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Abstract

Some of the main challenges in skeleton-based ac-
tion recognition systems are redundant and noisy pose
transformations. Earlier works in skeleton-based ac-
tion recognition explored different approaches for fil-
tering linear noise transformations, but neglect to ad-
dress potential nonlinear transformations. In this pa-
per, we present an unsupervised learning approach
for estimating nonlinear noise transformations in pose
estimates. Our approach starts by decoupling linear
and nonlinear noise transformations. While the linear
transformations are modelled explicitly the nonlinear
transformations are learned from data. Subsequently,
we use an autoencoder with L2-norm reconstruction
error and show that it indeed does capture nonlinear
noise transformations, and recover a denoised pose
estimate which in turn improves performance signifi-
cantly. We validate our approach on a publicly avail-
able dataset, NW-UCLA.

1. Introduction

Over the last few years, a significant progress has
been made in computer vision applications using hu-
man pose estimates as an input data. Applications
range from action recognition [27, 11, 16] to guid-
ance systems for home rehabilitation [2, 6, 4]. Such
approaches simplify the problem by restricting their
observation to a stick figure of the subject performing
the action, usually referred to as the skeleton. They
are purely skeleton-based methods [5] when it is the
main source of information or hybrid if skeletons are
merged with other features [19]. When using skele-
tons only, the dynamics of a particular action is esti-
mated from a compressed data, estimated poses. The
compression reduces the dimensionality of the prob-
lem, in effect its complexity. Regardless, however, es-
timated poses are generally not invariant to differences
in intrinsic and extrinsic camera parameters. More-
over, pose estimation methods tend to exhibit high
nonlinearity in certain regions of the problem domain,
e.g., a slight difference in actual poses might lead to a
large difference in the final pose estimates. Overall,
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Figure 1: Illustration of the proposed approach: (a)
shows estimated input pose in frontal view, (b) shows
an approximate denoised reconstruction of the input
in (a).

such kind of task-irrelevant transformations corrupt
the input data and obscure the underlying dynamics
which, in most cases, account for overfitting models.

In this paper, we introduce an unsupervised learn-
ing approach to filter coordinate and nonlinear vari-
ations from estimated poses. Consequently, we treat
observed action sequences as transformed versions of
a noise-free underlying dynamics. As such, the goal
is to correctly estimate a task-irrelevant transforma-
tion, and attempt to recover a standardized and noise-
free pose estimate from a noisy and redundant input,
see Figure 1. To that end, we propose to use autoen-
coders for denoising pose estimates. The proposed ap-
proach starts by assuming an explicit model of pose
variation due to scale, location, and rotation. Subse-
quently, the model is used to normalize rigid transfor-
mation of estimated poses. In effect, coordinate vari-
ations of an estimated pose are isolated from varia-
tions that are due to unknown nonlinear transforma-
tions, e.g., nonlinearity of pose estimating algorithms
and measurement fluctuations. Next, an autoencoder
is used to explicitly filter and correct noisy pose esti-
mates that are caused mainly due to nonlinearity. We
evaluate our approach on a publicly available dataset.
Results show that denoising pose estimates does in-
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deed have a significant effect in improving perfor-
mance.

The paper is organized as follows: in Section 2 a
brief overview of related works is provided. In Sec-
tion 3, we describe the general framework of the pro-
posed approach. Section 4 describes experimental se-
tups, the dataset, and results of our approach. The pa-
per concludes with summarizing remarks in Section 5.

2. Related works
Several of the earlier skeleton-based approaches

are tailored to address data variation due to known
task-irrelevant transformations. In [27, 11, 16, 9, 25,
5], data variation due to scale, location and rotation,
are addressed by normalizing the data with respect to
a given standard. Meanwhile, variations in an action
dynamics are modelled with probabilistic [30, 29] or
deterministic [32, 16, 17] temporal models. Concur-
rently, several approaches improve on accuracy and
robustness by further reducing pose estimates to body
parts [27, 11, 32, 1] and focusing on a particular body
part that is correlated with a given action. Neverthe-
less, in most of the above approaches, the addressed
data variations are modelled explicitly, e.g., data vari-
ations due to different camera parameter are generally
modelled as linear transformations. However, there is
no explicit model to address highly nonlinear varia-
tions in pose estimates. In that respect, a general pur-
pose data compression approach would ideally be able
to capture such variations.

Some of the earliest works in general purpose data
compression are proposed in the context of signal re-
construction. In [8, 10], it was shown that under a
mild assumption on a known and underdetermined lin-
ear system, selecting a solution that minimizes the L1

norm is equivalent to selecting the sparsest solution.
Thereby, eliminating redundancy. Subsequently, spar-
sity and other smoothness based data representations
are generalized to problems where the transformation
function is neither linear nor known [24, 20, 26]. In a
similar spirit, several works are proposed in sequen-
tial data representation learning. In [23, 15, 3], an
encoder that maps a sequence to a fixed size high-
dimensional vector is presented with an application in
machine translation. In [22] an encoding of a video is
presented with an action recognition application from
videos. Nevertheless, our approach draws its main
motivation from sparsity-based compression methods
that assume fixed data size as opposed to a sequence.

3. Model description
Let x ∈ Rn be the joint positions of an actual pose

in a given world coordinate system, and let x̃ be an es-
timate of the pose from an image or depth map defined
as

f(x) = x̃, (1)

where f(·) is an unknown transformation function.
Given the above formulation, our main goal is to solve
for the original pose x without an explicit knowledge
or model of the transformation function f(·). Conse-
quently, in this section, we first describe the underly-
ing framework (autoencoders) of our model and pro-
ceed to the description of the proposed approach.

3.1. Autoencoders

An autoencoder is a deep learning based frame-
work that is closely related to Independent Compo-
nent Analysis (ICA) [7]. Given a set of data points
x̃ni=1 an autoencoder solves for what is known as a re-
construction error which, using the L2 norm, is written
as follows

arg min
Θg,Θh

n∑
i=1

‖x̃i − g(h(x̃i))‖2. (2)

The functions g (decoder) and h (encoder) are mostly
modelled as feedforward networks, hence are parame-
terized with connection weights and biases which we
denoted altogether with Θg,Θh. In general, the main
goal of (2) is to identify the underlying transformation
of the dataset, formalized as g ◦ h. However, in most
cases, (2) does not have a unique solution, e.g., a triv-
ial solution would be an identity that will lead to zero
reconstruction error. As a result, apart from identi-
fying a suitable reconstruction error function, it is im-
portant to regularize the cost with general and domain-
specific priors so that non-trivial transformations can
be learned.

In the next subsection, we describe details of an
autoencoder-based learning architecture that is condi-
tioned to correct and compress noisy pose estimates.

3.2. Proposed approach

The main two goals of our approach are to achieve
robustness to noise transformations and remove
redundancy in pose estimates. Subsequently, we ad-
dress coordinate normalization and its generalization,
pose denoising, as follows.

Nonlinear pose variation: Variation in pose esti-
mate due to scale, location and rotation are mostly
modelled as linear transformations by considering the
vectorized form of a pose estimate as a rigid-object.
Consequently, given a pose estimate with n joints,
x̃ = (J1, · · · , Jn), location is filtered by fixing a given
reference point pc as

x̃ = (J1 − pc, · · · , Jn − pc). (3)

In [25, 16], pc is computed as the mean vector of the
hip joints. Similarly, we compute pc as the mean vec-
tor of the two hip joints and the torso joint. Mean-
while, scale is normalized by standardizing the vector-
ized form of the pose estimate x̃ to unit norm. Finally,
rotational variation is approximated by estimating the



camera pose with respect to a fixed world coordinate
system. To that end, let Jhl be the left hip joint posi-
tion of a centered pose estimate. An orthogonal vector
to Jhl, in the direction of the torso joint Jt, is then
estimated as

J⊥hl = Jt −
( (Jhl)

T

‖Jhl‖2
Jt

)
Jhl, (4)

where J⊥hl denotes a vector that is orthogonal to Jhl.
The third and final orthogonal vector is then estimated
as

(Jhl, J
⊥
hl)
⊥ = Jhl ⊗ J⊥hl, (5)

where ⊗ denotes cross product. The orthonor-
mal version of the above three vectors, M =
(Jhl, J⊥hl, (Jhl, J

⊥
hl)
⊥), constitute the camera po-

sition estimate with respect to a fixed world coordinate
frame. Finally, a given pose estimate is standardized
to a fixed coordinate orientation as follows

x̃ = MT × x̃, (6)

where (·)T denotes matrix transpose. Henceforth,
we denote a pose estimate coordinate transformation
function as κ, and the standardization of scale, loca-
tion and coordinate orientation as κ−1. Subsequently,
we rewrite (1) as

f(x) = κ ◦ f̃(x) = x̃, (7)

and use κ−1 to filter coordinate transformations. As
such, the problem is now to solve for the data source
x with an estimate of f̃ by optimizing

arg min
f̃ ,x

‖k−1(x̃)− f̃(x)‖2. (8)

Subsequently, we use autoencoders to solve for f̃ by
approximating it with the decoder, and the data source
x by the latent variable h(κ−1(x̃)), written as

arg min

n∑
i=1

‖k−1(x̃)− g ◦ h(k−1(x̃))‖2. (9)

Consequently, the encoder h, defined in (2), models
f̃−1 which represents the nonlinear transformation of
a noisy pose estimate to noise-free data. While, the
decoder g represents a denoised yet uncompressed
approximation as shown in Figure 1.

Autoencoders for pose denosing: The proposed
learning architecture for solving (9) is composed of
an encoder and decoder feedforward networks where
the encoder is defined as

h = relu(We
l x̃l + bel ), (10)

and the decoder as

g = tanh(Wd
l h(x̃l) + bdl ), (11)

l is used to identify the layers. We have chosen to use
rectified linear units (Relu) to strictly enforce sparsity
through hard-nonlinearity, instead of imposing an L1

norm constraint on the encoder. However, unlike other
common nonlinearities Relu is unbounded (does not
saturate) opening possibilities for learning biased rep-
resentations, see [13] for details. Consequently, sim-
ilar to [21] we reparametrize the connecting weights
as

Wi
l = sl

Wi
l

‖Wi
l‖2

, (12)

where i denotes connections per hidden unit (a row
in the weight matrices), sl is scalar. In this work,
however, sl is estimated per layer not per hidden unit.
In order to further ensure non-trivial transformation
learning, we reduce the dimensionality of the latent
variable h. In such a case, the network has to learn to
compress the input data into a much smaller dimen-
sional latent variable h in such a way that it can recon-
struct the original pose from it.

3.3. Robust action recognition

The dynamics of an action recognition system
is modelled using LSTM (Long short-term mem-
ory) [14]. Together with a nonlinear pose transforma-
tion model, described in Section 3.2, LSTM completes
the general architecture of the proposed robust action
recognition system.

The most common architecture in representation
learning is to use an unsupervised learning to initialize
parameters of a supervised learning [12]. Here, how-
ever, we simply denoise poses and treat them as inputs
for the supervised learning. Hence, there is neither
supervision in learning to denoise the poses nor the
learned transformation function is adjusted by class-
specific error later on. Subsequently, given a denoised
version of the poses, the outputs of the LSTM cells
are projected to the class labels using a single layer
feedforward network.

4. Experimental results
In this section, we describe the dataset we have

used for the experimental analysis, Northwestern-
UCLA (NW-UCLA) dataset [28], the experimental
setups, and analysis of the results.

Northwestern-UCLA dataset: The dataset contains
10 types of action sequences taken from three differ-
ent point of views. Ten different subjects performed
each action up to 10 times, creating variability in
the dynamics of an action. Furthermore, the dataset
is collected simultaneously using three cameras
installed at different positions and orientations.
Hence, the variable between the data collected by
two different cameras is principally due to redundant
noise transformations. As a result, it is particularly



(a) M1 = (30,1) (b) M2 = (30,4) (c) M3 = (60,4)

Figure 2: Training vs testing accuracy: The figure shows training (in green) vs testing (in red) accuracy against
optimization iterations. The impact of pose normalization κ−1 and pose denoising f̃−1 are shown in two separate
rows. The first row is the result of models when the data is filtered using κ−1 and the second row when the data
is filtered using f̃−1. Each column shows results of their respective model. Note that, the training accuracy trails
the test accuracy closely in case of f̃−1 as opposed to κ−1 as the model size increases.

suited to evaluate the proposed approach.

Experimental setups: We follow a similar experi-
mental setup as described in [31]– we use the data
from the first two cameras for training, and use the
data from the third for testing. However, in order to
show the impact of the proposed approach as a pre-
emptive action against overfitting, we evaluate our ap-
proach using temporal models with different capaci-
ties. To get a baseline performance, we use pose nor-
malization, κ−1.

Subsequently, we use filtered pose estimates to
train and test three different LSTM models. Each
model is different from another only by the number
of hidden units and layers. To that end, denoting the
number of hidden layers by L, number of hidden units
by H and a model by (H,L), we have used an LSTM
model M1 = (30, 1), and M2 = (30,4), and finally M3 =
(60, 4). A mini-batch size of 20 is kept for all models
with the same learning rate (0.001) and epoch num-
ber (140). Each model is trained and tested on a pose
estimate filtered by the following approaches

1. κ−1: Here, we simply standardize the poses,
without accounting for the nonlinear variations,
and achieve a baseline performance.

2. f̃−1: Here, we use an autoencoder of three hid-
den layers with the number of hidden units corre-
sponding to (40,30,20); the decoder is composed
of (20,30,40) hidden layers. Hence, the final pose
representation is a 20-dimensional sparse vector.

Methods Accuracy (%)
HBRNN-L [11] 78.52
Lie group [25] 74.20

Actionlet ensemble [27] 76.00
Ensemble TS-LSTM [16] 89.22

Enhanced skeleton visualization [18] 86.09
Our appraoch

Denoised-LSTM M1 = (30,1) 76.81
Denoised-LSTM M2 = (30,4) 80.25
Denoised-LSTM M3 = (60,4) 79.57

Table 1: Performance comparison: The table shows
results of recent and earlier works on Northwestern-
UCLA dataset. Mainly due to the proposed approach,
the base LSTM-model performed comparably to most
of the specialized models.

4.1. Results

The goal of the described experimental setup is to
mainly evaluate the impact of the proposed approach
in two scenarios: 1) where overfitting is less likely,
and 2) where overfitting is more likely. In that regard,
the network model M1 = (30,1) is representative of
a model with a much smaller number of parameters
thus likely to not overfit a dataset. On the contrary, the
models M2 = (30, 4) and M3= (60,4) represent models
that are more likely to overfit a dataset in comparison
to M1.

Consequently, in using M1 for modelling the dy-
namics of an action, the testing accuracy trails the
training accuracy closely regardless of which data fil-



Models Filters accuracy (%)
κ−1 f̃−1

M1 71.84 76.81
M2 71.36 80.25
M2 72.94 79.57

Table 2: Experimental result: The table summarizes
the performance of different models while trained and
tested using different input data filters.

Figure 3: Performance vs model capacity: The fig-
ure shows the difference between testing accuracy
(in red) and training accuracy (in green) for different
model sizes. Note that, the difference increases much
faster in case of κ−1 as compared to f̃−1.

ter is used, κ−1 or f̃−1. However, as the model capac-
ity is increased from M1 to M2 and to M3, the testing
accuracy starts to diverge from the training accuracy
depending on the filter. As such, it characterizes an
overfitting model. However, as shown in Figure 2, us-
ing the proposed nonlinear filter f̃−1, the difference
between testing accuracy and training accuracy is sta-
bilized as the models capacity is increased. This fact
is shown much more clearly in Figure 3 and Table 2,
through improved accuracy and stable training/testing
performance difference. As a result, the experimental
results indicate that using the proposed approach f̃−1

on top of pose standardization κ−1 does indeed add
robustness and improves performance.

Although the proposed approach is not designed
to address variability in action dynamics, the perfor-
mance boost due to the pose encoding resulted in
a comparable performance while using low capacity
models as compared to works presented in [11, 16],
see Table 1. Finally, we show a qualitative result of ac-
curately denoised poses and failure cases in Figure 4.

5. Conclusion
In this paper, we have introduced an approach for

filtering nonlinear variations in pose estimates. Our
approach began by decoupling pose estimate variation
due to coordinate transformation from nonlinear pose
variation. Subsequently, the later is modelled using an
encoder in encoder-decoder (autoencoder) framework.

We have shown that the proposed model does indeed
capture redundancy in pose representation and remove
noise. Consequently, helps to avoid dataset overfit-
ting when large capacity models are used, thereby im-
proving performance. Nevertheless, exploring alterna-
tive architectures can potentially improve robustness
and improve performance, e.g., overcomplete autoen-
coders. Furthermore, the proposed approach can be
integrated with any high capacity model, e.g., Ensem-
ble LSTM [16], to improve performance and mitigate
a potential overfitting. The integration can be purely
unsupervised, as presented here, or semi-supervised,
where the learned representation is used to initialize a
supervised network’s parameters.
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Figure 4: Pose denoising: The figures show different examples of pose denoising. In each pair of the examples
the pose on the left is raw input and the pose on the right is the denoised result. Although most of the examples
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approximation.
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