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Abstract

Chronic exposure of pancreatic β-cells to abnormally elevated levels of free fatty acids can lead to 

β-cell dysfunction and even apoptosis, contributing to type 2 diabetes pathogenesis. In pancreatic 

β-cells, SIRT6 has been shown to regulate insulin secretion in response to glucose stimulation. 

However, what roles SIRT6 play in β-cells in response to lipotoxicity remain poorly understood. 

Our data indicated that SIRT6 protein and mRNA levels were reduced in islets from diabetic and 

aged mice. High concentrations of palmitate also led to a decrease in SIRT6 expression in MIN6 

β-cells and resulted in cell dysfunction and apoptosis. Knockdown of Sirt6 caused an increase in 

cell apoptosis and impairment in insulin secretion in response to glucose in MIN6 cells even in the 

absence of high palmitate. Furthermore, overexpression of SIRT6 alleviated the palmitate-induced 

lipotoxicity with improved cell viability and increased glucose-stimulated insulin secretion. In 

summary, our data suggest that SIRT6 can protect against palmitate-induced β-cell dysfunction 

and apoptosis.
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INTRODUCTION

The prevalence of type 2 diabetes mellitus (T2DM), a chronic metabolic disorder, has been 

increasing steadily all over the world (Doria, et al. 2008; Kahn, et al. 2006). The 

pathogenesis of T2DM is multifactorial, but insulin secretory deficiency due to reduced 

pancreatic β-cell mass or function is a major pathogenic factor (Muoio and Newgard 2008; 

Prentki and Nolan 2006). In the pre-diabetic stage, because of insulin resistance, islets 

respond to increased insulin demand with enhanced insulin secretion and expanded β-cell 

mass in order to maintain euglycemia by compensatory hyperinsulinemia. However, as 

T2DM ensues, β-cells exhibit decompensation, a defect that has been attributed to both β-

cell dysfunction and β-cell death (Weir and Bonner-Weir 2004). A common feature of the 

pre-diabetic stage is an excess of circulating lipids, especially saturated fatty acids, which 

impairs not only peripheral insulin sensitivity but also islet β-cell function (Weir and 

Bonner-Weir 2004). Acute exposure to elevated free fatty acids (FFA) increases β-cell 

proliferation and insulin secretion, whereas prolonged exposure to FFA inhibits insulin 

secretion and induces β-cell apoptosis (Biden, et al. 2004; Shimabukuro, et al. 1998). 

However, the underlying mechanisms responsible for the β-cell lipotoxicity remain 

incompletely understood.

The sirtuin protein family has seven members in mammals (SIRT1-7) (Dong 2012). SIRT6 

is a chromatin-associated deacetylase that specifically deacetylates histone H3 at lysine 9 

(H3K9), lysine 18 (H3K18), and lysine 56 (H3K56) residues (Michishita, et al. 2008; 

Michishita, et al. 2009; Tasselli, et al. 2016; Yang, et al. 2009). In recent years, SIRT6 has 

been identified to modulate many important cellular processes, such as DNA repair, tumor 

suppression, anti-inflammation, and metabolism. Sirt6-deficient mice display severe 

hypoglycemia and a multi-systemic aging phenotype and died around 4 weeks after birth 

(Mostoslavsky, et al. 2006; Xiao, et al. 2010). Interestingly, high-fat diet treated SIRT6 

transgenic mice secret more insulin in response to glucose compared with their wild-type 

littermates (Kanfi, et al. 2010). In our recent study, we have shown that deletion of Sirt6 in 

pancreatic β-cells in mice leads to impaired glucose-stimulated insulin secretion (GSIS). We 

have further identified that SIRT6 regulates insulin secretion by maintaining mitochondrial 

function and modulating intracellular Ca2+ dynamics (Xiong, et al. 2016). However, whether 

SIRT6 is involved in β-cell lipotoxicity remains unclear. The aim of this study was to 

illustrate the role of SIRT6 in palmitate (PA)-induced β-cell dysfunction and apoptosis.

MATERIALS AND METHODS

Cell culture and treatment

MIN6 cells between passages 15–20 were cultured in Dulbecco’s modified Eagle’s medium 

with 25mM glucose supplemented with 15% fetal bovine serum, 100U/ml penicillin, 

100ug/ml streptomycin, 2mM L-glutamine, and 50mM β-mercaptoethanol. Palmitic acid 

(Sigma-Aldrich) was conjugated with fatty-acid-free BSA prior to addition to cell culture. 

PA was dissolved in 99% ethanol to a concentration of 100mM, and then mixed with 10% 

BSA in serum-free high glucose DMEM to make a 4mM PA stock solution. The BSA-

conjugated PA was added to MIN6 cells at a final concentration of 0.4mM.
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Adenovirus transduction

Adenoviruses carrying SIRT6 or GFP were generated using pAdEasy system (Agilent) while 

adenoviral Sirt6 (mouse) or GFP shRNAs were generated using BLOCK-iT system 

(Invitrogen). Adenoviruses were amplified in HEK293A cells and purified by CsCl gradient 

centrifugation. The viruses were titered using QuickTiter adenovirus titer immunoassay kit 

(Cell Biolabs) according to the manufacturer’s protocol. Generally, we used 25–50 

multiplicity of infection (MOI) for overexpression and 50–100 MOI for shRNA knockdown 

experiments.

Real-time RT PCR

Total islet RNA samples were prepared by using Trizol reagent (Invitrogen) and converted 

into cDNA using a cDNA synthesis kit (Applied Biosystems). Real-time PCR analysis was 

performed using SYBR Green Master Mix (Promega) in an Eppendorf Realplex real-time 

PCR system.

Western blotting

Protein extracts from cells were made in tissue lysis buffer (50mM Hepes, pH 7.5, 150mM 

NaCl, 10% glycerol, 1% Triton X-100, 1.5mM MgCl2, 1mM EGTA) and an additional 

protease cocktail tablet from Roche at one tablet/10ml final buffer volume. Protein extracts 

were resolved on an SDS-PAGE gel and transferred to nitrocellulose membrane (Santa Cruz 

Biotechnology). The membrane was incubated with the following antibodies: Sirt6 (Sigma-

Aldrich), Actinin (Santa Cruz Biotechnology), Ac-H3K9, Cleaved Caspase 3 (Cell Signaling 

Technology). Detection of proteins was carried out by incubation with HRP-conjugated 

secondary antibodies, followed by ECL detection reagents (Thermo Fisher Scientific).

Insulin secretion assay

On the day of experiment, MIN6 cells were pre-incubated with secretion assay buffer (SAB; 

114mM NaCl, 4.7mM KCl, 1.2mM KH2PO4, 1.16mM MgSO4, 20mM HEPES, 2.5mM 

CaCl2, 25.5mM NaHCO3, 0.2% BSA, pH 7.2) containing 2.5mM glucose for 1h. After 

removal of the incubation medium, cells were then incubated for 1h in SAB containing the 

indicated glucose concentrations. Incubation medium was then collected and the amount of 

secreted insulin was analyzed using a mouse insulin ELISA kit (ALPCO). Protein 

concentration was determined by BCA protein assay kit (Thermo Fisher Scientific) and used 

to normalize insulin levels.

MTT assay

MIN6 cells were seeded in 96-well plates with 5×104 cells per well. The cells were exposed 

to 0.4mM PA treatment or transduced with indicated adenoviruses for the indicated periods 

of time. Cell viability was determined by the 3-[4, 5-dimethylthiazol-2-yl]-2, 5-

diphenyltetrazolium bromide (MTT) kit (Sigma-Aldrich) according to the manufacturer’s 

protocol.
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Statistical analysis

All data are presented as means ± SEM. Analysis was performed using 2-tailed unpaired 

Student’s t-test for two-group comparisons and one-way ANOVA for multiple-group 

comparisons, and p<0.05 was considered as significant.

RESULTS

SIRT6 is decreased in both diabetic and aged pancreatic islets

Our recent study has shown that Sirt6 deletion in β-cells results in β-cell dysfunction (Xiong 

et al. 2016), so we were curious about the SIRT6 status under diabetic and aging conditions. 

The leptin receptor mutant db/db mouse is a widely used type 2 diabetic mouse model. We 

analyzed SIRT6 protein levels in isolated islets from the db/db and control wild-type mice, 

and the data showed that SIRT6 protein levels were decreased in the db/db islets as 

compared to controls (Fig. 1A). As a substrate of SIRT6, acetylated H3K9 was elevated in 

the db/db islets (Fig. 1A). Since SIRT6 has been recently identified as an important regulator 

of aging, we also checked whether SIRT6 is altered in the aged pancreatic islets. Indeed, 

SIRT6 protein levels were decreased in aged mouse islets as compared to young controls 

(Fig. 1B). Consistently, acetylated H3K9 was also elevated in the aged islets as expected 

(Fig. 1B).

Palmitate decreases Sirt6 expression in mouse islets and MIN6 cells

As shown in Fig. 1, Sirt6 expression is down-regulated in islets from diabetic or aged mice. 

Since hyperlipidemia is one of the common features of type 2 diabetes, we also examined 

Sirt6 expression in mouse islets exposed to PA (0.4mM) for 72hrs. SIRT6 protein levels in 

the mouse islets were decreased after 72hrs of PA treatment relative to the controls (Fig. 

2A). To further assess the effect of PA on SIRT6 gene expression in pancreatic β-cells, 

MIN6 cells were treated with 0.4mM PA. As shown in Fig. 2B, Sirt6 mRNA levels were 

significantly reduced in MIN6 cells exposed to PA for 48hrs. The western blot data also 

confirmed that PA treatment decreased SIRT6 protein in a time-dependent manner (Fig 2C, 

D). As expected, acetylation of the H3K9 residue was elevated after the PA treatment (Fig. 

2C, D). It is known that lipotoxicity can ultimately lead to β-cell dysfunction and apoptosis 

(Janikiewicz, et al. 2015; Sharma and Alonso 2014). To investigate the lipotoxic effect of PA 

on MIN6 cells, we further examined glucose-stimulated insulin secretion (GSIS) and cell 

viability in MIN6 cells in the presence or absence of PA. As shown in Fig. 2E, MIN6 cell 

viability was significantly decreased after exposure to PA for 48hrs. As expected, a 

significant induction of cleaved caspase 3 by PA was observed. Consistent with the previous 

studies, although PA treatment did not reduce the basal insulin secretion in MIN6 cells, high 

glucose-stimulated insulin secretion was remarkably attenuated. As shown in Fig. 2F, PA-

treated MIN6 cells secreted ~30% less insulin compared with BSA-treated MIN6 cells when 

stimulated with 16.7mM glucose.

Sirt6 knockdown in MIN6 cells leads to cell apoptosis and insulin secretory impairment

To verify whether Sirt6 deficiency can lead to apoptosis in MIN6 cells, we performed Sirt6 
knockdown by transduction with Sirt6 shRNA adenoviruses. Sirt6 knockdown was 
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confirmed by western blot analysis (Fig. 3A, B). As expected, Sirt6 knockdown in MIN6 

cells increased the levels of Ac-H3K9 and cleaved caspase 3 (Fig. 3A, B). Moreover, PA 

treatment further exaggerated the elevation of Ac-H3K9 and cleaved caspase 3 induced by 

Sirt6 knockdown (Fig. 3A, B). Consistently, Sirt6-deficient MIN6 cells exhibited decreased 

cell viability and impaired GSIS even without PA treatment (Fig. 3C, D).

SIRT6 protects MIN6 cells against palmitate induced cell apoptosis and insulin secretory 
defects

To examine whether SIRT6 can protect MIN6 cells from lipotoxicity, we overexpressed 

SIRT6 in MIN6 cells by adenoviral transduction. Overexpression of SIRT6 in MIN6 cells 

under regular culture conditions exhibited no effect on cell survival and insulin secretory 

capacity (Fig. 4A–D). However, after 48hrs of PA treatment, SIRT6 overexpression resulted 

in reduced caspase 3 activation and enhanced cell viability (Fig. 4A–C). Moreover, 

overexpression of SIRT6 improved insulin secretory capacity in response to glucose 

stimulation in PA treated MIN6 cells compared to control GFP (Fig. 4D).

DISCUSSION

Hyperlipidemia is known to cause β-cell dysfunction, which is characterized by impaired 

GSIS and increased apoptosis (Janikiewicz et al. 2015; Sharma and Alonso 2014). 

Individuals with T2DM have elevated levels of palmitate, which is one of the most prevalent 

saturated fatty acids in the circulation and has been linked to functional impairment of 

pancreatic β-cells (Kharroubi, et al. 2004). Several molecular processes associated with 

lipotoxicity in β-cells have been reported, including endoplasmic reticulum (ER) stress, 

mitochondrial dysfunction, increased reactive oxygen species (ROS), elevated ceramide, and 

impaired autophagy (Janikiewicz et al. 2015; Sharma and Alonso 2014).

SIRT6 is primarily characterized as a nuclear NAD+-dependent deacetylase of histone 

H3K9, H3K18, and H3K56 (Michishita et al. 2008; Michishita et al. 2009; Tasselli et al. 

2016; Yang et al. 2009). SIRT6 has been implicated in diverse cellular functions including 

anti-inflammation, metabolic homeostasis, stress resistance and tumor suppression (Kugel 

and Mostoslavsky 2014). In this study, we have examined the role of SIRT6 in protection 

against PA-induced β-cell lipotoxicity. Our data reveal that SIRT6 expression is significantly 

decreased not only in PA-treated MIN6 cells but also in diabetic and aged mouse islets. 

Knockdown of Sirt6 in MIN6 cells increases cell apoptosis and impairs GSIS whereas 

overexpression of SIRT6 protects β cells from apoptosis and improves insulin secretory 

capacity in response to glucose.

We have demonstrated in our previous work that Sirt6 knockout in pancreatic β-cells reduces 

ATP production and increases mitochondrial damage (Xiong et al. 2016). Mitochondrial 

oxygen consumption rates (OCR) are significantly decreased in Sirt6 knockdown MIN6 

cells as well (Xiong et al. 2016). Consistent with our findings, mitochondrial defects have 

been also observed in Sirt6 knockout mouse ES cells and Sirt6-knockout breast cancer cells 

(Choe, et al. 2015; Zhong, et al. 2010). Chronic PA exposure induced β-cell dysfunction and 

apoptosis is partly mediated by mitochondrial dysfunction (Janikiewicz et al. 2015). Thus, it 

Xiong et al. Page 5

J Endocrinol. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is likely that SIRT6 may exert its protective effect against the PA-induced β-cell dysfunction 

through regulation of mitochondrial function.

Oxidative stress generated by fatty acid oxidation has been considered to be involved in the 

pathogenesis of PA-induced β-cell dysfunction and apoptosis (Janikiewicz et al. 2015). A 

recent report has shown that SIRT6 can protect human mesenchymal stem cells from 

oxidative stress through regulation of nuclear factor erythroid 2-related factor 2 (NRF2) 

(Pan, et al. 2016). SIRT6−/− hMSCs exhibit elevated ROS, dysregulated redox metabolism 

and increased sensitivity to oxidative stress. Mechanistically, SIRT6 acts as a trans-activator 

of transcription factor NRF2 to modulate the expression of genes involved in antioxidant 

pathway (Pan et al. 2016). However, whether SIRT6 also plays an anti-oxidative stress role 

in pancreatic β-cells is unclear.

Autophagy, a self-degradative process, has been shown to play a protective role in the PA-

induced death of β-cells (Lee 2014; Watada and Fujitani 2015). Interestingly, several studies 

have demonstrated that SIRT6 functions as a positive regulator of autophagy in some cell 

types, such as bronchial epithelial cells, cardiomyocytes and neurons. In these cells, SIRT6 

regulates the autophagy process via inhibiting the AKT activity (Lu, et al. 2016; Shao, et al. 

2016; Takasaka, et al. 2014). Considering a critical role of autophagy in PA-induced β-cell 

dysfunction, it is reasonable to postulate that SIRT6 may exert a protective effect against the 

PA-induced β-cell dysfunction and apoptosis through modulation of autophagy.

In summary, our data suggest that SIRT6 plays a critical role in the protection of pancreatic 

β-cells from lipotoxicity-induced cellular dysfunction or even cell death. These findings are 

significant in T2DM as dyslipidemia is often associated with the pathogenesis of this type of 

diabetes. A decrease in SIRT6 protein or activity in β-cells may contribute to the T2DM 

development. Targeting SIRT6 may be useful for therapeutic development in the treatment 

of T2DM.
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Figure 1. SIRT6 is decreased in diabetic and aged islets
A: Western blot analysis of SIRT6 and Ac-H3K9 in islet extracts of 5-month-old wild-type 

and db/db mice (n=3 per group, islets were pooled from 3 mice per genotype). B: Western 

blot analysis of SIRT6 and Ac-H3K9 in islet extracts of young (2-month-old) and aged (18-

month-old) mice (n=2 per group, islets were pooled from 3 mice per genotype).
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Figure 2. Palmitate exposure decreases Sirt6 expression in islets and MIN6 cells and leads to cell 
dysfunction and apoptosis
Mouse islets or MIN6 cells were treated with 1% BSA (BSA) or 0.4mM palmitate (PA) 

complexed to 1% BSA. A: Western blot analysis of SIRT6 and Ac-H3K9 in mouse islets 

exposed to PA for 72hrs (n=2 per group, islets were pooled from six 2-month-old C57BL/6J 

male mice). B: Real-time PCR analysis of Sirt6 mRNA in MIN6 cells treated with PA for 

48hrs. C and D: Western blot (C) and densitometric analysis (D) of SIRT6, Ac-H3K9 and 

cleaved caspase 3 in MIN6 cells exposed to PA at indicated time points. E: MIN6 cell 

viability upon PA treatment for various time periods was analyzed by MTT assay. F: MIN6 

cells were incubated with PA for 48hrs, and then GSIS was analyzed. n=3 per group for all 

the experiments. Data are presented as mean ± SEM. *p<0.05 vs (B, D) BSA, vs (E) 0hr, vs 

(F) 16.7mM BSA.
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Figure 3. Knockdown of Sirt6 increases cell apoptosis and impairs glucose stimulated insulin 
secretion in MIN6 cells
MIN6 cells were transduced with shSirt6 or control shGFP adenoviruses for 48hrs. A and B: 

Western blot (A) and densitometric analysis (B) of SIRT6, Ac-H3K9 and cleaved caspase 3 

in MIN6 cells. C: MIN6 cell viability was measured by MTT assays. D: GSIS was analyzed 

in control and Sirt6 knockdown MIN6 cells. n=3 per group for all experiments. Data are 

presented as mean ± SEM. *p<0.05 vs palmitate + shGFP; § p<0.05 vs BSA + shSirt6.
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Figure 4. Overexpression of SIRT6 protects against PA-induced cell apoptosis and GSIS 
impairment
MIN6 cells were transduced with SIRT6 or control GFP adenoviruses. 4hrs later, medium 

was changed and cells were treated with 1% BSA or 0.4mM PA for 48hrs. A: Western blot 

of SIRT6, Ac-H3K9 and cleaved caspase 3. B: Quantification of relative levels of Ac-H3K9 

and cleave caspase. C: MIN6 cell viability was measured by MTT assays. D: GSIS was 

analyzed in the absence or presence of 0.4mM PA. n=3 per group for all the experiments. 

Data are presented as mean ± SEM. *p<0.05 vs palmitate + GFP.
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