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Abstract 

This paper describes a new technique for signal classification by means of Genetic Programming (GP). The 

novelty of this technique is that no prior knowledge of the signals is needed to extract the features. Instead of 

it, GP is able to extract the most relevant features needed for classification. This technique has been applied 

for the solution of a well-known problem: the classification of EEG signals in epileptic and healthy patients. 

In this problem, signals obtained from EEG recordings must be correctly classified into their corresponding 

class. The aim is to show that the technique described here, with the automatic extraction of features, can 

return better results than the classical techniques based on manual extraction of features. For this purpose, a 

final comparison between the results obtained with this technique and other results found in the literature with 

the same database can be found. This comparison shows how this technique can improve the ones found. 
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1. Introduction 

Signal processing and signal analysis have been a hot research topic over years. The main 

reason is that a huge part of real world problems produces signals which characterize them. So, 

any new knowledge about improving the processing can have a great soundness in other topics, 

such as medicine or engineering (Rabuñal et al. 2007; Ahsan et al. 2009). 

 

Signal processing and signal analysis are a general topic which cover questions like signal 

characterization (Mallat and Hwang 1992), signal classification (Anderson et al. 1998), spectrum 

analysis (Lopes and Betrouni 2009), etc. The presented work can be framed under the epigraphs of 

automatic feature selection and signal classification. 

 

This task is generally divided into three consecutive steps: pre-processing, feature extraction 

and classification. Pre-processing includes all the techniques used to improve the quality of the 

signals to be classified in order to extract more accurate features. At this step, processes like noise 

filtering, Blind Signal Separation (BSS) (Cardoso 1998) or independent component analysis (ICA) 

(Hyvarinen and Oja 2000) are used. This is quite important, because preprocessing can erase 

features that cannot be used in the following steps or it can improve or highlight features that 

could be mistaken with noise. 

 

The next step is feature extraction, where different features are extracted from a signal in order 

to characterize it for the following classification. It is very important that the extracted features 

allow the separation of the classes in two (or more) regions of the problems’ search space. In 

general, there are a lot of techniques that allow the feature extraction from different types of 

signals, after carrying out various types of analysis, such as entropy, frequency or wavelet analysis 

(Torrence and Compo 1998), Lyapunov exponents (Rosenblum et al. 1996), etc. From all these 

techniques, features that characterize the original signals more or less accurately can be extracted. 

The main problem of this step is that, usually, the features extracted from a signal depend on 

previous knowledge of the signals. Therefore, lacks in the knowledge can lead to having a worse 

set of features, and, at the end, to have lower classification accuracy. This problem can be treated 

by using an automatic feature extraction technique, which does not use previous knowledge in the 

extraction. The main objective of this work is to present a technique which is an alternative for this 

automatic feature extraction. It may be highlighted that automatic extraction can have as side 

effect the discovery of new knowledge, which is not dependent of the previous one. 

 

Finally, the last step is the classification of the signal by using the previously extracted 

features. This classification is executed by one of the many different classification systems such as 

Artificial Neural Networks (ANNs) or Support Vector Machines (SVMs), which have been used in 

many works such as (Bazi and Melgani 2006; Zhan and Shen 2006; Rivero et al. 2011b). These 

techniques can generalize the knowledge presented in a dataset to determine the class which a new 

signal belongs to. It depends on the nature of the classifier used if prior information is required 

regarding to which class each signal belongs (supervised learning) or not (unsupervised learning), 

or if the classifying system needs prior training or not. 

 

This paper present a new model for signal classification and automatic feature extraction based 

on Genetic Programming (GP). By using GP, resulting technique mixtures automatic extraction of 

the features and classification of the signal in one step. In order to illustrate the capacities of the 

proposed model, the authors have applied this new model to the classification of 

electroencephalogram signals regarding the epilepsy disease. Results show how this technique can 

improve those of other works over this topic with a more general technique. 

 

On Sect. 2, it can be found a general state of the art, authors have considered to include a brief 

resume of GP (Sect. 2.1) and a deep summary of different works on automatic feature extraction 

and classification (Sect. 2.2) and EEG signals classification works (Sect. 2.3). Section 3 contains 

the whole description of the model and how it was tuned for EEG problem. The tests performed 

with this system and comparison with previous works is on Sect. 4. Finally, Conclusions of the 

work performed and future developments are in Sects. 5 and 6, respectively. 
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2. State of the art 

2.1. Genetic Programming 

Genetic Programming (GP) (Koza 1992) is an Evolutionary Computation technique, which has 

been successfully applied to many kinds of problems. As many Evolutionary Computation 

techniques, GP is inspired in the Theory of Evolution by imitating the evolutionary behavior of 

species. This technique uses a set of solutions called population which is composed by different 

solutions which are the individuals of the population. Each of these individuals is a tree which 

codifies the program to solve the problem. 

 

Starting from a random initial population, this population is evolved through selection, 

mutation and crossover operators. These operators act like their counterparts in the natural 

evolution: in the population, the best individuals have a higher chance to reproduce themselves. By 

means of applying these operators, the population follows an iterative process which goes through 

different states, each of which is called a generation. As a result of this process, the population is 

expected to reach a generation that contains a good solution to the problem. 

 

The ability of GP to build trees with a particular shape is the main advantage of this technique 

from the other Evolutionary Algorithms (EA) techniques. As GP allows the obtaining of trees, it is 

much more versatile than other techniques, like Genetic Algorithms, that have the restriction that 

they can only work with bit or floating point string. This codification does not allow, in this 

problem, the deep analysis of a signal by means of the combination of features extracted from it. 

On the other side, the use of a tree will allow the analysis of a signal with no limitations on the 

frequency bands used, or in the number of the frequency bands, and no limits on the combination 

of this information in order to classify the signal. This possibility has not been found in other EAs 

algorithms. 

 

This technique has been applied in several problems of different fields with good results such 

as Civil Engineering, Medicine Applications, Signal Analysis, etc. (Rivero et al. 2005; Kishore et 

al. 2000; Hong et al. 2005; Dolinsky et al. 2007; Espejo et al. 2010). 

2.2. Automatic feature extraction and classification 

Feature extraction is usually performed through the analysis of the signal by means of any 

technique. From this analysis, and taking as a basis the knowledge that the expert has about the 

signals, several features are extracted. These features allow the classification of the signals in a 

more or less accurate way, depending on how accurately these features characterize the signals. 

However, usually the experts do not have a complete understanding and knowledge about the 

signals, and this leads to having features that do not give classification accuracy high enough. This 

problem can be overcome by means of using an automatic feature extraction technique, which 

allows the expert not to have previous knowledge about the signals. As the features are not 

extracted by the expert, but they are automatically extracted by the technique, they are expected to 

characterize the signals more accurately and therefore, the classification accuracy will be higher. It 

also makes possible a better classification and the discovery of new knowledge, not previously 

achieved by other studies. In this work, the features extracted are based on frequency analysis of 

the signals. Despite the large number of applications, in which signal classification methods are 

related, few methods for automatic frequency bands selection for classification have emerged. 

 

To automatically select frequency bands, a possible approach consists of the analysis of 

different frequency bands, their feature extraction and subsequently the use of some technique for 

an automatic selection of whichever features are better for the classification task. An example of 

this type of system is described by Schröder et al. (2003), in which a Genetic Algorithm (GA) is 

used for the automatic selection of channels for EEG signal classification using a SVM. However, 

in this work, although the channels are selected, there is no selection of frequency bands in any of 

them. In another study, different features of signals are extracted, such as energy, fractal 
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dimension, or dominant frequency, and the authors have attempted to identify which features are 

the most significant for classification (Deriche and Al-ani 2001; Hsu et al. 2012). 

 

A possible alternative could be to test of a great number of parameters in order to find the best 

accurate. For example, in (Lima and Coelho 2011) it is found a comparative of 26 wavelet kernel 

decomposition and the use of different types of SVM to classify them. The problem of this 

approach is the huge time that it requires and, usually, the results are not generally enough for 

another dataset. 

 

In order to get an example of automatic selection of frequency bands, an important work was 

done by Dalponte. This work (Dalponte et al. 2007) is one in which an iterative strategy of 

exhaustive search is employed over EEG signals. In this work, all the possible ranges of time and 

frequency, between a minimum and a maximum given value over the EEG signals, were tested. 

However, the proposed algorithm returns a single frequency range from which the features are 

extracted, as the information contained may be at certain intervals within that range. Therefore, 

these intervals could give more information if they were known and returned by the algorithm in a 

finest level. 

2.3. Epileptic EEG signal classification 

EEG signal processing is a topic that has had a great impact from its beginning. Epileptic EEGs 

have been analyzed with many different tools and therefore their processing is very well 

documented (Mohseni et al. 2006). 

 

One of the first techniques applied for this task was time and frequency analysis. Time‐
frequency features are also powerful tools for EEG signal analysis. This technique was used in 

some works, using the pseudo Wigner–Ville and the smoothed‐pseudo Wigner–Ville distribution 

(Tzallas et al. 2007). For example, features were extracted and used as inputs to a feed‐forward 

backpropagation neural network. In other works, an analysis in time and frequency domain is also 

provided, in which different features based on energy are extracted, features that are subsequently 

used also as inputs to a neural network (Rivero et al. 2009; Buteneers et al. 2011). Besides ANNs, 

other techniques have been used to classify the time‐frequency features. For example, Polat and 

Günes (2007) proposed a frequency analysis using the Welch method, along with a decision tree. 

 

In addition to time–frequency features, many different types of signal analyses have been 

performed over the signals, in order to extract features for characterize the signal. One of the most 

powerful tools for signal and image processing is the wavelet transform (Mohseni et al. 2006); 

(Addison 2002). For example, Subasi and Gursoy (2010), analyses the EEG signals by means of 

the discrete wavelet transform, and then he extract the statistical features of the sub bands by using 

the principal component analysis (PCA), independent component analysis (ICA) and linear 

discriminant analysis (LDA). Those statistical features are then used as inputs of an SVM, which 

performs the final classification. In a different work, features based on the Relative Wavelet 

Energy have been extracted and used as input of an ANN (Guo et al. 2009). Another alternative is 

to use the wavelet features with a neuro-fuzzy system like in (Guler and Ubeyli 2005). 

 

Other different analysis of the signal is done by the extraction of entropy‐based features. 

Different entropy estimators have been applied to quantify the complexity of a signal. This led to 

the extraction of different features that were used as inputs of an ANFIS classifier (Kannathal et al. 

2005b). 

 

Another approach refers to the study of EEG signals as chaotic systems. From this point of 

view, Lyapunov exponents are extracted from time series using Jacobi matrices (Abarbanel et al. 

1991). From these exponents, different features can be extracted, which are used for the 

classification (Übeyli 2009). In other works, methods based on a non-linear dynamics theory were 

used to extract features based on the fractal dimension, along with a SVM classifier (Schneider et 

al. 2009). 
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3 Model description 

On this paper, the authors propose the use of Genetic Programming (GP) in order to solve the 

problems described on Sect. 4.1. In order to do this, GP’s typing property (Montana 1995) is used 

to generate trees with particular shapes and properties, which will be used to solve the problem. 

 

The system described on this section can be used to classify the signals contained on the 

dataset. The main feature of this system is the automatic extraction of the frequency information to 

classify the signal without any previously knowledge about the signal. In order to do this, each one 

of the signals was previously analyzed by means of their Fast Fourier Transform (FFT) into 

frequency and the Power Spectrum Density (PSD). 

 

Usually, before this analysis, the signals undergo a pre-processing stage that includes some 

steps such as noise reduction. In this case, no pre-processing is used, because it usually leads to 

losing some information. Noise reduction usually implies erasing information in selected (and 

wide) frequency bands. In this case, as frequency analysis is done, the elimination of the 

information in those frequency bands means that that information could not be used as input to the 

system. Although it could be thought that this information useless, in this paper it is preferred not 

to delete it, because the feature extraction process is completely automated, and this technique 

could find useful information in those frequency bands. In this case, if that information is actually 

useful, the accuracy of the system would be higher. If noise reduction was applied, no useful 

information could be extracted from these bands, and, if the deleted information was useful, the 

results would be worse. 

 

With this information from the frequency analysis, a GP individual is able to classify a signal 

by using the information on time domain or frequency domain (FFT and PSD, in absolute value). 

In order to perform this classification, the GP individual will have a set of internal nodes of the 

tree, which will be to recover information from these domains by applying a specific function. 

These internal nodes of the tree will have two children which will designate the parameters of the 

function as real values, and they also return real values as result of their evaluation. These nodes 

are the following: 

 

 MeanTime and StdTime. Their two parameters (children) are indexes of two samples in time 

domain. With these two indexes, these nodes perform the average and the standard deviation of 

the chunk of the signal between those indexes. 

 MeanFFT and StdFFT. Their two parameters (children) set two frequencies. With these two 

frequencies, these nodes perform the average and the standard deviation of the signal’s FFT 

between these two frequencies. 

 MeanPSD and StdPSD. Again, the two parameters (children) set two frequencies. With them, 

these nodes perform the average and the standard deviation of the signal’s PSD between these 

two frequencies. 

 

An important restriction added to the GP trees is that none of them can have any of these six 

nodes inside another. This means that the sub-trees of these nodes will designate constant values, 

and these values will be the same for each of the signals analyzed by its tree. 

 

As it was previously mentioned, these nodes take as arguments the result of the evaluation of 

their children sub-trees. The sub-trees have a REAL type, and these nodes also return a REAL 

type. In order to allow the sub-trees to generate real constant values, it is necessary to add to the 

terminal and function sets some nodes that perform arithmetic operations, as well as random 

constants. 

 

Moreover, the output of the GP individual must be a class value, since the individual must 

classify the signal in one of the several classes. In order to perform this, the trees are asked to be of 

a certain type: CLASS, and the following nodes are added to the terminal and function sets: 
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 “If-then-else”: node of CLASS type. It has three children, the first with BOOLEAN type and 

the other two with CLASS type. If the result of the evaluation of the first child is true, then the 

output of this node will be the result of the evaluation of the second child. Otherwise, the 

output will be the result of the evaluation of the third child. 

 As boolean operations are needed, relational nodes are included. These nodes perform 

comparison operations between real values. Therefore, they have two children, with REAL 

type, and they return a BOOLEAN type value. 

 A terminal node for each class in which the signals can be classifies is added to the terminal 

set. For instance, if the problem to be solved is A–B, i.e., to separate class A from B, nodes 

“A” and “B” are added to the terminal set. If the problem to solve is A–B–C, then the nodes 

“A”, “B” and “C” are added to the terminal set. All of these nodes have a CLASS type. 

 

Table 1 shows a summary of the terminal and functions sets used in this work to build the 

trees. In this Table, symbol “%” stands for the protected division, which returns a value of 1 if its 

second argument is 0. 

Table 1. Summary of terminal and functions used by the GP 

Name Type Num of children Type of children 

 

Function set 

 MeanTime 

REAL 2 REAL, REAL 

 StdTime 

 MeanFFT 

 StdFFT 

 MeanPSD 

 StdPSD 

 +, −, *,  % REAL 2 REAL, REAL 

<, >, =, ≠ BOOLEAN 2 REAL, REAL 

If–then–else CLASS 3 BOOLEAN, CLASS, CLASS 

Terminal set 

 [−1, 1] REAL – – 

 Class1, class2, etc. CLASS – – 

    

 

Figure 1 shows an example of a possible tree built with the operations of Table 1 to solve the 

ZONF–S problem. 
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Fig. 1. Example of GP individual as tree notation 

Figure 1 tree represents the following pseudo-code algorithm: 

 

 

 
 

 

To set the fitness of the different GP trees, each one of them is evaluated with every signal on 

the dataset. The fitness value of each individual will be the average of the misclassification over 

the signals on that database made by the tree. The general function is on Eq. 1, where o i is the 

output of the classification system, s j is signal desired classification and #patterns is the number of 

patterns used in the tests. 

 

 

Fitness = ∑ (𝑒𝑖)

#patterns

𝑖=1

/#patterns, 𝑒𝑖 = {
0 𝑜𝑖 = 𝑠𝑖
1 𝑜𝑖

1𝑠𝑖
 (1) 
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4. Results 

This section describes the different tests that have been performed with the proposed method 

and a comparison with the results achieved by other techniques on the same data. 

4.1. Problem description 

The practical application of this paper refers to the classification of EEG signals. The dataset 

used in this work is composed by signals from healthy people and epileptic patients. Epilepsy is 

characterized by the occurrence of seizures in the EEG signal. The database used in this article 

contains several EEG recordings, is available publicly, and has been described in previous works 

(Andrzejak et al. 2001). 

 

This database is composed by five datasets (named Z, O, N, F and S). Each one of this datasets 

contains 100 single‐channel EEG signals. Each of these signals lasts 23.6 s, with a sampling 

frequency of 173.61 Hz. Therefore, the total length of each segment is of 4,097 samples. These 

segments were selected and cut out from continuous multi‐channel EEG recordings after visual 

inspection for artifacts (e.g., due to muscle activity or eye movements). In addition, the segments 

had to meet a criterion of stationarity. An example of each signal is on Fig. 2. 

 
 

 
Fig. 2. Example of EGG signals kinds 
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Datasets named as Z and O, consisted of segments taken from surface EEG recordings that 

were carried out on five healthy volunteers with eyes open (Z) and closed (O). On the other hand, 

datasets N, F and S originated from an EEG archive of presurgical diagnosis. Samples in dataset N 

were recorded from the epileptogenic zone, and those in dataset F from the hippocampal formation 

of the opposite hemisphere of the brain. While sets N and F contained only activity measured 

during seizure free intervals from epileptic patients, set S only contained seizure activity. Here, 

segments were selected from all the recording sites exhibiting ictal activity. Reference data of the 

different signals are in Table 2. 

Table 2. Principal indexes of the kinds signals 

Set Mean Std. Max. Min. 

     

Z −6.26 40.73 294 −288 

O −12.51 61.11 360 −424 

N 8.88 50.83 623 −412 

F −6.20 65.62 2,047 −1,147 

S −4.75 306.61 2,047 −1,885 

     

 

The aim of this work is to perform a classification in several classes, depending on the data sets 

taken into account. For example, those segments that show seizure activity (S) and those which do 

not show it (non seizure, Z, O, N, F), either belonging to an epileptic patient or to a healthy person. 

This specific problem (ZONF‐S) was chosen because it is closer to the clinical applications. Other 

possible problems studied in this work are Z–S, Z–F–S or ZO–NF–S, having different data sets 

size. The authors have compiled results from different works of the state of the art and here the 

system faces everyone of these problems that are showed on Table 3. 

Table 3. Problem characterization 

Problem Number of classes Patterns 

   

Z-S 2 200 

ZONF-S 2 500 

Z–F–S 3 300 

ZO–NF–S 3 500 

   

 

4.2. Description of the experiments 

It has to be highlighted that all of the tests have tried to be performed in the same conditions 

for each technique. Previously works split the data set into 50 % of the data for training and 50 % 

for testing. In this work, this condition has been kept in order to compare the results with other 

works. It has to be highlighted that partitions of previously works are not available, so in order to 

reduce the influence of the randomness of the evolutionary research technique each test has been 

carried out 50 times. Therefore, the results presented are the average of those 50 tests. 
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The data used in the tests, as it was commented in Sect. 4.1, are from a public accessible 

signals database (Andrzejak et al. 2001). The dataset are 100 signals of EEGs with 4,097 samples 

for each one of the signals. These samples were normalized between 0 and 1. 

 

The GP system was tuned up with the following values for its configuration, these values were 

empirically selected after some previously tests: 

 

 Number generations: 1,000. 

 Population size: 1,000. 

 Crossover percent: 95 %. 

 Mutation probability: 4 %. 

 Selection operation: tournament of 2 individual. 

 Maximum tree depth: 9. 

 Creation algorithm: Ramped half and half. 

 

It has to be mention that GP uses an elitism strategy on the usual crossover and mutation 

operations. This means that the best individual of the population is copied to the new generation 

without any modifications to ensure that the population doesn’t achieve worse results than the 

previous. This tries to keep the best individual over the generations which, in other case, could be 

lost due to the use of evolutionary operators. A schema of the overall behavior of the system for 

one of the test can be seen on Fig. 3. This process is repeated fifty times in order to calculate the 

average performance of the system. 

 
 

 
Fig. 3. Overall Ttraining and testing for one individual 

4.3. Experimental results 

Table 4 shows the overall results for the different classification problems with the proposed 

technique. This Table shows the average results for 50 independent trials performed for each 

problem, and, for each one, the accuracy and standard deviations in training and test can be seen. It 

also shows the overall accuracy and the percent of runs that returned a 100 % accuracy in test. 
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Table 4 Resume of the result for 50 executions for each problem 

  
Training 

 
Test 

 
  

Accuracy (%) Std.  Accuracy (%) Std.  % 100 % in test Overall accuracy (%) 

         

Z-S 100 0  100 0  100 100 

ZONF-S 100 0  99.38 0.481  22 99.69 

Z–F–S 100 0  98.51 1.12  14 99.25 

ZO–NF–S 99.99 0.06  97.86 1.06  0 98.93 

         

 

As this Table shows, the overall accuracy of the method is higher than 98.9 % for every 

problem. In fact, the results of the test are remarkable. For example, the Z–S problem which 

accuracy for tests is 100 %, so the fifty executions of the system have achieved a solution for this 

problem. The rest of the problems achieve average accuracies over the 97 %. 

4.4 Comparative results 

Results obtained herein were compared with the ones reported by other works. This 

comparison is motivated to evaluate the proposed system. 

 

In order to perform a fair comparison, the experiments have to be done with the same 

conditions as in the works used for the comparison. In this case, the conditions are almost 

identical, because the database is the same. The only difference is the division of the database into 

the training and test sets. However, this division is not provided in any of the reference papers with 

the reported results. In this work, the same methodology was used: split the database into training 

and test a great number of times and, at the end, report the average of the results obtained. This 

average result can be compared with other results obtained in other works, and it is very usual to 

report the average results published in other works as a basis for the comparison. This is the reason 

why in this work the comparison is based only on the average of the different executions (shown 

in Table 4). This comparison is shown on Table 5. 
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Table 5 Comparative results with the state of the art 

Problem Reference Method Accuracy 

    

Z–S 

Nigam and Graupe (2004) Non-lineal pre-processing filter-Diagnostic neural network 97.2 

Srinivasan et al. (2005) Time–frequency domain features—recurrent neural network 99.6 

Kannathal et al. (2005b) Entropy measures—adaptive neuro-fuzzy inference system 92.22 

Kannathal et al. (2005a) Chaotic measures—surrogate data analysis ~90 

Polat and Günes (2007) Fast Fourier transform—decision tree 98.72 

Subasi (2007) Discrete wavelet transform—mixture of expert model 95 

Tzallas et al. (2009) Time frequency analysis, artificial neural network 100 

This work 100 

ZONF-S 

Tzallas et al. (2007) Time frequency analysis, artificial neural network 97.73 

Rivero et al. (2011a) Time frequency analysis, kNN 98.40 

Rivero et al. (2011b) Time frequency analysis, RNN 98.60 

This work 99.38 

Z–F–S 

Guler et al. (2005) Lyapunov exponents—recurrent neural network 96.79 

Sadati et al. (2006) Discrete wavelet transform—adaptive neural fuzzy network 85.9 

Tzallas et al. (2009) Time frequency analysis, artificial neural network 100 

This work 98.51 

ZO–NF–S 
Tzallas et al. (2007) Time frequency analysis, artificial neural network 97.72 

This work 97.86 

   

 
Bold values indicate the best results 

In Table 5, it is clear that the proposed system achieves better results than the rest of the works 

with the exception of problem Z–F–S. Results of (Tzallas et al. 2009) is better than the system 

proposed here but it may be highlighted that in this work the author uses the overall accuracy 

performance instead of test results as is done in this work. In the rest of the problems, the proposed 

system achieves the better results among all the works. 

5. Conclusions 

Once the test results have been presented, some conclusions can be extracted from this work. 

The main conclusion is that GP can be used for the classification of signals. In the particular case 

of the application described here, this technique returned the best results in almost all of the 

problems. 

 

It may be also highlighted that the other works use a combination of techniques. This work 

joins the automatic feature extraction and the classification, oppositely to other techniques, which 

divide this process into two different steps with two different techniques. This technique does not 

need a previous feature extraction process, since the features (in this case, frequency bands) are 

automatically selected for each GP individual by the tree nodes. This is an advantage, since no 

prior knowledge is needed to classify the signals. 
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6. Future works 

This work has presented the application of a new system for classification signals, and it has 

been applied to the classification of epileptic EEG signals. The proposed system could also be 

applied in other environments, involving EEG signals or other king of signals. 

 

Also, in this work time and frequency domains are studied. However, the GP model could be 

adapted to work in other domains, such as wavelets, to allow GP to extract new features that could 

improve the classification. 
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