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Abstract
Connections between the hippocampus (HC) and medial prefrontal cortex (mPFC) are critical for working memory; however,
the precise contribution of this pathway is a matter of debate. One suggestion is that it may stabilize retrospective memories
of recently encountered task-relevant information. Alternatively, it may be involved in encoding prospective memories, or the
internal representation of future goals. To explore these possibilities, simultaneous extracellular recordings were made from
mPFC and HC of rats performing the delayed spatial win-shift on a radial maze. Each trial consisted of a training-phase (when
4 randomly chosen arms were open) and test phase (all 8 arms were open but only previously blocked arms contained food)
separated by a 60-s delay. Theta power was highest during the delay, and mPFC units were more likely to become entrained to
hippocampal theta as the delay progressed. Training and test phase performance were accurately predicted by a linear
classifier, and there was a transition in classification for training-phase to test-phase activity patterns throughout the delay on
trials where the rats performed well. These data suggest that the HC and mPFC become more strongly synchronized as mPFC
circuits preferentially shift from encoding retrospective to prospective information.
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Introduction
Working memory is characterized by the ability to transiently
maintain and manipulate information used to guide a forth-
coming response (Baddeley and Hitch 1974). Working memory
tasks typically consist of 3 phases; an initial training-phase
where task-relevant information is sampled, a delay phase

where the information is transiently retained and/or manipu-
lated, and a final test/response phase where previously acquired
information is used to guide a forthcoming response. Increases in
neural firing in prefrontal cortex (PFC) during the delay period of
these tasks have been interpreted as the neural basis for the tran-
sient storage of a mnemonic trace necessary to guide behavior
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(Goldman-Rakic 1996; Funahashi 2015). However, other explana-
tions for this delay-period activity have been advanced (Tsujimoto
and Postle 2012; Lara and Wallis 2015), including the suggestion
that these firing patterns may be involved in the allocation of cog-
nitive resources through the monitoring and selection of task-rele-
vant representations in other brain regions (Curtis and D’Esposito
2003; Postle 2006). Accordingly, activity in PFC is critical for the
maintenance of mnemonic and spatial representations in poste-
rior parietal cortex or hippocampus (HC) (Chaffe and Goldman-
Rakic 2000; Kyd and Bilkey 2003; Harvey et al. 2012).

Two cognitive strategies have been implicated in the efficient
allocation of cognitive resources throughout a delay. The first is a
retrospective strategy by which subjects retain a memory of previ-
ously acquired information that can subsequently be used to
deduce the correct action during test/response phase, while the
second is a prospective strategy where subjects formulate a future
action plan and maintain it throughout the delay (Cook et al.
1985). These separate strategies appear to involve common neural
circuits, including the PFC and HC in humans (Mok 2012; Brown
et al. 2016) and rats (Kesner 1989; Floresco et al. 1997; Ferbinteanu
and Shapiro 2003; Churchwell and Kesner 2011; Horst and
Laubach 2012; Han et al. 2013). Furthermore, neurophysiological
data are consistent with both retrospective and prospective code
in the 2 regions as the persistent delay-period activity in the rat
and primate PFC contains information about previously presented
stimuli as well as anticipated stimuli, goals, or actions (Rainer
et al. 1999; Watanabe and Funahashi 2004; Luk and Wallis 2009;
Horst and Laubach 2012; Hyman et al. 2013; Matsushima and
Tanaka 2013). Likewise, rat hippocampal place cells “replay” past
maze locations (Louie and Wilson 2001; Foster and Wilson 2006;
Karlsson and Frank 2009) and fire in anticipation of future choice
trajectories (Ferbinteanu and Shapiro 2003; Itskov et al. 2008;
Pfeiffer and Foster 2013; Catanese et al. 2014; Redish 2016).
Neurons in the rat mPFC also represent future trajectories on a
maze (Ito et al. 2015) suggesting that prospective coding of spatial
locations may be simultaneously maintained in both regions.

Information transfer between the HC and mPFC is likely to
require synchronized neural activity, especially in the theta-band.
Theta-band coherence and entrainment of mPFC firing to HC
theta oscillations (~7–8Hz; phase-locking) is enhanced during the
delay and choice periods of working memory tasks (Johnson et al.
2007; Hyman et al. 2010; Jadhav et al. 2012; Hallock et al. 2016). It
has been argued that this type of entrainment may mainly sub-
serve a retrospective memory function, acting to stabilize mne-
monic representations in cortex (Colom et al. 1988; Paré and
Gaudreau 1996; Frank et al. 2001; Berke et al. 2004; Siapas et al.
2005; Kayser et al. 2009). Alternatively, other data are more consis-
tent with a prospective coding function as rat mPFC neurons
exhibit robust phase-locking to HC rhythms during choice epochs
just prior to the initiation of responses (Johnson et al. 2007;
Hyman et al. 2010), which coincides with prospective activity in
hippocampal place cells (Johnson et al. 2007), therefore, suggesting
a prospective role. Likewise, in humans, the covariance of HC and
PFC activity is associated with the representation of future goal
locations (Bähner et al. 2015; Brown et al. 2016). While HC–mPFC
interactions have been implicated in both retrospective and pro-
spective memory functions, the question of how retrospective
versus prospective information is parsed and dynamically trans-
ferred between the areas is unknown.

In the present study, rats were implanted with arrays of
electrodes in both the dorsal HC and the anterior cingulate cor-
tex (ACC) portion of the mPFC, and the temporal dynamics of
the interactions across these brain regions were analyzed dur-
ing the performance of a delayed spatial win-shift (DSWS) task

on a radial arm maze. The DSWS task was chosen because the
memory load required to complete the task is high and retro-
spective and prospective strategies act to help reduce the load
at different points during the task. Although seeking equiva-
lence between frontal cortical areas among mammalian species
is “unrealistic” (Passingham and Wise 2012), the rat mPFC does
appear to exhibit certain aspects of functional homology with
both the ACC and dorsolateral PFC of primates (Seamans et al.
2008). On this task, inactivation of the connection between the
HC and mPFC severely disrupts performance (Floresco et al.
1997). Here, we assessed how HC rhythms interacted with the
activity of mPFC neurons during the delay period of the DSWS
and evaluated whether information carried by this pathway
during the delay period was more consistent with a retrospec-
tive versus prospective memory code.

Materials and Methods
Behavior and Recordings

Data acquisition and behavioral assessments were performed as
previously described (Lapish et al. 2008). Animals were treated in
accordance with the ethical guidelines endorsed by the University
of British Columbia and Canadian Council for Animal Care. Briefly,
the DSWS consisted of 3 phases (Fig. 1A). Prior to the start of a trial,
4 arms were randomly selected and baited with 125 μl of chocolate
milk placed in plastic food cups located at the ends of the arms.
The remaining 4 arms were blocked by removable doors.
Configurations containing 3 or more adjacent open or blocked arms
were never used. In the first phase of the task, known as the train-
ing-phase, the animals collected the rewards from the 4 open arms.
Upon visiting the last baited arm, the arm door closed behind the
animal locking them in this arm for the ensuing 60- to 90-s “delay”
phase with the room lights extinguished. After the delay phase, the
room lights were illuminated and the “test phase” commenced.
In the test phase, all arms were open but only those previously
blocked during the training-phase contained chocolate milk reward.

After performing the task for 2 consecutive days with 1 error
or less, rats were implanted with the recording arrays. In total, 5
male Long–Evans rats had static 2 × 12 arrays of single electrodes
(diameter = 25 μm, impedance = 150–300 kOhm, California Fine
Wire) implanted into the mPFC spanning 1.8mm of anterior–pos-
terior axis of the structure Cg1 field (A/P 2.2mm, M/L 0.8mm, D/V
2.5mm to bregma and offset 10° from the vertical). A single elec-
trode was also implanted in dorsal HC CA1 field (AP −3.6mm, ML
2.0mm, DV −2.5mm). This location was chosen to be consistent
with previous studies of HC-PFC synchrony (Jones and Wilson
2005; Siapas et al. 2005; Hyman et al. 2010) as well as in accor-
dance with data indicating a stronger association of dorsal HC
function with cognitive processing (Fanselow and Dong 2010).

After recovery, the arrays were connected via a pre-amplifer
headstage, tether and commutator to Lynx 8 amplifiers and a
Neuralynx Cheetah 32 channel recording system (Neuralynx).
Voltage data were sampled at 30 303Hz and amplified 10 000×.
The mPFC electrode with the least spiking activity was selected
for LFP recordings and referenced to a distal ground screw placed
posterior to lambda. The remaining electrodes were referenced
locally. The threshold for spike detection was set to 50 μV, which
corresponded to ~5× of the RMS portion of the voltage signal. The
movement of the animal on the maze was detected via image
processing software (Noldus EthoVision) that captured the center
of mass of the animal in x–y coordinates and transferred this
information via voltage signals fed directly into the Neuralynx
recording system. Movement data were sampled at 6Hz.
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All behavior was analyzed offline. The “reward time” was
defined as the latency to travel from an arm door threshold
(i.e., the corner between the center platform and the arm) to
the reward cup at the end of the arm (Fig. 2C1). Movement
velocity was calculated as Euclidean distance between adjacent
coordinates of the rat location in Cartesian space per second
(Fig. 2C2). Errors during the test phase were defined as any
entry into arms visited previously during the training-phase or
any arm re-entry during the test phase (Seamans et al. 1995). In
order to examine the factors associated with poor performance
on the maze, trials were split into those with poor versus good
performance. Trials on which rats made 3 or more errors during
the test phase or trials in which the combined duration of
training and test phases exceeded 5min were classified as poor
performance trials (Lapish et al. 2015). Twenty-seven of 48 trials
were classified as good performance trials (3 from rat 1, 5 from
rat 2, 7 from rat 3, 7 from rat 4, and 5 from rat 5), whereas the
remaining were classified as poor performance trials (9 from rat
1, 1 from rat 2, 3 from rat 3, 4 from rat 4, and 4 from rat 5).

Analysis of Neural Activity

Summary
Briefly, raw neural recordings were split into 2 analysis pipe-
lines. In one pipeline, spikes were extracted to obtain timelines

of activation for individual single units. In the other pipeline,
raw data were down-sampled, detrended, and denoised to
obtain the local field potential signals. Multitaper spectrograms
were constructed to quantify the power of theta oscillation,
and the phase of theta at the times of spikes was collected to
quantify phase-locking.

Spike Sorting and Denoising
Spikes were sorted offline using a combination of principal
component analysis (PCA), wavelet, and spike characteriza-
tion features using Simpleclust software (github.com/open-
ephys/simpleclust). Since we used single wire electrodes, only
well-isolated single units were included in the analysis. To
obtain local field potentials, raw data were down-sampled by
decimation to 6000 Hz and filtered using inverse fast Fourier
transform to remove line noise at 60, 120, and 180 Hz ± 2 Hz
(Zanos et al. 2011). Finally, a running line fit was subtracted
from data denoised in this manner using local linear regres-
sion with a moving window of 100ms and step of 5ms (Mitra
and Bokil 2007) in order to remove any slow changes in volt-
age that could affect the estimation of theta phase and power.
These steps were performed to ensure that the signal used for
estimation of phase and power was as free of artifacts or
noise.

A B1

D1

1 sec

0
.1

 V

D2

D3

D4

D5

B2

C1

C2

HC

mPFC

Figure 1. Task description and examples of theta-band activity. (A) In the DSWS task, 4 of the 8 maze arms are open during the training-phase. After all available

rewards are consumed, and after a 60–90 s delay, the previously blocked arms are opened during the test phase. (B) 24 single wires were implanted in mPFC and one

LFP electrode in HC. (C) Both mPFC and HC field potentials feature a strong peak in theta-band (blue shading) power (C1) and coherence (C2). (D) Example LFPs (D1,

D2), time-frequency decompositions (D3, D4), and spike trains (D5).
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Spectral Analysis
For spectral analyses including power and coherence, multitaper
decomposition was applied to detrended and denoised data
using 5 tapers and time-bandwith product of 3 using the “chron-
ux” software package for MATLAB (Mitra and Bokil 2007). A mov-
ing window with a width of 10 s and a 0.2 s step was used for
extraction of theta-band components between 7 and 8.5Hz,
which matched the observed theta peak in HC and mPFC spectra
(Fig. 1C1–2), as well as coherence (black horizontal lines, Fig. 3A–D).
Two-dimensional histograms of average theta and running
speed were smoothed for plotting using 2-dimensional splines
(Fig. 2C1–3) (Garcia 2010). The relationship between movement
velocity and theta power (Fig. 2C4) was examined on data from
all experiments excluding one outlier (n = 51) by computing the
autocorrelation normalized cross-correlation via the “xcorr”
function in MATLAB. The mean power in these frequency bands
was used as a measure of theta power over time. To standardize
the amount of time included in the analyses across data sets,

each analysis was restricted to the shortest amount of time
(across all animals) taken to complete the training or test phase
(13.5 s). Inclusion of all the data did not change the pattern of
theta power (not shown). Bins in which overall power exceeded
2.5 standard deviations of mean values, possibly indicating tran-
sient movement-related noise, were excluded. Comparisons of
power and coherence by task-phase were based on mean values
of z-scored theta multitaper values over the entire epochs, and
were analyzed across task phases by repeated measures
ANOVA. In order to track long-term changes in theta power
throughout delay periods, the delay theta-band LFP power was
divided into 1-s bins. Slopes of changes of power across the
delay were quantified using linear regression.

Phase-Locking
For phase analysis, field potentials were filtered between 5 and
10Hz using a forward and reverse Parks–McClellan finite
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impulse response filter in order to preserve theta wave shape
(Siapas et al. 2005). Arctangent of the real and imaginary parts
of Hilbert transform provided instantaneous phase information
with 6 kHz resolution, and the instantaneous phases were col-
lected at the times when spikes occurred. Phase-locking was
quantified by computing Rayleigh’s Z statistic and the associ-
ated P-value (Berens 2009). First, significantly entrained units
(P < 0.05) were identified using data from the entire delay
period. Then, Rayleigh’s Z statistic was computed for the first
and last 30 s of the delay period on these units as follows:

= ( )Z nR
n

2
, where n is the number of spikes and R is the resultant

vector length of theta angles, = ∑( ( α))
∑

⁎
R w i

w
exp , where w is num-

ber of incidences of angles, α.

Principal Components Analysis
In order to identify the main patterns of firing rate variance
across the delay, the task was subdivided into the last 20 s of
the training-phase, the entire delay period, and the initial 20 s
of the test phase. These periods were then separated into 1ms
bins and each bin was assigned either a value of one if it con-
tained a spike or a 0 if it did not. This binary spike count vector
for each neuron was then convolved with a Gaussian kernel
having a standard deviation of 100ms. Convolved spike count
vectors from all neurons within a trial were then combined and
subjected to PCA. PC1 and 2 captured the main patterns of fir-
ing rate variance across the neurons through time. Neurons
most strongly exhibiting PC1 and PC 2 firing rate patterns were
identified as those expressing absolute loadings on PCs 1 and 2
that were in the top 33% of the population. Phase-locking of
these neurons was analyzed separately from the rest of the
population and these data are presented in Figure 5C1 and C2.
For comparison of broad firing rate trends in PC 2-affiliated
units during delay in good and poor performance trials (Fig. 5B),
spike times were binned at 1 s and subjected to a repeated

measures ANOVA. A baseline estimate of how much phase-
locking would be expected by chance was achieved by shifting
spike trains in a circular manner at a random time intervals
and repeating the phase-locking analyses 100 times for every
unit.

Decoding
To determine whether ensemble activity during the delay
period represented information about past training-phase
choices (i.e., retrospective coding) or forthcoming test-phase
choices (i.e., prospective coding), the following decoding analy-
ses were employed. Spike trains across the entire trial were first
binned at 1ms and convolved with a Gaussian kernel with a
standard deviation of 50ms. The decreased bandwidth of the
Gaussian kernel relative to the previous analysis was chosen in
order to detect faster changes in the neural trajectories. The
spike count vector for each neuron formed a single axis of a
multiple single-unit activity (MSUA) space and each point in
this MSUA space represented the spike count values of all neu-
rons during a single 1 s time bin of the task. Time bins were
then assigned to one of 2 classes depending on whether they
were extracted from the training (class 1) or the test (class 2)
phases. Linear discriminant analysis (LDA) was then applied to
these data in order to find the set of axes that maximally sepa-
rated the 2 classes.

LDA when performed on data with multiple features (i.e.,
single units) can be prone to over-fitting when trained on a sub-
set of data. The weighting of the potentially irrelevant features
may slightly improve the classification of one subset of data
while impairing the classification of other subsets (Kohavi and
Kohavi 1997). In order to identify the subset of single units
encoding the training/test phase distinction, while preventing
over-fitting, we performed forward sequential feature selection
using the “sequentialfs” function in MATLAB. Units were
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randomly selected and sequentially added to an LDA classifier,
which was trained using a random subset of data. Its perfor-
mance was evaluated using a different random subset (Kohavi
and Kohavi 1997; Lapish et al. 2008). The addition of units was
terminated when a classification error reached its first mini-
mum (e.g., green bar in Fig. 6A). In order to obtain the random
subsets, 10-fold cross-validation was performed via the
“sequentialfs“, “crossval”, and “cvpartition” functions in
MATLAB and implemented as follows. About 3877 time bins
from training-phase and 3877 from test phase over 55 recording
trials were used for classification. Each time bin contained the
average activation of every recorded neuron over a 1-s time
window. The spike counts for all neurons in these time bins
were then submitted to LDA classification. The classifier was
trained on 9 of the training/test phase time bin clusters and
was then used to predict whether the remaining time bin was
extracted from the training or test phase. This classification
was performed 50 times to obtain an estimate of classification
accuracy. The entire process was then repeated 300 times using
randomly selected subgroupings of neurons. Each repetition
yielded 300 predictions about task-phase membership for each
time bin, based on the differences in ensemble spike count pat-
terns for the training and test phases. The number of times the
classifier made the correct predictions was counted and the
subgrouping of neurons that achieved the highest prediction
accuracy was identified (e.g., Fig. 6A, green bar). Final classifica-
tion accuracy was reported after 50 more repetitions of 10-fold
cross-validation on the identified subgroup. The trained classi-
fier was then used to predict whether the spiking patterns for
time bins extracted from the delay phase were more similar to
patterns found in the training-phase versus the test phase.

To further verify LDA classification results, the same data
were analyzed using another independent means of classifica-
tion. For this analysis, we used vectors of neural activity pat-
terns from each data set independently in 1-s time windows (t)
over the delay (vt). To determine if mPFC activity during the
delay more closely resembled a training or test phase configu-
ration, we compared each vector in trials where more than 3
single units were recorded simultaneously (n = 28 trials) to the
average neural activity patterns during the training and test
phases. In order to do this, the Euclidean distance (dt) from
every vector (vt) to the average training configuration vtraining

was compared to the distance to the average test configuration
vtest : = − − −d v v v vt t ttraining test . The distance dt indicated
whether the delay vector at time t was more similar to the
training or test phase activity patterns. This was used to char-
acterize delay phase activity during poor versus good perfor-
mance trials (Fig. 6D). Slopes of change throughout the delay
were compared via ANCOVA for good and poor performance
trials. For comparison, theoretical Poisson processes exhibiting
the identical firing rate means and variances as the recorded
neurons were generated 100 times for poor and good perfor-
mance trials using standard fitting functions and again com-
pared using an ANCOVA.

Results
Theta Activity Increased to Arm Choices and Reward
Approach

Theta-band activity was prominent in HC and mPFC through-
out the task (Figs 1C1, 2A1–2A2) and field potentials in both
regions were highly coherent at the theta frequency (Fig. 1C2).
Increases in HC theta power were observed throughout the task

but were not precisely correlated with the time spent in a given
location (Fig. 2C1). However, a temporally delayed relationship
was observed related to the animal’s movement velocity
(Fig. 2C2). Bouts of theta tended to occur near the entrances to
maze arms and during movement from the entrance to the
reward cup (Fig. 2C3). Cross-correlation analysis of 10-s win-
dows centered on reward revealed that changes in HC theta
power throughout the entire task preceded peaks in movement
velocity by approximately 0.21 s (Fig. 2C4, maximum value of
average cross-correlation function). Peaks in HC theta power
tended to precede arrival at the food cup by about 2 s (Fig. 2D1,
D2; FDR-corrected 1-sample T-tests (Ho: μ = 0), P’s < 0.05 at all
times except when z-scored power approaches zero at ~ −0.75 s
before reward).

Theta Power, Coherence and Phase-Locking Increased
Throughout the Delay Period

Theta power was highest during the second half of delay period
and the test phase (Fig. 3D, main effect of task-phase,
RMANOVA, HC: F3,78 = 11.233, P = 3.33 × 10−6, mPFC: F3,78 = 13.7,
P = 2.84 × 10−7). Similarly, HC–mPFC coherence was also highest
in the second half of the delay (Fig. 3D, main effect of task-
phase, RMANOVA F3,78 = 4.16, P = 0.00871). Furthermore, 20% of
mPFC units (n = 180) were significantly phase-locked to the HC
theta rhythm (Fig. 4A) and similar to theta power and HC–
mPFC theta coherence, the phase-locking was also higher dur-
ing the second half of delay than the first half or during the
training-phase (Fig. 4B). Therefore, the largest changes in power
and coherence during the task arose specifically during the
delay period. This was the case even though the rats were
locked in an arm during the delay and their movements were
constrained.

Delay-dependent changes were most prominent during
trials where the animal’s performance was good (Fig. 3F). The
slopes of the of the regression line fit to theta power values
recorded throughout the delay were more positive on trials
with one or fewer test-phase errors (good performance trials)
than on trials with 3 or more test phase errors (poor perfor-
mance trials) (Fig. 3G, 2-way ANOVA, F1,94 = 8.24, P = 0.0051).
Likewise the increase in mPFC phase-locking to HC theta was
only observed on good performance trials (Fig. 4B, RMANOVA,
main effect of time, F3 ,417 = 6.45, P = 0.000281, performance ×
time interaction, F3 ,417 = 2.75, P = 0.0427). Therefore, if the ani-
mals were performing optimally, mPFC and HC theta became
stronger and more robustly synchronized later in the delay
period.

Distinct Network States are Observed in mPFC during
Delay and Test Phases

Since the relationship between HC and mPFC activity became
more robust during the second half of delay, we used PCA to
explore whether the main firing rate patterns of mPFC neurons
also evolved throughout the delay. PCA was performed on the
matrix containing all neurons from all trials (n = 710 single
units). The 2 top principal components (PCs) reflected distinct
temporal patterns of neural firing that changed throughout the
delay period. Specifically, the activity of neurons loading posi-
tively onto PC1 (Fig. 5A, black) were most prominent prior to
delay onset and again after test onset. In contrast, those posi-
tively loading onto PC 2 (Fig. 5A, green) changed their firing
rates progressively throughout the delay.
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Since PCA was run once on the data from all neurons and
trials, it was possible to compare how an individual PC varied
from one trial to the next. Overall, neural activity associated with
PC 2 activation was greater on good performance trials as com-
pared with poor performance trials (Fig. 5B, RMANOVA, main
effect of time, F5 9,13 865 = 3.16, P = 5 × 10−15, time × performance
interaction, F5 9,13 865 = 1.34, P = 0.041). We then tested whether
units most strongly contributing to this pattern also tended to be
those that were phase-locked to HC theta. Indeed, those single
units exhibiting the top one-third (33%) highest absolute loadings
on PC 2 (n = 237 single units) had higher phase-locking values
than neurons exhibiting the one-third lowest absolute loadings
on PC 2 (33%, n = 237 single units) (Fig. 5C, RMANOVA, main
effect of loading, F1 ,704 = 10.4, P = 0.0013). Thus, in trials where

performance was good, a unique activity pattern emerged that
was dominated by neurons whose spike rate and phase-locking
to HC theta increased progressively throughout the delay.

Evolution of Task-Phase Encoding Throughout the
Delay Period

The data presented above showed that firing and theta phase-
locking tended to increase throughout the delay, but did not indi-
cate whether the content of the information represented also
changed dynamically throughout the delay. To address this issue,
a LDA-based classification was implemented that classified the
patterns of activity across neurons in each trial as being more
similar to the activity expressed during the training (class 1), the

BA

Figure 4. m PFC units entrain to hippocampal theta in the second half of delay periods. (A) Example rose plots of mPFC units significantly entrained to hippocampal

theta. Data from entire trials with good performance are included. (B) mPFC units significantly entrained to HC theta get progressively more entrained as trial pro-

gresses to the second half of delay. This occurred only on trials with good test performance (B, left) but not poor test performance (B, right, Tukey’s multiple-

comparisons test, *P < 0.01, **, ***, P < 0.001).
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Figure 5. During good performance trials, a subpopulation of mPFC units transition to a reconfigured, theta-dominated state during delay. (A) The neural activity pat-

tern captured by the first PC identified neurons that decrease firing during the delay (black line, −20–0 s and 60–80 s). In contrast, another activity pattern was identi-

fied by PC 2 that initially decline at the onset of delay (0 s) and then continuously increased until the second half of delay (~30 s). (B) Neurons were split by task

performance, and firing rates were quantified in neurons that most heavily loaded onto PC 2, revealing a performance × time interaction. This indicates that increases

in firing in PC 2-associated neurons are most robust on good performance trials. (C). Units that most heavily load onto PC 2 are more entrained to theta than those

that load most weakly. This distinction is not evident in poor performance trials (main effect of PC, Tukey multiple-comparisons test, P < 0.01), thus indicating that

the emergence of phase-locking in this neural population is important for task performance. Data in B and C are presented as mean ± SEM.
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test (class 2), or the baseline (class 3) phase of the task. A cross-
validation procedure was used whereby the time bins used to
train the classifier were different from those used to test it (see
“Materials and Methods” section). Overall the classifiers were
good at determining which class (i.e., task-phase) a given ran-
domly chosen time bin belonged (Fig. 6A). In order to extract the
neurons that most accurately encoded task-phase, a procedure
known as sequential feature selection was used in which classi-
fier performance was evaluated when neurons were substituted
into and out of the ensemble. The results of sequential feature
selection classification procedure yielded a specific subset of sin-
gle units from each data set that optimally encoded task-phase
with an accuracy above 70% (Fig. 6A,B). Across all data sets this
resulted in 256 units that contributed to optimal classification. Of
these 256 neurons, 59 were those identified above that also
loaded strongly onto PC 2 and exhibited significant phase-locking
in the latter half of the delay. Given that the chances of finding a
neuron that loaded strongly onto PC 2 and that exhibited signifi-
cant phase-locking was 0.140 (n = 35) in the general population,

59 neurons are no more than what would be expected by chance
in a population of 256 (1-tailed binomial test, P = 0.311). In other
words, neurons accurately encoding task-phase information were
no more likely to exhibit an increase in firing and HC phase-locking
throughout the delay than neurons in the general population.

The preceding analysis identified a set of 256 neurons that
optimally encoded task-phase information when the bins to be
classified were derived from the baseline, training or test phases
of the task. Since a main goal of the present study was to deter-
mine how information was encoded during the delay phase of
the task, we next used the trained classifiers to ask which of
these 3 task periods did activity during the delay most resemble.
The assumption was that firing patterns resembling those
recorded during the training-phase would be indicative of retro-
spective code whereas firing patterns resembling those emerging
in the test phase would be indicative of prospective code. To
ensure that classification accuracy was not confounded by varia-
tions in behavior, trials were first divided based on the task per-
formance. The results revealed that activity during the delay

Figure 6. mPFC units that encode the distinction between training and test configuration gradually approach the test configuration during delay. (A) A representative

example of a data set with 28 units where feature selection was used to identify a subset of units that optimally decode the training and test phases. In this example,

the first 8 units minimized classification error (green). (B) The distribution of the number of units required to minimize classification error in all of the data sets.

(C) The outcome of the classification for every second of the delay period is shown for good (C1) and poor (C2) performance trials and corresponding average classifi-

cation across trials (C3, C4). Black squares and lines indicate that a neural activity pattern most resembling the test phase was identified in the 1 s window.

Conversely, green squares/lines indicate a neural activity pattern most representative of the training-phase. Finally, red squares/lines represent classification as simi-

lar to firing before start of the trial. (D) To identify if a neural activity pattern at a given time during delay more closely resembled the training or test phase configura-

tion, the Euclidean distance from each was quantified for 1 s windows in the delay. To determine which task-phase the neural activity pattern most closely

resembled, the difference between each of the preceding values was computed. In good performance trials, the units transitioned from a training-phase configuration

to the test phase configuration, but not on poor performance trials, thus indicating that remapping at the end of the delay was important for optimal task

performance.
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resembled both training-phase and test-phase activity patterns to
varying degrees across trials, but rarely resembled baseline activ-
ity (Fig. 6C). The fact that activity rarely resembled baseline activ-
ity indicated that both training and task-phase patterns were
truly unique and classifications were not being made randomly.
Overall across trials, bins early in the delay period were essen-
tially equally likely to be classified as belonging to class 1 (i.e., like
the training-phase activity pattern) as class 2 (i.e., like the test-
phase activity pattern). Yet later in the delay, it was more likely
that bins would be classified as being more similar to the test-
phase than training-phase pattern (Fig. 6C). A similar shift was
not detectable on trials where performance was poor as both pat-
terns were equally represented across the delay period. This sug-
gested that in trials where the animals performed well, there was
a shift from a mixed retrospective/prospective code to more of a
pure prospective code throughout the delay.

To statistically quantify this result, a different procedure was
used in which we calculated the Euclidean distance in the MSUA
spaces between the 2 task-phase activity-state clusters on a trial
by trial basis (see “Materials and Methods” section). When these
distances were compared using an ANCOVA, time (F1 ,1736 = 4.46,
P = 0.035) and time × performance interaction effects (F1 ,1736 = 4.68,
P = 0.031) were observed. In good performance trials, significantly
more bins were classified as resembling the training-phase pat-
tern in the first (n = 348) than the second half of the delay (n = 300,
χ2(N=837,DF=1) = 5.80, P = 0.0016) whereas there were more bins clas-
sified as belonging to the test phase pattern in the second half of
the delay (n = 490) than the first (n = 440, χ2(N=837,DF=1) = 6.05, P =
0.014). Therefore, a transition from the encoding of training to
encoding of test information appeared to be associated with suc-
cessful task performance in this subgroup of neurons. Finally, we
created a surrogate data set using a theoretical Poisson process
that generated a spike count matrix exhibiting the identical
means/variances to those of the recorded neurons during the
training and test phases of the task. While the first and second
moments of the spike count distributions were identical, the firing
patterns across the neurons at each time bin were random. We
then calculated the Euclidean distances between the theoretical
“training” and “test phase” clusters in the MSUA space and com-
pared them to the distances between the actual training-phase
and test phase clusters (Fig. 6D, dotted lines). Note that the means
of these randomly generated distances remained close to zero but
were different from those of single units (FDR-corrected paired t-
test, P < 0.05 in 96% of the time bins). On the other hand, mean
distances of actual data during good performance trials (Fig. 6D
left, solid line) increased steadily, indicating a gradual shift in the
ensembles to the test phase configuration during the delay period
(ANCOVA, time (F1 ,1736 = 4.46, P = 0.035) and time × performance
interaction effects (F1, 1736 = 4.68, P = 0.031)).

Discussion
The current study is the first to explicitly examine mPFC-HC
dynamics reflected retrospective versus prospective coding of
information during a delay period of a working memory task.
These data add to a number of previous studies that examined
the firing properties of neurons in the mPFC of animals per-
forming similar tasks (Jung et al. 1998; Pratt and Mizumori 2001;
Lapish et al. 2008, 2015; Balaguer-Ballester et al. 2011). Results
showed that a subpopulation of mPFC neurons increased their
firing and became entrained to HC theta rhythms during the
second half of the delay period. As the delay progressed,
ensemble activity also began to resemble the activity-state pat-
terns that would emerge during the forthcoming test phase.

These changes were only observed in trials with good behav-
ioral performance and, therefore, may represent a preparatory
process in which previously acquired information is used to
generate an optimal prospective foraging strategy.

Optimal foraging involves a mixture of both retrospective
and prospective coding strategies that depend on task demands
(Cook et al. 1985). A retrospective strategy is sufficient to per-
form a single phase working memory task without a delay, as
the rat need only remember the arms it visited previously
within the trial. Likewise, delayed working memory tasks that
involve only 2 choice alternatives could also be effectively
solved using primarily a retrospective strategy. However, using
an exclusively retrospective strategy to solve the 8-arm DSWS
task would be difficult as the rat would have hold in memory
each of the arms it visited during the training-phase as well as
the arms it visited during the test phase. To reduce memory
load, it is more efficient to maintain a prospective memory of
the 4 previously blocked arms that are to be visited during the
forthcoming test phase. This could then be augmented by using
retrospective memory to keep track of recent arm choices.

A long-standing view derived from the study of primate dor-
solateral PFC neurons, is that delay-period activity represents
the online maintenance of previously acquired information
(Funahashi et al. 1989; Baeg et al. 2003). In support of this view,
a recent study in rodents reported that inactivation of HC–
mPFC projection impairs task performance when delivered
prior to the sample but not choice phase of a delayed nonmatch
to position task (Spellman et al. 2015). However, other studies
have raised questions about the importance of mneumonic
representations in rat medial frontal cortex neurons (Horst and
Laubach 2012; Hyman et al. 2013) as well as whether working
memory arguments derived from the study of the primate dorso-
lateral PFC should be applied to the rat mPFC since the areas are
not strictly homologous (Passingham and Wise 2012). Our past
studies have shown that transient lesions of either the prelimbic
or anterior cingulate subregions of mPFC delivered at the end of
a 30-min delay period on the DSWS task both disrupted test
phase performance whereas the same lesions delivered immedi-
ately before or after the training-phase had no effect (Seamans
et al. 1995). Transient asymmetric inactivations of the prelimbic
cortex and HC at the end of the delay period also produced the
same impairment (Floresco et al. 1997). Therefore, during perfor-
mance of complex tasks that utilize prospective encoding of mul-
tiple items, information does appears to be transferred between
the HC and prelimbic cortex at the end of the delay, just prior to
the choice event. In the present study, when task performance
was optimal we observed that theta power and synchrony
between the HC and ACC were greatest at the end of the delay
period (Figs 3 and 4). Collectively, these data imply that syn-
chrony between the HC and both the prelimbic and ACC subre-
gions of mPFC are critical for optimal performance when choices
are made at the end of extended delay periods. Thus, the
changes in neural activity and synchrony observed herein may
reflect a preparatory process during the test phase as distinct
from earlier encoding of information or the maintenance of a ret-
rospective working memory trace. While this preparatory process
could reflect the formation of a trace of the to-be-selected test
phase arms it may also provide a much broader function. For
example, an animal preparing to forage at the end of the delay
would be required to use the rules of the task (e.g., win-shift) to
guide the selection of arms in the test phase. In this way, the
changes in neural activity patterns in mPFC at the end of the
delay might provide a mechanism to translate goal-states (e.g.,
obtain food) into the action plans required to achieve them.
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At a mechanistic level, increases in theta-band synchrony at
the end of the delay could optimize the information transfer
between the HC and mPFC (see Lisman and Idiart 1995).
Specifically, the synchronous neural firing of HC and mPFC
neurons along a theta cycle could promote spike time depen-
dent plasticity and the formation of functional assemblies
across the 2 brain regions (Miller 1991; Siapas et al. 2005;
Benchenane et al. 2010). Given the importance of the HC in the
memory for places, enhanced connectivity could transmit
the locations of the previously baited training-phase arms to
the mPFC. It is also possible that the HC provides more abstract
information to the mPFC about future options. For example,
multiple studies provided evidence of anticipatory activity in
the HC (Ferbinteanu and Shapiro 2003; Itskov et al. 2008;
Pfeiffer and Foster 2013; Catanese et al. 2014; Redish 2016).
During this “vicarious trial and error” encoding, HC place cells
fire in a manner consistent with “imagining” possible behav-
ioral paths at decision points of a maze (Johnson et al. 2007).
This is similar to the phenomenon observed here (Fig. 6) as the
activity of mPFC ensembles began to progressively resemble
the patterns that would emerge as the animal successfully for-
aged during the forthcoming test phase and would be precisely
the type of coding necessary to form a prospective memory
trace. Alternatively, or in addition, progressive increases in fir-
ing throughout a delay (Fig. 6) are thought to provide a “ramp-
ing”-based mechanism for interval timing (Durstewitz 1999;
Reutimann et al. 2004; Narayanan 2016). If this timing mecha-
nism were to integrate information from the HC about imag-
ined paths, it would allow mPFC ensembles to determine the
likely path and transit time to forthcoming rewards, which
could be provide vital information for optimizing foraging deci-
sions. In this sense, interactions between the HC and mPFC in
the form of delay period synchrony and the emergence of test-
phase activity-state patterns may reflect the neural basis of
“working with memory” (Moscovitch and Winocur 1992) or the
ability to take previously acquired information and use it to
flexibly generate a prospective plan of action.
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