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Abstract

Little is known about the factors that regulate the asymmetric division of cancer stem-like cells. 

Here we demonstrate that EGFL6, a stem cell regulatory factor expressed in ovarian tumor cells 

and vasculature, regulates ALDH+ ovarian cancer stem-like cells (CSC). EGFL6 signaled at least 

in part via the oncoprotein SHP2 with concomitant activation of ERK. EGFL6 signaling promoted 

the migration and asymmetric division of ALDH+ ovarian CSC. As such, EGFL6 increased not 

only tumor growth but also metastasis. Silencing of EGFL6 or SHP2 limited numbers of ALDH+ 

cells and reduced tumor growth, supporting a critical role for EGFL6/SHP2 in ALDH+ cell 

maintenance. Notably, systemic administration of an EGFL6-neutralizing antibody we generated 

restricted tumor growth and metastasis, specifically blocking ovarian cancer cell recruitment to the 

ovary. Together, our results offer a preclinical proof of concept for EGFL6 as a novel therapeutic 

target for the treatment of ovarian cancer.
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Introduction

While controversy persists regarding cancer stem-like cells (CSC), ALDH-expressing CSC 

have been linked with ovarian cancer chemotherapy resistance, disease recurrence (1–4) and 

metastasis (5). We reported an epithelial ovarian cancer (EOC) cell differentiation hierarchy 

consistent with a CSC model (1). Within this hierarchy, ALDH+CD133+ cells and 

ALDH+CD133− cells have the greatest cancer initiating capacity (2) indicating that ALDH+ 

cells are important for ovarian cancer biology.

Normal stem cells are closely associated with vascular cells in a “stem cell niche” (6,7). 

Like normal stem cells, CSC reside in a perivascular location (8)(9). Tumor vascular cells 

secrete “angiocrine” factors (10) which promote stem cell proliferation. Little is known 

about the vascular factors that regulate CSC. Two studies identified EGFL6 in tumor 

vascular cells of EOC (11,12). EGFL6 is a secreted protein (13) which regulates stem cell 

proliferation and differentiation in different biologic systems. EGLF6 regulates stems cells 

in hair follicle morphogenesis (14,15), stimulates endothelial cell migration/proliferation in 

a p-ERK-dependent manner during osteoblast differentiation (16), and promotes the 

adhesion and proliferation of stromal vascular cells during adipocyte differentiation and 

(17).

Herein we evaluate the role of EGFL6 in ovarian cancer. We find EGFL6 is expressed in 

tumor vascular cells and in some cancer cells. We demonstrate in vitro that EGFL6 induces 

ALDH+ ovarian CSC to undergo asymmetric division. EGFL6 signaling is mediated in part 

via integrin-dependent activation of the phosphatase SHP2 and pERK. EGFL6 or SHP2 

knockdown/inhibition is associated with a significant reduction in ALDH+ cells and a 

reduction in tumor growth. EGFL6 expression in vascular cells increases tumor growth and 

metastasis. EGFL6 blockade reduces cancer growth and reduces metastasis. Interestingly, 

EGFL6 blockade completely eliminated metastases to the ovary, suggesting that EGFL6 

might play a critical role in the recruitment of cancer cells to the ovary. Together, our results 

indicate that EGFL6 is a novel tumor and angiocrine factor that regulates ALDH+ cell 

asymmetric division, migration, and metastasis. EGFL6 thus represents a potential 

therapeutic target in ovarian cancer.

Materials and Methods

Primary tumor processing

All studies were approved by the IRB of the University of Michigan, and tumors were 

obtained with informed patient consent. All tumors were stage III or IV high grade serous 

ovarian or primary peritoneal cancer (HGSC). Single-cell isolation from tumor tissues and 

ascites were as described (2,18).

Cell culture, tumor sphere culture and treatment

Culture methods are detailed in supplemental methods.

Quantitative real-time PCR (qRT-PCR)

cDNA synthesis, PCR and primer information are described in supplemental methods.
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TMA staining

A tissue microarray (TMA) contained primary debulking tissues from 154 chemotherapy-

naïve ovarian cancer patients. 12.5%, 10.7%, 66.1%, and 10.7% patients had stage I–IV 

disease, respectively. Median age was 58 years (minimum, 30; maximum, 84). TMA 

sections were processed as described (2) with two anti-EGL6 antibodies (Sigma, 1:200; and 

a mouse anti-EGFL6 we generated, 1:400). Tumors were scored by two reviewers. Tumors 

were scored as EGFL6+ if vascular EGFL6 expression was detected in either primary tumor 

or metastatic sites. The method of Kaplan and Meier was used to estimate overall and 

recurrence-free survival. Follow-up time was calculated from the date of diagnosis/staging 

surgery until the date of first documented relapse or death. Data was censored at 5 years. 

The log-rank test was conducted to test for a significant difference (p<0.05) between groups. 

We used the Cox proportional hazards model to assess individual variable effect on time-to-

event outcome. Statistical programming was performed using R version 3.0.1.

Bioinformatics

For EGFL6-expression analysis in normal ovary and different ovarian cancer histologies, 

gene expression data were obtained from ONCOMINE (gene accession #NM_015507, 

Probe ID 219454_at, Hendrix dataset, Affymetrix HG_U133A array) (20). Detailed 

methodologies are provided in supplemental methods.

EGFL6-expressing cell lines

EGFL6 was cloned into p3xFlag and pRSV-GFP vectors. SKOV3 cells were transfected 

with EGFL6-p3xFLAG using FuGene 6 reagent (Promega) per protocol. EGFL6-expressing 

clones were selected by G418 treatment and confirmed by Western blotting with Flag 

antibody. Transduced cell lines expressing EGFL6 or control were obtained by lentiviral 

infection followed by FACS sorting of GFP-positive cells.

EGFL6 production

HEK293 cells were transiently transfected with EGFL6 or empty vector plasmid using 

FuGENE 6 reagent as above in RPMI-5% FBS. Supernatant was collected at 72hrs, EGFL6 

secretion was confirmed via Western blotting analysis, and supernatant used for cell 

treatment. For purification, cell lysates of transiently transfected HEK293 cells were loaded 

onto the FLAG M2 Affinity Gel (Sigma) column under gravity flow 4C, washed with TBS, 

and FLAG-EGFL6 protein eluted with 0.1 M glycine HCl, pH 3.5, and neutralized with 1M 

Tris, pH 8.0. Unless otherwise indicated, EGFL6 treatment in in vitro studies was daily for 

72hr.

Cell cycle analysis

SKOV3 cells were synchronized by serum starvation for 24hr, treated with EGFL6 or 

control for 24hr, fixed with ice-cold ethanol and washed with PBS, then stained with 

propidium iodide (10mg/ml) and RNase-A (100ug/ml) in PBS FACS analyzed by FlowJo.
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Flow Cytometry and Fluorescence-associated cell sorting (FACS)

FACS assay was performed. Briefly, SKOV3 cells or primary ovarian tumor/ascites cells 

were stained with DAPI and ALDEFLUOR (Stem Cell Technologies) as previously 

described (2). For FACS isolation, equal numbers of ALDH+ and ALDH(−) cells were 

collected for subsequent experiments.

Microfluidics Culture

Cells were FACS-isolated and loaded into the microfluidics device as previously described 

(21) and photographed to confirm ALDH expression. 12hr after loading, cells were treated 

with every 12hr EGFL6 or vehicle. After 48hr or 96hr of treatment (cell lines vs. primary 

cells, respectively), cells were re-stained with ALDEFLUOR in situ and photographed. All 

samples were evaluated in at least two replicate devices from at least two experiments. A 

student’s t-test was used to compare results for each sample. ANOVA analysis was used to 

determine statistically significant findings of aggregate analyses.

Microfluidic migration assays were performed in RPMI-5% FBS as previously described 

(22). Loading was photographed to confirm cell location. EGFL6-containing media or 

control media was provided in right inlet. Chips were re-imaged after 24hr and distance 

migrated measured. Results presented represent means ± standard deviations. A two-tailed 

student t-test (unpaired) was used to measure significance.

Immunohistochemistry (IHC) and Immunofluorescence (IF)

Experiments performed as previously described (2)(23). The primary antibodies are 

provided in supplemental methods.

Western Blotting

Cells were lysed in NP40 cell lysis buffer. Antibodies used are provided in the supplemental 

methods.

EGFL6 antibody purification and treatment

Hybridoma cells were maintained in RPMI-5% FBS. Supernatant was collected after ~7 

days, cells/debris were removed by centrifugation, and supernatant loaded on Protein G 

Agarose (Millipore), washed, and antibody eluted with 50mM glycine PH.2.7, neutralized to 

PH 7.2–7.4 with 1M Tris (Ph 9.0). EGFL6 antibody was applied at 10µg/ml for in vitro cell 

treatment and 10mg/kg twice weekly for in vivo treatment.

EGFL6 and SHP2 shRNA knockdown

EGFL6 or SHP2 shRNA (Sigma) and control scrambled shRNA were co-transfected with 

Pspax2 and pMD2.G lentiviral packaging plasmids into HEK293T to produce lentivirus. 

NIHOVCAR3 or SKOV3 cells were transduced with shRNAs targeting EGFL6 or SHP2 or 

control, and selected with puromycin. RNA and cell lysates were prepared to confirm 

EGFL6 or SHP2 knockdown via qRT-PCR and Western blot.
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Murine Tumor Models

Animal experiments were approved by the University Committee for Use and Care of 

Animals. For transfected EGFL6-SKOV3 tumor model, three G418-selected EGFL6-

SKOV3 clones or three empty-vector clones, at 1×106 each, were injected into mouse axilla. 

Tumor volume was monitored weekly and mice were euthanized when tumors reached 

~1,000mm3 (using LxWxW/2 calculation). EGFL6shRNA or scrambledshRNA control cells 

(1×106 SKOV3 or 1×106 NIHOVCAR3) were injected and tumors monitored as above. For 

intraperitoneal (IP) tumor models, 5×105 SKOV3 cells were injected IP into NSG mice. 

Mice were treated with mIgG or anti-EGFL6 biweekly, as above. Mice were sacrificed when 

IP tumor nodules reached ~400 mm3 or mice had significant weight gain/loss due to tumor/

ascites burden. At the time of euthanasia, mice were inspected for gross metastasis. Lung, 

liver, ovary and omentum/intestines were resected for histologic analysis of metastatic 

disease. For intravenous tumor cell injection, mice were mock-treated or treated with anti-

EGFL6blocking antibody for 3 days prior to tumor cell injection. SKOV3 cells (1×106) with 

mIgG or anti-EGFL6 were injected via tail vein into NSG mice. Therapy was maintained for 

2 weeks after tumor cell injection. Mice were monitored, euthanized, and metastases 

assessed as described above.

Establishment of HemSCEGFL6 tumor model

HemSC were transduced with EGFL6-pRSVGFP or control lentivirus and FACS-sorted 

based on GFP expression. EGFL6 expression was confirmed by Western blot. Lucif-SKOV3 

cells (2×105) were mixed with EGFL6-expressing HemSC (HemSCEGFL6, 1×106) or control 

HemSC (HemSCControl). For primary cell-derived tumors, 5×105 primary cells (from 2 

patients, injected bilaterally in 4 mice) were mixed with either 5×105 HemSCEGFL6 or 5×105 

HemSCControl cells; then injected into axilla of NOD-SCID mice. Three days after tumor 

injection, mice were treated with mIgG or EGFL6 antibody (5mg/kg) bi-weekly. At the time 

of euthanasia, SKOV3 flank tumors were resected and luciferase imaging was performed to 

identify microscopic metastases. From all animals, lung, liver, ovary, and omentum/

intestines were resected for histologic analysis of metastatic disease.

Results

EGFL6 is up-regulated in ovarian cancer and predicts a poor patient prognosis

We analyzed EGFL6 mRNA expression across ovarian cancer histologies in two different 

datasets (20). Compared to normal ovary, EGFL6 mRNA levels are significantly elevated in 

all ovarian tumor histologies, but are greatest in high grade serous cancers (HGSC) (Fig. 

1A). We next stained a TMA of 154 ovarian tumors with EGFL6 antibody. EGFL6 protein 

was detected in tumor endothelial cells in ~80% of tumors (Fig. 1B, C). EGFL6 was also 

detected in tumor-associated adipose (Fig. 1B) and, surprisingly, in cancer cells in 25% of 

tumors evaluated (Fig. 1B). EGFL6 expression in cancer cells was primarily in HGSC 

tumors, while EGFL6 expression in other histologies was primarily in the stroma 

(Supplemental Fig. 1A).

Based on prior studies, tumor cell EGFL6 expression was unexpected. However, analysis of 

EGFL6 expression in human ovarian cancer cell lines using the Cancer Cell Line 
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Encyclopedia (CCLE) supported EGFL6 expression in many HGSC cell lines (Supplemental 

Fig. 1B). qRT-PCR analysis of HGSC cell lines confirmed clear expression of EGFL6 in 

NIHOVCAR3 and OVKATE HGSC cells (Fig. 1D). Little or no expression was noted in 

other ovarian cancer lines, including SKOV3 and CAOV3 cells.

Using the TMA, we scored vascular EGFL6 expression as present/absent in each tumor and 

performed univariate proportional hazards regression analysis to determine if vascular 

EGFL6 protein expression was a prognostic factor for ovarian cancer. EGFL6 expression 

was related both to death (hazard ratio = 3.91, p = 0.01) and recurrence (hazard ratio = 2.67, 

p = 0.01) (Fig. 1E). Multiple proportional hazards regression demonstrated no dependence 

between EGFL6 and age, stage, tumor grade, or debulking status.

We next screened RNAseq data from 261 serous ovarian carcinomas (TCGA) and 

investigated the correlation of expression of EGFL6 to all other genes in the genome. A p-

value cutoff (1e-8) was applied to generate a list of the 538 most correlated genes. 

Numerous tumor vascular-specific genes (including MXRA, TDO2, TNFAIP6, SEMA3D, 

and Coll11A1) and EGF-like genes (including EGFLAM and MEGF10) were highly 

correlated with EGFL6 expression. GSEA demonstrated that EGFL6-correlated genes were 

strongly correlated with invasive ovarian cancer and embryonic stem cell core genes (Fig. 1F 

and Supplemental Fig.1C).

EGFL6 induces ovarian cancer cell proliferation

We expressed EGFL6 in non-EGFL6-expressing cell lines, including HEK293 cells, 

NIH3T3 cells, and SKOV3 ovarian cancer cells. Western blot confirmed secretion of EGLF6 

in both transient and stable transfectants (Fig. 2Ai). We purified EGFL6 protein to >95% 

purity (Fig. 2Aii) and treated ovarian cancer cells with either purified EGFL6, supernatant 

from EGFL6-expressing HEK293 cells, or supernatant from control-transfected HEK293 

cells. Purified fusion protein and supernatant from EGFL6-transfected cells had similar 

effects. EGFL6 treatment of SKOV3, OVCAR3, OVCAR8, and primary ovarian tumor cells 

was associated with a 30–40% increase in total cell number (Fig. 2B). Cell cycle analysis 

demonstrated that EGFL6 treatment resulted in a 1.8-fold decrease in the number of cells in 

G1 phase and a concomitant increase in the number of cells in S and G2/M phases (Fig. 2C).

EGFL6 Promotes Asymmetric Division of ALDH+ Ovarian CSC

Given GSEA correlation of EGFL6 with a core stem cell signature, we assessed the impact 

of EGFL6 on ovarian CSC. Aldehyde dehydrogenase enzymatic activity (ALDH) is an 

established marker of ovarian CSC (2–4,24,25). Treatment of ovarian cancer cells with 

increasing concentrations of EGFL6 was associated with increasing total cell numbers, but 

decreasing percentages of ALDH+ CSC, with a resultant stable absolute ALDH+ CSC 

number (Fig. 3A,B).

A dividing ALDH+ CSC can theoretically undergo at least three distinct types of cell 

division related to the expression of ALDH: (i) division yielding 2 ALDH+ cells, (ii) 

differentiation yielding 2 ALDH(−) cells, or (iii) asymmetric division yielding an ALDH+ 

cell (self-maintenance) and an ALDH(−) cell. The finding that EGFL6 increases total cancer 

cell number and decreases the percentage of ALDH+ cells without impacting the absolute 
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number of ALDH+ cells is consistent with EGFL6 stimulating ALDH+ CSC asymmetric 

division. Alternatively, EGFL6 could preferentially promote proliferation of ALDH(−) cells. 

We used single cell microfluidic culture (26) to evaluate EGFL6 impact on asymmetric 

divison. We FACS-sorted ALDH+ and ALDH(−) SKOV3 cells into separate microfluidic 

devices and confirmed ALDH expression (Fig. 3Ci left panels). Cells were then mock-

treated or treated with EGFL6. After 48 hours, live cells were re-stained/imaged with 

ALDEFLUOR (Fig. 3Ci, right panels). Cell divisions, type of daughter cells (ALDH(−) or 

ALDH+), and total cell number were scored. 35% of untreated ALDH(−) SKOV3 cells 

demonstrated no cell division while 65% of cells underwent division to produce additional 

ALDH(−) cells, to yield an average 2.2 daughter cells/well after 72 hours (Fig. 3Cii). No 

ALDH+ daughter cells were observed. EGFL6 treatment of ALDH(−) SKOV3 cells had no 

significant impact on the number or type of cell divisions (Fig. 3Cii).

Compared to ALDH(−) cells, ALDH+ SKOV3 cells were more proliferative, with only 10% 

of untreated cells not dividing. Consistent with prior studies, ALDH+ cells demonstrated the 

ability to produce both ALDH+ and ALDH(−) cells. ALDH+ cells could divide to yield two 

ALDH+ cells (symmetric division relative to ALDH), or undergo an asymmetric division 

yielding one ALDH+ cell and an ALDH(−) cell. EGFL6 treatment of ALDH+ SKOV3 cells 

resulted in a 2-fold increase in the percentage of ALDH+ cells undergoing asymmetric 

division (Fig. 3Cii). This was associated with a statistically significant increase in total cell 

numbers: 6.5 vs. 3.7 average cells/well and a total of 325 vs. 185 daughter cells generated 

for every 50 captured cells in EGFL6-treated ALDH+ vs. control ALDH+ cells, respectively. 

EGFL6 treatment of ALDH(−) SKOV3 cells had no significant impact on proliferation rates.

We confirmed these results with cells from three separate primary ovarian cancer debulking 

specimens. Primary cells divided more slowly thus division was assessed after 96 hours of 

EGFL6 treatment. For primary cells, we observed that over 50% of untreated ALDH(−) cells 

underwent no division (Fig. 3Ciii). ALDH(−) cells which underwent cell division generated 

only ALDH(−) progeny. EGFL6 treatment of ALDH(−) cells was associated with a non-

statistically significant (p=0.15) increase in average number of progeny/well and total cell 

numbers (Fig. 3Ciii). As in cell lines, primary ALDH+ cells were more proliferative than 

ALDH(−) cells with only 20% of ALDH+ cells not dividing (Fig. 3Ciii). EGFL6 treatment 

resulted in an increase in number of progeny cells per well and total cell numbers (Fig. 

3Ciii). Likely due to the slower growth of primary cells, this did not reach statistical 

significance (p=0.09). EGFL6 treatment of primary ALDH+ cells was associated with a 

statistically significant (p=0.02) 1.9-fold increase in the number of ALDH+ cells undergoing 

asymmetric division (Fig. 3Ciii).

EGFL6 Signaling Involves Integrin binding and SHP2 activation

EGFL6 activity is reported to be dependent on an intact RGD domain (16), suggesting 

signaling via integrins. To determine if EGFL6 signals via integrins in cancer cells, we 

generated an EGFL6 protein with an RGD-to-RGE mutation (EGFL6RGE). Mutation of the 

RGD domain eliminated the proliferative effects of EGFL6 (Fig. 4A).

To identify integrin family members involved in EGFL6 signaling, we performed qRT-PCR 

analysis of integrin family mRNA expression in ALDH+ and ALDH(−) ovarian cancer cells. 
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We found that Integrin β3 (ITGB3), but not Integrin β1 or β5, was specifically enriched in 

ALDH+ SKOV3 and A2008 cells (Fig. 4B). We tested the impact of the Integrin β1/β3 

inhibitor Echistatin on ovarian cancer cell response to EGFL6. Echistatin blocked both 

EGFL6-mediated cancer cell proliferation and the decrease in ALDH+ percentage (Fig. 4C). 

Interestingly, Integrin β3-blocking antibody independently restricted ovarian cancer cell 

growth but only partially prevented EGFL6-induced proliferation (Supplemental Fig. 2A). 

Finally, we performed co-immunoprecipitation studies of EGFL6, EGFL6RGE, and Integrin-

β3. Wild-type EGFL6 co-immunoprecipitated with Integrin-β3 4.6-fold more effectively 

than EGFL6RGE. Interestingly, mixing wild-type EGFL6 with EGFL6RGE also compromised 

EGFL6 binding to Integrin β3 (Supplemental Fig. 2B).

We next examined cellular signaling changes associated with EGFL6 treatment. Western 

blot analysis of ALDH+ and ALDH(−) SKOV3 cells demonstrated 2.4-fold increased levels 

of pSHP2 in ALDH+ cells vs. ALDH(−) cells (Fig. 4Di). EGFL6 treatment resulted in an 

additional 2-fold increase in pSHP2 levels specifically in ALDH+ cells (Fig. 4Di). EGFL6 

treatment also resulted in a 4-fold increase in p-ERK levels in ALDH+ cells, and a 1.8-fold 

increase in p-ERK in ALDH(−) cells (Fig. 4Di). EGFL6RGE did not increase pSHP2 (Fig. 

4Dii) or p-ERK, although effects on p-ERK were more variable. EGFL6-mediated 

phosphorylation of SHP2 and ERK could be blocked by Echistatin or EGFL6-blocking 

antibodies (Fig. 4Diii- see below for EGFL6-blocking antibody validation). Integrin β3-

blocking antibodies blocked EGFL6-mediated increases in pSHP2, but only partly abrogated 

the increase in p-ERK (Supplemental Fig. 2C).

Direct interactions of SHP2 with Integrin protein complexes have been reported (27). 

Immunoprecipitation of either integrin β3 or SHP2 confirmed interactions of the two 

proteins in ovarian cancer cells (Supplemental Fig. 2D). Confirming a critical role for SHP2 

in EGFL6 signaling on ovarian CSC, shRNA knockdown of SHP2 with three independent 

SHP2 shRNA (Fig. 4Ei) was associated with a significant decrease in ALDH+ cells in all 

cases (Fig. 4Eii; Supplemental Fig. 3A). This is analogous to that seen in breast cancer (28). 

SHP2 knockdown was associated with a significant decrease in total cell numbers (Fig. 

4Eiii), and a 5–8.5 fold decrease in the absolute number of ALDH+ cells (Fig. 4E). SHP2 

knockdown eliminated EGFL6-mediated tumor cell proliferation (Fig. 4Eiii). Similarly, 

treatment of ovarian cancer cell lines with the SHP2 inhibitor 11a-1 (19) resulted in a dose-

dependent reduction in the total cell number, and percentage and absolute number of 

ALDH+ cells (Fig. 4Fi–ii; Supplemental Fig. 3B). Increasing doses of 11a-1 were associated 

with an increase in cell death, though the quantity of cell deaths might not completely 

explain the significant reduction in total cell numbers (Supplemental Fig. 3Bii).

EGFL6 expression by tumor cells increases tumor growth in vivo

We next assessed in vivo tumor-growth effect of EGFL6 expression by tumor cells. As 

SKOV3 cells do not express EGFL6, we evaluated the growth of two stably transfected 

EGFL6-expressing SKOV3 clones. Both clones demonstrated increased growth rates relative 

to vector-only transfected control cell clones (Fig. 5Ai; Supplemental Fig. 4Ai–ii). EGFL6-

expressing tumors demonstrated an increase in percentage of Ki67-expressing cells and a 

decrease in the concentration of ALDH+ cells (Fig. 5Aii; Supplemental Fig. 4Aiii). Given 

Bai et al. Page 8

Cancer Res. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the increased tumor volume, there was no estimated change in absolute number of ALDH+ 

cells. Similarly, SKOV3 cells transduced with lentivirus EGFL6-GFP, compared to GFP-

only controls, demonstrated increased tumor growth based on both tumor weight and GFP 

intensity (Supplemental Fig. 4B).

We next evaluated the impact of EGFL6 knockdown on the growth of NIHOVCAR3 HGSC 

cells, which express high levels of EGFL6. We validated EGFL6 knockdown with three 

EGFL6 shRNAs (Fig. 5Bi). EGFL6 knockdown was associated with a significant reduction 

in pSHP2 for all shRNAs (Fig. 5Biii) and, for two of three shRNAs, EGFL6 knockdown was 

associated with a reduction in total SHP2 levels (Fig. 5Biii). Analogous to SHP2 

knockdown, EGFL6 knockdown resulted in a significant 2.4-fold reduction in ALDH+ cells 

(Fig. 5Bii; Supplemental Fig. 5). EGFL6 knockdown was associated with significantly 

reduced tumor growth in vivo, an almost 2-fold increase in animal survival, and a 1.9-fold 

reduction in ALDH+ cells (Fig. 5Biv–vi).

To further test the role of EGFL6 in vivo, we developed an EGFL6-blocking antibody (anti-

EGFL6) which blocked EGFL6-triggered (i) increases in cell proliferation, (ii) changes in 

ALDH+ cell percentages, and (iii) increases in p-SHP2 and p-ERK (Fig. 4Diii; 

Supplemental Fig. 6). While this antibody was non-reactive on western blot, the antibody 

detected EGFL6 via immunofluorescence and was able to immunoprecipitate EGFL6 in 

transduced cells (Supplemental Fig. 6). Anti-EGFL6 treatment of mice bearing 

NIHOVCAR3 flank tumors were resulted in a significant reduction of tumor growth 

(p<0.0001, Fig. 5Ci–ii), a 35% reduction in the percentage of ALDH+ cells, and a 7-fold 

reduction in absolute ALDH+ cell number (Fig. 5Ciii–iv).

Vascular EGFL6 promotes tumor growth and metastasis in vivo

We next investigated the impact of vascular EGFL6 expression on ovarian tumor growth. To 

do this, we used human hemangioma stem cells (HemSC) to create human tumor blood 

vessels expressing EGFL6. HemSC have been shown to proliferate and generate blood-filled 

human vessels in vivo in mice (29,30). HemSC have low/no expression of EGFL6 at 

baseline (Fig.1D). We transduced HemSC with EGFL6 lentivirus and confirmed strong 

EGFL6 expression (Fig. 6A). When SKOV3 cells and HemSCEGFL6 cells were co-injected 

in vivo, we observed robust human CD31+ tumor vessels which expressed EGFL6 (Fig. 6B). 

SKOV3 cells grown with HemSCEGFL6 cells demonstrated increased growth compared to 

SKOV3 cells grown with HemSCControl (Fig. 6C). As observed with EGFL6 expression in 

tumor cells, expression of EGFL6 by HemSC cells was associated with increased numbers 

of Ki67+ cells (Fig. 6D). Confirming growth was related to EGFL6, treatment of 

SKOV3:HemSCEGFL6 tumors with anti-EGFL6 abrogated EGFL6-stimulated tumor growth 

(Supplemental Fig. 7).

This experiment was then repeated with primary cells from four different patients (n=2 

tumors each). We observed tumor initiation in 8 of 8 primary tumors co-injected with 

HemSCEGFL6 compared to 3 of 8 tumor samples co-injected with HemSCControl. As in cell 

lines, EGFL6 expression by HemSC cells was associated with more rapid tumor growth and 

increased Ki67 stain (Fig. 6E and F).
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Mice treated with anti-EGFL6 lost hair. Given EGFL6 is known to be expressed in the hair 

follicle (14), this is presumably an on-target side effect suggesting anti-EGFL6 could target 

murine EGFL6. We thus tested whether anti-EGFL6 treatment could inhibit the growth of 

non-EGFL6-expressing SKOV3 tumors. While anti-EGFL6 did not impact the growth of 

SKOV3 cells grown in vitro, twice weekly intraperitoneal treatment with anti-EGFL6 

treatment of SKOV3 flank tumors resulted in a ~2-fold reduction of in vivo SKOV3 tumor 

growth (Fig. 6Gi–ii). Analysis of tumors indicated a 3.2-fold reduction in the percentage of 

ALDH+ cells and a 9-fold reduction in absolute ALDH+ cell number (Fig. 6Giii–iv).

Integrin and SHP2 signaling have been linked with metastatic capacity in several tumor 

types. Suggesting EGFL6 could play a role in metastasis, GSEA analysis revealed that 

EGFL6 expression correlated with the expression of multiple metastasis-related gene sets 

(Fig. 7A and Supplemental Fig. 1C). We therefore evaluated the ability of EGFL6 to act as a 

chemotropic factor. We used a microfluidic channel (22) to create a gradient of EGFL6 and 

evaluated the migration of ALDH+ and ALDH(−) ovarian cancer cells towards EGFL6-

containing media. While EGFL6 had no impact on ALDH(−) cells, ALDH+ cells 

demonstrated statistically significant migration towards EGFL6-containing media (Fig. 7B). 

Similarly, EGFL6 treatment was associated with increased ‘wound healing’ in a standard 

scratch assay (Supplemental Fig. 8).

To evaluate the impact of EGFL6 on metastasis in vivo, we first evaluated mice bearing 

EGFL6-expressing flank tumors. When tumor cells expressed EGFL6 (from experiment in 

Fig. 5A; Supplemental Fig. 4) we observed no metastases from flank tumors either grossly 

or via luciferase imaging. Similarly, when SKOV3 cells were grown with HemSCControl 

cells in vivo, we observed no metastasis. In contrast, when SKOV3 cells were grown with 

HemSCEGFL6, we observed metastases in 4/10 mice (Fig. 7Ci—metastases were observed in 

the liver, lung, and ovary with associated ascites). Lymphovascular space invasion of 

ALDH+ cells was detected in HemSCEGFL6 flank tumors (Fig. 7Cii). We similarly evaluated 

metastases from primary ovarian cells grown with HemSCControl or HemSCEGFL6. In the 

presence of HemSCControl, we observed pulmonary metastases in 1/3 mice which generated 

tumors, whereas with HemSCEGFL6 we observed metastases in 2/4 mice with metastases in 

the lungs, liver, and to the ovary (Fig. 7D).

We next assessed the ability of anti-EGFL6 to inhibit ovarian cancer metastasis. We 

performed IP injections of ovarian cancer cells and evaluated the impact of anti-EGFL6. 

Anti-EGFL6 led to a 3-fold reduction in the average number of tumor nodules (Fig. 7D). 

Furthermore, while control animals had tumor nodules in the ovary and liver, anti-EGFL6-

treated animals had disease limited to the bowel/omentum with no detectable ovarian tumors 

on/in the liver or ovaries.

We have recently shown that ovarian cancer cells injected intravenously preferentially 

metastasize to the ovary (31). EGFL6 is expressed in the ovary. We assessed if EGFL6 could 

recruit ovarian cancer cells to the ovary. Mice were treated with anti-EGFL6 for 3 days and 

then injected with SKOV3 cells intravenously via the tail vein. Anti-EGFL6 therapy was 

continued for an additional 2 weeks. As expected, control mice developed metastases in not 

only the liver and lung but also in the ovaries, and in the peritoneal cavity with the 

Bai et al. Page 10

Cancer Res. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



development of ascites. While treatment with anti-EGFL6 had no impact on lung metastases, 

it reduced liver nodules 6-fold and completely eliminated ovarian metastases and ascites 

(Fig. 7E). Together, these data suggest that EGFL6 plays a role in ovarian cancer metastasis 

and that anti-EGFL6 therapy might restrict the spread of ovarian cancer.

Discussion

Vascular endothelial cells are regulators of the stem cell niche (6,32). Given the proximity of 

CSC and endothelial cells, a parallel role for endothelial cells and CSC has been proposed. 

Endothelial cells have been suggested to directly provide “angiocrine” factors that direct 

stem cell fate (33,34). EGFL6 represents one such angiocrine factor. Consistent with a role 

for EGFL6 as an angiocrine factor in ovarian cancer, it is reported to be present in the serum 

of patients with ovarian cancer at levels 200–300X higher than that of healthy controls (35).

We found EGFL6 promotes tumorigenesis by inducing ALDH+ cells to undergo asymmetric 

division. This results in ALDH+ cell maintenance, the production of ALDH(−) cells, and an 

increase in tumor growth. Supporting a role of EGFL6 in asymmetric division, acute EGFL6 

exposure is associated with a decrease in ALDH+ cell percentage, but no change in the 

absolute ALDH+ cell number. Similarly, short-term EGFL6 blockade increases ALDH+ cell 

percentage without changing absolute cell number. In contrast, EGFL6 knockdown or long-

term blockade was associated with a significant reduction in both the percentage and 

absolute number of ALDH+ cells. This suggests that EGFL6, either related to or independent 

of the ability to promote asymmetric division, might play a role in ALDH+ cell maintenance. 

This would be consistent with EGFL6 signaling via SHP2, which plays a role in breast 

cancer stem cell maintenance (28). Interestingly, SHP2 signals in conjunction with the 

adaptor protein GAB2 (36,37). Consistent with a critical role for SHP2 in ovarian cancer, 

GAB2 was recently reported to be an oncogene in ovarian cancer (38). Parallel to our studies 

with EGFL6, GAB2 expression was associated with increased activation of ERK. Additional 

studies will be necessary to determine whether EGFL6 signals via GAB2. However, our 

work supports EGFL6 as a therapeutic target in ovarian cancer.

EGFL6 is expressed in both cancer cells and vascular cells. To study the role of human 

EGFL6 in a human vascular niche, we developed a new model of human tumor vasculature 

using HemSC. When combined with human ovarian tumor cells, the HemSC contributed to 

the tumor vasculature by creating human tumor vessels which were viable for as long as 

tumors were maintained. Using the HemSC-derived tumor model, we observed that vascular 

EGFL6 expression, similar to tumor cell EGFL6 expression, promoted the growth of tumor 

xenografts. In addition, vascular EGFL6 expression was associated with an increase in 

metastases for both cell lines and primary cancer cells. This is consistent with recent studies 

which not only demonstrated a role of hematogenous metastasis for ovarian cancer, but also 

identified upregulation of EGFL6 with hematogenous ovarian cancer metastases (39). 

Interestingly, a predominant site of metastasis was the ovary, which also expresses EGFL6. 

Anti-EGFL6 demonstrated an ability to completely eliminate hematogenous spread of 

ovarian cancer cells to the ovary, suggesting that EGFL6 might play a critical role in the 

ovarian microenvironment. Consistent with this, EGFL6 exon-1 knockout mice are prenatal 
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lethal specifically in female mice (MMRRC). Inducible EGFL6 knockout mice will need to 

be developed to further explore the role of EGFL6 in ovarian cancer.

Our data strongly support EGFL6 as a therapeutic target in ovarian cancer. EGFL6 blockade/

knockdown strongly suppressed tumor growth and reduced metastasis. mRNA microarray 

expression data suggest that EGFL6 is also expressed at very high levels in uterine tumors 

and aerodigestive tumors (11,35). EGFL6 is elevated in the serum of patients with 

glioblastoma, bladder, breast, gastric, liver, lung, pancreatic, and prostate cancers (35). Thus, 

EGFL6 could be an important target for other tumor types.

In conclusion, EGFL6 is an angiocrine and tumor cell factor which promotes tumorigenesis 

via SHP2-mediated signaling. EGFL6 stimulates ALDH+ ovarian CSC to migrate and 

undergo asymmetric division. As such, EGFL6 specifically promotes ovarian cancer cell 

metastasis. Finally, a novel EGFL6-blocking antibody abrogated the impact of EGFL6 on 

ovarian tumor growth and metastasis, suggesting this antibody represents a novel 

therapeutic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Expression of EGFL6 in ovarian tumors and normal tissue
A. Expression of EGFL6 across ovarian cancers histologies in the (i) Hendrix dataset (ii) 

TCGA, GTEx datasets. B. IHC of EGFL6 in the indicated tissues. C. Immunofluorescence 

of EGFL6 (red) and CD31 (green) in human tumor vasculature (blue is DAPI staining of 

nucleus). D. qRT-PCR analysis of EGFL6 expression in ovarian cancer cell lines, MCF7 

(breast cancer), HEK293 (kidney), and hemangioma stem cells (HemSC) controls. E. 

Kaplan Meier curves for recurrence-free and overall survival for ovarian cancer patients with 

or without vascular EGFL6 expression in primary debulking specimens. F. GSEA 
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demonstrating EGFL6-correlated genes are associated with invasive ovarian cancer 

phenotype and an Embryonic Stem Cell core signature. See Suppl.Fig1C for ES scores, p-

values, and FDR q-values.
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Figure 2. Effect of EGFL6 on ovarian cancer cell proliferation
A(i). Western blot of EGFL6 following control or EGFL6 transfection of HEK293 cells, (ii) 
Coomassie stain of the steps of EGFL6 purification. B. Total cell number for EGFL6 and 

vehicle control-treated SKOV3 cells and primary tumor cells (PT112 and PT122). C. Cell-

cycle analysis of EGFL6-treated SKOV3 cells showing, (i) Summary of 3 independent 

analyses and, (ii) Representative cell cycle profile. Experiments were performed in 

duplicate. Error bars represent standard deviations.
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Figure 3. EGFL6 promotes ALDH+ cell asymmetric division
A. Summary of 3 replicate experiments demonstrating EGFL6 treatment is associated with, 

(i) increasing total cell numbers, (ii) decreasing percentages of ALDH+ cells, but (iii) no 

change in absolute ALDH+ cell number. B. Percentages of ALDH+ primary ovarian cancer 

cells following treatment with EGFL6 or vehicle. C. Single cell microfluidic culture 

showing, (i) Representative immunofluorescence images demonstrating initial 

ALDEFLUOR stain (ALDH+ green, ALDH(−) gray) in captured single cells and the 

observed types of cell division outcomes for ALDH(−) vs. ALDH+ cells after capture, (ii–iii) 
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Summary of percentages of division events and average number of progeny/microfluidic 

well with EGFL6 or vehicle treatment of (ii) SKOV3 cells and (iii) 3 primary patient 

samples. SKOV3 cells were analyzed in 3 independent experiments. Primary samples were 

analyzed in 2 independent experiments.
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Figure 4. EGFL6 signaling requires Integrin-mediated phosphorylation of SHP2
A. SKOV3 cell numbers after 72 hours of treatment with EGFL6 or EGFL6RGE. B. qRT-

PCR demonstrating increased expression of Integrin β3, but not β1 or β5, mRNA levels in 

ALDH+ vs. ALDH(−) ovarian cancer cells. C. FACS plot demonstrating the Integrin β1/β3 

competitive inhibitor Echistatin inhibits EGFL6-mediated reduction in ALDH+ cell 

percentages. D. Western blot analysis of the indicated proteins with and without EGFL6 

treatment demonstrating (i) SHP2 is preferentially phosphorylated in ALDH+ cells and 

EGFL6 further increases SHP2 activation in ALDH+ cells. EGFL6 treatment is associated 
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with increased p-ERK in both ALDH+ and ALDH(−) cells, (ii) EGFL6RGE mutant does not 

increase p-SHP2 or p-ERK, (iii) EGFL6-mediated SHP2 and ERK phosphorylation is 

suppressed by Echistatin and anti-EGFL6 treatment. Bar graphs below graphs indicate 

densitometric quantification of p-SHP2. E (i) SHP2 western blot of three independent SHP2 

shRNA (Sh-SHP2), (ii) ALDH percentage and (iii) proliferation in Sh-SHP2 cells treated 

with EGFL6 or EGFL6RGE. F(i) ALDH+ cell percentage and (ii) cell proliferation in SHP2 

inhibitor treated cells. All experiments were performed at least twice. Error bars indicate 

standard deviations.
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Figure 5. EGFL6 expression in tumor cells promotes ovarian tumor growth
A(i). Tumor growth curves and tumor weights of EGFL6 and control vector-transfected 

ovarian cancer cells (n=10/group in two independent experiments), (ii) IHC analysis and 

quantification of ALDH1A1 expression in EGFL6 vs. control tumors. B (i). qRT-PCR 

analysis of EGFL6 expression in control and EGFL6 shRNA knockdown (Sh-EGFL6) 

NIHOVCAR3 cells, (ii) ALDH FACS and (iii) Western blot analysis in control and Sh-

EGFL6 cells, (iv and v) Tumor growth curves and overall survival for OVCAR3 control 

(n=10) and Sh-EGFL6 cells (n=6/group). C(i–ii) Tumor growth curves and weights, and 
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(iii–iv) ALDH+ cell percentages and absolute number for NIHOVCAR3 tumors mock-

treated or treated with anti-EGFL6 (EGFL6Ab, n=10/group). Error bars indicate standard 

deviation.
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Figure 6. Vascular EGFL6 promotes tumor growth
A. EGFL6 Western of control and EGFL6-lentivirally-transduced infantile hemangioma 

stem cells (HemSCEGFL6). B. Co-IF of human CD31 (hCD31) and EGFL6 in tumor vessels 

in SKOV3:HemSCEGFL6 tumor xenografts. C. Tumor growth curves of 

SKOV3:HemSCEGFL6 tumors vs. SKOV3:HemSCControl tumors (n=10/group in two 

independent experiments). D. IHC analysis of Ki67 expression in EGFL6-expressing vs. 

control tumors. E. Tumor growth curves of freshly isolated primary patient cells co-injected 

with HemSCEGFL6 or HemSCControl (n=4 patients with 2 tumors each). F. H&E and Ki67 
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IHC of tumors generated with primary patient cells co-injected with HemSCEGFL6 or 

HemSCControl (n=6/group). G. (i) Tumor growth curve, (ii) weights, (iii) ALDH+ cell 

percentage, and (iv) absolute cell number, for control and anti-EGFL6-treated SKOV3 (non-

EGFL6 expressing cells) flank tumors (n=10/group in two separate experiments). Error bars 

indicate standard deviations.
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Figure 7. The role of EGFL6 in ovarian cancer metastasis
A. GSEA demonstrating EGFL6 expression correlated with metastatic gene signatures in 

endometrial ovarian cancer and melanoma. (See Suppl.Fig1C for ES scores, p-values, and 

FDR q-values.) B(i) Immunofluorescent GFP labeled ALDH+ SKOV3 cells after capture 

(top) and migration (bottom) in microfluidic migration device. Control cells (bottom left) 

have no gradient vs. EGFL6 gradient (bottom right), (ii) summary of distance migrated for 

the indicated cells from replicate experiments. C (i) Percentage of mice with identifiable 

metastases when SKOV3 cells or primary human ovarian cancer cells were grown 
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subcutaneously (SQ) combined with HemSCControl or HemSCEGFL6, and (ii) IHC 

demonstrating ALDH+ cells in SKOV3-HemSCEGFL6 tumor vessels. D. Percentage of 

metastasis to the indicated body sites in mice injected intraperitoneally with SKOV3 mock-

treated (control) or treated with anti-EGFL6. E. Percentage of mice with metastasis to the 

indicated body sites in mice injected intravenously with SKOV3 cells and mock-treated 

(control) or anti-EGFL6-treated cells (n=10/group in 2 separate experiments).
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