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ABSTRACT 

Rho kinase (ROCK), a RhoA GTPase effector, can regulate the contraction of airway and 

other smooth muscle tissues. In some tissues, ROCK can inhibit myosin regulatory light chain 

(RLC) phosphatase, which increases the phosphorylation of myosin RLC and promotes smooth 

muscle contraction. ROCK can also regulate cell motility and migration by affecting F-actin 

dynamics. Actin polymerization is stimulated by contractile agonists in airway smooth muscle 

tissues and is required for contractile tension development in addition to myosin RLC 

phosphorylation. We investigated the mechanisms by which ROCK regulates the contractility 

of tracheal smooth muscle tissues by expressing a kinase inactive mutant of ROCK, 

ROCK-
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K121G, in the tissues or by treating them with the ROCK inhibitor, H-1152P. Our results show 

no role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC 

phosphorylation during contractile stimulation in this tissue. We find that ROCK regulates 

airway smooth muscle contraction by mediating activation of the serine-threonine kinase, 

Pak, to promote actin polymerization.  Pak catalyzes paxillin phosphorylation on Ser273 and 

coupling of the GIT1-βPIX-Pak signaling module to paxillin, which activates the GEF 

activity βPIX towards cdc42. Cdc42 is required for the activation of Neuronal Wiskott-

Aldrich Syndrome protein (N-WASp), which transmits signals from cdc42 to the Arp2/3 

complex for the nucleation of actin filaments.  Our results demonstrate a novel molecular 

function for ROCK in the regulation of Pak and cdc42 activation that is critical for the 

processes of actin polymerization and contractility in airway smooth muscle.  

KEY POINTS SUMMARY  

 

 The mechanisms by which Rho kinase (ROCK) regulates airway smooth muscle 

contraction were determined in tracheal smooth muscle tissues. ROCK may mediate 

smooth muscle contraction by inhibiting myosin regulatory light chain (RLC) phosphatase. 

ROCK can also regulate F-actin dynamics during cell migration, and actin polymerization is 

critical for airway smooth muscle contraction.  

 Our results show that ROCK does not regulate airway smooth muscle contraction by 

inhibiting myosin RLC phosphatase or by stimulating myosin RLC phosphorylation.  

 We find that ROCK regulates airway smooth muscle contraction by activating the serine-

threonine kinase Pak, which mediates the activation of Cdc42 and Neuronal-Wiskott-

Aldrich Syndrome protein (N-WASp). N-WASP transmits signals from cdc42 to the 

Arp2/3 complex for the nucleation of actin filaments.  

 These results demonstrate a novel molecular function for ROCK in the regulation of Pak 

and cdc42 activation that is critical for the processes of actin polymerization and 

contractility in airway smooth muscle.  
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INTRODUCTION 

 

Rho-kinase (ROCK) is a serine threonine kinase that acts as a downstream effector of 

RhoA GTPase to regulate the contractility and motility of many cell and tissue types (Leung 

et al., 1996; Matsui et al., 1996; Somlyo & Somlyo, 2004; Liu et al., 2006; Amin et al., 

2013). ROCK regulates the contractility of airway smooth muscle and has been proposed as a 

possible target for the treatment of asthma (Yoshii et al., 1999; Gosens et al., 2006; Liu et al., 

2006; Kume, 2008; Lan et al., 2015).  However, the mechanism by which ROCK regulates 

airway smooth muscle contractility is unclear.  

In both smooth muscle and non-muscle cells and tissues, actomyosin crossbridge 

cycling is widely recognized as the primary mechanism for contraction and tension 

development. The activation of smooth muscle (SM) and non-muscle (NM) myosin is 

regulated by phosphorylation of myosin regulatory light chain (RLC) on Ser19 and Thr18 

(Ikebe et al., 1986). RhoA and ROCK have been shown to regulate phosphorylation of the 

RLC of myosin by inhibiting the catalytic activity of myosin RLC phosphatase or by directly 

phosphorylating myosin RLC (Amano et al., 1996; Kimura et al., 1996; Somlyo & Somlyo, 

2003; Puetz et al., 2009). Both ROCK and RhoA play an important role in regulating the 

contractility and shortening of vascular smooth muscle tissues, and there is evidence that this 

results from their role in the regulation of smooth muscle (SM) myosin RLC phosphorylation 

(Somlyo & Somlyo, 2003; Puetz et al., 2009). However, in airway smooth muscle tissues, 

while the inhibition of RhoA activation profoundly depresses agonist-induced tension 

development, it has little effect on SM myosin II RLC phosphorylation (Zhang et al., 2010; 

Zhang et al., 2012; Zhang et al., 2015). RhoA regulates the contractility of airway smooth 

muscle primarily by cytoskeletal mechanisms that are independent of SM myosin II RLC 

phosphorylation (Zhang et al., 2010; Zhang et al., 2012; Zhang & Gunst, 2017).  

ROCK is also known to regulate cell motility and migration through effects on F-actin 

dynamics (Maekawa et al., 1999; Worthylake & Burridge, 2003; Amano et al., 2010; Guilluy 

et al., 2011). Actin polymerization and cytoskeletal reorganization play a key role in the 

regulation of active tension development in airway smooth muscle and in other smooth 

muscle tissues (Herrera et al., 2004; Corteling et al., 2007; Rembold et al., 2007; Gunst & 

Zhang, 2008; Kim et al., 2008; Hill & Meininger, 2012; Walsh & Cole, 2013; Zhang et al., 

2015; Hill & Meininger, 2016; Hong et al., 2016). In airway smooth muscle, the inhibition of 

actin polymerization depresses tension development in response to contractile stimulation 
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with little or no effect on SM myosin II RLC chain phosphorylation and crossbridge cycling 

(Mehta & Gunst, 1999; Zhang et al., 2005; Gunst & Zhang, 2008). Agonist-stimulated actin 

polymerization requires activation of the actin filament nucleation promoting protein, N-

WASp (neuronal Wiskott-Aldrich syndrome protein) (Zhang et al., 2005). N-WASp 

activation is directly regulated by the small GTPase, cdc42. Activated cdc42 catalyzes a 

conformational change in N-WASp that enables it to couple to the Arp2/3 complex, which 

forms a template for actin polymerization (Rohatgi et al., 1999; Higgs & Pollard, 2000; 

Rohatgi et al., 2000). cdc42 is activated during the contractile stimulation of airway smooth 

muscle tissues, and cdc42 activation is necessary for N-WASp activation, actin 

polymerization and active tension development in this tissue (Tang & Gunst, 2004).  

The contractile stimulation of airway smooth muscle induces the recruitment of proteins 

to membrane-associated integrin adhesion junctions (adhesomes) via a RhoA-dependent 

mechanism mediated by non-muscle (NM) myosin II (Zhang et al., 2012; Zhang et al., 2015; 

Zhang & Gunst, 2017). RhoA regulates the formation and activation of submembranous NM 

myosin II filaments that catalyze the movement of inactive cytoskeletal proteins to the 

membrane, where they are assembled into adhesome signaling complexes that regulate 

cytoskeletal processes. Paxillin, vinculin and focal adhesion kinase (FAK) are all recruited to 

adhesome complexes by RhoA-activated NM myosin II filaments.  RhoA-mediated NM 

myosin II activation and adhesome signaling complex assembly are essential steps in 

excitation-contraction coupling and tension development in airway smooth muscle tissues 

during agonist-induced contractile activation; however it is not known whether ROCK acts as 

a downstream effector in these RhoA-mediated processes.  

 In the current study, we sought to determine the molecular mechanisms by which ROCK 

contributes to the contractile activation of airway smooth muscle. Our results suggest a novel 

molecular function for ROCK in adhesome signaling processes that regulate actin 

polymerization during the contractile activation of airway smooth muscle. Our study 

demonstrates a unique role for ROCK that is distinct from its well-known role in the 

regulation of myosin RLC phosphorylation. 

 

METHODS 

 Ethical Approval. All procedures were in accordance with procedures approved by the 

Institutional Animal Care and Use Committee (IUCAC) of Indiana University School of 

Medicine under the National Research Council's Guide for the Care and Use of Laboratory 
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Animals. Mongrel dogs (20-25 kg, any gender) were procured by the Indiana University 

Laboratory Animal Resource Center (LARC) at Indiana University School of Medicine from 

LBL Kennels, Reelsville, Indiana. Animals were euthanized by LARC personnel in 

accordance with procedures approved by the Institutional Animal Care and Use Committee 

(IUCAC) of Indiana University School of Medicine by IV injection of Fetal Plus 

(pentobarbital sodium 390 mg/ml; propylene glycol, 0.01 mg/ml; ethyl alcohol; 0.29 mg/ml; 

benzyl alcohol (preservative), 0.2 mg/ml) at a dose of approximately 0.3ml/kg. After 

euthanization, a tracheal segment was immediately removed by laboratory personnel and 

placed in physiological saline solution (PSS). All investigators understand the ethical 

principles under which the Journal of Physiology operates and all work complies with these 

principles. 

Preparation of smooth muscle tissues and measurement of force. A tracheal segment 

was immersed in physiological saline solution (PSS) (composition in mM: 110 NaCl, 3.4 

KCl, 2.4 CaCl2, 0.8 MgSO4, 25.8 NaHCO3, 1.2 KH2PO4, and 5.6 glucose, bubbled with 95% 

O2 and 5% CO2) immediately after removal. Tracheal smooth muscle was then dissected free 

of connective and epithelial tissues and cut into narrow strips (1.0 x 0.2-0.5 x 15 mm). Tissue 

strips were then mounted in a tissue bath in PSS at 37ºC and attached to Grass force-

displacement transducers. Prior to the beginning of each experimental protocol, muscle 

length was increased to maintain a preload of approximately 0.5-1.0g, and tissues were 

stimulated repeatedly with 10
-5

 M ACh until stable contractile responses were obtained. The 

force of contraction in response to ACh was determined before and after treatment with 

plasmids or other reagents. 

Immunoblots. At the end of each protocol, muscle tissues were rapidly frozen in liquid 

N2 and pulverized using a mortar and pestle. Pulverized muscle tissues were mixed with 

extraction buffer containing: 20 mM Tris-HCl at pH 7.4, 2% Triton X-100, 0.4% SDS, 2 mM 

EDTA, phosphatase inhibitors (2 mM sodium orthovanadate, 2 mM molybdate, and 2 mM 

sodium pyrophosphate), and protease inhibitors (2 mM benzamidine, 0.5 mM aprotinin, and 1 

mM phenylmethylsulfonyl fluoride). Each sample was centrifuged, and the supernatant was 

then boiled in sample buffer (1.5% dithiothreitol, 2% SDS, 80 mM Tris-HCl, pH 6.8, 10% 

glycerol, and 0.01% bromphenol blue) for 5 min. Proteins were separated by SDS-PAGE and 

transferred to nitrocellulose. The nitrocellulose membrane was blocked with 2-5% milk or 

LiCor blocking buffer for 1 h and probed with primary antibodies against proteins of interest 
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overnight followed by secondary antibodies for 1 h. Proteins were visualized by enhanced 

chemiluminescence (ECL) using a Bio-Rad ChemiDoc XRS detection system or by infrared 

fluorescence using a LiCor Odyssey imager.  

Measurement of myosin RLC phosphorylation. Myosin light chain phosphorylation was 

analyzed by a modification of the method of Hathaway and Haeberle as previously described 

(Hathaway & Haeberle, 1985;Zhang et al., 2005;Zhang et al., 2010) Frozen muscle strips 

were immersed in dry ice precooled in acetone containing 10% w/v trichloroacetic acid and 

10mM dithiothreitol. Proteins were extracted in 8 M urea, 20 mM Tris base, 22 mM glycine 

and 10 mM dithiothreitol. Phosphorylated and unphosphorylated myosin light chains were 

separated by glycerol-urea polyacrylamide gel electrophoresis, transferred to nitrocellulose 

then immunoblotted for myosin RLC. Myosin RLC phosphorylation was calculated as the 

ratio of phosphorylated myosin RLC to total RLC. 

Two-dimensional electrophoresis for the analysis of NM and SM myosin RLC 

phosphorylation. The phosphorylation of SM and NM RLC chains was analyzed in tracheal 

smooth muscle extracts by 2-D electrophoresis as previously described (Zhang & Gunst, 

2017) Canine tracheal smooth muscle tissues were stimulated with 10
-5

 M ACh or left 

unstimulated for 5 minutes and frozen in liquid nitrogen. Frozen muscle strips were immersed 

in dry ice-precooled acetone containing 10% (wt/vol) trichloroacetic acid and 10 mM DTT. 

Proteins were extracted in 7 M urea, 2 M thiourea, 2% (wt/vol) 3-[(3-cholamidopropyl) 

dimethylammonio]-1-propanesulfonate (CHAPS), 1% 3.9–5.1 immobilized pH gradient 

(IPG) buffer, and Roche complete protease inhibitor. Suitable amounts of sample were 

resolved in the first dimension using the acidic half of 17 cm pH 3.9-5.1 IPG dry strip gels. 

After separation in the first dimension, proteins were equilibrated in 6 M urea, 50 mM pH 6.4 

Bis-Tris, 30% (vol/vol) glycerol, 2% SDS, 0.002% bromophenol blue, first containing 10 

mM DTT and then containing 2.5% (wt/vol) iodoacetamide. Proteins were then separated in 

the second dimension by SDS-PAGE, transferred to nitrocellulose, then immunoblotted for 

total myosin RLC. Phosphorylation was calculated from densitometric and mass 

spectrometry analysis of the myosin RLC spots as previously described (Zhang & Gunst, 

2017). The two less acidic spots (Spots 1 and 2) consist of unphosphorylated SM myosin 

RLC (Spot 1) and Ser19-phosphorylated SM myosin RLC (Spot 2). The two more acidic 

spots (Spots 3 and 4) contained unphosphorylated NM myosin RLC (Spot 3) and Ser19-

phosphorylated NM myosin RLCs (Spot 4). However, di-phosphorylated (Thr18 and Ser19) 
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SM myosin RLC is present in extracts from stimulated smooth muscle tissues and was found 

to co-migrate with unphosphorylated NM myosin RLC (Spot 3). The proportion of NM 

myosin RLC to total RLC was determined from the density of the spots representing NM 

myosin RLCs (Spots 3 and 4) to the total myosin RLCs (Spots 1-4) from immunoblots from 

unstimulated smooth muscle tissues. The effect of ACh stimulation on the phosphorylation of 

NM myosin RLC was quantified based on the density of the phosphorylated NM myosin 

RLC (Spot 4) relative to the proportion of NM myosin RLC to SM myosin RLC. 

 Triton solubility assay. A Triton solubility assay was performed on extracts of smooth 

muscle tissues to separate cytoskeletal and Triton-soluble proteins (Zhang & Gunst, 2017). In 

brief, frozen and pulverized tracheal smooth muscle tissue samples were mixed with Triton 

X-100 lysis buffer (150 mM KCl, 20 mM PIPES, 10 mM Imidazole, pH 7.0, 0.05% Triton X-

100, 1 mM MgCl2, 1 mM EGTA, 1 mM DTT, 0.1 mM PMSF, 5 µg/ml aprotinin, 5 µg/mL 

leupeptin, 2 µg/mL pepstatin A, 1 mM Na3VO4, and 20 mM β-glycerophosphate) at 4° C. 

After 5 min, the lysates were centrifuged at 8,000 g for 5 min at 4°C, and the supernatant was 

removed as the soluble fraction. The pellet, the insoluble fraction, was added to equal 

volumes of Triton X-100 lysis buffer with additional 0.8% SDS and 2 mM EDTA, boiled for 

5 min and rotated for 1 hour and then centrifuged at 16,000 g for 15 min at 4°C. The 

supernatant was transferred to another tube as the insoluble fraction. Equal volumes of 

soluble and insoluble fractions from the same sample were used for immunoblots.  

Analysis of F-actin and G-actin.  The relative proportions of F-actin and G-actin in 

smooth muscle
 
tissues were analyzed as previously described (Zhang et al., 2005; Zhang et 

al., 2010; Zhang et al., 2012). Briefly, each muscle strip was
 
homogenized in 200 µl of F-

actin stabilization buffer
 
(50 mM PIPES, pH 6.9, 50 mM NaCl, 5 mM MgCl2, 5 mM EGTA, 

5%
 

Glycerol, 0.1% Triton X-100, 0.1% Nonidet P-40, 0.1% Tween-20,
 

0.1% β-

mercaptoethanol, 0.001% antifoam, 1 mM ATP, 1 µg/ml
 
pepstatin, 1 µg/ml leupeptin, 10 

µg/ml benzamidine,
 
and 500 µg/ml tosyl arginine methyl ester). Supernatants

 
of the protein 

extracts were collected after centrifugation at 150,000 g for 60 min at 37º C. The pellets were 

resuspended in 200 µl of ice-water containing 10 µM
 
cytochalasin D and then incubated for 1 

h and gently mixed every 15
 
min to depolymerize

 
F-actin. The amount of actin in the 

supernatant (G-actin) and pellet (F-actin)
 
fractions was then analyzed by immunoblot, and the 

ratios of F-actin to G-actin
 
were determined using densitometry.  
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Transfection of smooth muscle tissues. Plasmids encoding wild type human ROCK and 

kinase inactive human ROCK, ROCK K121G, were introduced into tracheal smooth muscle 

strips by the method of reversible permeabilization as previously described (Tang et al., 

2003; Zhang et al., 2005; Zhang et al., 2010; Zhang et al., 2012; Zhang et al., 2016; Zhang & 

Gunst, 2017). Muscle tissues were attached to metal mounts to maintain them at constant 

length, and then incubated successively in each of the following solutions: Solution 1 (at 4º C 

for 120 min) containing (in mM): 10 EGTA, 5 Na2ATP, 120 KCl, 2 MgCl2, and 20 N-tris 

(hydroxymethyl) methyl-2-aminoethanesulfonic acid (TES); Solution 2 (at 4º C overnight) 

containing (in mM): 0.1 EGTA, 5 Na2ATP, 120 KCl, 2 MgCl2, 20 TES, and 20 µg/ml 

plasmids. Solution 3 (at 4º C for 30 min) containing (in mM): 0.1 EGTA, 5 Na2ATP, 120 

KCl, 10 MgCl2, 20 TES; and Solution 4 (at 22º C for 90 min) containing (in mM): 110 NaCl, 

3.4 KCl, 0.8MgSO4, 25.8 NaHCO3, 1.2 KH2PO4, and 5.6 dextrose. Solutions 1-3 were 

maintained at pH 7.1 and aerated with 100% O2. Solution 4 was maintained at pH 7.4 and 

was aerated with 95% O2-5% CO2. After 30 min in Solution 4, CaCl2 was added gradually to 

reach a final concentration of 2.4 mM. The strips were then placed in serum-free DMEM 

containing 5mM Na2ATP, 100 U/ml penicillin, 100 µg/ml streptomycin, 50 µg/ml 

Kanamycin, 2.5 µg/ml antifungal, and 20 µg/ml plasmids and incubated in a CO2 incubator at 

37ºC for 2 days to allow for the expression of  recombinant proteins. The expression levels of 

the WT ROCK and ROCK K121G in transfected muscle tissues was quantitated from 

immunoblots and found to average about 50% of the level of the endogenous ROCK (Fig. 

1B).  

Immunoprecipitation of Proteins. Pulverized muscle tissues were mixed with lysis buffer 

(1% Np-40, 20 mM Tris·HCl (pH 7.6), 0.3% NaCl, 10% glycerol, 2 mM EDTA, phosphatase 

inhibitors (in mM: 2 sodium orthovanadate, 2 molybdate, and 2 sodium pyrophosphate), and 

protease inhibitors (in mM: 2 benzamidine, 0.5 aprotinin, and 1 phenylmethylsulfonyl 

fluoride) for 2 h. Each sample was centrifuged (14,000 g) for the collection of supernatant. 

Muscle extracts containing equal amounts of protein (800-1200 µg) were precleared for 30 

min with 30 µl of 10% protein A/G-Sepharose and then incubated overnight with primary 

antibodies. Samples were then incubated for 2 h with 40 µl of a 10% suspension of protein 

A/G-Sepharose beads. Immunocomplexes were washed three times in a buffer containing 50 

mM Tris-HCl, pH 7.6, 150 mM NaCl, and 0.1% Triton X-100. All procedures of 

immunoprecipitation were performed at 4°C. The immunoprecipitates were separated by 
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SDS-PAGE followed by transfer to nitrocellulose membranes. Proteins were quantitated by 

scanning densitometry. 

 Assessment of cdc42 activation. The activation of cdc42 was determined using a pull-

down assay for activated cdc42 (Tang & Gunst, 2004;Zhang et al., 2012). Pulverized muscle 

tissues were mixed with lysis buffer (see Immunoprecipitation of Proteins for details) for 2 

hours at 4º C. The extracted proteins were reacted with GST-Pak Binding Domain. Activated 

GTP-bound cdc42 was affinity-precipitated by glutathione beads and quantified by 

immunoblot.  

 Cell dissociation. Freshly dissociated primary tracheal smooth muscle cells were used 

for cell imaging protocols to avoid the morphologic and phenotypic changes that occur with 

the extended culture of smooth muscle cells (Opazo Saez et al., 2004; Zhang et al., 2005; 

Zhang et al., 2012). Tracheal muscle strips were minced and transferred to 5 ml of 

dissociation solution (in mM: 130 NaCl, 5 KCl, 1.0 CaCl2, 1.0 MgCl2, 10 HEPES, 0.25 

EDTA, 10 D-glucose, and 10 taurine, pH 7.0) with collagenase (type IV, 400 U/ml), papain 

(type IV, 30 U/ml), bovine serum albumin (1 mg/ml), and dithiothreitol (DTT; 1 mM) and 

placed in a 37°C shaking water bath at 60 oscillations/min for 15-20 min.  They were then 

washed with a Hepes-buffered saline solution (in mM: 130 NaCl, 5 KCl, 1.0 CaCl2, 1.0 

MgCl2, 20 HEPES, and 10 D-glucose, pH 7.4) and triturated with a pipette to dissociate 

individual smooth muscle cells. The solution of dissociated cells was poured onto glass 

coverslips. The cells were allowed to adhere to the coverslips for 30-60 minutes at room 

temperature and then stimulated with ACh (10
-5

 M) for 5 min at 37°C or not stimulated. 

Stimulated and unstimulated cells were fixed for 10 min in 4% paraformaldehyde (vol/vol) in 

phosphate-buffered saline (in mM: 137 NaCl, 4.3 Na2HPO4, 1.4 KH2PO4, and 2.7 KCl, pH 

7.4).  

In Situ Proximity Ligation Assay. In situ proximity ligation assays (PLA) (Soderberg 

et al., 2006;Soderberg et al., 2008) were performed to detect protein interactions in 

dissociated tracheal smooth muscle cells as previously described (Huang et al., 2011; Zhang 

et al., 2012; Zhang et al., 2016; Zhang & Gunst, 2017). Target proteins were reacted with 

primary antibodies raised in different species, and a pair of oligonucleotide-labeled secondary 

antibodies conjugated to + and − PLA probes were targeted to each pair of primary 

antibodies. When the probes are bound in very close proximity (<40 nm), they form circular 

DNA strands that serve as templates for localized rolling circle amplification, resulting in a 
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fluorescent signal (spot) that enables individual interacting pairs of the target protein 

molecules to be visualized. The PLA signal thus enables the detection of a complex between 

two target proteins at a very high resolution.  Protein interactions in each cell were evaluated 

by visualizing PLA fluorescent spots using a Zeiss LSM 510 confocal microscope. 

Interactions between specific proteins were quantified by assessing the total number of PLA 

fluorescent spots for each cell using Olink Bioscience Image Tools software.  

Reagents and antibodies. The ROCK inhibitor, H-1152P, was obtained from Sigma 

Chemical Co. H-1152P inhibits the kinase activity of ROCK1 and ROCK2 by blocking the 

ATP binding site in the kinase domain (Ikenoya et al., 2002). The Duolink
TM 

in situ 

proximity ligation assay (Olink Bioscience) was obtained from Sigma Chemical Co. Cdc42 

activation assay kits were obtained from Cytoskeleton (Denver, CO). All other chemical 

reagents were obtained from Sigma Chemical Co.  

Plasmids encoding wild type human ROCK and kinase inactive human ROCK, 

ROCK K121G (Oude Weernink et al., 2000; Croft et al., 2004), were generously provided by 

Dr. K. Kaibuchi of Nagoya University, Japan. The kinase-inactive mutant (ROCK K121G) 

was created by changing lysine 121 to glycine. Escherichia coli (Bluescript) transformed with 

these plasmids were grown in LB medium, and plasmids were purified by alkaline lysis with 

SDS using a purification kit from Qiagen Inc. 

Sources of antibodies are as follows: monoclonal mouse anti-human paxillin (Cat 

#610569, BD Biosciences); polyclonal rabbit anti-human paxillin phospho-tyrosine 118 (Cat 

#44-722G, Invitrogen); polyclonal rabbit anti-human paxillin phospho-serine 273 (Cat #44-

1028G, Invitrogen); mouse monoclonal anti-human talin (Cat #T3287, Sigma-Aldrich); 

polyclonal rabbit anti-human ROCK1 (Cat #4035T, Cell Signaling); polyclonal rabbit anti-

human Pak1 (Cat #2602, Cell Signaling); polyclonal rabbit anti-human phospho-Pak Thr 

423/402 (Cat #2601, Cell Signaling); polyclonal rabbit anti-human GIT1 (Cat #2909, Cell 

Signaling); mouse monoclonal anti-human N-WASp (Cat #4848 Cell Signaling); polyclonal 

rabbit anti-human N-WASp phospho-tyrosine 256 (Cat #ab23395 Abcam); monoclonal 

mouse anti-human cdc42 (Cat #610929, BD Biosciences); horseradish peroxidase-conjugated 

IgG (Cat # NA931 & NA934 Amersham Biosciences); Mouse monoclonal anti-human 

MYPT1 (Cat #612164 BD Biosciences); monoclonal mouse anti-actin [clone AC-40; Sigma), 

used at 1:10,000 dilution]; monoclonal mouse anti-human myosin IIA (Cat #ab55456, 

Abcam); polyclonal rabbit anti-human non-muscle myosin IIB (Cat #M7939, Sigma); 
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monoclonal mouse anti myc-tag (Cat #2276 (9B11) Cell Signaling);  IRDye® 680RD 

Donkey-anti-Mouse Antibody (Cat #926-68070)  and IRDye® 800CW Donkey-anti-Rabbit 

Antibody (Cat #925-32211, LiCor Biosciences). Polyclonal rabbit vinculin antibody (against 

canine cardiac vinculin) and polyclonal rabbit myosin RLC antibody were custom made by 

BABCO (Richmond, CA). Primary antibodies were diluted at 1:1000 for immunoblotting 

unless otherwise indicated.   

All antibodies have been validated to confirm their reaction with the designated 

antigen in the smooth muscle tissue extracts, immunoblots, or fixed cells in the present or in 

previous studies (Huang et al., 2011; Zhang et al., 2012; Zhang et al., 2016; Zhang & Gunst, 

2017).  

Statistical analysis. Comparisons between two groups were performed using paired or 

unpaired two-tailed Student’s t tests. Values refer to the number of cells or tissue strips used 

to obtain mean values. p<0.05 was considered statistically significant. 

 

RESULTS  

ROCK regulates acetylcholine (ACh) induced contractile force but not myosin 

RLC phosphorylation in tracheal smooth muscle tissues. We assessed the role of ROCK 

in ACh-induced myosin RLC phosphorylation and tension development in canine tracheal 

smooth muscle tissues by inhibiting ROCK activation using a kinase inactive ROCK mutant, 

C-myc-ROCK1 K121G, and a small molecule ROCK inhibitor, H-1152. Tracheal smooth 

muscle tissues were transfected with plasmids encoding C-myc-ROCK1 K121G or wild type 

(WT) ROCK1 by reversible permeabilization. Tissues were then incubated for 2 days to 

allow for expression of the recombinant proteins. Alternatively, tracheal smooth muscle 

tissues were incubated with 10
-6

 M H-1152P for 30 min to inhibit ROCK. Contractile force 

was measured in each tissue before and after ROCK inhibition (Fig.1A).  The inhibition of 

ROCK activity suppressed force development by more than 50% (ROCK K121G, 43±2.5% 

of Sham (n=7, p˂0.05); H-1152, 44±7.7% of Untreated (n=7, p˂0.05) (Fig. 1A). The 

expression of myc-ROCK1 K121G in transfected tissues was confirmed by immunoblot 

against the myc epitope (Fig 1B).  

 The inhibition of ROCK activity by H-1152P or ROCK1 K121G in the airway 

smooth muscle tissues was confirmed by measuring their effect on Thr853 phosphorylation 
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of the ROCK substrate, MYPT1, in response to 10
-5

 M ACh (Khromov et al., 2009). As 

ROCK is the only kinase that can phosphorylate MYPT at Thr853, phosphorylation at this site 

is used as an indicator of cellular ROCK activity (Grassie et al., 2011; Eto & Kitazawa, 2017). 

The phosphorylation of MYPT1 on Thr853 increased in response to stimulation of the tissues 

with ACh in untreated and in Sham-treated tissues. The increase in Thr853 phosphorylation 

in response to ACh was completely inhibited by the expression of ROCK K121G or by 

treatment of the tissues with H-1152P (Fig. 1B,C). 

The phosphorylation of MYPT1 by ROCK can inactivate myosin light chain 

phosphatase, thus promoting myosin RLC phosphorylation and tension development in some 

smooth muscle tissue types (Khromov et al., 2009; Eto & Kitazawa, 2017). We therefore 

assessed the effect of ROCK inhibition on the regulation of ACh induced myosin RLC 

phosphorylation in tracheal smooth muscle tissues (Fig 1D). The inhibition of ROCK by the 

expression of ROCK K121G or by H-1152P in tracheal smooth muscle tissues had no 

significant effect on myosin RLC phosphorylation in response to stimulation with ACh. Thus, 

ROCK does not regulate tension development in airway smooth muscle by regulating myosin 

RLC phosphorylation. 

ROCK regulates actin polymerization in response to ACh stimulation of smooth 

muscle tissues. We evaluated the role of ROCK in regulating ACh-induced actin 

polymerization in airway smooth muscle using a fractionation assay to assess the ratio of F- 

to G-actin in each tissue after 5 min stimulation with 10
-5

 M ACh.  ROCK was inhibited 

using 1 µM H-1152P or by expressing ROCK K121G in the tissues. ACh induced significant 

increases in the ratio of F-actin to G-actin in the sham-treated tissues and in tissues 

expressing WT ROCK (Fig.2). The expression of ROCK K121G completely inhibited the 

increase in actin polymerization. The ACh induced increase in the ratio of F-actin to G-actin 

was also completely inhibited by the pretreatment of tissues with ROCK inhibitor, H-1152P.   

ROCK does not regulate NM myosin activation during contractile stimulation of 

airway smooth muscle. Contractile stimulation triggers the assembly and activation of NM 

myosin filaments at the cortex of the cell. Cortical NM myosin filaments catalyze the 

recruitment of adhesome proteins to membrane adhesion junctions (Zhang & Gunst, 2017).  

In airway smooth muscle, NM myosin filament assembly and activation is catalyzed by the 

small GTPase RhoA (Zhang & Gunst, 2017). RhoA inactivation inhibits NM myosin filament 

assembly and the phosphorylation of the NM myosin RLC, but it has no effect on SM RLC 
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phosphorylation (Zhang & Gunst, 2017). We therefore evaluated the possibility that ROCK 

acts as a downstream effector of RhoA in regulating the assembly and/or activation of NM 

myosin II in airway smooth muscle.  

We used 2-D gel electrophoresis to separate NM and SM RLCs and analyze the effect of 

ROCK inhibition on NM myosin RLC phosphorylation in response to stimulation with ACh 

(Zhang & Gunst, 2017) (Fig. 3A). ROCK was inhibited by expressing ROCK1 K121G in the 

tissues. There was no significant difference in NM myosin RLC phosphorylation between 

tissues treated with ROCK1 K121G and Sham-treated tissues, although force was markedly 

depressed in the tissues expressing ROCK1 K121G. 

We also evaluated the effect of ROCK inhibition on NM myosin filament assembly. NM 

myosin filament formation was determined by quantifying the ratio of NM myosin in the 

cytoskeletal and Triton X-soluble fractions of tracheal tissue extracts (Zhang & Gunst, 2017). 

The proportion of NM myosin IIA in the cytoskeletal fraction of smooth muscle tissue 

extracts increased similarly after stimulation with ACh whether or not ROCK was inhibited 

(Figure 3B).  

In situ PLA analysis was also used to assess NM myosin filament formation by 

evaluating interactions between A and B isoforms of NM myosin II. NM myosin II isoforms 

can co-assemble into heterotypic filaments (Beach et al., 2014; Beach & Hammer, 2015), 

therefore the formation of NM myosin II polymers can be quantified by assessing interactions 

between NM myosin IIA and IIB isoforms (Zhang & Gunst, 2017). Stimulation with ACh 

increased the interaction of NM myosin IIA and IIB isoforms dramatically in cells stimulated 

with ACh whether or not ROCK was inhibited (Fig 3C). These results demonstrate that 

ROCK does not act downstream of RhoA to regulate the assembly or activation of NM 

myosin filaments in airway smooth muscle.  

 ROCK does not regulate the assembly of adhesome complexes during the 

contractile stimulation of airway smooth muscle. Adhesome proteins are recruited to the 

membrane and are assembled into signaling complexes in response to the contractile 

stimulation of airway smooth muscle (Zhang & Gunst, 2008; Zhang et al., 2012; Zhang et al., 

2015; Zhang et al., 2016; Zhang & Gunst, 2017). Vinculin is recruited to the membrane 

bound in an inactive complex with paxillin (Huang et al., 2011; Zhang et al., 2012; Huang et 

al., 2014). At the cell membrane, vinculin binds to talin and undergoes activation, forming a 

scaffold for the assembly of cytoskeletal signaling modules.  The assembly of adhesome 
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signaling complexes in response to the contractile stimulation is mediated by NM myosin and 

is dependent on activation of the small GTPase RhoA (Zhang et al., 2015; Zhang & Gunst, 

2017).  

We investigated the possible role of ROCK as an effector of the RhoA-mediated 

recruitment of cytoskeletal proteins to adhesome complexes. ROCK was inhibited in airway 

smooth muscle tissues by treating them with H-1152P.  Airway smooth muscle cells were 

dissociated from airway smooth muscle tissues and in situ PLA was used to evaluate the role 

of ROCK in the recruitment of vinculin-paxillin complexes to the membrane in response to 

stimulation with ACh (Fig.4A). Paxillin-vinculin complexes were distributed throughout the 

cytoplasm in unstimulated cells. Stimulation of the cells with ACh resulted in the 

redistribution of paxillin-vinculin complexes to the membrane in untreated cells and in cells 

treated with H1152P; thus ROCK inhibition had no effect on the recruitment of paxillin-

vinculin complexes to the membrane. A similar approach was used to evaluate the effect of 

ROCK inhibition on the interaction of vinculin with talin (Fig 4B). Very few talin-vinculin 

complexes were observed in unstimulated cells, indicating little interaction between vinculin 

and talin. Stimulation with ACh caused a dramatic increase in the number of PLA spots at the 

cell membrane, indicating the binding of vinculin to talin in membrane complexes. ROCK 

inhibition had no effect on the interaction of vinculin with talin in response to ACh. Thus, we 

conclude that ROCK is not an effector in RhoA-mediated adhesome assembly stimulated by 

ACh in airway smooth muscle tissues.  

ROCK regulates the phosphorylation of paxillin on Ser273 and its coupling to 

the GIT1-βPIX-Pak complex in response to ACh stimulation in airway smooth muscle 

tissues. The stimulation of airway smooth muscle tissues catalyzes the phosphorylation of 

paxillin on Tyr31 and Tyr118, which regulates the coupling of N-WASp to paxillin via the 

adaptor protein Crk II (Tang et al., 2005). Airway smooth muscle stimulation by ACh also 

catalyzes the phosphorylation of paxillin on Ser273 by Pak, which is a component of the 

highly conserved GIT1-βPIX-Pak signaling module (G-protein-coupled receptor kinase-

interacting protein (GIT1), p21 activated kinase (Pak), and Pak interactive exchange factor 

(PIX) (Frank & Hansen, 2008; Zhang et al., 2016). Paxillin Ser273 phosphorylation promotes 

the binding of paxillin to GIT1 within the GIT1-βPIX-Pak signaling module. The GEF 

activity of βPIX can then regulate the activation of cdc42 leading to the activation of N-

WASp. Thus, paxillin Ser273 phosphorylation by Pak facilitates cdc42 activation through the 

GEF activity of βPIX within the GIT-βPIX-Pak complex. Paxillin is therefore a key mediator 
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in the formation of an adhesome signaling module that regulates cdc42 and N-WASp 

activation in response to contractile stimuli.  

   We evaluated the role of ROCK in the regulation of paxillin phosphorylation on 

Ser273 and on Tyr118 residues in response to contractile stimulation. ROCK was inhibited 

by treating muscle tissues with H-1152P or by expressing ROCK K121G.  Stimulation of 

tracheal muscle tissues with 10
-5

M ACh caused a significant increase in paxillin 

phosphorylation on Ser273 as well as on Tyr118 (Fig. 5A,B). Expression of ROCK K121G 

or treatment with H-1152P significantly inhibited the increase in paxillin Ser273 

phosphorylation in response to ACh stimulation, but it had no effect on the ACh-stimulated 

increase in paxillin Tyr118 phosphorylation (Fig. 5A, B). 

In situ proximity ligation assays (PLA) were performed on freshly dissociated 

tracheal smooth muscle cells to evaluate the interaction between paxillin and GIT1 (Fig. 6A, 

B). Very few spots were observed in unstimulated cells, indicating little interaction between 

paxillin and GIT1. Stimulation with ACh caused a dramatic increase in the number of PLA 

spots at the cell membrane, indicating an interaction of GIT1 with paxillin in membrane 

complexes. Very few spots were observed in ACh-stimulated cells dissociated from tissues 

treated with the ROCK K121G mutant or in ACh stimulated cells treated with H-1152P, 

indicating ROCK inhibition prevented the coupling of paxillin to GIT1 (Fig. 6A, B). These 

results demonstrate that ROCK regulates the interaction of the GIT1-βPIX-Pak signaling 

module with paxillin at membrane adhesome complexes by regulating the phosphorylation of 

paxillin on Ser273.  

ROCK regulates the activation of Pak in response to ACh stimulation in airway 

smooth muscle tissues. The activation of Pak requires its autophosphorylation on Thr423 

(Yu et al., 1998; Zenke et al., 1999). We evaluated the role of ROCK in the regulation of Pak 

activation by measuring Pak Thr423 phosphorylation in tissues in which ROCK activation 

was inhibited by expressing ROCK K121G or by treating them with H-1152P (Fig. 7A). 

ROCK inactivation significantly inhibited the increase in Pak Thr423 phosphorylation in 

response to ACh stimulation. To determine whether ROCK associates with Pak in airway 

smooth muscle tissues, Pak1 was immunoprecipitated from smooth muscle tissue extracts and 

Pak immunocomplexes immunoblotted for ROCK, or ROCK1 was immunoprecipitated and 

immunocomplexes immunoblotted for Pak (Fig.7B). ROCK was not detected in Pak 

immunocomplexes or ROCK immunocomplexes from unstimulated tissues; however, in 

immunocomplexes from ACh-stimulated tissues, ROCK was detected in Pak 
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immunocomplexes and Pak was detected in ROCK immunocomplexes. The interaction 

between ROCK and Pak induced by ACh stimulation was inhibited by the treatment of 

smooth muscle tissues with H-1152P (Fig. 7B). These results suggest that ROCK activity is 

necessary for the activation of Pak, and that ROCK thereby regulates the Ser273 

phosphorylation of paxillin. Thus, our results demonstrate that the activation of ROCK is 

required for the coupling of the GIT1-βPIX-Pak signaling module to paxillin in airway 

smooth muscle.  

Paxillin Ser273 phosphorylation and coupling of the GIT1-βPIX-Pak signaling 

module to paxillin is prerequisite to the activation of cdc42 in response to stimulation with 

ACh (Frank & Hansen, 2008; Zhang et al., 2016).  We analyzed the role of ROCK in the 

regulation of cdc42 activation in tracheal smooth muscle tissues using a pull-down assay for 

activated cdc42 (cdc42-GTP) (Tang & Gunst, 2004; Zhang et al., 2012; Zhang et al., 2016). 

The inactivation of ROCK by the expression of ROCK K121G or by treatment of the tissues 

with H-1152P resulted in the inhibition of cdc42 activation (Fig. 8A).  

The actin polymerization initiator N-WASp must be phosphorylated on Tyr256 to 

undergo activation (Wu et al., 2004; Zhang et al., 2012). We evaluated the effect of ROCK 

inhibition on N-WASp activation in response to ACh by measuring its effect on N-WASp 

phosphorylation on Tyr256. ACh stimulation increased N-WASp phosphorylation on Tyr256 

in the sham-treated and untreated tracheal smooth muscle tissues. The expression of ROCK 

K121G or treatment of the tissues with H-1152P completely inhibited the ACh-induced 

increase in N-WASp Tyr256 phosphorylation (Fig. 8B). These results suggest that ROCK 

regulates tension generation in airway smooth muscle by regulating signaling processes that 

mediate the activation of N-WASp and actin polymerization.  

Thus, ROCK activation is required for the activation of cdc42, which regulates N-WASp 

activation and actin polymerization. These results demonstrate a unique role for ROCK in the 

regulation of airway smooth muscle contraction.  

 

DISCUSSION  

The development of contractile tension in airway smooth muscle depends on the 

activation of cytoskeletal processes involving actin polymerization and cytoskeletal 

reorganization as well as myosin RLC phosphorylation and crossbridge cycling (Mehta & 

Gunst, 1999; Zhang & Gunst, 2008; Zhang et al., 2010). Our studies demonstrate that ROCK 
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plays a unique role in activating cytoskeletal signaling processes that lead to the 

polymerization of actin and the contraction of airway smooth muscle (Fig. 9). We find no 

role for ROCK in the regulation of non-muscle or smooth muscle myosin RLC 

phosphorylation during contractile stimulation in this tissue. We find that ROCK regulates 

airway smooth muscle contraction by collaborating with the serine-threonine kinase Pak to 

activate Cdc42, leading to the activation of N-WASp, which transmits signals from cdc42 to 

the Arp2/3 complex for the nucleation of actin filaments. Our results show that the kinase 

activity of ROCK is required for the activation of Pak. Activated Pak then catalyzes paxillin 

phosphorylation on Ser273 and coupling of the GIT1-βPIX-Pak signaling module to paxillin, 

which activates the GEF activity βPIX towards cdc42 (Zhang et al., 2016). ROCK is 

therefore an upstream mediator of N-WASp activation and actin polymerization. Our results 

demonstrate a novel molecular function for ROCK in the regulation of Pak and cdc42 

activation that is critical for the processes of actin polymerization and contractility in airway 

smooth muscle.  

The role of ROCK in the regulation of myosin light chain phosphatase is well 

established, and this role is important in regulating the contractility of a number of smooth 

muscle tissues (Amano et al., 1996; Kimura et al., 1996; Somlyo & Somlyo, 2003; Puetz et 

al., 2009). Myosin light chain phosphatase, with its regulatory subunit, myosin phosphatase 

target subunit 1 (MYPT1), can modulate the Ca
2+

-dependent phosphorylation of myosin RLC 

by myosin light chain kinase, which is essential for smooth muscle contraction (Pfitzer, 2001; 

Ito et al., 2004; Khromov et al., 2009; Eto & Kitazawa, 2017). MYPT1 is a known substrate 

for ROCK; ROCK can phosphorylate MYPT1 on Thr696 or Thr853 (Eto & Kitazawa, 2017). 

Biochemical studies suggest that while phosphorylation of MYPT1 at Thr696 causes the 

inactivation of myosin phosphatase and enhances myosin RLC phosphorylation, MYPT1 

phosphorylation at the Thr853 site does not inactivate myosin phosphatase (Eto & Kitazawa, 

2017) . Studies in bladder and airway smooth muscles have confirmed that MYPT1 Thr853 

phosphorylation increases in response to ROCK activation (Qiao et al., 2014; Gao et al., 

2017). However, consistent with the biochemical observations, these studies found no role for 

MYPT Thr853 phosphorylation in regulating myosin RLC phosphorylation and force 

development in either tissue.  

In the current study, we found that expression of the inactive ROCK mutant ROCK121G 

or the treatment of tissues with the ROCK inhibitor H-1152P inhibited MYPT1 

phosphorylation on Thr853 in the airway smooth muscle tissues in response to contractile 
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stimulation, indicating that these treatments were effective at inhibiting ROCK. However, 

while ROCK inhibition suppressed tension development in response to ACh stimulation, it 

had had no effect on myosin RLC phosphorylation (Fig. 1). These results indicate that the 

role of ROCK in tension development in airway smooth muscle does not result from an 

inhibitory effect on myosin light chain phosphatase. Our results are consistent with previous 

studies indicating that MYPT1 Thr853 phosphorylation does not regulate myosin RLC 

phosphorylation or tension development in airway smooth muscle, and that MYPT1 Thr853 

phosphorylation by ROCK does not regulate myosin phosphatase activity (Eto & Kitazawa, 

2017; Gao et al., 2017). These observations suggest that ROCK regulates tension 

development in airway smooth muscle by a different mechanism.  

Actin polymerization plays a critical role in tension generation in airway smooth muscle 

and in other smooth muscle tissues (Mehta & Gunst, 1999; Zhang et al., 2005; Corteling et 

al., 2007; Rembold et al., 2007; Gunst & Zhang, 2008; Kim et al., 2008; Hill & Meininger, 

2012; Walsh & Cole, 2013; Hill & Meininger, 2016; Hong et al., 2016). In airway smooth 

muscle, cortical actin polymerization may enable the transmission of force generated by 

crossbridge cycling within the contractile apparatus to membrane adhesion sites that connect 

smooth muscle cells to the extracellular matrix (Zhang et al., 2005; Gunst & Zhang, 2008; 

Zhang & Gunst, 2008). We found that ROCK inhibition had a profound inhibitory effect on 

stimulus-induced actin polymerization during the contractile stimulation of airway smooth 

muscle under conditions in which no effect on myosin RLC phosphorylation was detected 

(Figs. 1, 2). ROCK inhibition also profoundly suppressed the activation of N-WASp and 

prevented the activation of cdc42 (Fig. 8). Thus, our evidence suggests that ROCK acts to 

regulate upstream processes critical to stimulus-induced N-WASp activation and actin 

polymerization.  

Contractile stimulation triggers the recruitment of inactive cytoplasmic adhesome proteins 

to membrane adhesion junctions, where they form signaling complexes that regulate 

cytoskeletal dynamics and actin polymerization (Gunst & Zhang, 2008; Zhang & Gunst, 2008; 

Zhang et al., 2012; Zhang et al., 2015; Zhang et al., 2016; Zhang & Gunst, 2017). In airway 

smooth muscle, the recruitment of proteins to the membrane is mediated by NM myosin II that 

is localized in the cortical region of the airway smooth muscle cell (Zhang & Gunst, 2017). 

Contractile stimulation triggers the polymerization of NM myosin II filaments through a 

process that is dependent on RhoA activation: RhoA regulates NM myosin II assembly in part 

by regulating the phosphorylation of NM myosin RLC (Zhang & Gunst, 2017). We therefore 
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explored the possibility that ROCK might act as a RhoA effector to regulate the NM myosin 

RLC phosphorylation, NM myosin filament assembly and/or NM myosin II activation. Our 

results provided no evidence for a role for ROCK in NM myosin RLC phosphorylation or in 

NM myosin II filament assembly in response to ACh (Fig. 3). We also evaluated the effect of 

ROCK inhibition on the recruitment of inactive adhesome proteins to membrane adhesion 

complexes, as this process is mediated by NM myosin II.  Using PLA, we found no effect of 

ROCK inhibition on the ACh-stimulated recruitment of paxillin-vinculin complexes to the 

membrane or on the binding of vinculin to talin within adhesome complexes (Fig 4). We 

conclude that ROCK does not regulate NM myosin activation or adhesome complex assembly 

during contractile stimulation, and that ROCK must be acting to regulate actin polymerization 

at a step that is downstream of adhesome complex assembly, but upstream activation of cdc42 

and N-WASp activation (Fig. 9).   

Paxillin localized within membrane adhesome complexes can undergo phosphorylation on 

Tyrosine 31 and 118 by FAK, which enables it to couple to N-WASp via the adaptor protein 

Crk II (Parsons et al., 1994; Petit et al., 2000; Tang et al., 2003; Tang et al., 2005). Paxillin 

also undergoes phosphorylation on Ser273 by Pak, which is necessary for the coupling of 

GIT1 to paxillin and the localization of the GIT1-βPIX-Pak signaling module within 

adhesomes (Nayal et al., 2006; Frank & Hansen, 2008; Zhang et al., 2016). We found that 

ROCK inhibition had no effect on paxillin Tyr118 phosphorylation, but that ROCK inhibition 

suppressed paxillin phosphorylation on Ser273 (Fig. 5). Consistent with these results, the 

coupling of paxillin to GIT1 was also prevented by ROCK inhibition (Fig. 6). 

As the phosphorylation of paxillin on Ser273 is catalyzed by Pak (Nayal et al., 2006; 

Zhang et al., 2016), we investigated the possibility that ROCK contributes to the regulation 

of Pak activation.  Our results show that ROCK inactivation suppresses the ACh-induced 

activation of Pak (Fig. 7).  As we are not aware of previous evidence in any cell type 

demonstrating a role for ROCK in regulating Pak activation, we performed co-

immunoprecipitation analysis to determine whether contractile stimulation triggers the 

interaction of ROCK with Pak. ROCK and Pak co-precipitated in immunocomplexes from 

tissues that were stimulated with ACh, but not in unstimulated tissues or in tissues in which 

ROCK activity was inhibited (Fig.7). This provides additional evidence that ROCK mediates 

Pak activation during the contractile stimulation of this tissue. Pak may directly facilitate Pak 

activation by regulating its kinase activity, perhaps by catalyzing its phosphorylation, or 

ROCK might indirectly facilitate Pak activation through a scaffolding function. The GIT1-
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βPIX-Pak signaling module activates cdc42 in this tissue through the GEF activity of βPIX 

(Zhang et al., 2016), we therefore determined the effect of ROCK inactivation on cdc42 

activation. ROCK inhibition prevented the activation of cdc42 in response to ACh 

stimulation, which is consistent with our evidence for its role in regulating Pak activation and 

paxillin Ser273 phosphorylation (Fig.8).   

In summary, our evidence supports the conclusion that ROCK regulates airway smooth 

muscle contractility by regulating the activation of Pak within membrane adhesome 

complexes. This facilitates paxillin Ser273 phosphorylation and the coupling of the GIT1-

βPIX -Pak signaling module to paxillin, which is required for the activation of the small 

GTPase cdc42. As activation of the actin polymerization initiator, N-WASp, is dependent on 

the GTPase activity of cdc42, ROCK regulates actin polymerization and airway smooth 

muscle contractility through it role in regulating Pak activity. These findings document a 

novel role for ROCK in the regulation of airway smooth muscle contractility that is distinct 

from its previously described role in regulating myosin light chain phosphatase and myosin 

RLC phosphorylation.   

 A molecular function for ROCK in the regulation of Pak and activation of the GIT1-

βPIX -Pak complex has not been previously described in smooth muscle or and other cell 

types.  The GIT1-βPIX -Pak signaling module is important for processes involved in cell 

migration (Nayal et al., 2006; Frank & Hansen, 2008; Guilluy et al., 2011). Thus, it is 

possible that the molecular function of ROCK in the regulation of Pak activation described in 

our study also plays an important role in processes involved in the migration of other cell 

types.   

Our studies have previously documented the critical functions of the large multiprotein 

complexes (adhesomes) that reside at the sites of mechanical coupling between smooth 

muscle cells and their matrix environment within intact muscle tissues (Gunst & Zhang, 

2008; Zhang & Gunst, 2008; Zhang et al., 2012; Zhang et al., 2015; Zhang & Gunst, 2017). 

Adhesome complexes not only mediate cellular pathways that regulate smooth muscle 

contractility, but they are critical for other cellular processes that allow muscle tissues to 

sense and respond to changes in the properties of their surrounding milieu (Gunst & Zhang, 

2008; Wu et al., 2008; Zhang & Gunst, 2008; Desai et al., 2011; Wu et al., 2016). Our 

current observations provide further evidence that the process of signal transduction initiated 

by the contractile stimulation of smooth muscle tissues involves multiple parallel cellular 

processes that must be coordinated to generate a functional physiological response. The role 
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of signaling proteins in the pathways that regulate the activation of smooth muscle myosin 

and crossbridge cycling have been extensively studied. While the activation of contractile 

proteins is critical to tension development, other cellular processes that regulate cytoskeletal 

assembly and organization are clearly also essential for the physiologic responses of muscle 

tissues.  The role of ROCK in regulating the activity of adhesome signal modules may also be 

fundamental to the processes of signal transduction in response to extracellular stimuli that 

regulate non-contractile functions smooth muscle tissues; and this function may also be 

applicable to a variety of other of contractile and motile cell types.  
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FIGURE LEGENDS 

Figure 1. ROCK inactivation inhibits ACh stimulated tension development but not 

myosin RLC phosphorylation in tracheal smooth muscle tissues.  A. Contractile force in 

response to ACh before and after tissues were transfected with plasmids encoding WT 

ROCK, ROCK K121G or no plasmids (Sham). ROCK K121G mutant (n=7) or treatment 

with H-1152P (n=7) significantly inhibited ACh-induced tension development. Values for 

force were calculated as a percentage of pretreatment maximal force in response to 10
-5

 M 

ACh, which was approximately 10 g for most tissues. B. Upper, The expression of myc-

ROCK1 K121G and WT ROCK1 in transfected tissues was confirmed by dual 

immunofluorescence against ROCK1 (green band) and the myc epitope (red band). Lower, 

Immunoblot for MYPT1 phosphorylation in tissue extracts by dual immunofluorescence 

against MYPT1 (red band) and P-Thr853 MYPT (green band). MYPT1 Ab and P-Thr853 

MYPT Ab reactive proteins overlay to a single band (yellow band). C. The phosphorylation 

of MYPT1 increased with ACh stimulation and was inhibited by expression of ROCK 

K121G or by treatment with H-1152P. D. Unphosphorylated and phosphorylated smooth 

muscle 20 kD myosin RLCs were separated by urea gel electrophoresis and quantified as the 

ratio of phosphorylated myosin RLCs to total myosin RLCs in each sample. Inhibition of 

ROCK activation with ROCK K121G (n=5) or H-1152P (n=8) did not affect the increase in 

myosin RLC phosphorylation in response to ACh stimulation (Left). All values are mean ± 

SEM. *Significant difference between treatment groups (p< 0.05). ns, not significantly 

different. 
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Figure 2. ROCK regulates actin polymerization and N-WASp phosphorylation in 

response to ACh stimulation in tracheal smooth muscle tissues.  Immunoblot of soluble 

G-actin (globular) and insoluble F-actin (filamentous) in fractions from extracts of 

unstimulated (US) or ACh stimulated muscle tissues. Ratios of F-actin to G-actin were 

determined by quantitating F and G actin in extracts from each muscle strip. Inhibition of 

ROCK activation with ROCK K121G (n=5) or H-1152P (n=8) prevented the increase in F-

actin/G-actin ratio in response to ACh stimulation. Values are means ± SEM. * Significant 

difference between treatments, p< 0.05.  
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Figure 3. ROCK does not regulate NM myosin RLC phosphorylation in response to 

ACh stimulation in tracheal smooth muscle tissues. A. Representative immunoblots of 

myosin RLCs from unstimulated (US) and ACh-stimulated muscle tissues. Myosin RLCs 

were separated by two-dimensional electrophoresis and immunoblotted for myosin RLC. 

Unphosphorylated SM myosin RLC migrated to spot 1, mono-phosphorylated SM myosin 

RLC migrated to spot 2, and di-phosphorylated SM myosin RLC migrated to spot 3. 

Unphosphorylated and phosphorylated NM myosin RLC migrated to spots 3 and 4 

respectively. Expression of ROCK K121G did not significantly affect the increase of NM 

myosin RLC phosphorylation in response to ACh stimulation (See methods for quantitative 

analysis) (n=7, p> 0.05). B. Immunoblot of NM myosin IIA from soluble (S) and cytoskeletal 

(pellet, P) fractions of extracts from tracheal smooth muscle tissues treated with ROCK 

K121G or Sham-treated, and stimulated with ACh or unstimulated (US). The ratio of NM 

myosin II in the cytoskeletal (P) versus soluble (S) fractions increased in response to 5 min 

stimulation with 10
-5

 M ACh in both sham and ROCK K121G-treated tissues. The expression 

of ROCK K121G did not significantly affect the movement of NM myosin into the pellet 

fraction in response to stimulation with 10
-5

 M ACh (n=5). C. Interactions between NM 

myosin IIA and NM myosin IIB isoforms in unstimulated (US) and ACh-stimulated freshly 

dissociated smooth muscle cells assessed by in situ proximity ligation assay (PLA). Images 

show PLA fluorescence alone and merged with phase contrast. ACh stimulation of either 

Sham-treated or ROCK K121G treated tissues resulted in a significant increase in the number 

of NM myosin IIA and IIB complexes at the cell membrane (Sham: US, n=21; ACh, n=27; 

ROCK K121G: US, n=21; ACh, n=26). The number of ACh-stimulated NM myosin IIA and 

IIB complexes was not significantly different in Sham-treated tissues or in tissues expressing 

ROCK K121G. Values are means ± SEM. ns, not significantly different. 
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Figure 4. ROCK does not regulate the assembly of adhesome complexes in response to 

ACh stimulation in tracheal smooth muscle tissues. Interactions between paxillin and 

vinculin (A) or vinculin and talin (B) in unstimulated (US) and ACh-stimulated freshly 

dissociated smooth muscle cells assessed by in situ proximity ligation assay (PLA). Images 

show PLA fluorescence alone and merged with phase contrast. A. Paxillin-vinculin 

complexes are distributed throughout the cytoplasm of unstimulated cells.  ACh stimulates 

the localization of paxillin-vinculin complexes to the membrane in all cells whether or not 

they were treated with H-1152P. Cells shown are representative of results in cells dissociated 

from tissues from 3 separate experiments (No inhibitor: US, n=14; ACh, n=17; H-1152P: US, 

n=14; ACh, n=14). B. Very few interactions between vinculin and talin were observed in 

unstimulated cells. ACh stimulation of tracheal smooth muscle cells resulted in a significant 

increase in the number of PLA spots at the cell membrane indicating interactions between 

vinculin and talin whether or not tissues were treated with H-1152P (Untreated: US, n=18; 

ACh, n=24).  H-1152P treatment did not significantly affect the increase in the number of 

PLA spots at the cell membrane (US, n=20; ACh, n=21). Cells dissociated from tissues 

obtained from 3 separate experiments. Values are means ± SEM. ns, not significantly 

different. 
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Figure 5. ROCK regulates the phosphorylation of paxillin on Ser273 in response to 

stimulation with ACh in tracheal smooth muscle tissues. Paxillin Tyr118 phosphorylation 

and paxillin Ser273 phosphorylation were measured in unstimulated (US) or ACh stimulated 

tracheal smooth muscle tissues. A. ROCK inactivation by the ROCK K121G mutant 

significantly inhibited ACh induced paxillin Ser273 phosphorylation, but it did not 

significantly affect paxillin Tyr118 phosphorylation (n=5). B. ROCK inhibition by H-1152P 

treatment significantly inhibited ACh induced paxillin Ser273 phosphorylation, but it did not 

significantly affect paxillin Tyr118 phosphorylation (n=11). Values are means ± SEM.* 

Significant difference between treatments, p< 0.05.  
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Figure 6. ROCK regulates the interaction of paxillin and GIT1 at the cell membrane 

during contractile stimulation. In situ proximity ligation assay (PLA) shows the interaction 

of paxillin and GIT1 in freshly dissociated differentiated canine tracheal smooth muscle cells. 

PLA fluorescence is shown alone and merged with phase contrast images for each cell. A. 

ACh stimulated a significant increase in the number of interactions between paxillin and 

GIT1 in Sham treated tissues. In cells from ROCK K121G treated tissues, the mean number 

of PLA spots was very small and did not increase significantly with ACh-stimulation (Sham: 

US, n=42; ACh, n=38; ROCK K121G: US, n=26; ACh, n=36). Cells dissociated from tissues 

obtained from 3 separate experiments.  B. ACh stimulation of tracheal smooth muscle cells 

resulted in a significant increase in the number of PLA spots at the cell membrane indicating 

interactions between paxillin and GIT1 (US, n=13; ACh, n=18). H-1152P treatment 

significantly inhibited the number of ACh-induced interactions between paxillin and GIT1 

(US, n=13; ACh, n=17). Cells dissociated from tissues obtained from 2 separate experiments. 

Values are means ± SEM.* Significant difference between treatments, p< 0.05.  
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Figure 7. ROCK regulates the activation of p21-activated kinase (Pak) in response to 

ACh stimulation in airway smooth muscle tissues.  A. Pak Thr423 phosphorylation was 

measured by immunoblot in extracts of muscle tissues transfected with ROCK K121G or 

sham-treated. Expression of ROCK K121G (n=6) or treatment with H-1152P (n=6) 

significantly inhibited ACh-induced Pak Thr423 phosphorylation. B. Pak1 (left) or ROCK1 

(right) was immunoprecipitated from extracts of canine tracheal smooth muscle tissues 

stimulated for 5 min with ACh or unstimulated (US). Tissues were treated with H-1152P to 

inhibit ROCK activation or not treated. Co-immunoprecipitation of ROCK1 with PAK1 

increased after contractile stimulation with ACh in tissues not treated with inhibitor, and was 

significantly inhibited in tissues treated with H-1152P (n=5 (left) or 3 (right).  
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Figure 8. ROCK regulates the activation of cdc42 and N-WASp in response to ACh stimulation 

in airway smooth muscle tissues. A. Activated cdc42 (cdc42-GTP) was affinity-precipitated 

from extracts of unstimulated and ACh-stimulated muscle strips, and the amount of activated 

cdc42 precipitated from each extract was quantified by immunoblot. Activated cdc42 was 

significantly higher in extracts from 10-M ACh stimulated sham-treated tissues than from 

ACh stimulated tissues expressing ROCK K121G (n=3). H-1152P also inhibited the 

activation of cdc42 (n=3). B. N-WASp Tyr256 phosphorylation measured by immunoblot in 

extracts of muscle tissues. Expression of ROCK K121G (n=5) or ROCK inhibition with H-

1152P (n=5) significantly inhibited ACh-induced N-WASp phosphorylation in tracheal 

smooth muscle tissues. Values are means ± SEM.* Significant difference between treatments, 

p< 0.05. 
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Figure 9. Proposed mechanism for the role of ROCK in the regulation of Pak activation 

and the assembly of a multiprotein adhesome complex in airway smooth muscle. A,B. 

Molecular mechanisms for the regulation of actin polymerization by ROCK in response to 

contractile stimulation: Contractile stimulation activates RhoA GTPase, which directly 

catalyzes the assembly and activation of NM myosin filaments that mediate the recruitment 

of paxillin/vinculin complexes and FAK to membrane adhesion sites (blue arrows). Paxillin 

is phosphorylated on Tyr 31 and Tyr118, which enables its coupling to N-WASp via the 

adaptor protein CrkII.  Cdc42 binds to the CRIB domain of N-WASp. RhoA also activates 

ROCK, which regulates the activation of Pak (red arrows). Pak then catalyzes the 

phosphorylation of paxillin on Ser273. Paxillin 273 phosphorylation promotes its interaction 

with the GIT1-βPIX-PAK complex by enabling the binding of paxillin to GIT1. βPIX acts as 

a GEF to regulate the activation of cdc42. Activated cdc42 catalyzes the activation of N-

WASp, which leads to actin polymerization by the Arp2/3 complex. B. Tension development 

requires concurrent activation of cellular processes that catalyze actin polymerization and 

crossbridge cycling. The polymerization of actin at the cortex of the cell and the fortification 

of the adhesome junctions facilitates the transmission of tension generated by contractile 

apparatus to the extracellular matrix when crossbridge cycling is activated by smooth muscle 

myosin RLC phosphorylation. 
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