [82]. Here, the main focus will be on a comparison

of our perturbative method to the method of the static derivative of the transverse

derivative of the two-particle interaction kernel with respect to the one-electron Green’s function. This
latter term corresponds to the terms involving the three-particle-irreducible interaction kernel that we
neglected in our approach (see the paragraph before Eq. 6.40 for further discussion of this point). An
alternative proof starts from the BSE in Fourier space and in the basis of the KS states, as outlined
within certain approximations in Ref. 153. However, this method of proving the equivalence of the
two approaches is much more cumbersome, as one also needs to take into account the change of the
basis functions, i.e., the change of the KS states.
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dielectric susceptibility. As mentioned above, the analytical proof is straightforward,

yet the numerical verification of the equivalence of the two methods is still very much

important to ensure the validity of the perturbative method in a practical setting.

Similarly to MoTe2, a single layer of MoS2 features two main Raman-active modes,

an in-plane, doubly degenerate mode E ′ and a non-degenerate out-of-plane modeA′. We

calculated the Raman scattering rate using both approaches: the static, first derivative

of the transverse dielectric susceptibility with respect to a nuclear displacement pat-

tern according to the phonon mode in question and our perturbative method described

earlier. Both calculations were done on the independent-particle level using KS-DFT

wave functions, eigenvalues, and KS electron-light matrix elements. The static deriva-

tive of the susceptibility with respect to nuclear displacements was computed using the

method of finite differences [50, 75]. In the case of the perturbative method, the static

electron-phonon coupling computed on the level of DFPT was used for the screened

electron-phonon coupling, to ensure a consistent treatment of the change of the charge

density under nuclei displacements. We also evaluated the perturbative expressions for

ωL = ωD to reflect the static nuclear displacements of the derivative method.

In Fig. 6.9 we show the results of a first preliminary calculation with our perturba-

tive method for single-layer MoS2 and compare it to the results of a calculation with the

static first derivative method. The red and blue lines represent the Raman scattering

rate involving the E ′ and A′ modes, respectively, as obtained with the perturbative

method. The colored dots represent the corresponding results obtained with the static,

first derivative method. The results for the out-of-plane mode are in excellent agree-

ment with one another. However, the results for the in-plane mode still show some

quantitative differences, even though the qualitative behavior is in very good agree-

ment.

One possible source for this discrepancy in the results for the in-plane mode could

be the polar nature of MoS2. For polar materials, a displacement of an atom induces

an internal polarization, which in turn modifies the effective screened electron-phonon

coupling. In the method of static first derivatives of the transverse dielectric suscepti-

bility, the polar nature is already taken into account due to the self-consistent nature of

the two DFT calculations used for the finite difference calculations. In the perturbative
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Figure 6.9: Comparison of the “finite difference” method with the pertur-
bation theory approach. Calculated Raman scattering rate with both the method
of the static, first derivative of the transverse dielectric susceptibility (dots) and the
suggested perturbative approach (lines) as a function of excitation energy. The Ra-
man scattering rate for the degenerate in-plane optical phonon mode E ′ is shown in
red, while the scattering rate for the non-degenerate out-of-plane Raman-active mode
A′ is shown in blue. Both kinds of calculations were done in the independent-particle
approximation. In the case of the perturbative method, the screened electron-phonon
coupling was taken from DFPT for consistency and we set ωL = ωD in the perturbative
approach to mimic the static nuclear displacements of the first derivative method. (The
calculations with the static derivative method as well as the ab initio calculations for
the building blocks of the perturbative approach were done by H. Miranda.)
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approach instead, this contribution to the electron-phonon coupling is missing entirely.

How this issue could be fixed still remains to be seen. One possible ansatz for the inclu-

sion of the missing contribution could be the inclusion of additional diagrams involving

Born effective charges, which couple lattice displacement with transverse electronic

dipole moments. In this way, an additional contribution to the Raman scattering rate

would arise which would involve the three-current correlation function as compared to

the nuclear displacement-two-current correlation function considered in our approach.

However, the details of this ansatz still need to be worked out.

In addition to the comparison of the static first derivative and perturbative ap-

proaches on the independent-particle level, future work will also be put into an im-

plementation of our suggested method for the inclusion of excitonic effects in the per-

turbative calculation, which could then also be validated against the already existing

results of a finite-difference calculation including excitonic effects. Furthermore, the

perturbative approach potentially allows an effective inclusion of temperature via the

calculation of the temperature-dependent electron self-energy due to electron-phonon

interaction [137]. This approach would lead to temperature-dependent electronic exci-

tation energies and decay widths, which would account for the frequency shift of optical

spectra with temperature. However, such an approach can, as of now, only be justified

heuristically, as a rigorous treatment of the extension of our suggested theoretical ap-

proach to the calculation of Raman scattering rates to the finite-temperature case still

needs to be carried out.
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Chapter 7

Magneto-Raman Spectroscopy for

the Characterization of Graphene

Parts of the content of this chapter have been published in the following publications:

• Neumann, C., Reichardt, S., Drögeler, M., Terrés, B., Watanabe, K., Taniguchi,

T., Beschoten, B., Rotkin, S. V. & Stampfer, C. Low B field magneto-phonon

resonances in single-layer and bilayer graphene. Nano Lett. 15, 1547–1552 (2015)1

• Neumann, C., Halpaap, D., Reichardt, S., Banszerus, L., Schmitz, M., Watanabe,

K., Taniguchi, T., Beschoten, B. & Stampfer, C. Probing electronic lifetimes and

phonon anharmonicities in high-quality chemical vapor deposited graphene by

magneto-Raman spectroscopy. Appl. Phys. Lett. 107, 233105 (2015)1

• Sonntag, J., Reichardt, S., Wirtz, L., Beschoten, B., Katsnelson, M. I., Libisch,

F. & Stampfer, C. Impact of many-body effects on Landau levels in graphene.

Phys. Rev. Lett. 120, 187701 (2018)1

1Contributions of the author of this thesis to the cited work:
Provided key ideas for interpretation of the experimental results; implemented theoretical models for
the description and visualization of the data; extensively discussed the results with the co-authors;
co-wrote the manuscript.
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In the previous chapters, we focused entirely on the theoretical and computational

aspects of Raman spectroscopy. We will now turn to a more application-oriented aspect

of it and discuss how it can be used to probe certain properties of a sample, choosing

again graphene as a prime example. In particular, we will devote most of our attention

to the study of the effects and strength of electron-electron interaction and how to

use Raman Spectroscopy under the influence of a magnetic field to extract various

quantities, such as electron and phonon lifetimes and the magnitude of the electron-

phonon coupling.

The influence of inter-electron Coulomb interactions manifests itself most promi-

nently in its impact on the electronic band structure, i.e., the electronic energy levels.

The latter can be probed in a variety of ways, for example, by scanning tunneling mi-

croscopy (STM) [156], by transport experiments [78, 79], or by Raman spectroscopy in

finite magnetic fields [47, 49, 79]. The basic principle behind all three methods is to

study the resonant coupling of the electronic levels with a second system that it is in

resonance with, i.e., whose characteristic frequency or energy scale matches the energy

of an electronic transition. To this end, one varies either the electronic energy levels

or the second energy scale by tuning an external quantity and measures a suitable ob-

servable that depends on either the electronic transition energies or the second energy

scale in a known way.

In the case of STM, one varies the bias voltage of the STM tip and measures the

tunneling current, which depends on the electronic density of states. In transport

experiments, on the other hand, one applies a weak perpendicular magnetic field and

varies the charge carrier density, which allows the observation of “Shubnikov-de Haas

oscillations” in the electrical conductivity. The amplitude of these oscillations depends

on the ratio of the scale of electronic excitation energies and the thermal excitation

energy kBT . By varying the temperature, one can then extract the energy of electronic

transitions.

Finally, in Raman spectroscopy, one can extract the electronic energy levels via

their resonant coupling to phonons. Since the frequencies of the latter are hard to

influence without also modifying the electronic system at the same time, one typically

applies high magnetic fields (B≥1 T) to only tune the electronic transition energies.
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When one tunes the magnetic field in such a way that the electronic transition energies

match the energy of a Raman-active optical phonon, the lifetime of the latter decreases

significantly, which results in a broadening of the Raman peak. By measuring the width

of the Raman peak as a function of the external magnetic field, one can thus gain insight

into the typical electronic transition energies. When combining this measurement with

a way of tuning the effects of electron-electron interaction, such as a change in charge

carrier density or the simultaneous excitation of many charge carriers, one can study

many-body effects in even more detail.

In this part of this work, we will now foremost focus on this third method to probe

many-body effects in more detail, i.e., we will show how the effect of magneto-phonon

resonances, sketched in the last paragraph, can be used in practice to probe the effects

of electron-electron interactions. The very same method can also be applied to probe

the lifetimes of electrons and anharmonic effects on the phonon lifetimes.

7.1 Theory of magneto-phonon resonances in

graphene

To begin with, we review the theoretical description of magneto-phonon resonance in

graphene. Since a purely ab initio study of a crystal in a finite magnetic field is not

feasible at the time of writing, we will rely on an analytical model instead. To this

end, we first introduce an analytical tight-binding model of the electronic structure of

graphene and the electron-phonon coupling, at first without a magnetic field. In a sec-

ond step, we will then introduce an external, perpendicular magnetic field, which leads

to the formation of discrete electronic states, the so-called Landau levels. Thirdly, we

study the non-adiabatic coupling of these electronic states to the Raman-active optical

phonons in time-dependent perturbation theory within a Green’s function formalism,

which allows us to describe the phenomenon of magneto-phonon resonances using only

a small number of empirical parameters.
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7.1.1 Tight-binding model for graphene

We start the description of magneto-phonon resonances by introducing an analytical de-

scription of the electronic band structure of graphene and the electron-phonon coupling.

Since we are interested in describing the resonant coupling of electronic transitions to

the Raman-active optical phonons, which have an energy of around 196 meV, we can

restrict ourselves to the low-energy part of the band structure, that is, to a small energy

window around the Fermi energy. We thus only need an effective description of the π-

and π∗-bands of graphene in the vicinity of the K(′)-point in the first Brillouin zone.

As remarked in Sections 3.2 and 6.2, the bands in this region of k-space can be well

described by a linear combination of pz-orbitals. In real space, a good approximation

for the Hamiltonian can then be found within a first-nearest-neighbors tight-binding

model, in which the electrons are assumed to be tightly bound to one specific atom

with a finite probability to “hop” to a neighboring atomic site.

More concretely, we consider the following electronic tight-binding Hamiltonian [157–

159]:

Ĥel = −
∑
m

3∑
n=1

tn

[
ĉ†Rm+dn

ĉRm + ĉ†Rm
ĉRm+dn

]
. (7.1)

Here, m labels the different unit cells of the crystal, Rm is a lattice vector, and d1,2,3

are three vectors describing the relative position of the three nearest neighbors of a

carbon atom on the A-sublattice of the graphene lattice (see Fig. 7.1a for a definition of

the sublattices and an illustration of the notation). Explicitly, the lattice vectors and

nearest-neighbor vectors are given by

Rm = n1t1 + n2t2, where t1 = a0

1

0

0

 , t2 = a0

−1/2√
3/2

0

 and n1, n2 ∈ Z, (7.2)

d1 = a

0

1

0

 , d2 = a

−
√

3/2

−1/2

0

 , d3 = a


√

3/2

−1/2

0

 , (7.3)
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Figure 7.1: Lattice structure, reciprocal lattice, and first Brillouin zone of
graphene. (a) Lattice structure of graphene. Red (green) dots represent atoms on the
A (B) sublattice. The lattice basis vectors t1,2 and the unit cell they span are depicted in
blue. Black arrows represent the nearest-neighbor vectors d1,2,3. The nearest-neighbor
distance a and lattice constant a0 are also shown. (b) Reciprocal lattice and first Bril-
louin zone of graphene. Purple, teal, and magenta points represent the high-symmetry
points Γ, M , and K(′), respectively. The reciprocal lattice basis vectors b1,2 and the
unit cell they span are depicted in orange. The bottom-right corner shows the first
Brillouin zone (i.e., the Wigner-Seitz unit cell) of the graphene lattice. Black arrows
mark a path along the high-symmetry lines that is commonly used for visualization.

where a0 ≈ 2.46 Å and a ≡ a0/
√

3 ≈ 1.42 Å are the lattice constant and first-nearest-

neighbor distance in graphene, respectively. The operator ĉ†R creates an electron in a

pz-orbital-like state |R〉 localized on the atomic site R. Finally, tn are the so-called

hopping integrals defined by

tn ≡ −
∫

d3r [φpz(r− dn)]∗
[
V (r)− V (at)(r)

]
φpz(r) > 0, (7.4)

where V (r) is the lattice-periodic total potential and V (at)(r) the potential of an isolated

carbon atom located at the origin [160]. To include the effects of electron-electron in-

teraction in an approximative way, the potentials can be replaced by effective potentials

that partially include exchange-correlation effects, such as the self-consistent (pseudo-)

potentials in Kohn-Sham density functional theory. Lastly, φpz(r −R) ≡ 〈r|R〉 is the
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wave function of the pz-like state of the atomic potential V (at)(r−R) centered on site

R. In the following, we will neglect the overlap of wave functions located on different

atomic sites, i.e., 〈R|R′〉 ≈ δR,R′ which is sufficient to reproduce the low-energy elec-

tronic band structure in the energy range that is needed to describe the phenomenon

of magneto-phonon resonances [47, 161–163].

In our case, we will use the definition of tn only to derive a tight-binding description

for the electron-phonon coupling. For the purpose of describing the electronic band

structure only, we will treat the tn as empirical parameters. Note that for the undis-

torted graphene lattice, we have t1 = t2 = t3 ≡ t by symmetry and t is on the order of

3 eV [51, 157, 158].

To find the eigenstates and eigenvalues of Ĥel, we introduce the Fourier-transformed

operators

ĉk,A ≡
1√
N

∑
m

e−ik·Rm ĉRm , ĉk,B ≡
1√
N

∑
m

e−ik·Rm ĉRm+d1 , (7.5)

which can be interpreted as operators which destroy a Bloch wave-like state with finite

amplitude on the A or B sublattice, i.e., on the sites Rm or Rm + d1, only. The inverse

transformations are given by

ĉRm =
1√
N

∑
k

eik·Rm ĉk,A, ĉRm+dn =
1√
N

∑
k

eik·(dn−d1+Rm)ĉk,B. (7.6)

In terms of the Fourier-transformed operators, the Hamiltonian takes on the simple

form

Ĥel = −t
∑
k

{[
3∑

n=1

eik·(dn−d1)

]
ĉ†k,Aĉk,B +

[
3∑

n=1

e−ik·(dn−d1)

]
ĉ†k,B ĉk,A

}
. (7.7)

We can thus represent it in sublattice space by a 2×2-matrix

Hk =

(
0 −tf(k)

−t(f(k))∗ 0

)
, (7.8)
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where we defined f(k) ≡∑3
n=1 exp(ik · (dn − d1)). The eigenvalues and -vectors of Hk

are given by

εk,π∗ = +t|f(k)|, χk,π∗ =
1√
2

(
1

− (f(k))∗

|f(k)|

)
, (7.9)

εk,π = −t|f(k)|, χk,π =
1√
2

(
1

+ (f(k))∗

|f(k)|

)
. (7.10)

For completeness, we note that the function |f(k)| explicitly reads

|f(k)| =

√√√√1 + 4 cos

(
1

2
kxa0

)[
cos

(
1

2
kxa0

)
+ cos

(√
3

2
kya0

)]
(7.11)

and that it becomes zero at two inequivalent points in the first Brillouin zone (see

Fig. 7.1b):

K ≡ 2π

a0

2/3

0

0

 , K′ ≡ 2π

a0

−2/3

0

0

 , (7.12)

which are called valleys or also Dirac points in the literature.

Since we are only interested in the low-energy electronic excitations around the

Fermi surface, for pristine graphene defined by εk = 0, we can expand the Hamiltonian

into a Taylor series around K and K ′. We then obtain the effective, low-energy, matrix

Hamiltonians

HK(k) = vFk · σ, HK
′
(k) = −vFk · σ∗, (7.13)

where σ ≡ (σx, σy)
T is a two-dimensional vector of Pauli matrices acting in sublattice

space and we re-defined the wave vector k to now originate from the points K and K ′,

respectively. The Hamiltonians in Eq. 7.13 have the same algebraic structure as the

Weyl Hamiltonian, which describes massless particles of spin 1/2 and definite helicity.2

Here, however, the Pauli matrices do not act on the physical spin degree of freedom

2The helicity operator is defined as λ̂ ≡ σ · p̂/|p̂|, i.e., it represents the projection of the (pseudo-)
spin in the direction of the momentum.
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(which, so far, we have been ignoring in our treatment), but rather act in the space

of the sublattices A and B. The corresponding degree of freedom is thus known as

pseudo-spin.

The effective Hamiltonians have the linearly dispersive spectrum ε±(k) = ±vF|k|,
i.e., electrons in graphene with energies around the Fermi energy behave as massless,

relativistic particles. The parameter vF is the slope of the bands, which are in a first

approximation linear in |k| in the vicinity of the K- and K ′-points, and it thus has the

physical interpretation of the Fermi velocity, i.e., the velocity of electrons at the Fermi

surface. It is related to the hopping integral via vF =
√

3ta0/2 and is on the order of

106 m/s. In the following, however, we will take it to be an empirical parameter.

Next, we turn to a tight-binding-based description of the electron-phonon coupling.

To this end, we consider a general displacement of the lattice atoms, which, following

the discussion in Section 4.2, can be written as a Fourier series:

uα(Rm) ≡ u(m,α) =
1√
N

∑
q

uαqeiq·Rm , α = A,B. (7.14)

In the approximation that the hopping integral only depends on the distance between

the atomic sites [158, 164, 165], the hopping parameter between sites Rm and Rm+dn

changes by the amount

δtn(Rm) =
∂t

∂a

1

a
dn ·

[
uB(Rm + dn − d1)− uA(Rm)

]
(7.15)

under a displacement of the lattice atoms. Here, the gradient of the hopping integral

has been approximated by its “radial” component in the direction of the unit vector

dn/a and the change of the nearest-neighbor vector dn is the difference between the

displacements of an atom on the B sublattice and of an atom on the A sublattice

(compare the definition of the direction of dn in Figure 7.1). The electron-phonon

Hamiltonian in a first-nearest-neighbor tight-binding description and in terms of the
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Bloch wave operators ĉk,α then reads:

Ĥel−ph = −
∑
m

3∑
n=1

δtn(Rm)
[
ĉ†Rm+dn

ĉRm + ĉ†Rm
ĉRm+dn

]
=

∂t

∂a

∑
k,q

{[ (
3∑

n=1

eik·(dn−d1) 1

a
dn

)
· 1√

N
uAq

−
(

3∑
n=1

ei(k+q)·(dn−d1) 1

a
dn

)
· 1√

N
uBq

]
ĉ†k+q,Aĉk,B

+

[(
3∑

n=1

e−i(k+q)·(dn−d1) 1

a
dn

)
· 1√

N
uAq

−
(

3∑
n=1

e−ik·(dn−d1) 1

a
dn

)
· 1√

N
uBq

]
ĉ†k+q,B ĉk,A

}
.

(7.16)

Expanding the lattice displacements in terms of the vibrational eigenmodes and passing

to a quantum-mechanical description,

uαq → ûαq =
∑
λ

√
1

2Mωq,λ

vαq,λ(b̂q,λ + b̂†−q,λ), (7.17)

we can write the electron-phonon interaction Hamiltonian for the phonon mode (q, λ)

as a 2×2-matrix in sublattice space:

Hq,λ
k =

√
1

2NMωq,λ

∂t

∂a

[
vAq,λ ·

(
0 Fk

(Fk+q)∗ 0

)
− vBq,λ ·

(
0 Fk+q

(Fk)∗ 0

)]
, (7.18)

where we introduced the abbreviation Fk ≡
∑3

n=1 exp(ik · (dn−d1))dn/a. The matrix

Hamiltonian obeys Hq,λ
k =

(
H−q,λk+q

)†
, which provides a useful link between the matrix

elements for phonon absorption and emission.

In the context of magneto-phonon resonances in the one-phonon part of the Raman

spectrum, which involves in-plane optical phonons at the Γ-point only, we only need

the coupling matrices for the special case q = 0 and λ=LO, TO. For the optical phonon
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modes at Γ, the polarization vectors vA,Bq=0,λ=LO,TO have the form3 vAq=0,λ = −vBq=0,λ =

1/
√

2vλ, where vλ = ex, ey for cartesian phonon polarization. Moreover, if we are

only interested in the low-energy electrons near the K- and K ′-points, we can further

simplify the coupling Hamiltonian by letting k = K,K′, with the understanding that

any product of (K(′) − k) and the lattice displacement would constitute a higher-order

contribution. In this approximation, we have Fk ≈ FK = 3/2(i, 1)T = (FK′)
∗ and the

electron-phonon coupling Hamiltonian takes on the compact form:

HK,λ =

√
1

2NMωph

3√
2

∂t

∂a
σ ∧ vλ, HK

′,λ =

√
1

2NMωph

3√
2

∂t

∂a
σ∗ ∧ vλ, (7.19)

where we defined the wedge product as a ∧ b ≡ axby − aybx.

Up to here, we focused on the description of low-energy electronic states and their

coupling to phonons. In the next section, we will now introduce a perpendicular mag-

netic field, which will condense the low-energy continuum of electronic states in a set of

discrete electronic sates, called Landau levels. After deriving the spectrum and the cor-

responding states of the effective electronic Hamiltonian in the presence of a magnetic

field, we will describe their coupling to the optical phonons at the Γ-point.

7.1.2 Landau levels in graphene

In order to describe the behavior of the low-energy electronic states in graphene in the

presence of a magnetic field, we start from a model of free Weyl fermions in two spatial

dimensions. In the context of graphene, this model is valid only up to an energy cutoff

Λ on the order of 1− 2 eV, at which point the graphene bands start to strongly deviate

from the linear shape of the Weyl electron dispersion. Starting from a model of free

Weyl fermions, however, has the advantage that the spectrum of the Hamiltonian in the

presence of a homogeneous, perpendicular magnetic field can be derived algebraically

in a simple way.

3Also compare the illustration of the vibration pattern in Fig. 4.3a.
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Our starting point, therefore, will be the Hamiltonian

ĤKeff = vF

[
p̂ +

e

c
A(r̂)

]
· σ ≡ vFπ̂ · σ, (7.20)

where the vector potential is understood to be chosen such that it yields a magnetic

field B = ∇ × A(r) = Bez and we introduced the operator of kinetic momentum

π̂ ≡ p̂+e/cA(r̂). We also focus solely on the effective Hamiltonian for electrons near the

K-point for now and treat all vectors as being two-dimensional, with occurring vector

products being understood to be evaluated with inserted vanishing z-components.

Following the discussion in Ref. 159, we pass from the set of operators {r̂x, r̂y, p̂x, p̂y}
to the set {R̂x, R̂y, X̂, Ŷ }, whose elements are defined by

R̂ ≡ c

eB
ez × π̂, X̂ ≡ R̂ + r̂, (7.21)

where X̂ = (X̂, Ŷ )T. The two sets of operators are in a one-to-one correspondence and

are thus equally valid for a complete quantum mechanical description of the system.

The physical motivation for these definitions is the classical description of an electron

moving in a constant magnetic field, which moves on a circular orbit and whose classical

state can be described either by specifying its position r and canonical momentum p

or by specifying the center of the orbit, X, and the position of the electron relative to

the center of the orbit, R [159]. The commutation relations of X̂ and R̂ follow from

the fundamental commutation relation [r̂i, p̂j] = iδi,j and the only two non-vanishing

commutators are given by

[R̂x, R̂y] = −il2B, [X̂, Ŷ ] = +il2B, (7.22)

where we defined the magnetic length lB ≡
√
c/(eB) ≈ 25.7 nm/

√
B[T ].

In terms of X̂ and R̂, the effective Hamiltonian reads

ĤKeff =
vF

c
eB R̂ ∧ σ, (7.23)

with the wedge product having been defined in the previous section. As R̂ and X̂
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commute, so do ĤKeff and X̂ and hence we can choose the eigenstates of ĤKeff to be

eigenstates of any function f(X̂, Ŷ ). Following [159], we introduce two pairs of ladder

operators â, â† and b̂, b̂† via

â ≡ (−i) 1√
2lB

(R̂x − iR̂y), â† = (+i)
1√
2lB

(R̂x − iR̂y), (7.24)

b̂ ≡ 1√
2lB

(X̂ + iŶ ), b̂† =
1√
2lB

(X̂ − iŶ ), (7.25)

which obey the commutation relations [â, â†] = [b̂, b̂†] = 1.

In terms of these, the Hamiltonian takes on the form

ĤKeff =
vF

c

√
2eBlB

(
0 â

â† 0

)
. (7.26)

Choosing the eigenstates of ĤKeff to be eigenfunctions of b̂†b̂ to the eigenvalue m ∈ N0,

we find (see Ref. 159) that the eigenvalues and eigenstates of the Hamiltonian at the

K-point read

εn = sgn(n)ωB
√
|n|, |n,m;K〉 = Cn

(
sgn(n)||n| − 1〉a

||n|〉a

)
⊗ |m〉b, (7.27)

with n ∈ Z and we introduced the cyclotron frequency ωB ≡ vF

√
2eB/c. The states

||n|〉a and |m〉b are eigenstates of the number operators â†â and b̂†b̂, respectively, while

Cn 6=0 = 1/
√

2, C0 = 1 is a normalization factor. For electrons near the K ′-point one

finds the same spectrum, with the eigenstates being given by |n,m;K ′〉 = σx|n,m;K〉.
The states |n,m;K(′)〉 are known as Landau levels (LLs), after L. Landau, who dis-

cussed them for the first time in his 1930 work on diamagnetism in metals [166]. The

physical meaning of the quantum numbers n and m can be inferred from their con-

nection to the operators |R̂|2 = l2B(2â†â + 1) and |X̂|2 = l2B(2b̂†b̂ + 1): the principal

quantum number n is thus a measure of the mean squared radius of the “orbit” of the

electron, whilst the quantum number m is a measure for the mean squared distance of

the center of the “orbit” from the origin (the so-called guiding center).
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As the eigenvalues of the Hamiltonian are independent of the quantum number m ∈ N0,

the corresponding eigenstates are infinitely degenerate, which has its classical analogue

in the independence of the energy of a circulating electron from the position of the cen-

ter of the orbit. The degeneracy thus is, loosely speaking, linked to the infinitely many

ways in which an orbit of fixed mean squared radius can be placed within the graphene

sheet. In a finite-sized flake, however, there is an upper limit to the number of orbits

that fit into the flake, and hence the degeneracy of the Landau levels is finite. From the

condition that the furthest guiding center still fits into the flake (for simplicity assumed

to be circular), we obtain the degeneracy of the LLs as gLL = 4A/(2πl2B), where the

factor of 4 stems from the additional spin and valley (K and K ′) degeneracy.

In pristine graphene, the Fermi level lies within the zeroth (n = 0) Landau level so

that half of its degenerate states are occupied and all “negative LLs” (n < 0) are filled

while all “positive” ones are empty. However, by introducing additional electrons into

the sample, for example, by applying an external gate voltage, the occupancies of the

LLs can be changed. To describe the relative fillings of the individual LLs, it is then

convenient to introduce the concept of the filling factor

ν ≡ ∆Nel2πl
2
B/A ≡ nel2πl

2
B, (7.28)

where nel ≡ ∆Nel/A denotes the excess charge carrier density, i.e., the doping, in the

sample. Taking into account the additional fourfold degeneracy of the LLs and the

fact that the zeroth LL is half-filled in pristine graphene, we find that the fractional

occupancy of the nth LL can be described by the partial filling factor

ν̄n ≡
ν + 2− 4n

4
∈ [0, 1] (7.29)

with the understanding that ν̄n ≡ 0 (1) if (ν + 2− 4n)/4 < 0 (> 1).

As a final ingredient for the description of magneto-phonon resonances, to be presented

in the next section, we will also need the electron-phonon coupling matrix elements

involving two Landau levels. Combining the previously derived expressions leads to the
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following simple result for the needed matrix elements of the electron-phonon interac-

tion Hamiltonian:

〈n,m; v|Hv,λ=x|n′,m′; v〉 = C∗nCn′
3

2
√
NMωph

∂t

∂a

(
sgn(n′)δ|n|,|n′|−1

+ sgn(n)δ|n|,|n′|+1

)
δm,m′

(7.30)

〈n,m; v|Hv,λ=y|n′,m′; v〉 = C∗nCn′
3

2
√
NMωph

∂t

∂a
i
(

sgn(n′)δ|n|,|n′|−1

− sgn(n)δ|n|,|n′|+1

)
δm,m′

(7.31)

This result is independent of the valley v = K,K ′ and is diagonal in the guiding cen-

ter quantum numbers m,m′. Furthermore, the only allowed transitions are between

Landau levels whose absolute values of their principal quantum numbers differ by ±1.

This selection rule can be explained in terms of angular momentum conservation, as

an LL state |n,m〉 carries orbital angular momentum lz = (|n| −m)~ [159], while the

doubly-degenerate in-plane optical phonon transforms as a vector under in-plane rota-

tions, and hence behaves like possessing an orbital angular momentum of ±~.

Having discussed the description of the behavior of low-energy electrons in a finite

magnetic field and their coupling to in-plane optical phonons in graphene, we can now

turn to the description of magneto-phonon resonances.

7.1.3 Magneto-phonon resonances

As mentioned in the introduction to this section, the term magneto-phonon resonance

describes the resonant, non-adiabatic coupling of a phonon to a Landau level transition.

This leads to a strong decrease of the lifetime of the phonon, which, in turn, manifests

itself in a broadening of the corresponding peak in the Raman spectrum. Before de-

tailing how this effect can be used to experimentally probe the spectrum of electronic

excitations and hence of many-body effects, we first review its theoretical background.

Our treatment of the theory of magneto-phonon resonances follows the perturbative

approach of Ando [161] and Goerbig [162], while we choose a slightly different way of

incorporating the effects of partially filled Landau levels.
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To describe the response of the position and width of the Raman peak to the non-

adiabatic coupling of the Landau level system to the phonon, we determine the non-

adiabatic shift and the decay width of the phonon. The frequency and the decay width

of the phonon can be determined from the real and imaginary part of the poles of the

Fourier-transformed exact phonon Green’s function D̃q,λ,λ′(ω), as defined in Eq. 5.59.

As in Section 6.1, we will work in the quasi-particle approximation and approximate

D̃q,λ,λ′(ω) ≈ δλ,λ′D̃q,λ,λ(ω), where the diagonal part will be written as D̃q,λ(ω) from now

on. We will also only be concerned with the q=0-case, as, within the dipole approxi-

mation, these are the only phonons that contribute to the one-phonon-induced Raman

process.

As discussed in Section 5.3, the exact phonon Green’s function can be most easily

calculated in time-dependent perturbation theory. For this, we split up the the total

Hamiltonian as described in Section 5.1 into three parts:

Ĥ = Ĥel + Ĥph + Ĥel−ph. (7.32)

If we are only interested in the resonant coupling of the two in-plane optical phonons

at the Γ-point to electrons moving in a strong magnetic field, we can approximate the

electronic part of the Hamiltonian with the effective LL Hamiltonian

Ĥel ≈
(∑
n,m,v

εnĉ
†
n,m,v ĉn,m,v

)
⊗ 1n, (7.33)

where ĉ†n,m,v creates an electron in the LL state |n,m; v〉 defined in the previous section

(v = K,K ′ again denotes the valley index and we suppressed any reference to the

electronic spin for now). Likewise, we take the phonon part of the Hamiltonian as

Ĥph ≈ 1e ⊗
(∑
λ=x,y

ωphb̂
†
λb̂λ

)
, (7.34)

where b̂λ ≡ b̂q=0,λ and ωph ≡ ωq=0,λ=x,y is the frequency of the doubly degenerate in-
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plane optical phonon at Γ and we omitted the constant zero-point energy. Lastly, we

approximate the electron-phonon interaction Hamiltonian as:

Ĥel−ph ≈
∑
n,n′;
m,v

∑
λ=x,y

gλn,n′ ĉ
†
n,m,v ĉn′,m,v

(
b̂λ + b̂†λ

)

− 1e ⊗
(∑
λ=x,y

1

2
ω

(el,ad.)
ph

(
b̂λ + b̂†λ

)2
)
.

(7.35)

Here, ω
(el,ad.)
ph (to be explicitly specified later) denotes the electronic part of the phonon

frequency ωph in the adiabatic approximation at zero magnetic field and zero Fermi

energy4 and gλn,n′ ≡ 〈n,m; v|Hv,λ|n′,m; v〉 is the non-adiabatic electron-phonon coupling

constant, given in Eqs. 7.30 and 7.31.

As seen from Eq. 5.68, the exact one-phonon Green’s function is found to have the

form

D̃λ(ω) ≡
∫ +∞

−∞
dt eiωtDλ(t) =

2ωph

ω2 − ω2
ph − 2ωphΠ̃λ(ω)

, (7.36)

where Π̃λ(ω) is the phonon self-energy defined as the sum of all terms occurring in an

expansion of D̃λ(ω) in powers of Ĥel−ph that can be represented by Feynman diagrams

that are one-phonon line-irreducible. To lowest non-vanishing order in the electron-

Figure 7.2: Leading-order Feynman diagrams for the phonon self-energy. The
diagram on the left represents the non-adiabatic part of the phonon self-energy, while
the diagram on the right represents its adiabatic part. The latter is akin to the “coun-
terterms” used in high-energy physics to enforce certain renormalization conditions,
which in this context corresponds to the requirement that the self-energy vanishes in
the adiabatic limit. Compare also the discussion in Section 5.3.

phonon coupling, the phonon self-energy can be represented by the sum of diagrams in

4In terms of the quantities used in Chapter 5, ω
(el,ad.)
ph corresponds to the diagonal matrix element

of the electronic part of the adiabatic dynamical matrix for the phonon branches λ = x, y.
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Fig. 7.2, which corresponds to

Π̃λ(ω) = Π̃
(NA)
λ (ω)− Π̃

(ad.)
λ . (7.37)

Here, the static, adiabatic part of the self-energy is simpy given by

Π̃
(ad.)
λ = ω

(el,ad.)
ph , (7.38)

while the dynamic, non-adiabatic part reads

Π̃
(NA)
λ (ω) =

∑
n,n′;
m

∑
v=K,K′;
s=±

∫
dω′

2πi
|gλn,n′|2G̃n,m,v,s(ω + ω′)G̃n′,m,v,s(ω

′). (7.39)

The sums run, in order, over the principal LL quantum numbers n, n′, the guiding

center quantum number m, the valley index v = K,K ′, and the spin s = ±. The

Fourier-transformed non-interacting electron Green’s function reads [159]:

G̃n,m,s,v(ω) ≡
∫ +∞

−∞
dt eiωt(−i)〈0|T

{
ĉn,m,v,s;I(0)ĉ†n,m,v,s;I(t)

}
|0〉

=
nn,m,v,s

ω − εn − iη
+

1− nn,m,v,s
ω − εn + iη

,

(7.40)

with nn,m,v,s being the occupancy of the state |n,m, v, s〉 in the ground state and η = 0+

being a positive infinitesimal. Evaluation of the frequency integral using the residue

theorem then yields:

Π̃
(NA)
λ (ω) =

∑
n,n′;
m

∑
v=K,K′;
s=±

|gλn,n′|2
nn′,m,v,s − nn,m,v,s
ω − εn + εn′

(7.41)

when the sum of the occupancies over the degenerate LL states, i.e., the sums over m,

v, and s, can be expressed in terms of the partial filling factors as gLL × (ν̄n′ − ν̄n).

It is customary [159, 161] to then also express the prefactor gLL|gλn,n′ |2 in terms of the
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dimensionless electron-phonon coupling constant :

λ ≡ gLL

∣∣∣∣∣ 3

2
√
NMωph

∂t

∂a

∣∣∣∣∣
2/

ω2
B =

9
√

3β2

π

1

2Mωpha2
0

∼ 3− 4× 10−3, (7.42)

where β ≡ −(d log t)/(d log a) ≈ 2 is the logarithmic derivative of the first-nearest-

neighbor hopping integral with respect to the nearest-neighbor distance and we used

the fact that the factor A/N yields the unit cell area Auc =
√

3a2
0/2. Putting everything

together, one obtains the following compact expression for the non-adiabatic part of

the phonon self-energy:

Π̃
(NA)
λ (ω) = λω2

B

∑
n,n′

|Cn|2|Cn′|2δ|n|,|n′|−1(ν̄n′ − ν̄n)
2(εn − εn′)

ω2 − (εn − εn′)2
, (7.43)

which is independent of the cartesian phonon polarization and hence we will drop the

index λ from now on. In a final step, we can split the double sum over n, n′ ∈ Z into

two contributions, one from inter -band transitions −n→ +(n+ 1) and −(n+ 1)→ +n

with energies Tn ≡ εn+1 + εn, where n ∈ N0, and one from intra-band transitions

+n→ +(n+ 1) and −(n+ 1)→ −n with energies Sn ≡ εn+1 − εn, where n ∈ N:

Π̃(NA)(ω) =
λω2

B

2

{
∞∑
n=0

ν̄Tn
2Tn

ω2 − T 2
n

+
∞∑
n=1

ν̄Sn
2Sn

ω2 − S2
n

}
. (7.44)

For brevity, we introduced effective partial filling factors for the inter- and intra-band

transitions via

ν̄Tn ≡ (1 + δn,0)(ν̄−(n+1) − ν̄+n + ν̄−n − ν̄+(n+1))/2, (7.45)

ν̄Sn ≡ (ν̄−(n+1) − ν̄−n + ν̄+n − ν̄+(n+1))/2, (7.46)

which are defined in such a way that ν̄Tn → 1 and ν̄Sn → 0 for all n in case of nel = 0.

Note that for large n, we have Sn → 0 and Tn ' 2ωB
√
n, and hence the sum over

the contributions from inter-band transitions diverges, since
∑N

n=0 1/
√
n '
√
N in the

limit of large N. However, this divergence is merely an artifact of our usage of a model
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of free, relativistic electrons in a magnetic field, which is unsuitable to describe high-

energy excitations of electrons in graphene, for which the effective model can only be

reasonably applied at lower energies. We thus cut off the sum at an index nmax = Λ/ωB,

where Λ ∼ 2− 3 eV is an excitation energy scale above which the effective, relativistic

model is no longer applicable.

Having calculated the non-adiabatic contribution to the phonon self-energy, we can

now easily pass to the adiabatic contribution, which is given by the electronic contri-

bution to the phonon frequency in the adiabatic limit at zero Fermi energy and in the

B → 0-limit. According to the considerations in Section 5.3, this contribution can also

be calculated in a Green’s function formalism and then reduces to the ω → 0-limit of

Π̃(NA)(ω) for nel = 0 and B → 0. At zero Fermi energy, all intra-band transitions are

blocked by virtue of the Pauli principle and the contribution of inter-band transitions

in the B → 0-limit can be shown to be given by [159, 161]:

ω
(el,ad.)
ph = Π(NA)(ω = 0)|nel=0 = −λω2

B

∞∑
n=0

1

Tn
. (7.47)

Again, the sum over n is divergent and needs to be cut off at the energy scale Λ.

By subtracting the non-adiabatic and adiabatic contributions, we arrive at the total

phonon self-energy

Π̃(ω) =
λω2

B

2

{
∞∑
n=0

[
ν̄Tn

2Tn
ω2 − T 2

n

+
2

Tn

]
+
∞∑
n=1

ν̄Sn
2Sn

ω2 − S2
n

}
. (7.48)

This expression is now perfectly finite at large energies, as the high-energy divergences

of the adiabatic and non-adiabatic parts cancel each other, as long as the Fermi energy

is not large enough to block high-energy inter-band transitions, when the cancelation

would be prohibited. This behavior is physically sensible as a variation of the high-

energy degrees of freedom, i.e., states deep inside the valence and conduction bands,

should not influence the physical behavior of the system if the Fermi energy is only

varied within the low-energy regime and if the magnetic field is kept small enough so

that the cyclotron frequency ωB � Λ. Also note that in the adiabatic and zero-Fermi
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energy limit, the phonon self-energy vanishes and the fully interacting Green’s function

has a pole at the adiabatic phonon frequency ωph, as required.

To provide a wider perspective, we want to point out that in many works [161–163],

the adiabatic term in the Hamiltonian, proportional to ω
(el,ad.)
ph (last term in Eq. 7.35),

is simply omitted. However, this approach then requires the application of a regular-

ization and renormalization procedure to render the physical predications finite. This

is typically done by introducing a co-called counterterm [88, 115] into the Lagrangian

by rescaling the unperturbed phonon frequency ωph → Zωωph = ωph + (Zω − 1)ωph.

This then leads to another term in the perturbation series, which can be represented

by the second diagram in Fig. 7.2. The constant Zω is taken to also depend on the

high-energy cutoff Λ. Its Λ-dependent part is then adjusted such that the phonon self-

energy remains independent of the cutoff parameter Λ and its Λ-independent part is

adjusted such that the phonon self-energy vanishes in the adiabatic, zero-doping, and

zero-B-field limit. In this sense, the reasoning and the derivation presented here is

equivalent to renormalization-based approaches typically employed in field theory.

In regards to the low-energy physics contained in the expression for the phonon self-

energy, we note that Π̃(ω) has poles at the LL transition energies. The phonon thus

resonantly couples to LL transitions when the magnetic field is such that the unper-

turbed (adiabatic) phonon frequency ωph matches one of the transition energies Tn or

Sn. These resonances are known as magneto-phonon resonances (MPRs). The damping

of the resonance can be taken into account by ascribing a finite lifetime or, equivalently,

decay width to the transitions via ∆ε→ ∆ε− iγε/2, where ε = Tn, Sn. While in princi-

ple the decay width could be calculated perturbatively, in the context of this work, we

will take them as empirical parameters to be determined from experiment. In fact, as

we will see in the next section, the MPR effect can be used to experimentally determine

these electronic lifetimes.

To determine the change of the phonon frequencies when the non-adiabatic, resonant

coupling to electronic transitions becomes important, one solves Dyson’s equation to

find the complex poles of the exact phonon Green’s function:

ω2 − ω2
ph − 2ωphΠ̃(ω) = 0, (7.49)
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where ω = ω
(NA)
ph − iγ

(tot)
ph /2 is the complex phonon frequency, whose real part is the

phonon frequency including non-adiabatic corrections and whose imaginary part equals

half of the negative, total phonon decay width. To account for a finite lifetime of the

phonon beyond its decay into an electron-hole pair, for example through anharmonic

effects, i.e., phonon-phonon scattering, we also let ωph → ωph − iγph/2, where γph is

understood to capture the non-electron-phonon interaction-induced part of the phonon

decay width. Like the electronic decay width, we will treat γph as an empirical param-

eter, which can also be extracted from experiment.

Finally, we account for the effects of electron-electron interaction by modifying the

transition energies ∆ε(B) = Tn(B), Sn(B) via ∆ε(B) → ∆ε(B) + δ∆ε(B, nel). It has

become common practice in the literature [47, 49] to define an effective Fermi velocity

via

Tn ≡ vF,Tn(B, nel)
√

2eB/c (
√
n+ 1 +

√
n), (7.50)

Sn ≡ vF,Sn(B, nel)
√

2eB/c (
√
n+ 1−√n), (7.51)

which captures the changes of the overall energy scale of the transition energies and

also includes all deviations from the
√
B scaling law. The effective Fermi velocities can

then be probed experimentally by observing the change of the phonon frequency with

magnetic field, as we will discuss in the next section.

To summarize, we reviewed an effective model for the resonant coupling of the Raman-

active in-plane optical phonon mode to electronic transitions in a finite magnetic field.

The model contains only a small set of parameters that have a direct physical meaning:

the unperturbed phonon frequency ωph, which corresponds to the observed phonon fre-

quency at nel = 0 and B = 0; the effective Fermi velocities vF,Tn and vF,Sn , which serve

as a measure for the strength of many-body effects and can be extracted by probing

the evolution of MPRs with magnetic field; the electron lifetimes γTn and γSn and the

anharmonic contribution to the phonon lifetime γph, which can be extracted from the

“strength” of the MPRs and from the non-resonant phonon decay width, respectively;

and finally the dimensionless electron-phonon coupling constant λ, which can be ex-

tracted from probing the phonon decay width in the regime where the LLs still form a
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quasi-continuum.5

7.2 Magneto-phonon resonances as a probe for

many-body effects and lifetimes

After we discussed the theoretical description of magneto-phonon resonances in

graphene, we will now apply this model to study experimental results obtained from

Raman spectroscopy in a finite magnetic field, which directly probes the optical phonon

frequency and width. In particular, we will first focus on discussing how a measure-

ment of the latter allows the extraction of electronic transition energies and lifetimes.

Afterwards, we will go on to study the behavior of the electronic transition energies and

widths when the charge carrier density is tuned via the application of a gate voltage,

which allows the tuning of many-body effects by changing the number of free charge

carriers in the system. Finally, we show how the same model can be used to quan-

tify electronic lifetimes and anharmonic effects on the phonon lifetime. We will also

study their behavior under changes of the number of co-called “hot” charge carriers,

i.e., excited charge carriers that populate the conduction band.

7.2.1 Magneto-phonon resonances as a probe for many-body

effects

To start with, we detail how the effect of magneto-phonon resonances can be used to

probe electronic excitation energies. The basic idea consists of measuring the Raman

spectrum of graphene as a function of magnetic field and monitor the evolution of the

5Note that so far, we did not discuss the issue of the screening of the electron-phonon interaction,
but merely worked with the effective electron-phonon coupling stemming from the derivative of the
empirical tight-binding parameter. As pointed out in Sections 4.4 and 5.3, the phonon self-energy in
perturbation theory either can be written as the product of two unscreened electron-phonon couplings
and the interacting two-particle correlation function or, equivalently, as the product of one screened
electron-phonon coupling, an unscreened one and the independent-particle two-particle correlation
function. Since we work with the latter, here, λ should actually be thought of as being proportional
to the product of one screened and one unscreened electron-coupling. However, since we will treat it
as a fitting parameter, this distinction has no consequences for the discussion in this chapter.
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position and width of the G-peak. For certain values of the magnetic field B, the energy

of an LL transition will match the unperturbed phonon energy ωph, at which point the

two systems are in resonance. When the unperturbed phonon frequency matches the

energy of an electronic transition, the lifetime reaches a minimum, as the decay of the

phonon into an electronic excitation is energetically possible. Equivalently, the decay

width of the phonon reaches a maximum in this case, which results in a broadening of

the Raman G-peak. As is typical for a resonance, the frequency of the phonon will cor-

respondingly show an oscillating behavior in the vicinity of the resonance as a function

of B. By fitting the previously derived model as a function of B to the experimentally

extracted position and full width at half maximum (FWHM) of the Raman G-peak,

one can thus obtain values for the model parameters. As such, one can gain insight

into, for example, the magnitude of the electron-phonon coupling, the effective Fermi

velocities, and the electronic lifetimes.

To start with, we consider a graphene sample encapsulated in hexagonal boron nitride

(hBN) and deposited on a silicon dioxide (SiO2) substrate (see inset of Fig. 7.3a). The

boron nitride layers serve both as a protection from detrimental environmental influ-

ences and as an atomically flat substrate for graphene. Both are important to ensure

sufficiently long electronic lifetimes that allow the observation of magneto-phonon reso-

nances (MPRs). The Raman measurements were carried out6 at a temperature of 4.2 K

and with a linearly polarized laser beam of wavelength 532 nm, a power of 0.5 mW,

and a spot diameter of approximately 500 nm. The scattered light was detected with

a CCD camera after having been diffracted by a diffraction grating of 1200 lines/mm.

Fig. 7.3a shows a typical recorded Raman spectrum of the studied device at zero

magnetic field. Besides the presence of the G- and 2D-peaks of graphene, the spectrum

also features a third prominent peak (labeled “hBN”), stemming from the one-phonon

Raman response of the hBN layers. The dependence of the Raman spectrum on the

magnetic field is shown in Fig. 7.3b, with the recorded Raman intensity being color-

encoded. While the 2D- and hBN -peaks do not show any noticeable dependence on

the magnetic field, the G-peak undergoes a series of magneto-phonon resonances, with

6The actual measurements were carried out by C. Neumann.
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Figure 7.3: Magneto-Raman spectra of a graphene-boron nitride heterostruc-
ture. (a) Raman spectrum of an hBN-graphene-hBN heterostructure at zero magnetic
field. Visible are the G- and 2D-peaks of graphene originating from one- and two-
phonon scattering processes, respectively, and the one-phonon Raman peak of hBN.
The inset shows a sketch of the sample, which consists of an hBN-graphene-hBN het-
erostructure deposited on a SiO2 substrate (blue: hBN, red: graphene, grey: SiO2).
(b) Color-encoded Raman spectra as a function of magnetic field, recorded at a tem-
perature of T=4.2 K. The arrows mark the occurrence of the MPR associated with the
T1-LL transition. (c) Zoom-in into the area of panel (b) around the G-peak and for
positive values of B only. (d) Evolution of the G-peak as a function of magnetic field.
Around the MPR, the peak widens considerably, as expected for resonant coupling.
(Figure adapted and reprinted with permission from Neumann, C. et al., Nano Lett.
15, 1547-1552 (2015). Copyright 2015 by the American Chemical Society.)

the most visible one appearing at around B≈3.7 T (see zoom-in shown in Fig. 7.3 and

compare arrows in Fig. 7.3b and c). This MPR corresponds to the resonant coupling

of the phonon to the inter-band T1-LL transition (see previous section). We will refer
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to it as the T1-MPR in the following. In order to further analyze the MPRs, we fit the

G-peak of each individual spectrum (one for each B-field value) with a Lorentzian. As

seen by the sample spectra shown in Fig. 7.3d, this is possible even in the vicinity of

the strongest magneto-phonon resonance.

The fitted position and full width at half maximum (FWHM) of the G-peak as a

function of magnetic field are depicted in Fig. 7.4a and b, respectively. The evolution

of the G-peak with magnetic field features three resonances at B=2.1 T, B=3.7 T,

and B=5.8 T, which appear as oscillations in its position and as peaks in its FWHM,

as highlighted by arrows in Fig. 7.4b. As illustrated in Fig. 7.4c, the B-field values

at which the first two resonances occur correspond well to the expected values from

the resonance conditions ωph = T2 and ωph = T1 (compare dashed blue lines), i.e., the

corresponding features can be attributed to the magneto-phonon resonances discussed

in the previous section. The feature at B=5.8 T, however, cannot be explained by the

resonance of the unperturbed phonon with the Tn-LL transitions. Instead, its position

on the B-field axis matches the value obtained from the resonance condition ωph = L1

(compare dashed red line), where

Ln ≡ vF,Ln(B, nel)
√

2eB/c (
√
n+
√
n) (7.52)

denotes the energy of the −n→ +n inter-band Landau level transition, which we will

refer to as Ln. These transitions can only couple to the phonon due to higher-order

processes not included in our model derived from an isotropic B = 0 band structure

and as such the corresponding MPR is much less pronounced. We include it in our

model by introducing an effective coupling constant λL ∼ 0.01 − 0.02λ � λ and by

modifying the phonon self-energy according to

Π̃(ω)→ Π̃(ω) +
λLω

2
B

2

∞∑
n=1

[
ν̄Ln

2Ln
ω2 − L2

n

+
2

Ln

]
, (7.53)

with ν̄Ln ≡ 2(ν̄−n − ν̄+n) being the corresponding effective filling factor for the Ln-

transitions.
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Figure 7.4: Magneto-phonon resonances in graphene. (a) and (b) Position and
full width at half maximum (FWHM) of the Raman G-peak of graphene as a function of
magnetic field, obtained from Lorentzian fits to the data shown in Fig. 7.3. The arrows
highlight the magneto-phonon resonances due to the inter-band LL transitions T1 and
T2 as well as a weaker resonance due to the LL transition −1 → +1. (c) Inter-band
LL transition energies T1 (blue lines) as a function of magnetic field for effective Fermi
velocities vF,Tn=1.17×106 m/s. The black line represents the unperturbed phonon fre-
quency ωph=1586 cm−1. The red line depicts the energy of the inter-band LL transition
−1→ +1, L1, as a function of B. (Figure adapted and reprinted with permission from
Neumann, C. et al., Nano Lett. 15, 1547-1552 (2015). Copyright 2015 by the American
Chemical Society.)

In order to use the visible magneto-phonon resonances as a probe for certain quan-

tities, we can use the analytical model for MPRs reviewed in the last section. The

red traces in Fig. 7.5 represent the result of a calculation of the perturbed phonon fre-
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Figure 7.5: Theoretical description of magneto-phonon resonances in
graphene. (a) and (b) Comparison of the theoretical model (blue and red lines)
and the experimental data (grey dots) of the G-peak frequency (panel (a)) and FWHM
(panel (b)). The red lines correspond to the solutions of Dyson’s equation for a phonon
self-energy evaluated at zero charge carrier density and with the parameters set to
λ=4×10−3, λL = 0.015λ, ωph=1586 cm−1, γph=5.5 cm−1, γTn=γLn=160 cm−1, and
vF,Tn=vF,Ln=1.17×106 m/s. The blue lines feature different effective Fermi velocities of
vF,T1=1.17×106 m/s, vF,T2=1.19×106 m/s, and vF,L1=1.12×106 m/s and decay widths
of γT1=160 cm−1, γT2=270 cm−1, and γL1=80 cm−1 for the T1-, T2, and L1-MPRs, re-
spectively, while we additionally used values of γT0=20 cm−1 and γTn≥3

=400 cm−1. The
arrows in panel (a) highlight the overestimation of the magneto-phonon resonances due
to the T2- and T3-LL transitions in a model with one common electronic decay width.
The inset in panel (b) is a zoom-in into the vicinity of the T2-MPR to highlight that a
different effective Fermi velocity than that used for the T1-transition is needed (compare
vertical, dashed lines). (c) Zoom-in into the vicinity of the L1-MPR to highlight that a
different effective Fermi velocity than that used for the T1- and T2-transitions is needed
(compare vertical, dashed lines). (Figure adapted and reprinted with permission from
Neumann, C. et al., Nano Lett. 15, 1547-1552 (2015). Copyright 2015 by the American
Chemical Society.)

quency and width at zero Fermi energy where we used the same effective Fermi velocity

of vF,Tn=vF,Ln=1.17×106 m/s for all Tn- and Ln-transitions7 and assigned the same

decay width of γTn=γLn=160 cm−1 to all of them. The values of vF,Tn and γTn were

chosen such that the T1-MPR is described well. The other parameters can be directly

read off from the data: ωph=1586 cm−1 is given by the G-peak position at vanishing

7At zero Fermi energy, all Sn-transitions are disallowed by the Pauli principle.
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magnetic field; γph, which denotes the non-electronic part of the phonon decay width,

corresponds to the FWHM of the G-peak at B ≈ 8 T, where no electronic transitions

are energetically matched with the phonon mode and the latter can thus only decay via

non-electronic processes; λ=4×10−3, the dimensionless electron-phonon coupling con-

stant, can be extracted from the requirement that the total decay width of the phonon

at zero B-field, which is given by the sum of its electronic and non-electronic parts,

matches the FWHM of the G-peak at vanishing magnetic field; and λL, which was

adjusted to correctly describe the strength of the L1-MPR (compare the blue lines in

Fig. 7.5).

While the order of magnitude of the electronic decay width and the value of the

electron-phonon coupling are in the same range as those measured previously [27, 37, 42–

44, 167], the use of a common electronic decay width for all LL transitions overestimates

the strength of the MPRs at lower values of the magnetic field (see arrows in Fig. 7.5a,

which hightlight the T2- and T3-MPRs). Furthermore, it is not possible to correctly

describe the position of all magneto-phonon resonances with one common Fermi veloc-

ity (compare vertical dashed lines in the inset of Fig. 7.5b and in Fig. 7.5c), that is

to say, many-body effects due to electron-electron interaction affect different LL tran-

sitions with different magnitude. To quantify the different magnitude of many-body

effects on the transitions visible as MPRs, we assign different effective Fermi velocities

of vF,T1=1.17×106 m/s, vF,T2=1.19×106 m/s, and vF,L1=1.12×106 m/s and electronic

decay widths of γT1=160 cm−1, γT2=270 cm−1, and γL1=80 cm−1 to the T1-, T2-, and

L1-transitions. In addition to that, we also set γT0=20 cm−1and γTn≥3
400 cm−1. The

high value for the latter has to be chosen to completely suppress the MPRs due to

Tn-transitions with n ≥ 3, which are not visible in our data. The physical reason

for the significantly lower lifetimes8 of the higher Tn-transitions can be related to the

availability of more phase space in their decay processes.

While the determination of the electronic decay widths is to an extend error-prone

due to the strength of the MPRs still being well-described even when the γTn,Ln are

varied by up to 25%, the determination of the effective Fermi velocities is very accurate,

as it is determined from the value of the B-field at which the MPR occurs, which is

8Recall that τ = 1/γ.
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only determined by the sharp resonance condition ωph = Tn, Ln. The latter can be

inverted to yield the effective Fermi velocity if ωph and the corresponding B-field value

are known (compare Eqs. 7.50 and 7.52). The values of the effective Fermi velocities

for different LL transitions vary by up to 7%, indicating that many-body effects in-

deed influence different LL transitions with different strength, as previously predicted

theoretically [168–170].

7.2.2 Tuning many-body effects in graphene

So far, we have shown how the phenomenon of magneto-phonon resonances can be used

to gain insight into many-body effects by using it to extract both the coupling of the

electronic system to the Raman-active in-plane optical phonon, the electronic decay

widths, and, most accurately, the effective Fermi velocities. Note that, in this context,

the latter no longer have the meaning of a physical velocity, but rather describe the

overall energy scale of the LL transitions. The Fermi velocity, in particular, has been

shown both experimentally [78, 156, 171, 172] and theoretically [78, 173–175] to be

strongly influenced by many-body effects, as it is very sensitive to changes of the Fermi

energy, i.e., of the charge carrier density nel, to the point where it has been shown

to diverge logarithmically when nel approaches the charge neutrality point at zero and

small magnetic fields. However, little is known about the impact of many-body effects

on the electronic bands in stronger, quantizing magnetic fields. While the behavior

of electronic transition energies under changes of the magnetic field has been studied

experimentally [49], the influence of changes of the Fermi level, i.e., the number of

charge carriers in the system, is still not known.

However, the combination of applying a strong magnetic field, simultaneously tun-

ing the charge carrier density, and actually extracting changes of the many-body effects,

typically in the form of the effective Fermi velocity, is experimentally very challenging.

The application and especially the tuning of strong magnetic fields requires a supercon-

ducting electromagnet, which needs to be operated at cryogenic temperatures. This,

however, rules out the method of choice for extracting the effective vF via transport

measurements, as the latter is based on measuring the temperature-dependence of the

amplitude of the Shubnikov-de Haas oscillations of the electrical conductivity [78, 79].
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This only leaves optical methods to probe the effective Fermi velocity. As we have

seen in the last section, the effect of magneto-phonon resonances can be used for that

purpose. However, the visibility of the MPRs crucially depends on sufficiently long

electronic lifetimes, i.e., the sample needs to be sufficiently clean and protected from

environmental influences. This can, for instance, be achieved by encapsulating graphene

in hexagonal boron nitride, as done for the sample featured in the previous section. By

contrast, merely depositing graphene on a standard SiO2 wafer substrate will result in

invisible MPRs [47].

A graphene-hBN heterostructure is thus a perfect choice for the study of many-

body effects via MPRs. However, this kind of structure is unfortunately unsuitable for

a simultaneous tuning of the charge carrier density. The only practical way to do the

latter in a modern experimental setting consists of depositing the heterostructure on

a back gate and applying a voltage between the graphene flake (via side contacts [2])

and the back gate (typically consisting of doped silicon). The graphene flake and the

back gate then act as the two plates of a plate capacitor and become charged, i.e., the

number of charge carrier in the graphene flake can be tuned by tuning the voltage.

While this method is extensively used in transport experiments, it cannot be used in

optical experiments. The reason for this is the unavoidable presence of defects in hBN,

whose electronic states lie inside the normally ∼7 eV-wide band gap of bulk hBN. These

states lead to additional optically active transitions in the visible light spectrum [176],

which will be activated in a typical MPR experiment with a laser in the visible light

range.9 These excited charge carriers are then mobile and will screen the effect of the

back gate entirely, thus rendering it useless [177].10

For this reason, a different sample is required that still offers high electronic lifetimes

and thus enables the observation of magneto-phonon resonances and at the same time

allows the tuning of the charge carrier density. To this end, we use a current-annealed,

9The usage of light in the infrared spectrum will result in a too weak Raman signal (see Section 6.2),
while the usage of ultraviolet light will either lead to structural damage to the sample when taking the
required laser power for a useful signal into account or will excite non-defect transitions in the boron
nitride layers.

10This “photo-induced doping” effect can however be used in a confocal setup to induce different
numbers of charge carriers into different parts of a sample by moving the laser across the sample whilst
varying the back gate voltage [178].
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suspended graphene device,11 which until recently could not be created in that quality.

The device consists of an exfoliated graphene flake, contacted by chrome/gold contacts,

and suspended over a SiO2 substrate by etching away ≈160 nm of the latter. After

cleaning the graphene flake by current annealing [179], the graphene flake features a

charge carrier mobility in excess of 400,000 cm2/(Vs) and a charge carrier density in-

homogeneity below 109 cm−2, which are enough to guarantee the observation of MPRs.

This device, for the first time, allows both the tuning of many-body effects and their

probing in both the low- and the high-B-field regime.

The Raman measurements were done 11 in the same measurement setup, at the

same temperature, and with the same laser settings as specified in the previous sec-

tion. We recorded the Raman spectrum as a function of the magnetic field for various

different values of the back gate voltage and in Fig. 7.6a and b, we show the position

ωG and FWHM ΓG, respectively, of the graphene G-peak as obtained from Lorenz-

tian fits to these spectra. For later use, we note that the back gate voltage Vg can

be converted to the charge carrier density nel via the linear relation nel = α(Vg − V0),

where V0=-0.2 V accounts for the residual doping of the graphene flake. The lever

arm α=3.15×1010 cm−2/V has been extracted from a Landau fan measurement (see

Supplementary Material to Ref. 79).

We observe the typical MPR-behavior in the form of a clearly visible oscillation of

the G-peak position around B ≈ 3 T, accompanied by a strong increase in the broad-

ening of the peak. Just as in the other sample, this most prominent resonance is due to

the resonant coupling of the Raman-active in-plane optical phonon with the LL tran-

sition T1. Focussing on its behavior under changes of the charge carrier density nel, we

note that the B-field value at which it occurs, BT1 , shifts towards higher values when

nel is increased (compare full, black and dashed, red arrows in Fig. 7.6). In order to

quantify the changes induced by a change of nel, we fit single Lorentzians to ΓG as a

function of B (see full black lines in Fig. 7.6b). In this way, we can precisely extract

BT1 and the maximum value ΓG at the resonance, Γmax
G,T1

, as a function of the charge

carrier density, as displayed in Fig. 7.7.

11The device fabrication and the measurements were carried out by J. Sonntag.

231



14.5 V

10 V

0 V

5 V

1568

1570

1572

1574

1576

1578

1580

1582

1584

1586

-1
ω

 (c
m

)
G

0 2 4 6
B (T)

14.5 V

10 V

0 V

5 V

-20

-15

-10

-5

0

5

10

15

20

25

0 2 4 6
B (T)

Figure 7.6: Charge carrier density dependence of magneto-phonon resonances
in graphene. (a) and (b) Position and FWHM, respectively, of the Raman G-peak
of suspended graphene as a function of magnetic field for different values of the back
gate voltage Vg, which tunes the charge carrier density nel. The different traces are
offset by 5 cm−1 and 10 cm−1 for clarity (see horizontal, dashed lines). The full black
lines depict Lorentzian fits to the FHWM around the T1-MPR. The full, black and
dashed, red arrows highlight the shift of the T1-MPR with a change in nel from Vg=0 V
=̂ nel≈0 cm−2 to Vg=14.5 V =̂ nel≈0.5×1012 cm−2, respectively. (Figure adapted and
reprinted with permission from Sonntag, J. et al., Phys. Rev. Lett. 120, 187701 (2018).
Copyright 2018 by the American Physical Society.)

The decrease of Γmax
G,T1

with increasing |nel| can be understood in terms of the in-

creasing filling of the degenerate Landau level states. For small |nel|, the Fermi energy

stays within the states belonging to the zeroth LL and hence the T1-MPR remains

almost unaffected as it only involves the LL transitions −2 → +1 and −1 → +2. For

higher values of |nel|, the states belonging to the first LL become filled up and as a

result more and more of the degenerate transitions contributing to the T1-MPR be-

come blocked by the Pauli principle, which results in a decrease of the strength of the

T1-MPR as measured by Γmax
G,T1

. This decrease of Γmax
G,T1

with |nel| is in good agreement
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Figure 7.7: Evolution of the T1-MPR with charge carrier density. (a) Peak
width of the Raman G-peak at the T1-MPR as a function of charge carrier density nel.
The black dots represent experimental data, the blue line represents the theoretical
prediction obtained with the parameters λ=4×10−3, ωph=1584.4 cm−1, γph=7.6 cm−1,
γel,Tn=395 cm−1, and vF,Tn=1.33×106 m/s. (b) B-field value at which the T1-MPR
occurs, BT1 , as a function of nel. The upper axis in both panels shows the filling factor
ν at a magnetic field of B=3 T. (Figure adapted and reprinted with permission from
Sonntag, J. et al., Phys. Rev. Lett. 120, 187701 (2018). Copyright 2018 by the
American Physical Society.)

with the theoretical predication based on the change of the effective filling factor ν̄T1

(see Eq. 7.45). The latter is linear in nel and enters linearly into the imaginary part of

the phonon self-energy, which in turn enters additively into ΓG. In consequence, Γmax
G,T1

is expected to decrease linearly with |nel|, as shown as a blue line in Fig. 7.7b, which is

in good agreement with the experimental data.

On the other hand, the value of BT1 , i.e., the position on the B-field axis at which

the T1-MPR occurs, increases with |nel|. From the resonance condition

ωph = vF,Tn(BT1 , nel)
√

2eBT1/c (
√
n+ 1 +

√
n), (7.54)

it is clear that the value of BT1 only depends on the unperturbed phonon frequency

ωph = ωG(B = 0 T, nel = 0 cm−2) and the effective Fermi velocity vF,T1(nel) ≡ vF,T1(B =

BT1 , nel). Changes of ωph, for example due to tensile strain from electrostatically pulling

the graphene sheet, can be ruled out as the source of the change of BT1 as the observed
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variation of ωph on the order of 2 cm−1 is negligible (see Supplementary Material to

Ref. 79). Furthermore, tensile strain would lead to a decrease of ωph, as the atomic

bonds are softened, and thus it could only lead to a decrease of BT1 with increasing

|nel|. Therefore, the observed change of BT1 can only be attributed to a change of

the LL transition energies, which can be described by a change of the effective Fermi

velocity vF,T1(nel) with nel.

In order to be more quantitative about the latter, we use the resonance condition

Eq. 7.54 to calculate vF,T1(nel) from the measured values of BT1 , as shown in Fig. 7.8.

The effective Fermi velocity ranges from vF,T1(nel)≈1.36×106 m/s at the charge neu-

trality point nel=0 cm−2 to vF,T1(nel)≈1.24×106 m/s at a charge carrier density of

|nel|≈0.4×1012 cm−2. Most importantly, we observe a finite, linear behavior of vF,T1(nel)

near the charge neutrality point, contrary to the case of the effective Fermi velocity at

low magnetic field, which logarithmically diverges (see blue and purple dots in the inset

of Fig. 7.8). To understand this linear decrease of vF,T1 as a function of |nel|, we study

the renormalization of vF,T1 in more detail from a theoretical point of view.

To this end, we consider the electron self-energy of one Landau level on the level of

the Hartree-Fock approximation (compare Sections 3.2 and 3.3.1):

ΣHF
n (B, nel) ≡

1

gLL/2

∑
m,v

ΣHF
n,m,v(B, nel)

=
1

gLL/2

∑
m,v

∑
n′,m′,v′

ν̄n′(B, nel)

(
2vHart.

(n,m,v)
(n′,m′,v′)

(B)− vFock
(n,m,v)

(n′,m′,v′)

(B)

)
.

(7.55)

Here, we defined a self-energy for LL n by averaging over the self-energies of all de-

generate states belonging to this LL. The sum runs over all guiding center quantum

numbers m and the valley index v = K,K ′.12 The spin-independent self-energy of one

LL state |n,m; v〉 in the Hartree-Fock approximation is given by the product of the

partial filling factor ν̄n and the sum of the Hartree (or direct Coulomb) contribution,

12As the self-energy is independent of spin, we do not need to average over the spin degree of
freedom and as such the normalization factor of the sum is given by half of the LL degeneracy only,
i.e., gLL/2.
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Figure 7.8: Evolution of the effective Fermi velocity with charge carrier den-
sity. The effective Fermi velocity vF,T1 as a function of charge carrier density nel. The
upper axis in both the main figure and the inset shows the filling factor ν at a magnetic
field of B=3 T. Black dots with error bars denote experimental data, while full and
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cutoff [49]. Inset: Comparison between effective Fermi velocities as extracted from
transport experiments (blue dots from the work by Elias et al. [78]; purple dots from
the same device as the one of the shown Raman data) and MPR measurements (black
dots). The full blue line depicts the theoretically predicted logarithmic renormalization
at low magnetic fields. The sketches illustrate the difference between the renormaliza-
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(blue to purple shades). (Figure adapted and reprinted with permission from Sonntag,
J. et al., Phys. Rev. Lett. 120, 187701 (2018). Copyright 2018 by the American
Physical Society.)

calculated from the matrix elements

vHart.
(n,m,v)

(n′,m′,v′)

(B) =
e2

ε

∫
d3r

∫
d3r′
|φn,m,v(r)|2|φn′,m′,v′(r′)|2

|r− r′| , (7.56)
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and the negative Fock (or exchange) contribution, computed from the matrix elements

vFock
(n,m,v)

(n′,m′,v′)

(B) =
e2

ε

∫
d3r

∫
d3r′

φn,m,v(r)φ∗n′,m′,v′(r)φn′,m′,v′(r
′)φ∗n,m,v(r

′)

|r− r′| , (7.57)

where φn,m,v(r) ≡ 〈r|n,m; v〉 denotes the wave function of the state |n,m; v〉. Note that

in the Hartree term, the total electron density contributes, which is given by the sum of

the (equal) spin-up and spin-down contributions. In the Fock term, by contrast, only

one spin polarization contributes, as it has its origins in the Pauli exclusion principle,

which affects only electrons in the same spin state and thus gives rise to the absence

of the prefactor of 2. We calculated13 the LL state wave functions and the Hartree

and Fock matrix elements within a third-nearest tight-binding model [180], wherein

the magnetic field is included via the Peierls substitution [181–183] and edge states

are eliminated by including a finite mass boundary term. The calculations were done

for a quadratic 40×40 nm2 graphene-flake in a magnetic field of B=200 T. The size

of the flake was chosen in order to keep the calculations feasible, while the very high

magnetic field results in a magnetic length of ≈1.8 nm and thus yields a sizable number

of degenerate LL states for this flake size. To make the results of this calculation

applicable to the experimental case of B≈3 T, we use the scale invariance of the effective

Hamiltonian and the Coulomb matrix elements and appropriately rescale the magnetic

field length according to lB ∝ 1/
√
B. The numerical results then effectively correspond

to an ≈330×330 nm2-sized flake. Finally, we account for intrinsic screening effects of

the graphene flake by introducing an effective dielectric constant of ε=3.1.

In terms of the LL self-energy, the single-particle energies become shifted (or renor-

malized): εn → εn + ΣHF
n . As a result, the effective Fermi velocity vF,T1(nel) evolves

according to

vF,T1(nel) = vF,T1(n
(0)
el ) +

∆ΣHF
n+1(nel)−∆ΣHF

−n(nel)√
2eBT1/c(

√
2 + 1)

, (7.58)

where ∆ΣHF
n (nel) ≡ ΣHF

n (nel)−ΣHF
n (n

(0)
el ) denotes the difference in self-energies at charge

carrier densities of nel and n
(0)
el ≡0 cm−2. It is important to note that in this difference,

all contributions from states outside the energy window defined by n
(0)
el and nel drop

13The numerical calculations of the wave functions and matrix elements were done by F. Libisch.
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out for constant magnetic field, as their occupancies do not change. This applies in

particular to contributions from all states not considered in our effective model, i.e.,

the states deep inside the valence and conduction bands that lie beyond the high-energy

cutoff Λ, as they lie outside this nel-defined window. Note that this ensures that the

change of the renormalized effective Fermi velocity does not depend on the precise

choice of the high-energy cutoff Λ, as it must be if the Fermi energy is varied only

on an energy scale much less than Λ. The only way in which the states beyond the

high-energy cutoff influence the renormalized Fermi velocity is through their contri-

bution to the value of vF,T1(n
(0)
el ), which we fix to the experimentally extracted value

of vF,T1(n
(0)
el )=1.35×106 m/s.14 Note that this value is higher than that found for the

hBN-graphene-hBN heterostructure, given in the previous section, due to the absence

of screening from the substrate environment.

As seen from the black line in Fig. 7.8, the theoretical results match the experimen-

tally extracted values of vF,T1 (black dots) very well. Note that due to the nel-induced

shift of vF,T1 , each value of vF,T1 has experimentally been extracted at a slightly differ-

ent magnetic field BT1 (compare Eq. 7.54). At different magnetic fields, however, the

contribution of states from beyond the high-energy cutoff changes slightly by a loga-

rithmic correction proportional to log(B1/B2) [49]. On the basis of the results of the

calculation presented in the Supplementary Matrial to Ref. 49, we estimate this effect

to be on the order of δvF,T1≈0.02×106 m/s for the observed range of BT1-values (2.8 T

to 3.2 T) and depict this uncertainty as a grey-shaded band in Fig. 7.8. However, it

does not affect any of the conclusions drawn in the following.

The excellent agreement between our calculations and our measurements allow us to

give a simple explanation for the observed linear decrease of the effective Fermi velocity

with |nel|. As seen from Eq. 7.55, the Hartree and Fock matrix elements only depend

on the value of the magnetic field but not on the charge carrier density. Therefore, the

only dependence of the Hartree-Fock self-energy on the charge carrier density is through

the partial filling factor ν̄n, which depends linearly on nel. As seen in Section 7.1.2, this

14In the language of renormalization group (RG) approaches [78, 173, 174], the value of vF,T1(n
(0)
el )

serves as the initial value for the integration of the RG flow equation and in this sense can also be
interpreted as an integration constant that must be fixed such that the renormalization condition

vF,T1
(nel)|nel=n

(0)
el

= vF,T1
(n

(0)
el ), with vF,T1

(n
(0)
el ) fixed by experiment, is satisfied.
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linear dependence has its origins in the degeneracy of the Landau levels. The Hartree

and Fock matrix elements merely set the rate of the decrease with nel, i.e., the slope of

the curve depicted in Fig. 7.8. The slope remains constant as long as the Fermi energy

is varied within one LL. When the Fermi level enters the next Landau level, different

Hartree and Fock matrix elements start to contribute to the self-energy and as a result

the slope changes. This behavior can be found in the curve shown in Fig. 7.8, which

features kinks at the filling factors ν = ±2 and ν = ±6, which correspond to the start

of the filling of LLs n = ±1 and n = ±2, respectively.

In order to further understand also the overall much smaller magnitude of the vF-

renormalization near the charge neutrality point compared to the case of low magnetic

fields (compare blue and purple dots in the inset of Fig. 7.8), which were extracted

from transport experiments, we first rule out that this difference is merely due to the

experimental method used to probe the effective Fermi velocity. To this end, we briefly

discuss the previously neglected excitonic effects, i.e., the binding energy between the

phonon-excited electron-hole pair, which plays a role in the optically extracted effec-

tive vF, but not in the one extracted from transport measurements. In the resonance

condition Eq. 7.54 we compare the LL excitation energy T1 to the unperturbed phonon

energy ωph. When we experimentally measure the former via measuring BT1 , the result-

ing deduced value of vF,T1 already includes all effects of electron-electron interaction,

including the excitonic binding energy, i.e., the energies Tn in Eq. 7.50 are actually

given by Tn = εn+1 + εn + εbind.
n+1,−n, where εbind.

n+1,−n denotes the (negative) binding energy

of the LL transition. Consequently, the experimentally extracted value of vF,T1(n
(0)
el )

invariably contains an excitonic contribution of δvbind.
F,T1

= εbind.
n+1,−n/(

√
2eBT1/c(

√
2 + 1))

(compare the definition in Eq. 7.50). In order to enable a sensible comparison to the val-

ues of the effective Fermi velocity extracted from transport measurements, we estimate

εbind.
n+1,−n within our tight-binding model on the level of the Hartree-Fock approximation.

For this, we approximate it as the difference of the direct Coulomb and exchange matrix

elements, averaged over all possible pairs of degenerate LL states contributing to the
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T1-transition:

εbind.
n+1,−n(B) =

1

(gmrLL/2)2

∑
m,v
m′v′

(
vHart.

(n+1,m,v)
(−n,m′,v′)

(B)− vFock
(n+1,m,v)
(−n,m′,v′)

(B)

)
. (7.59)

A numerical evaluation yields an nel-independent estimate of εbind.
2,−1 (BT1)≈-6 meV. If

we correct the results of our calculation for the corresponding contribution δvbind.
F,T1

to

the effective Fermi velocity, we obtain values for vF,T1 without any excitonic effects, as

shown as a black dotted line in Fig. 7.8.

Finally, we compare the charge carrier density dependence of the effective Fermi

velocity at high magnetic fields (B≈3 T) to the effective vF at low magnetic fields

(B.0.5 T) in the inset of Fig. 7.8. The purple dots represent the effective Fermi velocity

as extracted from temperature-dependent measurements of the amplitude of Shubnikov-

de Haas oscillations of the electrical conductivity (compare Supplementary Material to

Ref. 79), performed on the same device as the one used for the measurement of the

nel-dependence of magneto-phonon resonances. They agree very well with previous

measurements by Elias et al. [78] and feature a logarithmic divergence at the charge

neutrality point, as predicted by theory [78, 173, 174] (compare blue line in the inset of

Fig. 7.8). However, the nel-dependence of the effective Fermi velocity at low magnetic

fields as extracted from transport experiments is fundamentally different from the nel-

dependence of the effective vF at high magnetic fields as extracted from measurements

of the T1-MPR.

It is crucial to point out that this difference cannot be attributed solely to the

different experimental methods with which vF has been extracted. While transport

experiments do probe the effective Fermi velocity at the energy scale of the Fermi level

(in contrast to MPR-measurements, which probe the effective vF at approximately

half the phonon energy), the renormalized electronic bands at low B-fields still remain

linear [156] (also compare left sketch in the inset of Fig. 7.8). Therefore, the energy

scale at which vF is probed is actually irrelevant. The presence of excitonic effects

in the measurements of the T1-MPR, which are not present in transport experiments,

cannot account for the different behavior either, as illustrated by the full blue and

dashed black line in the inset of Fig. 7.8. Therefore, the different nel-behavior of the
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effective Fermi velocity cannot be ascribed to the different way in which it was probed

experimentally. Rather, the underlying reason is of a physical nature, i.e., the electron-

electron interaction effects behave differently under the changes of nel in low magnetic

fields and when Landau levels are present.

At low magnetic fields, the effective Fermi velocity as a function of nel diverges log-

arithmically near the charge neutrality point. This divergence is due to a combination

of the long-range nature of the Coulomb interaction in the HF self-energy and the de-

localized nature of the electronic wave function for states near the K(′)-point, typical

for non-bound, Bloch wave-like states. By contrast, in the LL-regime, where the spec-

trum of the Hamiltonian is discrete and thus the states have a bound state character,

the electronic wave functions become exponentially localized, with a decay constant on

the order of the magnetic length lB. As a result, the Coulomb matrix elements are

smoothly cut off at a length scale on the order of lB (compare Supplementary Material

to Ref. 79) and rendered finite and therefore the divergence is eliminated.

7.2.3 Probing electronic and phonon lifetimes with magneto-

phonon resonances

Up to this point, we solely discussed how magneto-phonon resonances can be used to

study the impact of many-body effects on the effective Fermi velocity, i.e., the electronic

energy levels and transition energies only. As we have seen in the theoretical section

of this chapter, however, the phenomenon of magneto-phonon resonances is also influ-

enced by the electronic and phonon lifetimes and the electron-phonon coupling constant

λ. So far, we merely treated these three quantities as fit parameters to describe the

behavior of the G-peak position and width as a function of magnetic field over a large

B-field range. In this section, instead, we fill focus on extracting these three quantities

more precisely from measurements at only a few different values of the magnetic field.

To begin with, we discuss the coupling of the unperturbed phonon to the set of Landau

level transitions in the vicinity of a magneto-phonon resonance, i.e., when the magnetic

field is such that one LL transition is in resonance with the unperturbed phonon. In the

following, we will restrict ourselves to the case of vanishing charge carrier density, i.e.
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nel=0 cm−2, as is the case when probing MPRs in graphene-boron nitride heterostruc-

tures, due to the photo-induced doping effect [172], as described in the introduction

to the previous section. We can then focus on the resonant coupling of the phonon to

Tn-transitions only. In the vicinity of a Tn-transition, the phonon-self energy can be

approximated by one term only:

Π̃(ω) −−−−−−→
Re(ω)→Tn

λω2
B

2

1

ω − Tn + i
2
γTn

. (7.60)

Dyson’s equation, Eq. 7.49, in the vicinity of the Tn-MPR then simplifies to(
ω − ωph +

i

2
γph

)(
ω − Tn +

i

2
γTn

)
− g2

B = 0, (7.61)

where we used the fact that near the MPR we also have ω → ωph and introduced the

effective coupling constant gB ≡
√
λ/2ωB. Eq. 7.61 is the secular equation for a non-

Hermitian two-level system consisting of a state with energy ωph and decay width γph

and a state with energy Tn and decay width γTn coupled via a coupling constant gB.

Its complex solutions are given by

ω± =
ωph + Tn

2
− i

2

γph + γTn
2

± 1

2

√
(ωph − Tn)2 − 1

4
(γph − γTn)2 − i(ωph − Tn)(γph − γTn) + (2gB)2.

(7.62)

Exactly at the resonance, i.e., when the magnetic field is such that ωph = Tn =

ωB(
√
n+ 1 +

√
n), this expression simplifies to

ω±,Tn = ωph −
i

2

γph + γTn
2

± 1

2

√
(2gTn)2 −

(
γph − γTn

2

)2

, (7.63)

where gTn ≡ gB(B = BTn).

Here, we can distinguish between two different regimes:

i) Strong coupling regime: 2gTn > |γph − γTn|/2.

In this case, the square root is entirely real, and the energies and decay widths of the
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coupled modes are given by:

ε±,Tn ≡ Re(ω±,Tn) = ωph ±
√

(2gTn)2 −
(
γph − γTn

2

)2

, (7.64)

γ±,Tn ≡ −2 Im(ω±,Tn) =
γph + γTn

2
. (7.65)

At the resonance, there are thus two distinct energy levels with the same decay rate,

given by the average of the decay rates of the uncoupled modes. The existence of

two non-degenerate levels, i.e., a so-called anti-crossing, is well-known from standard

quantum mechanical perturbation theory for a coupled, Hermitian two-level system,

where two coupled states “repel” each other [86].

ii) Weak coupling regime: 2gTn < |γph − γTn|/2.

In the opposite case, i.e., for small values of the coupling constant, the complex energies

of the coupled modes read:

ε±,Tn ≡ Re(ω±,Tn) = ωph (7.66)

γ±,Tn ≡ −2 Im(ω±,Tn) =
γph + γTn

2
∓
√(

γph − γTn
2

)2

− (2gTn)2. (7.67)

Here, the two coupled modes are not long-lived enough, compared to the time scale set

by the inverse coupling constant, to allow the energy levels to influence each other and

induce a splitting. Instead, the two coupled modes remain degenerate, but decay with

different decay widths, centered around the average decay width of the two uncoupled

modes.

Note that the effective coupling constant at the Tn-MPR is given by

gTn =
√
λ/2ωph/(

√
n+ 1+

√
n). For example, in the case of the T1-MPR, which we will

mostly be interested in below, we find gT1∼30 cm−1, for λ∼4×10−3 and ωph≈1586 cm−1.

If we compare this value to the typical electronic and phonon decay widths we encoun-

tered in the previous two sections, i.e., γph∼5-10 cm−1and γTn>150 cm−1, it becomes

clear that the magneto-phonon resonances in graphene belong to the weak coupling

regime. We can rearrange the formula for the decay width of the coupled modes to

242



obtain an expression for the electronic decay width γTn :

γTn = Γmax
G,Tn +

4g2
Tn

Γmax
G,Tn
− γph

. (7.68)

This formula expresses γTn in terms of the decay width of the coupled mode, which

is experimentally accessible in the form of the FWHM of the Raman G-peak at the

MPR, Γmax
G,Tn

(see last section), the effective coupling constant gTn , and the lifetime of

the unperturbed phonon mode γph, i.e., the decay width of the phonon due to phonon-

phonon scattering, which serves as a measure for anharmonic effects. Since only Γmax
G,Tn

is directly observable as the height of the resonance peak in the ΓG(B) curve, at least

two independent measurements are required to extract the effective coupling constant

gTn and the anharmonic part of the phonon decay width, γph.

To determine the effective coupling constant, we note that exactly at resonance, it is

directly proportional to the dimensionless electron-phonon coupling constant λ and the

unperturbed phonon frequency ωph. Note that the latter is directly given by the value of

the G-peak position at B=0 T and vanishing charge carrier density. The dimensionless

electron-phonon coupling constant, on the other hand, is related to the FWHM of the

G-peak at B=0 T. At vanishing magnetic field, the total decay width of the phonon

and thus the FWHM of the G-peak, is given by the sum of two terms:

ΓG(B = 0 T) = Γ
(el−ph.)
G + γph, (7.69)

where Γ
(el−ph.)
G denotes the partial decay width of the phonon due to electron-phonon

interaction, i.e., its decay into an electron-hole pair. We can estimate this contribution

to the decay width using Fermi’s golden rule:

Γ
(el−ph.)
G =

∑
k

∑
spin

|〈k, π∗|Ĥel.−ph.|k, π; q = 0, λ〉|2 2πδ(ωph − (εk,π∗ − εk,π)), (7.70)

where in this context, λ refers to the phonon polarization of the degenerate, in-plane

optical phonon. Since the energy of the unperturbed phonon is on the order of 200 meV,

the low-energy model of massless Weyl fermions is applicable. We can therefore replace
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the integration over the first Brillouin zone by a sum over the two valleys K and K ′

and a continuum integration up to a high-energy cutoff Λ:

k→ K(′) + k, εk,π∗/π → ±vF|k|,
∑
k

→
∑

v=K,K′

∫
vF|k|≤Λ

d2k

(2π)2
A, (7.71)

where A denotes the total area of the graphene sheet, and the sum over the valley

index v runs over both the K and K ′ valleys. The matrix element squared can easily

be calculated using the explicit form of the wave functions and Hamiltonians given in

Section 7.1.1. In the low-energy approximation, the k-point dependence of the matrix

element can be neglected and is to a good approximation given by the one at k = K(′).

The squared matrix element is furthermore independent of the valley and the phonon

polarization vector:

|〈K(′), π∗|Ĥel.−ph.|K(′), π; q = 0, λ〉|2 =
1

2NMωph

9

2

(
∂t

∂a

)2

. (7.72)

Putting everything together, performing the spin and valley sums, and the integration

over the delta function, we find for the partial decay width:

Γ
(el−ph.)
G =

9
√

3

2Ma2
0

β2 = 2πλ
ωph

2
, (7.73)

where we again identified β ≡ −(d log t)/(d log a) and the lattice constant a0 =
√

3a and

expressed the result in terms of the dimensionless electron-phonon coupling constant λ,

as defined in Eq. 7.42. We can thus determine λ from a measurement of ωph, ΓG(B =

0 T), and γph.

Finally, the only other quantity that needs to be determined in order to extract the

electron-phonon coupling constant λ and the electronic lifetimes γTn is γph. Since the

latter is defined as the anharmonic contribution to the total phonon decay width, we

can measure it directly by completely suppressing the electronic contribution. This can

be done with a magnetic field as well, as it quantizes the electronic energy levels and

thus also the possible electronic transitions. If the B-field is tuned such that no elec-

tronic transition is energetically matched with the phonon mode, the decay of the latter
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becomes impossible as it would violate energy conservation. As seen from Fig. 7.4c,

a magnetic field of around 8 T is enough to completely suppress all electronic decay

channels of the phonon by virtue of energy conservation.

The various parameters discussed and the means to extract them are summarized
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Figure 7.9: Relation of physical quantities to measurements of magneto-
phonon resonances. (a) and (b) Illustration of the relation of the position and
FWHM, respectively, of the G-peak of graphene at different values of the magnetic
field to the unperturbed phonon frequency ωph, the dimensionless electron-phonon cou-
pling constant λ, the anharmonic contribution to the phonon decay width, γph, and
the decay width of the T1-Landau level transition. (Figure adapted and reprinted from
Neumann, C. et al., Appl. Phys. Lett. 107, 233105 (2015), with the permission of AIP
Publishing.)

and illustrated in Fig. 7.9. The depicted magneto-Raman data were recorded15 on a

graphene flake grown by chemical vapor deposition (CVD) and encapsulated by hexag-

onal boron nitride, using the same experimental setup, temperature, and laser settings

as given in the previous two sections. Applying the theoretical considerations dis-

cussed above, we can extract an unperturbed phonon frequency of ωph=1589.1 cm−1, a

partial decay width of the phonon due to anharmonicity of γph=7.6 cm−1, an electron-

phonon coupling constant of λ=3.8×10−3, and a decay width of the T1-LL transition

of γT1=140 cm−1. The extracted parameters are on the same order of magnitude as

the ones found above, i.e., the CVD-grown graphene flake is of similar electronic and

mechanical quality than the exfoliated graphene flakes in the samples of the previous

15The measurements were performed by D. Halpaap and C. Neumann.
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two sections.

As a final point, we study the evolution of these parameters as a function of an
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Figure 7.10: Evolution of MPR-strength and electronic and phonon lifetimes
with laser power. (a) Peak width of the Raman G-peak at the T1-MPR as a function
of laser power. (b) Laser power dependence of the extracted decay width of the T1-
LL transition (blue dots) and of the FWHM of the Raman G-peak at B=8 T (purple
squares). The latter corresponds to the anharmonic contribution to the phonon decay
width. (Figure adapted and reprinted from Neumann, C. et al., Appl. Phys. Lett. 107,
233105 (2015), with the permission of AIP Publishing.)

external parameter that influences the many-body effects on them. However, due to

the aforementioned photo-induced doping effect in graphene-boron nitride heterostruc-

tures, the charge carrier density cannot be tuned in a simple way. Instead, we probe

the dependence of the electronic and phonon decay widths on the laser power, which we

vary from the previously used 5 mW up to a maximal power of 21.4 mW. In Fig. 7.10a,

we show the FWHM of the G-peak at the T1-MPR as a function of laser power, while

Fig. 7.10b depicts the corresponding electronic decay width γT1 (blue dots) and the

FWHM of the G-peak at a magnetic field of B=8 T (purple squares).

The maximum FWHM of the G-peak at the T1-MPR decreases with increasing laser

power before saturating at approximately half the value measured at low laser power.

The decrease of the “strength” of the resonance can be attributed to the stronger

damping of the electronic excitations as seen from the increase of the T1-excitation

decay width with increasing laser power, which approximately doubles from low to high

laser power. We associate this strong increase of the decay width, or equivalently the
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strong decrease of the lifetime of the excitation, with the stronger presence of so-called

“hot charge carriers” in the system. This refers to an electronic system that is not in

thermal equilibrium with its low-temperature surroundings, but instead is continuously

pumped by the laser and does not have enough time to relax to the thermal equilibrium

state. Instead, it reaches a new stationary state at high laser power when the continuous

excitation by the laser and the decay of the excited states approaches a steady state

equilibrium. By contrast, the value of the FWHM of the G-peak at B=8 T is very

robust under changes of the laser power. This is consistent with our interpretation of

ΓG(B = 8 T) as the anharmonic part of the phonon decay width, as the latter is not

influenced by the electronic system and it is only the latter that can be influenced by

an increase of the laser power.

247



248



Chapter 8

Conclusions and Outlook

In the preceding six chapters, we have presented part of our work on the theory and ap-

plication of Raman spectroscopy. Since many of our results and contributions pertaining

to the phenomenological, computational, and applied aspects of Raman spectroscopy

have already been published elsewhere,1 in this thesis, we have focused on presenting

our recently developed coherent theoretical approach for the description of Raman scat-

tering. In the process, we managed to address many of the open questions that were

mentioned in the introduction. In addition, we were able to significantly advance the

state of the art of both the theoretical and the computational treatment of Raman

spectroscopy. In this final chapter, we summarize the most important achievements

presented in this thesis and point out possible future avenues of research.

8.1 Main results of this work

We started our discussion of Raman spectroscopy by devising a correlation function-

based approach to the calculation of Raman scattering probabilities and rates. Our

theory is potentially applicable to the study of ultra-fast and out-of-equilibrium Ra-

man scattering. However, since some work still needs to be done on the way towards

a concrete, practical implementation, we focused on the equilibrium, zero-temperature

case first. In this limit, we derived a generalized version of Fermi’s golden rule which

1For a full list of our contributions, see the List of Publications.
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relates the Raman scattering rate to the matrix elements of two current density oper-

ators between eigenstates of the Hamiltonian that describes a fully interacting system

of electrons and nuclei.

In the process of turning this expression into something more concrete, we first re-

viewed the treatment of the electronic system in the clamped nuclei approximation, its

approximative treatment within Kohn-Sham density functional theory, and its pertur-

bative treatment within many-body perturbation theory. We then applied the pertur-

bative technique to derive a novel and concrete approach for the calculation of phonon

frequencies within the adiabatic, Born-Oppenheimer approximation that goes beyond

the state of the art in the form of density functional perturbation theory.

While DFPT indeed yields good results for non-metallic systems, it fails when elec-

tronic correlation and screening effects become important. This is, for example, the

case in graphene, but also in many other materials that feature Kohn anomalies, such

as the also intensively studied TiSe2. Our new approach, which has been developed

entirely from first principles, now offers the first fully ab initio description of phonons

in these kinds of systems, where the current state-of-the-art methods do not work in

a satisfactory way. The ability to capture Kohn anomaly-related effects by more ac-

curately describing the screening of the electron-nuclei interaction paves the way, for

instance, for a first consistent first-principles calculation of the phonon dispersion of

graphene. Besides providing a solution for this long-standing problem, the generality

of our approach also permits its application to other highly correlated systems, such as

TiSe2. For the latter kind of systems, the currently used methods are still restricted to

phonons of specific wave vectors only, since they rely on the construction of supercells.

Our approach has been derived entirely from fundamental principles and is thus

fully sound from a theoretical point of view. Moreover, we extensively discussed the

physical effects captured by our method and in which way it improves on the current

state-of-the-art methods. Lastly, it is formulated entirely in terms of quantities that

can, in principle, already be computed using currently available ab initio codes. How-

ever, as of now, no existing code allows the computation of all the necessary ingredients

within the same basis set. Nevertheless, once these technical difficulties are overcome,

250



our method can be implemented timely.

After our extensive, and in large parts, original and novel treatment of phonons in

the adiabatic approximation, we set up the exact perturbative formalism for the fully

interacting electron-nuclei system, starting from non-interacting Kohn-Sham electrons

and non-interacting phonons in the adiabatic approximation. Our systematic, pertur-

bative/diagrammatic approach has allowed us to obtain a comprehensive theoretical

description of the screening of the electron-phonon coupling. The latter plays an im-

portant role for many material properties. For instance, it determines the (in)stability

of crystals that potentially feature Peierls distortions and also influences the line shape

and intensities of certain peaks in the Raman spectrum, for example, of graphene.

In order to be able to correctly predict these properties, it is crucial to develop an

improved description of the screening of the electron-phonon coupling, as the state-of-

the-art methods often fail. Our approach goes beyond the current standard and, for

the first time, provides a concrete and comprehensive algorithm for the computation of

the screened electron-phonon coupling beyond the level of theory offered by methods

such as DFPT. One of its most important features is its promise to yield an accurate

description of Kohn anomalies, which are the underlying reason behind the mentioned

difficulties in the description of the screened electron-phonon coupling.

In addition to our developments related to the electron-phonon coupling, we have

also derived a consistent approach for the calculation of phonon frequencies beyond

the adiabatic, Born-Oppenheimer approximation. Such an approach is needed as the

latter is expected to fail in systems with a (semi-)metallic character, as the electronic

system can be in resonance with the phonon system due to the absence of an electronic

band gap. As such, our work provides a concrete computational ansatz for the correct

calculation of phonon frequencies in these kinds of systems.

Following the discussion of our developed advancements in the theory of the adia-

batic and non-adiabatic electron-phonon interaction, we presented a novel approach to

the theory of one-phonon-induced Raman scattering, based on the application of the

Lehmann-Symanzik-Zimmermann reduction formula. This approach has enabled us to
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obtain a concrete computational algorithm for the computation of one-phonon-induced

Raman scattering rates which both includes excitonic effects and a non-static descrip-

tion of lattice vibrations. The inclusion of both at the same time is not possible with

currently used methods, which only allow the inclusion of either one or the other. As

such, our novel method significantly advances the state-of-the-art description of Raman

spectroscopy, as it is the first theory to contain all relevant physical effects and describe

them in a unified way.

At the same time, it is both computationally feasible to be realized in the near future,

as it essentially relies only on the solution of the standard, one-frequency Bethe-Salpeter

equation for zero excitation wave vector. Importantly, our perturbative treatment also

only relies on calculations of all involved quantities within one unit cell only. This

constitutes a large computational advantage compared to the expensive supercell cal-

culations associated with finite difference methods.

As a first application, we applied our approach to graphene, in which excitonic ef-

fects are for the most part negligible, which allows us to test our new approach in a

simple system. We implemented our method on the level of the independent-particle

approximation for the optical excitation and the DFPT-level approximation for the

screened electron-phonon coupling. Our code is completely general and can be applied

to any material. The flexibility of our perturbative approach furthermore offers unique

possibilities for the analysis of the underlying physical concepts. Additionally, it does

not rely on any parameters, but instead is entirely based on first principles. As such,

our calculation for graphene constitutes the first time an entirely ab initio calculation

of the one-phonon Raman peak intensity of graphene has been performed.

In this concrete case, our method allowed us to study both the laser and Fermi

energy dependence of the one-phonon Raman peak (G-peak) intensity. Our results are

in excellent agreement with experiment. Besides this quantitative agreement, however,

we have also been able to understand the observed and calculated behavior in terms of

approximate symmetries and quantum interference effects. Especially the latter have

a large impact on the Raman intensity, not only in the case of graphene, but in other

materials as well, for example, in two-dimensional transition metal dichalcogenides.
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Moreover, our method has allowed us to unambiguously demonstrate that the näıve as-

sumption that only resonant electronic transitions are important for Raman scattering

does not hold in graphene.

The understanding of Raman spectroscopy that we gained during our study of graphene

has helped to resolve open problems in Raman spectroscopy of TMDs. More concretely,

our methods of analysis and visualization techniques combined with our insight on ap-

proximate symmetries and quantum interference effects has allowed us to understand

the previously puzzling intensity inversion of the Raman peaks of Davydov multiplets in

triple-layer MoTe2. This feature could not be understood with previously applied meth-

ods, such as bond polarizability models, but could now be fully understood in terms of

quantum interference effects. This illustrates the general nature of our analysis tech-

niques and additionally sheds further light on the complex quantum mechanical nature

of the Raman scattering process. In addition to this, we briefly summarized the current

state of our collaborative work on a comparison of our perturbative approach to the pre-

viously used method of static first derivatives of the transverse dielectric susceptibility.

While this work is still in progress, we already verified that our perturbative method

is in excellent agreement with the first derivative approach for phonon modes that are

not influenced by polar effects. The latter are so far not fully incorporated in our per-

turbative treatment and as such there still remain some discrepancies between the two

methods for polar phonon modes, which still need to be fully understood and remedied.

We then concluded the main part of this thesis by presenting parts of our work on

the use of Raman scattering as a probe of many-body effects in graphene. Concretely,

we showed results of our work on the phenomenon of magneto-phonon resonances done

in close collaboration with an experimental group. Our work details how magneto-

phonon resonances can be used to extract various physical quantities of interest. We

first applied this technique to study electronic excitation energies of graphene, which

are often described in terms of an effective Fermi velocity, and probed the dependence

of the latter on changes of the charge carrier density. While the Fermi velocity is known

to diverge at the charge neutrality point in the absence of a magnetic field, we were
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able to demonstrate that many-body effects only lead to a finite renormalization in

the presence of a magnetic field. We confirmed these curious experimental findings by

tight-binding calculations on the level of the Hartree-Fock approximation. Besides the

excellent quantitative agreement with experiment, this calculation has also allowed us

to provide an intuitive physical explanation of this phenomenon.

We concluded this chapter with a discussion and a practical example of how the

effect of magneto-phonon resonances can be used to extract various properties of the

electron and phonon system. In particular, our work demonstrates in detail how the

electron-phonon coupling, electronic excitation energies and lifetimes, and anharmonic

effects on the phonon lifetimes can be extracted from a small number of measurements.

8.2 Outlook

The work presented in this thesis constitutes a considerable advancement in the the-

ory of the coupled electron-phonon system. In particular, it has resulted in concrete

expressions for the calculation of both adiabatic and non-adiabatic phonon frequencies

and the screened electron-phonon coupling, beyond the current state of the art. Our

work thus paves the way for the study of systems in which contemporary methods fail.

Among these systems are, for example, graphene, for which a consistent and conclusive

calculation of the phonon dispersion is still missing, and strongly correlated systems,

such as TiSe2, for which a proper calculation of the screened electron-phonon coupling

is of vital importance. While our developments were derived entirely from fundamental

principles and thus stand on firm ground, our work still remains to be implemented in

a computer code and tested on several test systems. The main practical problem as of

now is the unavailability of an electronic structure code that allows both the solution of

the Bethe-Salpeter equation at finite excitation wave vectors and a computation of the

electron-phonon coupling in the same basis set. However, once these technical difficul-

ties are overcome, our derived approaches can be tested on concrete systems. As a first

test case, the computation of the screened electron-phonon coupling and the phonon

dispersion of graphene suggests itself, for which a fully convincing calculation is still

missing.
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Regarding the part of our work that pertains to Raman scattering, the next step

consists of implementing the part of our suggested approach that allows the inclusion

of excitonic effects. Possible systems to test our method on would be transition metal

dichalcogenides. In parallel, the independent-particle version of our approach needs

to be validated further. From a theoretical point of view, it furthermore needs to be

understood how corrections for polar materials can be calculated and included, possibly

via the inclusion of Born effective charges in our diagrammatic framework.

In addition to these further computational developments for one-phonon-induced

Raman scattering, the extension of our approach to two-phonon Raman scattering is

also highly desirable. Again a first test case for this would be graphene, as the latest

theoretical works here are not fully consistent, since, as mentioned in the introduction,

they omit a large number of terms that arise in the same order of perturbation theory.

It still needs to be seen how this approximation can be justified physically, for which

concrete work is already in progress.

On a more long-term time scale, it may be worthwhile to extend our concrete for-

mulation of Raman scattering also to finite temperature and non-equilibrium situations

beyond the elegant, but still rather abstract correlation function formulation presented

at the beginning of this thesis. This will ultimately allow a theoretical description of

Raman spectroscopy on ultra-short time scales, which have recently become a topic of

interest in optical absorption spectroscopy.

255



256



List of Publications

1. Engels, S., Terrés, B., Klein, F., Reichardt, S., Goldsche, M., Kuhlen, S.,

Watanabe, K., Taniguchi, T. & Stampfer, C. Impact of thermal annealing on

graphene devices encapsulated in hexagonal boron nitride. Phys. Status Solidi B

251, 2545–2550 (2014).

2. Terrés, B., Reichardt, S., Neumann, C., Watanabe, K., Taniguchi, T. &

Stampfer, C. Raman spectroscopy on mechanically exfoliated pristine graphene

ribbons. Phys. Status Solidi B 251, 2551–2555 (2014).
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