
Research Article
Model Checking Temporal Logic Formulas Using
Sticker Automata

Weijun Zhu,1 Changwei Feng,2 and Huanmei Wu3

1School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China
2The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
3School of Informatics and Computing, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA

Correspondence should be addressed to Weijun Zhu; zhuweijun76@163.com

Received 4 October 2016; Revised 13 February 2017; Accepted 18 April 2017; Published 28 September 2017

Academic Editor: J. R. Torregrosa

Copyright © 2017 Weijun Zhu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As an important complex problem, the temporal logic model checking problem is still far from being fully resolved under the
circumstance of DNA computing, especially Computation Tree Logic (CTL), Interval Temporal Logic (ITL), and Projection
Temporal Logic (PTL), because there is still a lack of approaches for DNA model checking. To address this challenge, a model
checking method is proposed for checking the basic formulas in the above three temporal logic types with DNA molecules. First,
one-type single-stranded DNA molecules are employed to encode the Finite State Automaton (FSA) model of the given basic
formula so that a sticker automaton is obtained. On the other hand, other single-stranded DNAmolecules are employed to encode
the given system model so that the input strings of the sticker automaton are obtained. Next, a series of biochemical reactions are
conducted between the above two types of single-stranded DNAmolecules. It can then be decided whether the system satisfies the
formula or not. As a result, we have developed a DNA-based approach for checking all the basic formulas of CTL, ITL, and PTL.
The simulated results demonstrate the effectiveness of the new method.

1. Introduction

Differing from an electronic computer, a DNA computer
uses DNA molecules as the carrier of computation. In 1994,
a Turing Award winner Professor Adleman published an
article in ⟨Science⟩ that solved a small-scale Hamiltonian
path problem with a DNA experiment [1], which is regarded
as the pioneering work in the field of DNA computing. As
DNAcomputing has a huge advantage for parallel processing,
this technique was subsequently advanced rapidly. Many
models and approaches based on DNA computing have been
developed to solve some complex computational problems,
especially the famous NP-hard problems and PSPACE-hard
ones. For example, Lipton published an article in ⟨Science⟩
that improved Adleman’s idea for the SAT problem [2].
Ouyang et al. published an article in ⟨Science⟩ that presented
a DNA-computing-based model for solving the maximal
clique problem [3]. Benenson et al. published an article in
⟨Nature⟩ that solved an automata problem of two states
and two characters using the autonomous DNA computing
technique [4].

Many other DNA models have been constructed, such
as the restricted model [5], the sticker system [6], the
length-encoding model [7], the sticker automaton model [8],
the DNA Turing machine model [9], the nonenumerative
DNA model [10], the giant-magneto-resistance-based DNA
model [11], the logical DNA molecular model [12], and the
logical nanomolecular model [13]. And a series of methods
based onnonautonomous or self-assembling are proposed for
solving various complex computational problems, including
the Nondeterministic Polynomial (NP) ones. For example,
there aremethods proposed for themaximumclique problem
[14, 15], the vertex coloring one [10, 16], the SAT one [11],
the 𝑁 queen one [17], the maximum matching one [18], the
minimum vertex cover one [19], the minimum and exact
cover one [20], the subset-sum one [21], the classical Ramsey
number one [22], the spatial cluster analysis [23, 24], and the
knapsack [25].

On the one hand, some problems in computer science
can be solved by applying the techniques based on bio-
chemical reactions in test tubes, nanodevices, or molecular
self-assembly [1, 26–28]. On the other hand, due to the

Hindawi
BioMed Research International
Volume 2017, Article ID 7941845, 33 pages
https://doi.org/10.1155/2017/7941845

https://doi.org/10.1155/2017/7941845

2 BioMed Research International

Table 1: State of the art of DNA model checking and its open problems.

Temporal logic State of the art (the formulas which have been checked) The problems to be solved (the formulas which
cannot be checked yet)

LTL All the four basic formulas General formulas and cellular model checking

CTL The basic formula EF𝑝 Another seven basic formulas (will be studied in
this paper)

ITL Nothing reported All the two basic formulas (will be studied in this
paper)

PTL Nothing reported All the one formula (will be studied in this paper)
DC It is infeasible due to the limitation of the current biochemical experimental technique

excellent information processing mechanism and the huge
parallelism, some living cells can also be employed to perform
some computations.The site-specific DNA recombinase Hin,
which canmediate inversion of DNA segments that represent
variables, was used to produce the solution. In this model,
each cell can produce and examine a solution of satisfiability
problem. As a result, billions of cells can explore billions
of possible solutions [29]. In this way, Professor Chen et
al. constructed a cellular computing model [29] to solve
the satisfiability problem. In addition, a conditional learning
system in Escherichia coli was built to identify the “bad man”
signal with the help of the “learning” signal. It is a useful
attempt to construct the artificial intelligent system using
some molecular biological techniques.

One of the key differences between computer and other
computing tools is the universality. Professor Xu constructed
amathematical model called “probemachine” for the general
DNA computer [30]. By integrating the storage system,
operation system, detection system, and control system into a
whole, a real general DNA computer was gradually obtained,
which was the “Zhongzhou DNA computer” [30]. A probe
machine is a nine-tuples consisting of data library, probe
library, data controller, probe controller, probe operation,
computing platform, detector, true solution storage, and
residue collector [15]. It is a universal DNA computingmodel
which can be realized in biology. And a Turing machine is
just a “special case” of a probe machine [15]. This significant
progress has raised the practical importance of the researches
on DNA computing.

More studies on DNA computing have been conducted
for the last three years. Some of themajor studies are summa-
rized as follows: (1) aiming to deal with some inherent flaws
of DNA computing, such as adaptability [31] and instability
[32]; (2) employing DNAs to realize some basic computing
components and/or techniques, such as data storage [33],
database operations [34], odd parity checker [35], half adder
[36], encryption [37], and data hiding [38]; (3) utilizingDNAs
to address some problems in real world, such as the inverse
kinematics redundancy problem of six-degree-of-freedom
humanoid robot arms [39], dynamic control of elevator
systems [40], and hyperspectral remote sensing data/imagery
[41, 42].

Besides the satisfiability problem, model checking (MC)
is another important computational problem. These two
problems are correlated. The MC proposed by the Turing

Award winner Professor Clarke et al. [43] is widely used
in the fields of CPU verification [44], network protocol
verification, security protocol verification [45], and software
verification [46]. MC algorithms answer automatically the
question of whether a system satisfies the given property or
not.NASA, Intel, IBM, andMotorola are using this technique.
The general principles of MC can be given as follows: (i)
a system model is constructed with an automaton; (ii) a
property which the system should satisfy is described by
a temporal logic formula; and (iii) if an automaton is a
model of the formula, the systemmodel satisfies the property;
otherwise, the system does not satisfy the property.

In order to describe the different temporal properties,
some different temporal logic types have been proposed.
For instance, Linear Temporal Logic (LTL) was introduced
into computer science to express the linear properties by the
Turing Award winner Professor Pnueli [47]. Computation
Tree Logic (CTL) was proposed to express the branch prop-
erties by the Turing Award winner Professor Clarke [48, 49].
Interval Temporal Logic (ITL), Duration Calculus (DC), and
Projection Temporal Logic (PTL) were also investigated to
express other temporal properties [50–52].

As a complex computational problem, model checking
under the circumstance of DNA computing is always a goal
for researchers. In 2006, some DNA molecules were applied
to conduct CTL model checking for the first time by the
TuringAwardwinner Professor Emerson et al. [53]. However,
this method can check only one basic CTL formula, called
EFp. It is known that there are eight basic formulas in CTL,
that is, EpUq, ApUq, EFp, AFp, EGp, AGp, EXp, and AXp. It
has been a pending and challenging issue to perform model
checking for all of the eight basic CTL formulas using DNA
computing.As shown inTable 1, there are eight basic formulas
for CTL, two for ITL, and one for PTL. Except for the EFp
formula, all the other ten basic formulas in CTL, ITL, and
PTL cannot conduct model checking under the circumstance
of DNA computing using the existing methods.

Motivated by it, we proposed a set of DNA-based model
checking algorithms.With our new algorithms, all the eleven
basic formulas for CTL, ITL, and PTL can undergo model
checking via some DNAmolecules. Basically, the core model
checking problem for the CTL, ITL, and PTL is solved by
DNA computing, because every CTL/ITL/PTL formula can
be obtained by combining the basic CTL/ITL/PTL formulas
recursively. This is the main contribution of this paper.

BioMed Research International 3

p

p r

r q r r

(a) A model M satisfying
E𝑝U𝑞

p

p q

q q r r

(b) A model M satisfying
A𝑝U𝑞

q

q q

q q p r

(c) A model M satisfying EF𝑝

q

p q

q q p p

(d) AmodelM satisfying AF𝑝

p

p q

q p p p

(e) A model M satisfying
EG𝑝

p

p p

p p p p

(f) A model M satisfying
AG𝑝

r

p q

q r p q

(g) A model M satisfying
EX𝑝

r

p p

q r p q

(h) A model M satisfying
AX𝑝

Figure 1: Examples of the basic CTL formulas and their models.

The rest of this paper is organized as follows. Section 2
introduces some basic concepts. Our newly proposed algo-
rithms will be described in Section 3. The simulated exper-
iments will be presented in Section 4, which demonstrates
that the new algorithms are feasible in molecular biology.
Section 5 provides brief conclusions. The formal definitions
of these temporal logic types are given in the Appendix.

2. Preliminary

2.1. The Basic Formulas in CTL [43]

Definition 1. Let 𝑝 and 𝑞 be atomic propositions and E𝑝U𝑞,
A𝑝U𝑞, EF𝑝, AF𝑝, EG𝑝, AG𝑝, EX𝑝, and AX𝑝 be the basic
CTL formulas. An arbitrary CTL formula can be obtained by
recursive combinations of these basic CTL formulas.

An atomic proposition and a basic CTL formula are inter-
preted on a systemmodelM, and their intuitivemeanings are
given as follows:

(i) 𝑝 or 𝑞 is satisfied in a state 𝑠.
(ii) E𝑝U𝑞 describes the property: there exists at least one

path in M, such that 𝑝 is always satisfied until 𝑞 is
satisfied.

(iii) A𝑝U𝑞 describes the property: for each path inM, 𝑝 is
always satisfied until 𝑞 is satisfied.

(iv) EF𝑝 describes the property: there exists at least one
path in M, such that 𝑝 is eventually satisfied.

(v) AF𝑝 describes the property: for each path in M, 𝑝 is
eventually satisfied.

(vi) EG𝑝 describes the property: there exists at least one
path in M, such that 𝑝 is always satisfied.

(vii) AG𝑝 describes the property: for each path in M, 𝑝 is
always satisfied.

(viii) EX𝑝 describes the property: there exists at least one
path in M, such that 𝑝 is satisfied in the next state.

(ix) AX𝑝 describes the property: for each path in M, 𝑝 is
satisfied in the next state.

Figure 1 gives some example models which satisfy the eight
basic CTL formulas. A circle represents a state, and a letter in
a circle represents an atomic proposition which is satisfied in
the state. A line segment with an arrow means an edge (i.e., a
transition between two states). A state sequence from the root
node to a leaf node is called a path. Time passes from top to
bottom, and the different branches represent the alternative
transitions from the current state to the next one.

For the model M in Figure 1(a), there are four paths. Each
path passes through three states at three moments, which
forms four sequences of atomic propositions: 𝑝𝑝𝑟, 𝑝𝑝𝑞, 𝑝𝑟𝑟,
and 𝑝𝑟𝑟. It is noticeable that 𝑝𝑝𝑞, that is, the second path,
satisfies the following property: 𝑝 is always satisfied until 𝑞 is
satisfied. In contrast, any other path inM does not satisfy this
property. According to the definition of E𝑝U𝑞, the model M
satisfies E𝑝U𝑞.

For the model M in Figure 1(b), there are also four paths
with three states for each path. The four sequences of atomic
propositions are: 𝑝𝑝𝑞, 𝑝𝑝𝑞, 𝑝𝑞𝑟 and 𝑝𝑞𝑟. All paths in M
satisfy the property: 𝑝 is always satisfied until 𝑞 is satisfied.
According to the definition of A𝑝U𝑞, the model M satisfies
A𝑝U𝑞.

Similarly, for the model M in Figure 1(c), the path 𝑞𝑞𝑝
in M satisfies the property: 𝑝 is eventually satisfied. Thus,
the model M satisfies EF𝑝. For the model M in Figure 1(d),
all four paths, 𝑞𝑝𝑞, 𝑞𝑝𝑞, 𝑞𝑞𝑝, and 𝑞𝑞𝑝, satisfy the property:
𝑝 is eventually satisfied. Thus, the model satisfies AF𝑝. For
the model M in Figure 1(e), the path 𝑝𝑝𝑝 in M satisfies the
property: 𝑝 is always satisfied. Thus, the model M satisfies
EG𝑝. For the model M in Figure 1(f), all the four paths, 𝑝𝑝𝑝,
𝑝𝑝𝑝, 𝑝𝑝𝑝, and 𝑝𝑝𝑝, satisfy the property: 𝑝 is always satisfied,
which makes the model M satisfy AG𝑝. For the model M in
Figure 1(g), the paths 𝑟𝑝𝑞 and 𝑟𝑝𝑟 in M satisfy the property:
𝑝 is satisfied in the next state. Thus, M satisfies EX𝑝. For the
model M in Figure 1(h), all the four paths, 𝑟𝑝𝑞, 𝑟𝑝𝑟, 𝑟𝑝𝑝, and

4 BioMed Research International

p p q

(a) From the perspec-
tive of path L: L satisfies
𝑝U𝑞

p

p q

q q r r

(b) From the perspective of
model M: M satisfies 𝑝U𝑞

q p q

(c) From the perspec-
tive of path L: L satisfies
F𝑝

q

p q

q q p p

(d) From the perspective of
model M: M satisfies F𝑝

p p p

(e) From the perspec-
tive of path L: L satisfies
G𝑝

p

p p

p p p p

(f) From the perspective of
model M: M satisfies G𝑝

r p r

(g) From the perspec-
tive of path L: L satisfies
X𝑝

r

p p

q r p q

(h) From the perspective of
model M: M satisfies X𝑝

Figure 2: Examples of the basic LTL formulas and their models.

𝑟𝑝𝑞, satisfy the property: 𝑝 is satisfied in the next state. Thus,
this M satisfies AX𝑝.

Given an arbitrary model M, the challenge is how to use
the DNA-computing-based method to determine whether
the eight basic CTL formulas are satisfied by M or not.
Section 3.1 will provide our new approach which can check
all the eight basic CTL formulas.

2.2. The Basic Formulas in LTL [43]

Definition 2. Let 𝑝 and 𝑞 be atomic propositions and 𝑝U𝑞,
F𝑝, G𝑝, and X𝑝 be the basic LTL formulas. An arbitrary
LTL formula can be obtained by combining recursively some
basic LTL formulas. An atomic proposition and a basic LTL
formula are interpreted on a path L and a system model M,
and their intuitive meanings are given as follows:

(i) 𝑝 or 𝑞 is satisfied in a state 𝑠, or not.
(ii) 𝑝U𝑞 describes the property: for each path L in M, 𝑝

is always satisfied until 𝑞 is satisfied.
(iii) F𝑝 describes the property: for each path L in M, 𝑝 is

eventually satisfied.
(iv) G𝑝 describes the property: for each path L in M, 𝑝 is

always satisfied.
(v) X𝑝 describes the property: for each path L in M, 𝑝 is

satisfied in the next state.

For a path L, time passes from left to right, and the system
transits from the current state to the next one. For a model
M, time passes from top to bottom, and the different branches
represent the alternative transitions from the current state to
the next one.

Figure 2 gives one sample M for each basic LTL formula,
respectively. The formula 𝑝U𝑞 is called the core LTL formula
since every basic LTL formula can be expressed by 𝑝U𝑞.

Given an arbitrary model M, previous studies have pro-
vided approaches on how to use the DNA-computing-based
method to determine whether the four basic LTL formulas
are satisfied by M or not [54, 55].

2.3. The Basic Formulas in ITL [50]

Definition 3. Let 𝑝, 𝑞, 𝑝1, 𝑝2, 𝑞1, and 𝑞2 be atomic propo-
sitions and (𝑝1U𝑞1); (𝑝2U𝑞2) and (𝑝U𝑞)∗ be the basic ITL
formulas. An arbitrary ITL formula can be obtained by
combining recursively some basic ITL formulas. A basic ITL
formula is interpreted on a path L and a systemmodelM, and
their intuitive meanings are given as follows.

(i) (𝑝1U𝑞1); (𝑝2U𝑞2): for each path L in M, the following
property holds: prefix subpath (i.e., prefix interval)
satisfies the core LTL formula 𝑝1U𝑞1, and suffix
subpath (i.e., suffix interval) satisfies the core LTL
formula 𝑝2U𝑞2.

(ii) (𝑝U𝑞)∗: for each path L in M, the following property
holds: L circulates in a loop body consisting of a
subpath (i.e., a loop body consisting of an interval),
and the loop body of interval satisfies the core LTL
formula 𝑝U𝑞.

Figure 3 gives an example for each basic ITL formula,
respectively. For (𝑝1U𝑞1); (𝑝2U𝑞2), any path L in M has the
following characteristics: L reaches a number of red states
after it crosses some blue states. The prefix interval of L is
denoted as the state sequence marked in blue, whereas the
suffix interval of L is denoted as the state sequence marked
in red. An ITL formula is satisfied in such an interval.
In Figure 3(a), 𝑝1𝑞1𝑝2𝑝2𝑞2 is a path satisfying the ITL
formula (𝑝1U𝑞1); (𝑝2U𝑞2). The prefix interval of 𝑝1𝑞1𝑝2𝑝2𝑞2
satisfies the LTL formula 𝑝1U𝑞1, whereas the suffix interval
of 𝑝1𝑞1𝑝2𝑝2𝑞2 satisfies the LTL formula 𝑝2U𝑞2. Similarly,

BioMed Research International 5

p1

q1 p1

p2

p2

p2

q2 p2

q1

p2

q1

p2 p2

q2 q2 q2 q2 q2 q2p1 q1 p2 p2 q2

(a) From the perspective of path L and model M: they satisfy (𝑝1U𝑞1); (𝑝2U𝑞2)

p q

p

q p

q q

(b) From the perspective of path L and model
M: they satisfy (𝑝U𝑞)∗

Figure 3: Examples of the basic ITL formulas and their models.

p1 q1 p2 p2 q2

p3 q3

(a) From the perspective of path L

p1
p3

q1 p1

p2q2 p2

q1 q1

q2 q2 q2 q2 q2 q2

p2
q3

p2
q3

p2
q3

p2
q3

p2
q3

(b) From the perspective of model M

Figure 4: An example of the basic PTL formula ((𝑝1U𝑞1), (𝑝2U𝑞2)) prj (𝑝3 ∧ X𝑞3) and its model.

all the paths in M of Figure 3(a) satisfy the ITL formula
(𝑝1U𝑞1); (𝑝2U𝑞2). In Figure 3(b), 𝑝𝑞𝑝𝑞 . . . is a path satisfying
the ITL formula (𝑝U𝑞)∗. The loop body consisting of an
interval (i.e., 𝑝𝑞) satisfies the LTL formula 𝑝U𝑞. Similarly, all
the paths in M of Figure 3(b) satisfy the ITL formula (𝑝U𝑞)∗.

Given an arbitrary model M, we will provide a new
solution in Section 3.2 on how to use the DNA-computing-
based method to determine whether the two basic ITL
formulas are satisfied by M or not.

2.4. The Basic Formula in PTL [52]

Definition 4. Let 𝑝1, 𝑝2, 𝑝3, 𝑞1, 𝑞2, and 𝑞3 be atomic propo-
sitions and ((𝑝1U𝑞1), (𝑝2U𝑞2)) prj (𝑝3 ∧ X𝑞3) be the basic
PTL formula. An arbitrary PTL formula can be obtained by
combining recursively the basic PTL formula. A basic PTL
formula is interpreted on a path L and a system model M,
and its intuitive meaning is given as follows:

(i) ((𝑝1U𝑞1), (𝑝2U𝑞2)) prj (𝑝3 ∧ X𝑞3): for each path L in
M, the following property holds: (1) the prefix subpath
(i.e., the fined-grained prefix interval) satisfies the
core LTL formula 𝑝1U𝑞1, (2) the suffix subpath (i.e.,
the fined-grained suffix interval) satisfies the core LTL
formula 𝑝2U𝑞2, and (3) the state sequence consisting
of the first state in the fine-grained prefix interval and
the first state in the fine-grained suffix interval (i.e.,

the coarse-grained interval) satisfies the LTL formula
𝑝3 ∧ X𝑞3.

Figure 4 gives a sample model for the basic PTL formula. For
((𝑝1U𝑞1), (𝑝2U𝑞2)) prj (𝑝3 ∧ X𝑞3), any path L in M has the
three intervals: the fined-grained prefix interval is made up
of the blue states, the fined-grained suffix interval is made up
of the red states, and the coarse-grained interval is made up
of the black states. In fact, the difference of the fined-grained
intervals and the coarse-grained interval is the different units
of time elapse.

Given an arbitrary model M, we will provide a new
solution in Section 3.3 on how to use the DNA-computing-
based method to determine whether the basic PTL formula
is satisfied by M or not.

2.5. Finite State Automata and Model Checking

Definition 5. A Finite State Automaton (FSA) is a five-tuples
(Σ, 𝑄, 𝑇, 𝑞0, 𝐹), where

(i) Σ is a finite alphabet,
(ii) 𝑄 is a finite set of states,
(iii) 𝑇 is a finite set of transitions: 𝑇 : 𝑄 × Σ → 𝑅(𝑄),
(iv) 𝑞0 ∈ 𝑄 is an initial state,
(v) 𝐹 ⊆ 𝑄 is a set of acceptance states.

6 BioMed Research International

DescriptionModeling
Input

NoYes

Input
Input

Output
System Property needs to be

satisfied by system
Algorithm for translating

Output:
“system does
not satisfy
property”

Output:
“system
satisfies
property”

formulas into FSA [43]

Containing algorithm of FSA [43]

FSA ＂1

＂2 contains ＂1?

FSA B2 (model of ) Formula 

Figure 5: Principle of the model checking algorithms based on classic computing.

q

p

0

1

Figure 6: An example on FSA.

Figure 6 depicts an example for an FSA. This automaton is
made up of two states and two transitions. State 0 is an initial
state which is pointed at by an arrow without source, whereas
state 1 is an acceptance state which is marked by a double
circle. The automaton will enter state 0 if 𝑝 is input at state
0, whereas the automaton will enter state 1 if 𝑞 is input at state
0. The string 𝑝𝑞 is an acceptance word, since the automaton
will transit from an initial state to an acceptance state if 𝑝𝑞
is input. Similarly, the strings 𝑞, 𝑝𝑝𝑞, 𝑝𝑝𝑝𝑞, . . . are acceptance
words too. An acceptance language of an automaton is made
up of all of the acceptance words of the automaton. In this
example, {𝑞, 𝑝𝑞, 𝑝𝑝𝑞, 𝑝𝑝𝑝𝑞, . . .} is the acceptance language of
the automaton which is illustrated by Figure 6.

The only difference between the automaton in Figure 6
and the one in Figure 7 is that the atomic propositions in the
latter automaton are satisfied in the states rather than in the
transitions. Therefore, the latter automaton is called a Label
FSA (LFSA).

In classical computation, the principles of the algorithms
for temporal logic model checking can be illustrated by
Figure 5. A LFSA, denoted as B1, is used to describe some
behaviors of a system, whereas an FSA, denoted as B2, is
employed to construct a model of a temporal logic formula.
The model checking algorithm will decide that the system
meets the property specified by the formula, if some inclusion
relations hold between the two acceptance languages of the
two automata.

2.6. Sticker Automata and DNAModel Checking

2.6.1. Sticker Automata. As a model of DNA computing,
a sticker automaton can realize an FSA. Given a DNA
strand characterizing an input string and an FSA, the sticker
automaton can determine whether or not the string is
accepted by the FSA.

M = (Σ, 𝑆, 𝑇, 𝑠0, 𝐹) is an FSA, and every character 𝑎 in
the alphabet Σ can be encoded as 𝐶(𝑎). One way of the DNA
encoding is as follows [56]:

(1) An input string 𝑎1, . . . , 𝑎𝑛 in Σ can be encoded
with the single-stranded DNA molecule: 5󸀠 𝐼1𝑋0 ⋅ ⋅ ⋅
𝑋𝑚 𝐶(𝑎1) ⋅ ⋅ ⋅ 𝑋0 ⋅ ⋅ ⋅ 𝑋𝑚 𝐶(𝑎𝑛) 𝑋0 ⋅ ⋅ ⋅ 𝑋𝑚 𝐼2 3

󸀠, where 𝐼1
is an initiator sequence,𝑋0 ⋅ ⋅ ⋅ 𝑋𝑚 is a spacer sequence
separating 𝐶(𝑎𝑖), and 𝐼2 is a terminator sequence.

(2) A transition 𝑇(𝑠𝑖, 𝑎) = 𝑠𝑗 is encoded as
3󸀠𝑋𝑖+1 ⋅ ⋅ ⋅ 𝑋𝑚 𝐶(𝑎)𝑋0 ⋅ ⋅ ⋅ 𝑋𝑗 5

󸀠, where 𝑋 means
the Watson-Crick complement (WC for short) of a
nucleotide 𝑋 and 𝐶(𝑎) means the WC of the DNA
strand characterizing 𝑎.

(3) An initial state 𝑠𝑖 is encoded as 3󸀠 𝐼1𝑋0 ⋅ ⋅ ⋅ 𝑋𝑖 5
󸀠.

(4) An acceptance state 𝑠𝑗 is encoded as
3󸀠 𝑋𝑗+1 ⋅ ⋅ ⋅ 𝑋𝑚 𝐼2 5

󸀠.
The computational process of sticker automata can be sum-
marized in the following three steps [56].

Step 1 (data preprocessing). (1) Synthesize someDNA strands
characterizing an automaton and its input strings.

(2) Put all theDNA strands into the test tubeT, and anneal
to make sure that the strands and their WC complements
can be hybridized completely.The process of base pairing and
the placement of ligase can form complete or partial double-
stranded DNA molecules.

Step 2 (computation). After Step 1, there are two possible
cases. If the input string is accepted by the automaton,
the tube T contains only the complete double-stranded
DNA molecules, which begin with an initiator sequence and
terminate at a terminator sequence. Otherwise, there are
partial double-stranded or single-stranded DNA molecules
in T. For the second case, some fragments of the single-
strandedDNAmoleculeswhich characterize the input strings

BioMed Research International 7

0 21

{q}{p} Φ

(a) A systematic FSAM1

0 31 2

{p1, p3} {p1, q1} {p2} {q2}

(b) A systematic FSAM2

0 1

{q}{p}

(c) A systematic FSAM3

Figure 7: Some examples on LFSA: the systematic models of the experiments in this paper.

Table 2: Relationships: the four formulas of temporal logic and their FSA models, where
- -
U is the logical duality of U.

The formula 𝜑1 = �𝑝
- -
U �𝑞 𝜑2 = (𝑝1U𝑞1); (𝑝2U𝑞2) 𝜑3 = (𝑝U𝑞)∗ 𝜑4 = ((𝑝1U𝑞1), (𝑝2U𝑞2)) prj (𝑝3 ∧ X𝑞3)

FSA of formula A1 A2 A3 A4

are paired successfully with some single-stranded DNA
molecules which characterize transitions, whereas other
fragments of the single-stranded DNA molecules which
characterize the input strings cannot be paired with any
single-stranded DNA molecules which characterize transi-
tions. Therefore, ribozymes called Mung Bean are poured
into the test tube T to degrade the single-stranded DNA
fragment and retain the complete double-stranded DNA
molecules.

Step 3 (output of results). The DNAmolecules with different
lengths can be separated using the electrophoretic technique.
If there exist a variety of lengths of DNA molecules, this
indicates that there are some partial double-stranded DNA
molecules in T before we add the ribozymes, and the input
string cannot be accepted by the automaton. Otherwise,
T contains only complete double-stranded DNA molecules
before we add the ribozymes, and the input string can be
accepted by the automaton.

2.6.2. DNAModel Checking. On the basis of sticker automata,
a DNA-computing-based LTL model checking method has
been presented [55], which can be denoted as algorithm
TL-MC-DNA(DNACODE(A), x), whereDNACODE(A) and
x are two inputs of the algorithm, where A is an FSA
expressing a run of a system, DNACODE(A) is an encod-
ing with a sticker automaton for characterizing A, x =
DNACODE(A(𝑓)) is an encoding with a sticker automaton
for characterizing A(𝑓), and A(𝑓) is an FSA model of a
formula𝑓.The scope of𝑓 includes all the basic LTL formulas
and some popular LTL formulas (𝑓 formula) [55].The output
of the algorithm is yes or no, representing the result of the
model checking. The principle of this algorithm is illustrated
by Figure 8.

2.7. The Four FSAs of the Formulas and Their DNA Model
Checking. Given a temporal logic formula, an FSAmodel can
be computed [43, 50, 52]. Figure 9 gives the four FSA models
for the four specific formulas of temporal logic, respectively.
Their corresponding relations are shown in Table 2, where 𝜑2
and 𝜑3 are the basic ITL formulas and 𝜑4 is the basic PTL
formula. In addition, � is logical negation,

- -
U is logical duality

of U, and �𝑝
- -
U �𝑞 describes the property: for each path in M,

there exists at least one state which does not satisfy 𝑝, before
𝑞 is satisfied.

3. The DNA Model Checking Method

As mentioned in Section 2.6.2, if the encoding of one sticker
automaton for an FSA of a system and the encoding of the
other sticker automaton for an FSA of a formula are input
into the algorithm TL-MC-DNA(DNACODE(A), DNA-
CODE(A(f))) [55], the algorithm can compute and return the
model checking results.This has been confirmed for the effec-
tiveness of the algorithm TL-MC-DNA for the 𝑓 formulas
by simulated biological experiments [55].This paper expands
the range of the formula 𝑓 and a series of new encodings of
sticker automata, which will be explained in detail in Sec-
tion 4. The DNA model checking for the four temporal logic
formulas in Table 2 is performed by running the algorithm
TL-MC-DNA(DNACODE(A), DNACODE(A(𝑓󸀠󸀠))), where
𝑓󸀠󸀠 = {𝜑1, 𝜑2, 𝜑3, 𝜑4} (𝑓󸀠󸀠 formula). Section 4 will study
the effectiveness of the new algorithm for the 𝑓󸀠󸀠 formulas
by a number of simulated biological experiments. It should
be noted that the algorithm TL-MC-DNA(DNACODE(A),
DNACODE(A(𝑓))) comes from previous research [55]. Due
to space limitations, its pseudocode is not given in this paper.

3.1. The DNA Model Checking for the Basic CTL Formulas.
There are eight basic CTL formulas. Due to the different
semantics, the DNAmodel checking algorithms are different
too.

3.1.1. The DNAModel Checking for the Four Universal Formu-
las. Four basic CTL formulas, A𝑝U𝑞, AF𝑝, AG𝑝, and AX𝑝,
are called the universal formulas since their semantics are all
involved in “all paths.” Comparing the CTL formula A𝑝U𝑞
and the LTL formula𝑝U𝑞, it can be clearly seen that these two
formulas have the same semantics. Therefore, the algorithm
TL-MC-DNA(DNACODE(A), x) [55] can be employed to
check the CTL formulas A𝑝U𝑞, AF𝑝, AG𝑝, and AX𝑝. The
detailed algorithm is formulated as shown in Algorithm 1.

3.1.2. The DNA Model Checking for the Four Existence For-
mulas. The remaining four basic CTL formulas, E𝑝U𝑞, EF𝑝,

8 BioMed Research International

Initiator
sequence

DNA code of atomic proposition
satisfied by 1st state of run

Spacer
sequence

Spacer
sequence

Spacer
sequence

Spacer
sequence

DNA code of atomic proposition
satisfied by 1st state of run

Terminator
sequence· · ·

(a) DNA molecules characterizing run of systematic FSA (i.e., the class I molecules)

DNA code of
initial state, that is
DNA molecules
characterizing
initial state

acceptance state, that is
DNA molecules
characterizing
acceptance state

DNA code of
transition rule, that is
DNA molecules
characterizing
transition rule

DNA code of

(b) Three kinds of DNA molecules characterizing FSA of formula (i.e., the
class II molecules)

molecule 5)

Transition rule x
of FSA of formula
(DNA molecule
3)

Initial state of
FSA of formula
(DNA molecule
2)

A systematic run whose length is n (DNA molecule 1)

Transition rule y
of FSA of formula
(DNA molecule
4)

Acceptance
state of FSA of
formula (DNA

(c) A complete double strand is formed after hybridization if a run is
accepted by the FSA model of formula where DNA molecule 1 is a class
I molecule and DNA molecules 2, 3, 4, and 5 are class II molecules

Transition rule x
of FSA of formula
(DNA molecule
 3)

Initial state of
FSA of formula
(DNA molecule
 2)

A systematic run whose length is n (dna molecule 1)

Acceptance
state of FSA of
formula (DNA
molecule 5)

(d) An incomplete double strand is formed after hybridization if a run
cannot be accepted by the FSAmodel of formula where DNAmolecule 1 is
a class I molecule and DNA molecules 2, 3, 4, and 5 are class II molecules

Modeling

General
principle
of model
checking

A string is a path in
General
principle
of model
checking

Input as an FSAInput as a string
DNA

encoding

input

Description

Modeling

No

Yes

Output
System Property needs to be

satisfied by system

Systematic
Formula 

FSA of formulaComplete double
strand is formed by
hybridization?

All strings are accepted by FSA

Algorithm 1 [54]

Set of class I molecules;
each molecule
characterizes an

Set of class II molecules; different
molecules characterize initial
state, acceptance state, and

There exists
a string
which is
not accepted
 by FSA

Principle
of sticker
automata
in [56]

Output:
“system
satisfies
property”

Output:
“system
does not
satisfy
property”

Each path in B1 is a path in B2

which is not a path in B2

There exists a path in B1

a path in B2

A string is a path in

a path in B2

B1, and a path in FSA is B1, and a path in FSA is

B2

FSA B1

transition rule of B2, respectivelyacceptance run of B1

(e) Flowchart of the algorithms

Figure 8: Principle of the model checking algorithms based on DNA computing [55].

EG𝑝, and EX𝑝, are called the existence formulas since their
semantics are all involved in “there exists at least one path.”
Each of these four existence formulas is related to one of the
universal formulas, which is summarized in Table 3.

Comparing A�𝑝
- -
U �𝑞 and 𝜑1 = �𝑝

- -
U �𝑞, it

can be observed that these two formulas have the same
semantics. Thus, �𝜑1 = E𝑝U𝑞. Therefore, the algorithm
TL-MC-DNA(DNACODE(A), DNACODE(A(𝑓󸀠󸀠 = 𝜑1)))
can be used to check the CTL formula E𝑝U𝑞. Similarly, the
algorithmTL-MC-DNA(DNACODE(A), x) can be employed
to check the CTL formulas EF𝑝, EG𝑝, and EX𝑝. The detailed
algorithm is formulated as shown in Algorithm 2. It should
be noted that when a negative form of an atomic proposition
occurs in the algorithm and is assigned as its argument,

only one new atomic proposition is needed in the design
of DNA encoding. No modification is needed on the algo-
rithm, the FSA structure, or the encoding scheme of sticker
automata.

3.1.3. The DNA Model Checking for the Basic CTL Formulas.
The principle of this algorithm is as follows. (1) If a basic
CTL formula is a universal formula, Algorithm 1 will be
called. (2) And if a basic CTL formula is an existence formula,
Algorithm 2 will be called. In this way, model checking of
the basic CTL formulas can be conducted. The algorithm is
formulated as shown in Algorithm 3.

3.1.4. Complexity Analysis. The time complexity of the algo-
rithm TL-MC-DNA is 𝑂(𝑚 + 𝑛) [55], where 𝑚 means the

BioMed Research International 9

q

0

2

1
p ∧ q

q

q

(a) FSA A1

1

2

0

q1

q2

p2

p1

(b) FSA A2

q p

1

0

p

q

(c) FSA A3

2

4

3

0
1

q1

q2

p1

p1

∧ p3

p2

p2

∧ q3

q2 ∧ q3

q1 ∧ p3

(d) FSA A4

Figure 9: The four FSA models of the four formulas.

INPUT: The encoding of one sticker automata for an FSA of a system A and the encoding of the other sticker automaton for
an FSA of a universal CTL formula fq, where 𝑓𝑞 = A𝑝U𝑞, AF𝑝, AG𝑝 or AX𝑝.

OUTPUT: whether A satisfies 𝑓𝑞, or not
BEGIN

Step 1:
SELECT CASE 𝑓𝑞
CASE A𝑝U𝑞

𝑔 fl 𝑝U𝑞 // where 𝑔 is a 𝑓 formula
CASE AF𝑝

𝑔 fl F𝑝 // where 𝑔 is a 𝑓 formula
CASE AG𝑝

𝑔 fl G𝑝 // where 𝑔 is a 𝑓 formula
CASE AX𝑝

𝑔 fl X𝑝 // where 𝑔 is a 𝑓 formula
ENDSELECT

Step 2: 𝑦 fl TL-MC-DNA(DNACODE(A), DNACODE(A(𝑔)))
Step 3: IF 𝑦 = “yes”, THEN return “yes”, ELSE return “no”

END

Algorithm 1: CTLQ-MC-DNA(DNACODE(A), DNACODE(A(𝑓𝑞))), the DNAmodel checking algorithm for the universal CTL formulas.

10 BioMed Research International

INPUT:The encoding of one sticker automata for an FSA A of a system and the encoding of the other
sticker automaton for an FSA of an existence CTL formula fc, where 𝑓𝑐 = E𝑝U𝑞, EF𝑝, EG𝑝 or EX𝑝

OUTPUT: whether A satisfies 𝑓𝑐, or not
BEGIN
SELECT CASE 𝑓𝑐
CASE E𝑝U𝑞

Step 1: 𝑔 fl 𝜑1
Step 2: 𝑦 fl TL-MC-DNA(DNACODE(A), DNACODE(A(𝑔))) // where 𝑔 is a 𝑓󸀠󸀠 formula
Step 3: IF 𝑦 = “yes”, THEN return “no”, ELSE return “yes” //𝜑1 = �(E𝑝U𝑞)

CASE EF𝑝
Step 1: 𝑔 fl G�𝑝
Step 2: 𝑦 fl TL-MC-DNA(DNACODE(A), DNACODE(A(𝑔))) // where 𝑔 is a 𝑓 formula
Step 3: IF 𝑦 = “yes”, THEN return “no”, ELSE return “yes” // G�𝑝 = �(EF𝑝)

CASE EG𝑝
Step 1: 𝑔 fl F�𝑝
Step 2: 𝑦 fl TL-MC-DNA(DNACODE(A), DNACODE(A(𝑔))) // where 𝑔 is a 𝑓 formula
Step 3: IF 𝑦 = “yes”, THEN return “no”, ELSE return “yes” // F�𝑝 = �(EG𝑝)

CASE EX𝑝
Step 1: 𝑔 fl X�𝑝
Step 2: 𝑦 fl TL-MC-DNA(DNACODE(A), DNACODE(A(𝑔))) // where 𝑔 is a 𝑓 formula
Step 3: IF 𝑦 = “yes”, THEN return “no”, ELSE return “yes” // X�𝑝 = �(EX𝑝)

ENDSELECT
END

Algorithm 2: CTLC-MC-DNA(DNACODE(A), DNACODE(A(𝑓𝑐))), the DNAmodel checking algorithm for the existence CTL formulas.

INPUT: The encoding of one sticker automata for an FSA A of a system and the encoding of the other sticker automaton for
an FSA of a basic CTL formula fCTL

OUTPUT: whether A satisfies 𝑓CTL, or not
BEGIN

Step 1: IF there exists 𝑓𝑐, such that 𝑓CTL = 𝑓𝑐, THEN call CTLC-MC-DNA(DNACODE(A), DNACODE(A(𝑓𝑐)))
ELSEIF there exists 𝑓𝑞, such that 𝑓CTL = 𝑓𝑞, THEN call CTLQ-MC-DNA(DNACODE(A), DNACODE(A(𝑓𝑞)))

END

Algorithm 3: CTL-MC-DNA(DNACODE(A), DNACODE(A(𝑓CTL))), the DNA model checking algorithm for the basic CTL formulas.

Table 3: The relationships between the existence and the universal
CTL formulas.

Existence formulas Universal formulas Relationships

E𝑝U𝑞 A𝑝U𝑞
�E𝑝U𝑞 = A�𝑝

- -
U �𝑞

E𝑝U𝑞 = �A�𝑝
- -
U �𝑞

EG𝑝 AF𝑝 �EG𝑝 = AF�𝑝
EG𝑝 = �AF�𝑝

EF𝑝 AG𝑝
�EF𝑝 = AG�𝑝
EF𝑝 = �AG�𝑝

EX𝑝 AX𝑝
�EX𝑝 = AX�𝑝
EX𝑝 = �AX�𝑝

number of nodes in an automaton and 𝑛 means the number
of edges in this automaton. Therefore, Algorithm 1 needs to
execute 𝑂(𝑚 + 𝑛) + 𝑂(3) = 𝑂(𝑚 + 𝑛) times operations.
Similarly, Algorithm 2 needs to execute 𝑂(𝑚 + 𝑛) + 𝑂(3) =
𝑂(𝑚 + 𝑛) times operations. Algorithm 3 calls Algorithm 1
or Algorithm 2, so that the complexity of Algorithm 3 is
𝑂(𝑚 + 𝑛). In comparison, the model checking of the basic

CTL formulas based on classical computing has a square
complexity.

Regarding the efficiency of the algorithm in the classical
model checking based on electronic computing, a com-
putational process will advance sequentially. In the DNA
model checking, the process is different. A large number
of molecules execute computations at the same time, in a
parallel manner. Although/since the massive computational
units (i.e., molecules) are involved in computation, the effi-
ciency of the algorithm is improved. In contrast, the classical
model checking requires fewer computational units but more
computational steps. In short, the DNA computing is better
in the time at the cost of space, compared with the classical
computing.Thus, the two kinds of computing approaches are
complementary.

3.2. The DNAModel Checking for the Basic ITL Formulas
3.2.1. The DNA Model Checking for the Basic ITL For-
mulas. There are two basic ITL formulas. The basic ITL
formula (𝑝1U𝑞1); (𝑝2U𝑞2) can perform DNA model check-
ing by calling the algorithm TL-MC-DNA(DNACODE(A),

BioMed Research International 11

INPUT:The encoding of one sticker automata for an FSA A of a system and the encoding of the other sticker automaton
for an FSA of a basic ITL formula fITL

OUTPUT: whether A satisfies 𝑓ITL, or not
BEGIN
Step 1: IF 𝑓ITL = 𝜑2, THEN call TL-MC-DNA(DNACODE(A), DNACODE(A(𝑓󸀠󸀠 = 𝜑2)))

ELSEIF 𝑓ITL = 𝜑3, THEN call TL-MC-DNA(DNACODE(A), DNACODE(A(𝑓󸀠󸀠 = 𝜑3)))
END

Algorithm 4: ITL-MC-DNA(DNACODE(A), DNACODE(A(𝑓ITL))), the DNA model checking algorithm for the basic ITL formulas.

INPUT: The encoding of one sticker automata for an FSA A of a system and the encoding of the other sticker automaton
for an FSA of a basic PTL formula fPTL

OUTPUT: whether A satisfies 𝑓PTL, or not
BEGIN

Step 1: IF 𝑓PTL = 𝜑4, THEN call TL-MC-DNA(DNACODE(A), DNACODE(A(𝑓󸀠󸀠 = 𝜑4)))
END

Algorithm 5: PTL-MC-DNA(DNACODE(A), DNACODE(A(𝑓PTL))), the DNA model checking algorithm for the basic PTL formulas.

DNACODE(A(𝑓󸀠󸀠 = 𝜑2))). The basic ITL formula (𝑝U𝑞)∗

can perform DNA model checking by calling the algorithm
TL-MC-DNA(DNACODE(A), DNACODE(A(𝑓󸀠󸀠 = 𝜑3))).
The algorithm is formulated as shown in Algorithm 4.

3.2.2. Complexity Analysis. Algorithm 4 calls the algorithm
TL-MC-DNA, which has a complexity of 𝑂(𝑚 + 𝑛) [55].
Therefore, the complexity of Algorithm 4 is 𝑂(𝑚 + 𝑛). In
comparison, the model checking of the basic ITL formulas
based on classical computing has an exponential complexity.

3.3. The DNAModel Checking for the Basic PTL Formula
3.3.1. The DNA Model Checking for the Basic PTL Formula.
The DNA model checking for the basic PTL formula
((𝑝1U𝑞1), (𝑝2U𝑞2)) prj (𝑝3 ∧ X𝑞3) can be performed
by calling the algorithm TL-MC-DNA(DNACODE(A),
DNACODE(A(𝑓󸀠󸀠 = 𝜑4))). The algorithm is formulated as
shown in Algorithm 5.

3.3.2. Complexity Analysis. Algorithm 5 calls the algorithm
TL-MC-DNAwhich has a complexity of𝑂(𝑚+𝑛) [55].Thus,
the complexity of Algorithm 5 is𝑂(𝑚+𝑛). In comparison, the
model checking of the basic PTL formula based on classical
computing has an exponential complexity.

4. Simulated Experiments

Thecore implement component of our new approaches is TL-
MC-DNA algorithm which is called by all the new methods.
We have implemented this algorithm on the general model of
sticker automata, with a simulation platform calledNUPACK
[57]. It has been confirmed that, (1) for the nine FSAs of the
nine specific temporal logic formulas, the algorithm TL-MC-
DNA can be realized effectively in molecular biology; (2) for
the above FSAs, one can design their appropriate encoding
of sticker automata, so that the accuracy rate of base pairing

reaches more than 99% [55]. For the four FSAs of the formu-
las presented in Section 2.7, it is important to implement the
TL-MC-DNA algorithm effectively in molecular biology. In
particular, the biological effectiveness of the algorithms from
1 to 5 is dependent on this. Therefore, the same experimental
platform and experimental means with the ones in [55] are
employed to carry out the molecular biological simulated
experiments.

The design of the DNA encoding is in relation to the
success of the experiment. In order to ensure the specificity
of hybridization, an encoding sequence must satisfy some
physical constraints and thermodynamic constraints [58].
In this paper, the thermodynamic constraints, including
the thermal denaturizing temperature, and the free energy
are studied only because the problem is limited by the
physical constraints [55]. NUPACK can be employed to
design the DNA encodings for sticker automata, and this
tool can simulate the hybridization phenomena which orig-
inate from the running of the TL-MC-DNA algorithm.
This experimental way has been proved to be scientific in
[55].

Experimental Procedure. (1) According to Figures 7 and 9, one
can design the encoding of the sticker automata for systematic
FSAs shown in each subgraph, as well as the encoding of
the sticker automata for FSAs of formulas shown in each
subgraph, respectively; (2) for these FSAs mentioned above,
one can simulate the process of hybridization between some
single-stranded DNA molecules; (3) according to the five
algorithms proposed in this paper, one can get the results
of model checking of various temporal logic formulas, by
reading the results of hybridization.

Experimental Objective. The objective is to test the cor-
rectness, effectiveness, and biological reliability of the new
algorithms.

12 BioMed Research International

Table 4: Checking for 𝜑1: the designed encoding sequence, where WC means Watson-Crick complementary strand of code.

Code 5󸀠 GCCAGAATTGCAAGGCAGCGAATTGCAAGGCGCGGAATTGCAAGGCCCCGAATTGCAAGGCCGTCCGACGC 3󸀠

WC 3󸀠 CGGTCTTAACGTTCCGTCGCTTAACGTTCCGCGCCTTAACGTTCCGGGGCTTAACGTTCCGGCAGGCTGCG 5󸀠

? ?

?

?

?

?

?

?

?

?

?

?

?

Sequence properties
Free energy: −145.97 kcal/mol

Base Number %
A
C
G
T
Other

28

43

43

28

0

19.7

30.3

30.3

19.7

0.0

Sequence/structure properties
Free energy: −145.92 kcal/mol
Probability: 0.917

Ensemble defect: 0.2 nt
Normalized ensemble defect: 0.1%

Nucleotides: 142nt

Figure 10: Checking the formula 𝜑1: the structural properties of encoding sequence.

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 p

ro
ba

bi
lit

y

Free energy of secondary structure: −145.92 kcal/mol

MFE structure

Figure 11: Thermodynamic analysis for 𝜑1: minimum free energy
structure.

4.1. Simulated Experiments for 𝜑1

4.1.1. Encoding Designs. The DNA encoding via NUPACK is
designed, as illustrated in Table 4. Figures 10, 11, and 12 show
the thermodynamic analysis of the encoding sequence at
10∘C.As shown in Figure 10, theNormalized EnsembleDefect
(NED) means the incorrect matching ratio of the nucleotides
when a biochemical reaction is in equilibrium. 0% implies an
optimal design, whereas 100% implies the worst design. The
NED of our coding sequence is 0.1%.

The principle of the minimum free energy points out that
the free energy is minimized when a biochemical reaction is
in equilibrium. As shown in Figure 11, the color of the match
between two kinds of molecules is dark red. The probability
of the following event almost reaches 100%: the double-
stranded molecule is completely matched. We find this fact
by comparing color changes of the vertical bar that indicate
the balance probability.Thus, its free energy is approximately
equal to the minimum free energy.

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 p

ro
ba

bi
lit

y

20 40 60 80 100 120 140

Base index

Free energy of strand (−kT log Q): −145.97 kcal/mol

20

40

60

80

100

120

140

Ba
se

 in
de

x

Pair probabilities at 10.0∘C

Figure 12: Checking for 𝜑1: pairing probability in equilibrium.

As shown in Figure 12, the position of the red line
indicates that all bases in the two single strands are completely
complementary to each other, and the color of the red line
indicates that the probability of all the pairs is approximately
equal to 1. As analyzed above, our DNA sequence satisfies
the minimum free energy constraint and the DNAmolecules
that participate in the reaction have a basically consistent
temperature of solution chain. Therefore, the experimental
results obtained from this encoding are reliable and effective
in biology.

In fact, Table 4 indicates the encoding rules for the input
strings, as shown in Table 5. According to Table 5 and the
principle of encoding of sticker automata, we can deduce
the encoding of the sticker automaton characterizing 𝜑1, as
shown in Table 6.

4.1.2. Simulated Experiments. With the DNA code given
in Section 4.1.1 at hand, we can conduct our simulated
experiments. It should be noted that, in Section 4.1.2, all the

BioMed Research International 13

Table 5: Checking for 𝜑1: the encoding rules of input strings characterizing runs, encoding by the way of sticker automata.

Object of code DNA code
Initiator sequence I1 = 5󸀠 GCCA 3󸀠

Spacer sequence 𝑋0 = 5󸀠 GAA 3󸀠, X1 = 5󸀠 TTG 3󸀠, X2 = 5󸀠 CAA 3󸀠, X3 = 5󸀠 GGC 3󸀠

Terminator sequence I2 = 5󸀠 CGTC 3󸀠

Atomic proposition p = 5󸀠 CGA 3󸀠, q = 5󸀠 CCC 3󸀠, r = ¬p = 5󸀠 CGC 3󸀠, s = ¬q = 5󸀠 AGC 3󸀠, 𝑢 = 𝑟 ∧ 𝑠 = 5󸀠 GCG 3󸀠

Table 6: Checking for 𝜑1: the encoding of FSA A1 of formula, encoding by the way of sticker automata, where sto() means WC.

Object of code Abbreviated transition rule DNA code
Initial state 𝑠0 None 3󸀠 sto(I1 X0) 5󸀠 = 3󸀠 CGGTCTT 5󸀠

Acceptance state 𝑠2 None 3󸀠 sto(X3 I2) 5󸀠 = 3󸀠 CCGGCAG 5󸀠

Transition rule 𝑡(𝑠0, 𝑠) = 𝑠0 𝑡0𝑠0 3󸀠 sto(𝑋1𝑋2𝑋3 𝑠 𝑋0) 5
󸀠 = 3󸀠 AACGTTCCGTCGCTT 5󸀠

Transition rule 𝑡(𝑠0, 𝑢) = 𝑠1 𝑡0𝑢1 3󸀠 sto(𝑋1𝑋2𝑋3 𝑢 𝑋0𝑋1) 5
󸀠 = 3󸀠 AACGTTCCGCGCCTTAAC 5󸀠

Transition rule 𝑡(𝑠0, 𝑠) = 𝑠2 𝑡0𝑠2 3󸀠 sto(𝑋1𝑋2𝑋3 𝑠 𝑋0𝑋1𝑋2) 5
󸀠 = 3󸀠 AACGTTCCGTCGCTTAACGTT 5󸀠

Transition rule 𝑡(𝑠1, 𝑠) = 𝑠1 𝑡1𝑠1 3󸀠 sto(𝑋2𝑋3 𝑠 𝑋0𝑋1) 5
󸀠 = 3󸀠 GTTCCGTCGCTTAAC 5󸀠

Transition rule 𝑡(𝑠1, 𝑞) = 𝑠2 𝑡1𝑞2 3󸀠 sto(𝑋2𝑋3 𝑞 𝑋0𝑋1𝑋2) 5
󸀠 = 3󸀠 GTTCCGGGGCTTAACGTT 5󸀠

Table 7: The runs of the systemM1.

Path DNA code of the path or sequence of nodes (atomic propositions) crossed by the path

Code of path 1 GCCA GAATTGCAAGGC AGC GAATTGCAAGGC AGC | GCG GAATTGCAAGGC CCC GAATTGCAAGGC
CGTC

Sequence of nodes
crossed by path 1 0, 1, 2 (𝑠, 𝑠 | 𝑢, 𝑞)

Code of path 𝑘
GCCA GAATTGCAAGGC (AGC GAATTGCAAGGC AGC | GCG GAATTGCAAGGC)𝑘 CCC
GAATTGCAAGGC CGTC

Sequence of nodes
crossed by path 𝑘

(0, 1)𝑘, 2

encoding of the DNA molecules is written from left to right
with a 5󸀠-3󸀠 direction, which is consistent with the way of
writing in NUPACK.

We will check whether or not the systematic FSA 𝑀1
satisfies the formula 𝜑1. According to the DNA codes given
by Section 4.1.1, we can get all the paths which come from
the systematic runs, as shown in Table 7, where 𝑘 is a natural
number.The transition rules shown in Table 6 clearly indicate
that none of the atomic proposition excerpts for 𝑠, 𝑢, and 𝑞
takes part in the transitions of states. Therefore, we do no
need to consider whether or not the states satisfy the atomic
propositions 𝑝 and 𝑟.

First, we will check path 1. There are two possible runs
in this path. Without loss of generality, we support that the
atomic proposition sequence which is crossed by the run is
𝑠𝑢𝑞.

All the molecules expressing the runs begin with GCCA-
GAA and end with GGCCGTC. Thus, we only need to
consider 𝑑 = TTGCAAGGCAGCGAATTGCAAGGCGCG
GAATTGCAAGGCCCCGAATTGCAA. In short, we will
observe whether or not hybridization occurs between the
DNA molecules expressing transitions and the molecule 𝑑.
For this experiment, the following six kinds of molecules are
poured into a container with a volume of 10−15 L:𝑑, 𝑡0𝑠0, 𝑡0𝑢1,
𝑡0𝑠2, 𝑡1𝑠1, and 𝑡1𝑞2, for observing the hybridization.

The systematic run, which is expressed by the molecule
𝑑, crosses the three states. If hybridization occurs between
the DNA molecules expressing transitions and the molecule
𝑑, there are not more than three kinds of molecules which
are the WC of some segment of 𝑑, involved in the specific
hybridization. For selecting three kinds of molecules from all
the five kinds of WC molecules, one has ten choices. Thus,
the following ten groups of subexperiments are performed,
accordingly.

(1) Group 1: t0s0, t0u1, t1q2, and d. The concentrations of the
four kinds of molecules are all 100 uM, and their molecular
numbers are all 60000. With the temperature naturally
dropped to 10∘C, the hybridization reaction is observed.
Figures 13(a) and 13(b) show the result of the hybridization,
where strand1, strand2, strand3, and strand4 mean 𝑑, 𝑡0𝑠0,
𝑡0𝑢1, and 𝑡1𝑞2, respectively.

In Figure 13(b), the coordinates of the location of the first
red line from top to bottom indicate that the base sequence of
the molecule 𝑑 from the 1st to the 15th sites at 5󸀠-3󸀠 direction
is paired with all of the fifteen bases of themolecule 𝑡0𝑠0 at 3󸀠-
5󸀠 direction.The coordinates of the location of the second red
line from top to bottom indicate that the base sequence of the
molecule 𝑑 from the 16th to the 33rd sites at 5󸀠-3󸀠 direction
is paired with all of the eighteen bases of the molecule 𝑡0𝑢1
at 3󸀠-5󸀠 direction.The coordinates of the location of the third

14 BioMed Research International

Equilibrium concentrations

strand1-strand4-strand3-strand2
0.1 Ｇ－

(a) Group 1: molecular concentrations

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 fr

ac
tio

n

Ba
se

 in
de

x

strand1 strand2 strand3 strand4

20

40

51

15

18

18

Base index
20 40 51 15 18 18

str
an

d1
str

an
d2

str
an

d3
str

an
d4

Ensemble pair fractions at 10.0∘C

(b) Group 1: location and rate of pairing

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 fr

ac
tio

n

strand1 strand2 strand3 strand4

Ba
se

 in
de

x

20

40

51

15

18

20

Base index
20 40 51 15 18 20

str
an

d1
str

an
d2

str
an

d3
str

an
d4

Ensemble pair fractions at 10.0∘C

(c) Group 2: location and rate of pairing

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 fr

ac
tio

n

strand1 strand2 strand3 strand4

Ba
se

 in
de

x

20

40

51

15

18

15

Base index
20 40 51 15 18 15

str
an

d1
str

an
d2

str
an

d3
str

an
d4

Ensemble pair fractions at 10.0∘C

(d) Group 3: location and rate of pairing

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 fr

ac
tio

n

Ba
se

 in
de

x

strand1 strand2 strand3 strand4

20

40

51

15

20

15

Base index
20 40 51 15 20 15

str
an

d1
str

an
d2

str
an

d3
str

an
d4

Ensemble pair fractions at 10.0∘C

(e) Group 4: location and rate of pairing

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 fr

ac
tio

n

strand1 strand2 strand3 strand4

Ba
se

 in
de

x

20

40

51

15

20

18

Base index
20 40 51 15 20 18

str
an

d1
str

an
d2

str
an

d3
str

an
d4

Ensemble pair fractions at 10.0∘C

(f) Group 5: location and rate of pairing

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 fr

ac
tio

n

Ba
se

 in
de

x

strand1 strand2 strand3 strand4

20

40

51

15

15

18

Base index
20 40 51 15 15 18

str
an

d1
str

an
d2

str
an

d3
str

an
d4

Ensemble pair fractions at 10.0∘C

(g) Group 6: location and rate of pairing

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 fr

ac
tio

n

strand1 strand2 strand3 strand4

Ba
se

 in
de

x

20

40

51

18

20

15

Base index
20 40 51 18 20 15

str
an

d1
str

an
d2

str
an

d3
str

an
d4

Ensemble pair fractions at 10.0∘C

(h) Group 7: location and rate of pairing

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 fr

ac
tio

n

strand1 strand2 strand3 strand4

Ba
se

 in
de

x

20

40

51

18

20

18

Base index
20 40 51 18 20 18

str
an

d1
str

an
d2

str
an

d3
str

an
d4

Ensemble pair fractions at 10.0∘C

(i) Group 8: location and rate of pairing

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 fr

ac
tio

n

strand1 strand2 strand3 strand4

Ba
se

 in
de

x

20

40

51

18

15

18

Base index
20 40 51 18 15 18

str
an

d1
str

an
d2

str
an

d3
str

an
d4

Ensemble pair fractions at 10.0∘C

(j) Group 9: location and rate of pairing

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 fr

ac
tio

n

strand1 strand2 strand3 strand4

Ba
se

 in
de

x

20

40

51

20

15

18

Base index
20 40 51 20 15 18

str
an

d1
str

an
d2

str
an

d3
str

an
d4

Ensemble pair fractions at 10.0∘C

(k) Group 10: location and rate of pairing

Figure 13: Checking for 𝜑1: the groups of subexperimental results on base pairing and hybridization.

BioMed Research International 15

red line from top to bottom indicate that the base sequence of
themolecule 𝑑 from the 34th to the 51st sites at 5󸀠-3󸀠 direction
is paired with all of the eighteen bases of the molecule 𝑡1𝑞2 at
3󸀠-5󸀠 direction. The results suggest that the complete double-
stranded DNA molecules are formed, and the hybridization
among the four kinds of single-stranded DNA molecules is
specific.

Comparing the color of the three red lines with the color
change of the vertical bar on the right side of Figure 13(b), it
can be clearly seen that the former colors are very close to the
color at the top of the vertical bar.This phenomenon suggests
that the probabilities of these base pairs are close to 100%.This
is a higher degree of specificity.

As shown in Figure 13(a), the concentration of the
molecule strand1-strand2-strand3-strand4 is 100 uM, and the
concentrations of the molecules 𝑡0𝑠0, 𝑡0𝑢1, 𝑡1𝑞2, and 𝑑
are approximately equal to 0 after their hybridization. This
indicates that all of themolecular reactants are involved in the
specific hybridization, due to 100 uM/100 uM = 100%.There-
fore, both the false negative rate and the false positive rate
are approximate to 0. The true positive rate is approximately
equal to 100%. In short, the results show that the four kinds
of molecules are hybridized with strong specificity.

(2) Group 2: t0s0, t0u1, t0s2, and d. The concentrations of the
four kinds of molecules are all 100 uM, and their molecular
numbers are all 60000. As the temperature naturally drops
to 10∘C, the hybridization reaction is observed. Figure 13(c)
shows the result of the hybridization, where strand1, strand2,
strand3, and strand4 mean 𝑑, 𝑡0𝑠0, 𝑡0𝑢1, and 𝑡0𝑠2, respec-
tively.

See Figure 13(c). There exists a red dot in the segment of
strand1 of the vertical thin bar on the right side of strand4,
indicating that some bases of strand1 are not paired with
others. The results suggest that the four kinds of molecules
in group 2 do not form complete double strands.

For all the other groups, all of the biochemical conditions
and processes are similar to the groups above.

(3) Group 3: t0s0, t0u1, t1s1, and d. Figure 13(d) shows the
result. There exist some red dots in the segment of strand1 of
the vertical thin bar on the right side of strand4, suggesting
that the four kinds of molecules do not form complete double
strands.

(4) Group 4: t0s0, t0s2, t1s1, and d. Figure 13(e) shows the
results. No red line is found at the 5󸀠 end of strand1, indicating
that the 5󸀠 end of strand1 is not paired with any molecule.
This suggests that the four kinds of molecules do not form
complete double strands.

(5) Group 5: t0s0, t0s2, t1q2, and d. The results are shown in
Figure 13(f). There exist some red dots in the segments of
strand3 and strand4 of the vertical thin bar on the right side
of strand4, suggesting that the four kinds of molecules do not
form complete double strands.

(6) Group 6: t0s0, t1s1, t1q2, and d. As shown in Figure 13(g),
no red line is found at the 5󸀠 end of strand1, suggesting that

Table 8: The results: checking for 𝜑1 in the different paths of M1
(whether or not the path satisfies 𝜑1).

Formula Path 1 Path 𝑘, where
15 > 𝑘 > 1

Path 15 Does 𝑀1 satisfy
𝜑1?

𝜑1 Yes Yes Yes Yes

the four kinds of molecules do not form complete double
strands.

(7) Group 7: t0u1, t0s2, t1s1, and d. As shown in Figure 13(h),
there are some red dots in the segments of strand1 of the
vertical thin bar on the right side of strand4, suggesting that
the four kinds of molecules do not form complete double
strands.

(8) Group 8: t0u1, t0s2, t1q2, and d. As shown in Figure 13(i),
there are some red dots in the segments of strand2 and
strand3 of the vertical thin bar on the right side of strand4,
suggesting that the four kinds of molecules do not form
complete double strands.

(9) Group 9: t0u1, t1s1, t1q2, and d. As shown in Figure 13(j),
there exist a red dot in the segments of strand1 of the vertical
thin bar on the right side of the strand4, suggesting that the
four kinds of molecules do not form the complete double
strands.

(10) Group 10: t0s2, t1s1, t1q2 and d. As shown in Figure 13(k),
there exist some red dots in the segments of strand2 and
strand3 of the vertical thin bar on the right side of strand4,
suggesting that the four kinds of molecules do not form
complete double strands.

According to the ten groups of subexperiments men-
tioned above, we find that only group 1 (i.e., 𝑡0𝑠0, 𝑡0𝑢1, 𝑡1𝑞2,
and𝑑) can form complete double strands by the hybridization
reaction. That is to say, the systematic run 𝑠𝑢𝑞 satisfies the
formula 𝜑1, since the first state does not satisfy 𝑞, the second
state satisfies none of 𝑝 and 𝑞, and the third state satisfies 𝑞.

The above results are obtained when 𝑘 = 1. It has been
proved that a system satisfies the formula 𝑝U𝑞, if and only
if all the runs whose lengths are less than |𝑉| ∗ 2|𝑉|−1 + |𝐸|
satisfy 𝑝U𝑞, where |𝑉| and |𝐸| mean the number of nodes
and the number of edges in the systematic FSA, respectively
[55]. Similarly, we can prove that this conclusion holds for 𝜑1.
𝑀1 has three nodes and three edges. Thus, we need to check
fifteen paths due to 𝑘 = 3 ∗ 23−1 + 3 = 15. With the same
experimental way, we have checked the 𝑘th path, as shown in
Table 8. 𝑀1 satisfies the formula 𝜑1 since all paths (i.e., runs)
satisfy this formula.

By calling the procedure for checking 𝜑1, Algorithm 2
can get the model checking results on the formula E𝑝U𝑞.
The model checking results on the eight basic CTL formu-
las are shown in Table 9. According to the experimental
processes and results in Section 4.1, we can safely say that
Algorithm 3, which can be employed to check the basic
CTL formulas, has been effectively implemented inmolecular
biology.

16 BioMed Research International

Table 9: The model checking results: 𝑀1 and the basic CTL formulas (whether or not the system 𝑀1 satisfies these formulas).

Formula Result The used algorithm and decision basis

A𝑝U𝑞 No TL-MC-DNA determines that 𝑀1 does not satisfy 𝑝U𝑞, and thus Algorithm 1 determines that 𝑀1 does not
satisfy A𝑝U𝑞

AF𝑝 Yes TL-MC-DNA determines that 𝑀1 satisfies F𝑝, and thus Algorithm 1 determines that 𝑀1 satisfies AF𝑝

AG𝑝 No TL-MC-DNA determines that 𝑀1 does not satisfy G𝑝, and thus Algorithm 1 determines that 𝑀1 does not
satisfy AG𝑝

AX𝑝 No TL-MC-DNA determines that 𝑀1 does not satisfy X𝑝, and thus Algorithm 1 determines that 𝑀1 does not
satisfy AX𝑝

E𝑝U𝑞 No Extended TL-MC-DNA determines that 𝑀1 satisfies 𝜑1, and thus Algorithm 2 determines that 𝑀1 does not
satisfy E𝑝U𝑞

EF𝑝 Yes TL-MC-DNA determines that 𝑀1 does not satisfy G¬p, and thus Algorithm 2 determines that 𝑀1 satisfies EF𝑝
EG𝑝 No TL-MC-DNA determines that 𝑀1 satisfies F¬p, and thus Algorithm 2 determines that 𝑀1 does not satisfy EG𝑝

EX𝑝 No TL-MC-DNA determines that 𝑀1 satisfies X¬p, and thus Algorithm 2 determines that 𝑀1 does not satisfy EX𝑝

Table 10: Checking for 𝜑2 and 𝜑3: the designed encoding sequence.

Code 5󸀠 CGCTCGAATCGGAATGGATCGAATCGGAATGATACGAATCGGAATGGAACGAATCGGAATGTTCCGAATCGG
AATGTATCGAATCGGAATGTGACGAATCGGAATGCGGC 3󸀠

WC 3󸀠 GCGAGCTTAGCCTTACCTAGCTTAGCCTTACTATGCTTAGCCTTACCTTGCTTAGCCTTACAAGGCTTAGCCTT
ACATAGCTTAGCCTTACACTGCTTAGCCTTACGCCG 5󸀠

q

1 2

0

q

p

p
p1

q1

p2

q2

Figure 14: FSA of formula: merged graph A5 of A2 and A3.

4.2. Simulated Experiments for 𝜑2 and 𝜑3

4.2.1. Encoding Designs. The formula 𝜑2 and the formula 𝜑3
need to be encoded with the same coding scheme since both
formulas are ITL ones. Therefore, we combine the FSAs of
these two formulas into one, as shown in Figure 14. Our
design of a DNA encoding via NUPACK is shown in Table 10,
while Figures 15, 16, and 17 show the thermodynamic analysis
of the encoding sequence presented in Table 10 at 10∘C. The
NED of our coding sequence is 0.1%, which is illustrated
in Figure 15. Its free energy is approximately equal to the
minimum free energy, as shown in Figure 16. All bases in
the two single strands are completely complementary to each
other as shown in Figure 17, and the probabilities of all the
pairs are approximately equal to 1. In Table 11, the encoding
rules for the input strings are provided while Table 12 shows
the encoding of the sticker automaton characterizing 𝜑2 and
𝜑3.

4.2.2. Simulated Experiments. With the DNA code given
in Section 4.2.1 at hand, we can conduct our simulated
experiments. It should be noted that, in Section 4.2.2, all the
encoding of the DNA molecules is written from left to right
with a 5󸀠-3󸀠 direction, which is consistent with the way of
writing using NUPACK.

(1) Model Checking: Whether the Systematic FSA 𝑀2 Satisfies
𝜑2 or Not.With ourDNA codes, all the paths of𝑀2 are shown
in Table 13, where 𝑘 is a natural number. By observing the
transition rules which are related to 𝜑2 and shown in Table 12,
it can be seen that none of the atomic proposition excerpts
for 𝑝1, 𝑞1, 𝑝2, and 𝑞2 takes part in the transitions of states.
Therefore, we dononeed to considerwhether or not the states
satisfy other atomic propositions.

First, we will check path 1. There are two possible runs
in this path. Without loss of generality, we suppose that
the atomic proposition sequence which is crossed by the
run is 𝑝1𝑞1𝑝2𝑞2. We only need to deal with 𝑑 = ATCG
GAATGGATCGAATCGGAATGATACGAATCGGAATGG
AACGAATCGGAATGTTCCGAATCGGA. In short, we
will observe whether or not hybridization occurs between
the DNA molecules expressing transitions and the molecule
𝑑. To this end, we pour the following five kinds of molecules
into a container with a volume of 10−15 L: 𝑑, 𝑡0𝑝10, 𝑡0𝑞11,
𝑡1𝑝21, and 𝑡1𝑞22, for observing the hybridization.

The concentrations of the five kinds of molecules reach
100 uM, and their molecular numbers are all 60000. With
the temperature naturally dropped to 10∘C, the hybridization
reaction is observed. Figure 18 shows the result of the
hybridization, where strand1, strand2, strand3, strand4, and
strand5 mean 𝑑, t0𝑝10, 𝑡0𝑞11, 𝑡1𝑝21, and 𝑡1𝑞22, respectively.

BioMed Research International 17

Table 11: Checking for 𝜑2 and 𝜑3: the encoding rules of input strings.

Object of code DNA code
Initiator sequence I1 = 5󸀠 CGCT 3󸀠

Spacer sequence X0 = 5󸀠 CGA 3󸀠, X1 = 5󸀠 ATC 3󸀠, X2 = 5󸀠 GGA 3󸀠, X3 = 5󸀠 ATG 3󸀠

Terminator sequence I2 = 5󸀠 CGGC 3󸀠

Atomic proposition p1 = 5󸀠 GAT 3󸀠, p2 = 5󸀠 GAA 3󸀠, q1 = 5󸀠 ATA 3󸀠, q2 = 5󸀠 TTC 3󸀠, p = 5󸀠 TAT 3󸀠, q = 5󸀠 TGA 3󸀠

? ?

?

?

?

?

?

?

?

?

?

?

?

Sequence properties
Free energy: −219.81 kcal/mol

Base Number %
A
C
G
T
Other

57

53

53

57

0

25.9

24.1

24.1

25.9

0.0

Sequence/structure properties
Free energy: −219.74 kcal/mol
Probability: 0.878

Ensemble defect: 0.3 nt
Normalized ensemble defect: 0.1%

Nucleotides: 220nt

Figure 15: For 𝜑2 and 𝜑3: the structural properties of encoding sequence.

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 p

ro
ba

bi
lit

y

Free energy of secondary structure: −219.74 kcal/mol

MFE structure at 10.0∘C

Figure 16: Thermodynamic analysis for 𝜑2 and 𝜑3: minimum free
energy structure.

In Figure 18(b), the coordinates of the location of the
four red lines from top to bottom indicate that the com-
plete double-stranded DNA molecules are formed by the
hybridization among the five kinds of single-stranded DNA
molecules. Comparing the color of the four red lines with
the color change of the vertical bar on the right side of
Figure 18(b), we can see clearly that the probabilities of
these base pairs are close to 100%. This is a higher degree
of specificity. As shown in Figure 18(a), the concentration
of the molecules indicates that the true positive rate is
approximately equal to 100%. Once again, it suggests that the
five kinds of molecules are hybridized with strong specificity.
Thus, the systematic run 𝑝1𝑞1𝑝2𝑞2 satisfies the formula 𝜑2.

The above results are gotten when 𝑘 = 1. It has been
proved that a system satisfies the formula 𝑝U𝑞, if and only

Free energy of ordered complex (−kT log

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 p

ro
ba

bi
lit

y

Depict MFE structure

stickfigure_strand2

sti
ck

fig
ur

e_
str

an
d2

stickfigure_strand1

sti
ck

fig
ur

e_
str

an
d1

30

60

90

110

30

60

90

110
30 60 90 110 30 60 90 110

Base index

Ba
se

 in
de

x

Q): −219.81 kcal/mol

Pair probabilities at 10.0∘C

Figure 17: Checking for 𝜑2 and 𝜑3: pairing probability in equilib-
rium.

if all the runs whose lengths are less than |𝑉| ∗ 2|𝑉|−1 + |𝐸|
satisfy 𝑝U𝑞, where |𝑉| and |𝐸| mean the number of nodes
and the number of edges in the systematic FSA, respectively
[55]. A system satisfies the formula 𝜑2, if and only if all the
runs whose lengths are less than (|𝑉1| ∗ 2|𝑉1|−1 + |𝐸1|) +
(|𝑉2| ∗ 2|𝑉2|−1 + |𝐸2|) satisfy 𝑝U𝑞 since 𝜑2 is composed of
the two 𝑝U𝑞-like formulas sequentially, where |𝑉1| and |𝐸1|
mean the number of nodes and the number of edges in the
prefix interval of the systematic FSA, respectively, and |𝑉2|
and |𝐸2|mean the number of nodes and the number of edges
in the suffix interval of the systematic FSA, respectively. For
𝑀2, |𝑉1| = 2, |𝐸1| = 2, |𝑉2| = 2, and |𝐸2| = 1. Thus, we need
to check eleven paths due to 2∗22−1 +2+2∗22−1 +1 = 11, as
shown in Table 14. 𝑀2 satisfies the formula 𝜑2 since all paths
(i.e., runs) satisfy this formula. By calling the procedure for

18 BioMed Research International

Equilibrium concentrations

strand1-strand5-strand4-strand3-strand2
0.1 Ｇ－

(a) Molecular concentrations

strand1 strand2 strand3 strand4 strand5

str
an

d1
str

an
d2

str
an

d3
str

an
d4

str
an

d5

20

40

60

15

18

15

18

20 40 60 15 18 15 18

Base index

Ba
se

 in
de

x

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 fr

ac
tio

n

Ensemble pair fractions at 10.0∘C

(b) Location and rate of pairing

Figure 18: Checking for 𝜑2: the experimental results on base pairing and hybridization.

Table 12: Checking for 𝜑2 and 𝜑3: the encoding of FSA A5 of formula, where sto() means WC.

Object of code Abbreviated transition rule DNA code
Initial state 𝑠0 None 3󸀠 sto(I1 X0) 5󸀠 = 3󸀠 GCGA GCT 5󸀠

Acceptance state 𝑠2 None 3󸀠 sto(X3 I2) 5󸀠 = 3󸀠 TAC GCCG 5󸀠

Transition rule 𝑡(𝑠0, 𝑝1) = 𝑠0 𝑡0𝑝10 3󸀠 sto(𝑋1𝑋2𝑋3 𝑝1 𝑋0) 5
󸀠 = 3󸀠 TAG CCT TAC CTA GCT 5󸀠

Transition rule 𝑡(𝑠0, 𝑝) = 𝑠0 𝑡0𝑝0 3󸀠 sto(𝑋1𝑋2𝑋3 𝑝 𝑋0) 5
󸀠 = 3󸀠 TAG CCT TAC ATA GCT 5󸀠

Transition rule 𝑡(𝑠0, 𝑞1) = 𝑠1 𝑡0𝑞11 3󸀠 sto(𝑋1𝑋2𝑋3 𝑞1 𝑋0𝑋1) 5
󸀠 = 3󸀠 TAG CCT TAC TAT GCT TAG 5󸀠

Transition rule 𝑡(𝑠0, 𝑞) = 𝑠2 𝑡0𝑞2 3󸀠 sto(𝑋1𝑋2𝑋3 𝑞 𝑋0𝑋1𝑋2) 5
󸀠 = 3󸀠 TAG CCT TAC ACT GCT TAG CCT 5󸀠

Transition rule 𝑡(𝑠1, 𝑝2) = 𝑠1 𝑡1𝑝21 3󸀠 sto(𝑋2𝑋3 𝑝2 𝑋0𝑋1) 5
󸀠 = 3󸀠 CCT TAC CTT GCT TAG 5󸀠

Transition rule 𝑡(𝑠1, 𝑞2) = 𝑠2 𝑡1𝑞22 3󸀠 sto(𝑋2𝑋3 𝑞2 𝑋0𝑋1𝑋2) 5
󸀠 = 3󸀠 CCT TAC AAG GCT TAG CCT 5󸀠

Transition rule 𝑡(𝑠2, 𝑝) = 𝑠0 𝑡2𝑝0 3󸀠 sto(𝑋3 𝑝 𝑋0) 5
󸀠 = 3󸀠 TAC ATA GCT 5󸀠

Transition rule 𝑡(𝑠2, 𝑞) = 𝑠2 𝑡2𝑞2 3󸀠 sto(𝑋3 𝑞 𝑋0𝑋1𝑋2) 5
󸀠 = 3󸀠 TAC ACT GCT TAG CCT 5󸀠

checking 𝜑2, Algorithm 4 can get the model checking results
on this basic ITL formula.

(2) Model Checking: Whether the Systematic FSA 𝑀3 Satisfies
𝜑3 or Not. According to the DNA codes given by Section 4.2.1,
we can get all the paths of 𝑀3, as shown in Table 15, where 𝑘
is a natural number. The transition rules, related to 𝜑3 and
shown in Table 12, show that none of the atomic proposition
excerpts for 𝑝 and 𝑞 takes part in the transitions of states.
Therefore, we dononeed to considerwhether or not the states
satisfy other atomic propositions.

First, we will check path 1. The atomic proposition
sequence which is crossed by the run is 𝑝𝑞. We only need
to deal with 𝑑 = ATCGGAATGTATCGAATCGGAATGT
GACGAATCGGA. In short, we will observe whether or not
hybridization occurs between the DNAmolecules expressing
transitions and the molecule 𝑑. To this end, we pour the
following five kinds of molecules into a container with a
volume of 10−15 L: 𝑑, 𝑡0𝑝0, 𝑡0𝑞2, 𝑡2𝑝0, and 𝑡2𝑞2, for observing
the hybridization.

The concentrations of the five kinds of molecules reach
100 uM, and their molecular numbers are all 60000. The
hybridization reaction is observed as the temperature nat-
urally drops to 10∘C. Figure 19 shows the result of the
hybridization, where strand1, strand2, strand3, strand4, and
strand5 mean 𝑑, 𝑡0𝑝0, 𝑡0𝑞2, 𝑡2𝑝0, and 𝑡2𝑞2, respectively.

As shown in Figure 19(b), the coordinates of the location
of the two red lines from top to bottom indicate that the
complete double-stranded DNAmolecules are formed by the
hybridization among 𝑡0𝑝0, 𝑡0𝑞2, and 𝑑. Comparing the color
of the two red lines with the color change of the vertical bar
on the right side of Figure 19(b), we can see clearly that the
probabilities of these base pairs are close to 100%. This is a
higher degree of specificity.

As shown in Figure 19(a), 99 uM/100 uM = 99% of the
molecules 𝑑 take part in the specific hybridization. Note that
only the molecule strand1-strand3-strand2 is the product of
the specific hybridization. Therefore, the true positive rate
of the specific hybridization of 𝑑 is approximately equal to
99%. Similarly, the false negative rate of 𝑑 is equal to 0, and

BioMed Research International 19

Table 13: The runs of the systemM2.

Path DNA code of the path or sequence of nodes (atomic propositions) crossed by the path

Code of path 1 CGCT CGAATCGGAATG GAT CGAATCGGAATG GAT | ATA CGAATCGGAATG GAA
CGAATCGGAATG TTC CGAATCGGAATG CGGC

Sequence of nodes crossed by path 1 0, 1, 2, 3 (𝑝1, 𝑝1 | 𝑞1, 𝑝2, 𝑞2)

Code of path 𝑘 CGCT CGAATCGGAATG (GAT CGAATCGGAATG GAT | ATA CGAATCGGAATG)𝑘 GAA
CGAATCGGAATG TTC CGAATCGGAATG CGGC

Sequence of nodes crossed by path 𝑘 (0, 1)𝑘, 2, 3

Equilibrium concentrations

strand1-strand3-strand2

strand4

strand5-strand5

strand5

strand4-strand4

strand4-strand5

strand1-strand5-strand3

strand2

strand4-strand5-strand5

strand4-strand4-strand4

99 －

51 －

33 －

23 －

29 －

2.2 －

0.2 －

0.65 －

0.68 －

0.37 －

(a) Molecular concentrations

str
an

d1
str

an
d2

str
an

d3
str

an
d4

str
an

d5

Ensemble pair fractions
strand1 strand2 strand3 strand4 strand5

20

20

36

36

15

15

20

20

15
15

Base index

Ba
se

 in
de

x

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 fr

ac
tio

n

at 10.0∘C

(b) Location and rate of pairing

Figure 19: Checking for 𝜑3: the experimental results on base pairing and hybridization.

Table 14: The results: checking for 𝜑2 in the different paths of M2
(whether or not the path satisfies 𝜑2).

Formula Path 1 Path 𝑘, where
11 > 𝑘 > 1

Path 11 DoesM2 satisfy
𝜑2?

𝜑2 Yes Yes Yes Yes

the false positive rate of 𝑑 is 0.68 uM/100 uM = 0.68%. As
for 𝑡0𝑝0, its false negative rate is 0.65 uM/100 uM = 0.65%,
its false positive rate is equal to 0, and its true positive rate
is approximately equal to 99%. Similarly, the false negative
rate of 𝑡0𝑞2 is equal to 0, the false positive rate of 𝑡0𝑞2 is
0.68 uM/100 uM = 0.68%, and the true positive rate of 𝑡0𝑞2
is approximately equal to 99%. Once again, this suggests

that the three kinds of molecules are hybridized with strong
specificity. Thus, the systematic run 𝑝𝑞 satisfies the formula
𝜑3.

Similarly, the above results are gotten when 𝑘 = 1. It also
has been proved that a system satisfies the formula𝑝U𝑞, if and
only if all the runs whose lengths are less than |𝑉|∗2|𝑉|−1+|𝐸|
satisfy 𝑝U𝑞, where |𝑉| and |𝐸| mean the number of nodes
and the number of edges in the systematic FSA, respectively
[55]. As for 𝜑3, the same property holds, since 𝜑3 is composed
of the one 𝑝U𝑞-like formula recursively. For 𝑀3, we need to
check six paths due to 2 ∗ 22−1 + 2 = 6, as shown in Table 16.
𝑀3 satisfies the formula 𝜑3 since all paths (i.e., runs) satisfy
this formula.

By calling the procedure for checking 𝜑3, Algorithm 4
can get the model checking results on this basic ITL formula.

20 BioMed Research International

Table 15: The runs of the systemM3.

Path DNA code of the path or sequence of nodes (atomic propositions) crossed by the path
Code of path 1 CGCT CGAATCGGAATG TAT CGAATCGGAATG TGA CGAATCGGAATG CGGC
Sequence of nodes crossed by path 1 0, 1 (𝑝, 𝑞)

Code of path 𝑘 CGCT CGAATCGGAATG (TAT CGAATCGGAATG TGA CGAATCGGAATG)k CGGC
Sequence of nodes crossed by path 𝑘 (0, 1)𝑘

? ?

?

?

?

?

?

?

?

?

?

?

?

Sequence properties
Free energy: −423.38 kcal/mol

Base Number %
A
C
G
T
Other

97

111

111

97

0

23.3

26.7

26.7

23.3

0.0

Sequence/structure properties
Free energy: −423.31 kcal/mol
Probability: 0.876

Ensemble defect: 0.3 nt
Normalized ensemble defect: 0.1%

Nucleotides: 416nt

Figure 20: For 𝜑4: the structural properties of encoding sequence.

Table 16: The results: checking for 𝜑3 in the different paths of M3
(whether or not the path satisfies 𝜑3).

Formula Path 1 Path 𝑘, where
6 > 𝑘 > 1

Path 6 DoesM3 satisfy
𝜑3?

𝜑3 Yes Yes Yes Yes

According to the experimental processes and results in
Section 4.2, we can safely say that Algorithm 4, which can
be employed to check the basic ITL formulas, has been
effectively implemented in molecular biology.

4.3. Simulated Experiments for 𝜑4

4.3.1. Encoding Designs. We have designed a DNA encoding
via NUPACK, as shown in Table 17. Figures 20, 21, and 22
show the thermodynamic analysis of the encoding sequence
presented in Table 17 at 10∘C. As shown in Figure 20, the
NED of our coding sequence is 0.1%. Figure 21 shows that
its free energy is approximately equal to the minimum free
energy and Figure 22 shows that all bases in the two single
strands are completely complementary to each other, and
the probabilities of all the pairs are approximately equal to
1. Table 18 gives the encoding rules for the input strings.
And Table 19 shows the encoding of the sticker automaton
characterizing 𝜑4.

4.3.2. Simulated Experiments. With the DNA code given
in Section 4.3.1 at hand, we can conduct our simulated
experiments. It should be noted that, in Section 4.3.2, all the
encoding of the DNA molecules is written from left to right
with a 5󸀠-3󸀠 direction, which is consistent with the way of
writing in NUPACK.

According to the DNA codes given by Section 4.3.1,
we can get all the paths of 𝑀2, as shown in Table 20. The
transition rules related to 𝜑4 are shown in Table 19 and
none of the atomic proposition excerpts for 𝑝1, 𝑞1, 𝑝2, 𝑞2,
and 𝑚1 takes part in the transitions of states. Therefore, we
do no need to consider whether or not the states satisfy

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 p

ro
ba

bi
lit

y
Free energy of secondary structure: −423.31 kcal/mol

MFE structure at 10.0∘C

Figure 21: Thermodynamic analysis for 𝜑4: minimum free energy
structure.

other atomic propositions. First, we will check path 1.
There are two possible runs in this path. Without loss of
generality, we support that the atomic proposition sequence
which is crossed by the run is 𝑚1𝑞1𝑝2𝑞2. We only need to
deal with 𝑑 = CGCATCATGTGGTCTTTGCATGGACG
TAGTGATCGGCGCATCATGTGGTCTTTGCATGGACG
TAATCCTCGGCGCATCATGTGGTCTTTGCATGGACG
TACAAATCGGCGCATCATGTGGTCTTTGCATGGACG
TAGGGATCGGCGCATCATGTGGTCTT.

In short, we will observe whether or not hybridization
occurs between the DNA molecules expressing transitions
and the molecule 𝑑. For selecting four kinds of molecules
from all the eight kinds of WC molecules, one has seventy
choices. Thus, we need to execute the seventy groups of
subexperiments. For example, we pour the following five

BioMed Research International 21

Table 17: Checking for 𝜑4: the designed encoding sequence.

Code
5󸀠 GCAGTCGGCGCATCATGTGGTCTTTGCATGGACGTAGTGATCGGCGCATCATGTGGTCTTTGCATGGACGTAAT
CCTCGGCGCATCATGTGGTCTTTGCATGGACGTAAACGTCGGCGCATCATGTGGTCTTTGCATGGACGTAGGGAT
CGGCGCATCATGTGGTCTTTGCATGGACGTAAACCCCGCCAAATTACATATGACCGACG 3󸀠

WC
3󸀠 CGTCAGCCGCGTAGTACACCAGAAACGTACCTGCATCACTAGCCGCGTAGTACACCAGAAACGTACCTGCATT
AGGAGCCGCGTAGTACACCAGAAACGTACCTGCATTTGCAGCCGCGTAGTACACCAGAAACGTACCTGCATCCC
TAGCCGCGTAGTACACCAGAAACGTACCTGCATTTGGGGCGGTTTAATGTATACTGGCTGC 5󸀠

Table 18: Checking for 𝜑4: the encoding rules of input strings.

Object of code DNA code (they are all in 5󸀠-3󸀠 direction from left to right)
Initiator sequence 𝐼1 = GCAG
Spacer sequence X 0 = TCGG, 𝑋1 = CGCA, 𝑋2 = TCAT, 𝑋3 = GTGG, 𝑋4 = TCTT, 𝑋5 = TGCA, 𝑋6 = TGGA, 𝑋7 = CGTA
Terminator sequence 𝐼2 = AACC

Atomic proposition 𝑝1 = CCGC, 𝑞1 = ATCC, 𝑝2 = CAAA, 𝑞2 = GGGA, 𝑝3 = TTAC, 𝑞3 = ATAT
𝑚1 = 𝑝1 ∧ 𝑝3 = GTGA,m2 = 𝑞1 ∧ 𝑝3 = GACC,m3 = 𝑝2 ∧ 𝑞3 = AACG,m4 = 𝑞2 ∧ 𝑞3 = GACG

Table 19: Checking for 𝜑4: the encoding of FSA A4 of formula, where sto() means WC.

Object of code Abbreviated
transition rule DNA code (they are all in 5󸀠-3󸀠 direction from left to right)

Initial state 𝑠0 None sto(𝐼1 𝑋0) = CGTC AGCC
Acceptance state 𝑠4 None sto(𝑋5𝑋6𝑋7 𝐼2) = ACGT ACCT GCAT TTGG

Transition rule 𝑡(𝑠0, 𝑚1) = 𝑠1 𝑡0𝑚11
sto(𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7 𝑚1 𝑋0𝑋1) = GCGT AGTA CACC AGAA ACGT ACCT
GCAT CACT AGCC GCGT

Transition rule 𝑡(𝑠0, 𝑚2) = 𝑠2 𝑡0𝑚22
sto(𝑋1𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7 𝑚2 𝑋0𝑋1𝑋2) = GCGT AGTA CACC AGAA ACGT ACCT
GCAT CTGG AGCC GCGT AGTA

Transition rule 𝑡(𝑠1, 𝑝1) = 𝑠1 𝑡1𝑝11
sto(𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7 𝑝1 𝑋0𝑋1) = AGTA CACC AGAA ACGT ACCT GCAT GGCG
AGCC GCGT

Transition rule 𝑡(𝑠1, 𝑞1) = 𝑠2 𝑡1𝑞12
sto(𝑋2𝑋3𝑋4𝑋5𝑋6𝑋7 𝑞1 𝑋0𝑋1𝑋2) = AGTA CACC AGAA ACGT ACCT GCAT
TAGG AGCC GCGT AGTA

Transition rule 𝑡(𝑠2, 𝑚3) = 𝑠3 𝑡2𝑚33
sto(𝑋3𝑋4𝑋5𝑋6𝑋7 𝑚3 𝑋0𝑋1𝑋2𝑋3) = CACC AGAA ACGT ACCT GCAT TTGC
AGCC GCGT AGTA CACC

Transition rule 𝑡(𝑠2, 𝑚4) = 𝑠4 𝑡2𝑚44
sto(𝑋3𝑋4𝑋5𝑋6𝑋7 𝑚4 𝑋0𝑋1𝑋2𝑋3𝑋4) = CACC AGAA ACGT ACCT GCAT CTGC
AGCC GCGT AGTA CACC AGAA

Transition rule 𝑡(𝑠3, 𝑝2) = 𝑠3 𝑡3𝑝23
sto(𝑋4𝑋5𝑋6𝑋7 𝑝2 𝑋0𝑋1𝑋2𝑋3) = AGAA ACGT ACCT GCAT GTTT AGCC GCGT
AGTA CACC

Transition rule 𝑡(𝑠3, 𝑞2) = 𝑠4 𝑡3𝑞24
sto(𝑋4𝑋5𝑋6𝑋7 𝑞2 𝑋0𝑋1𝑋2𝑋3𝑋4) = AGAA ACGT ACCT GCAT CCCT AGCC
GCGT AGTA CACC AGAA

Table 20: The runs of the systemM2.

Path DNA code of the path or sequence of nodes (atomic propositions) crossed by the path

Code of path 1

GCAG TCGGCGCATCATGTGGTCTTTGCATGGACGTA CCGC | GTGA
TCGGCGCATCATGTGGTCTTTGCATGGACGTA CCGC | ATCC
TCGGCGCATCATGTGGTCTTTGCATGGACGTA CAAA
TCGGCGCATCATGTGGTCTTTGCATGGACGTA GGGA
TCGGCGCATCATGTGGTCTTTGCATGGACGTA AACC

Sequence of nodes
crossed by path 1 0, 1, 2, 3 (only the atomic propositions that occur in the transition rules are retained: 𝑝1 | 𝑚1, 𝑝1 | 𝑞1, 𝑝2, 𝑞2)

Code of path 𝑘

GCAG TCGGCGCATCATGTGGTCTTTGCATGGACGTA (CCGC | GTGA
TCGGCGCATCATGTGGTCTTTGCATGGACGTA CCGC | ATCC
TCGGCGCATCATGTGGTCTTTGCATGGACGTA)𝑘 CAAA
TCGGCGCATCATGTGGTCTTTGCATGGACGTA GGGA
TCGGCGCATCATGTGGTCTTTGCATGGACGTA AACC

Sequence of nodes
crossed by path 𝑘

(0, 1)𝑘, 2, 3

22 BioMed Research International

50

100

150

200

250

300

350

400

50 100 150 200 250 300 350 400

Ba
se

 in
de

x

Base index

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 p

ro
ba

bi
lit

y

Pair probabilities at 10.0∘C

Free energy of strand (−kT logQ): −423.38 kcal/mol

Figure 22: Checking for 𝜑4: pairing probability in equilibrium.

kinds of molecules into a container with a volume of
10−15 L: 𝑑, 𝑡0𝑚11, 𝑡1𝑞12, 𝑡2𝑚33, and 𝑡3𝑞24, for observing the
hybridization.

The concentrations of the five kinds of molecules reach
100 uM, and their molecular numbers are all 60000. With
the temperature naturally dropped to 10∘C, the hybridization
reaction is observed. Figure 23 shows the result of the
hybridization, where strand1, strand2, strand3, strand4, and
strand5mean 𝑑, 𝑡0𝑚11, 𝑡1𝑞12, 𝑡2𝑚33, and 𝑡3𝑞24, respectively.

As shown in the graph, the bases in the middle of strand4
are not paired with strand1, indicating that the complete
double strands are not formed. As for any other group of
subexperiments, the complete double strands are not formed.
Thus, the systematic run 𝑚1𝑞1𝑝2𝑞2 does not satisfy the
formula 𝜑4. Similarly, none of the runs in path 1 satisfies
this formula. Therefore, there exists a path which does not
satisfy 𝜑4. That is to say, 𝑀2 does not satisfy the formula
𝜑4.

By calling the procedure for checking 𝜑4, Algorithm 5 can
get the model checking results on this basic PTL formula.
According to the experimental processes and results in
Section 4.3, we can safely say that Algorithm 5, which can
be employed to check the basic PTL formulas, has been
effectively implemented in molecular biology.

4.4. The Effect of Reaction Temperature on the Above Experi-
mental Results. Asmentioned above, (1) the complete double
strands shown in Figures 13(a) and 13(b) are formed in the
process of checking 𝜑1; (2) the complete double strands
shown in Figure 18 are formed in the process of checking
𝜑2; (3) the complete double strands shown in Figure 19 are
formed in the process of checking 𝜑3. For these complete
double strands which come from the hybridization, the
relationships between the rates of unpaired bases and the
reaction temperatures are illustrated in Figures 24, 25, and 26.

strand1 strand2 strand3 strand4 strand5

str
an

d1
str

an
d2

str
an

d3
str

an
d4

str
an

d5

40

80

120

160

40

40

40

40
40 80 120 160 40 40 40 40

Base index

Ba
se

 in
de

x

1.0

0.8

0.6

0.4

0.2

0.0

Eq
ui

lib
riu

m
 fr

ac
tio

n

Ensemble pair fractions at 10.0∘C

Figure 23: Checking for 𝜑4: a group of subexperimental results on
hybridization: location and rate of base pairing.

The temperatures are illustrated in Figures 24, 25, and 26.
As shown in these graphs, the lower the reaction temperature,
the higher the ratio of base pairing. This result suggests that
the cooling target temperature (i.e., reaction temperature)
has an important influence on the experimental results,
and 10∘C is a suitable temperature to ensure the specificity
of hybridization. In comparison, the initial temperature
and the cooling speed are not crucial. As far as sticker
automata are concerned, one can place directly a container
with some molecular reactants at room temperature, in
order to obtain his/her products of hybridization. This is
the standard experimental way given in [56] for sticker
automata.

4.5. The Simulated Experiments on Molecular Kinetics. Re-
garding the complete double strands shown in Figures 13(a),
13(b), 18, and 19, the base pairings are illustrated in the
corresponding graphs. This is a result of the competitive
hybridization among the different kinds of molecules. In
order to better observe the process of molecular competition,
we design a number of experiments. With the DIZZY tool
for the DNA molecular kinetics [59], the famous chemical
kinetics algorithm, called Gibson-Bruck [56], is applied to
compute the dynamic changes of the numbers of the various
kinds ofmolecules in the process of hybridization.The results
are illustrated in Figures 27 and 28.

Figure 27 shows the variation of the numbers of the
different kinds of molecules in the process of formation of
the complete double strands shown in Figures 13(a) and
13(b). The blue line in Figure 27(a) shows a change in
the number of the complete double strands. Throughout
the process, the number of the complete double-stranded
molecules increases exponentially with time elapse, and
the number of the molecular reactants decreases expo-
nentially with time elapse, approaching zero, as shown in
Figure 27(a). Within 10 seconds, the blue line begins to

BioMed Research International 23

Melt profile

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fr
ac

tio
n

of
 b

as
es

 u
np

ai
re

d

2.0 4.0 6.0 8.0 10.00.0

Temperature (∘C)

(a) From 0 degrees Celsius to 10 degrees Celsius

Melt profile

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fr
ac

tio
n

of
 b

as
es

 u
np

ai
re

d

14.0 18.0 22.0 26.0 30.0 34.0 38.010.0

Temperature (∘C)

(b) From 10 degrees Celsius to 40 degrees Celsius

Melt profile

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fr
ac

tio
n

of
 b

as
es

 u
np

ai
re

d

60.0 64.0 68.056.048.044.0 52.040.0

Temperature (∘C)

(c) From 40 degrees Celsius to 70 degrees Celsius

Melt profile

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
Fr

ac
tio

n
of

 b
as

es
 u

np
ai

re
d

74.0 78.0 82.0 86.0 90.0 94.0 98.070.0

Temperature (∘C)

(d) From 70 degrees Celsius to 100 degrees Celsius

Figure 24: Effect of reaction temperature on hybridization for 𝜑1: forming complete double strands (rate of unpaired bases).

approximate the upper bound of 60000 and it reaches the
maximum value of 59405 (more than 99% of the upper
bound) in 727 seconds (about 12 minutes), as shown in
Figure 27(d).

The changes for the numbers of the nonspecific molec-
ular products are illustrated in Figures 27(b) and 27(c). At
first, they increase rapidly, suggesting that a large number
of nonspecific products occur. In the end, they decrease
exponentially, suggesting that the specificmolecular products
dominate the competition eventually. It can be explained that
the specific molecular products have more advantages on the
physical structure and thermodynamic properties than the
nonspecific molecular products.

Figure 28 shows the variation of the numbers of the
different kinds of molecules in the process of formation of
the following two kinds of complete double strands: the
one shown in Figure 18 and the one in Figure 19. These

phenomena, rules, and causes in molecular kinetics are
similar to the ones in Figure 27.

4.6. Some Comparisons among the New Method
and the Related Ones

4.6.1. Comparing the New Methods with Other Related DNA-
Based Ones. Table 21 gives a comparison of power between
the newmethod and the existing DNA-based ones. From this
table, the following observations can be drawn:

(i) The DNA-computing-based approach for checking
the basic CTL formula EF𝑝 [53] cannot deal with
any other CTL formula (including the basic formula).
In comparison, the new method can conduct model
checking for all of the eight basic CTL formulas via
DNA molecules. In addition, the method in [53]

24 BioMed Research International

Ta
bl
e
21
:A

co
m
pa
ris

on
of

po
w
er

am
on

g
th
ev

ar
io
us

D
N
A
m
od

el
ch
ec
ki
ng

m
et
ho

ds
(c
an

th
em

et
ho

d
co
nd

uc
tD

N
A
m
od

el
ch
ec
ki
ng

fo
ra

gi
ve
n
fo
rm

ul
a?
).

Lo
gi
c

Ba
sic

fo
rm

ul
a

M
et
ho

d
in

[5
3]

M
et
ho

d
in

[5
5]

M
et
ho

d
in

[5
4]

Th
en

ew
m
et
ho

d
W
ha
tt
he

ne
w
m
et
ho

d
ca
n

do

LT
L

pU
q

N
o

Ye
s

Ye
s

N
o

—

Fp
N
o

Ye
s

Th
em

et
ho

d
ca
n
be

us
ed

to
ch
ec
k.
H
ow

ev
er
,i
ti
sn

ot
pr
ac
tic

al
to

ch
ec
k
du

et
o

th
el
im

ita
tio

n
of

th
ec

od
e

N
o

—

G
p

N
o

Ye
s

Th
em

et
ho

d
ca
n
be

us
ed

to
ch
ec
k.
H
ow

ev
er
,i
ti
sn

ot
pr
ac
tic

al
to

ch
ec
k
du

et
o

th
el
im

ita
tio

n
of

th
ec

od
e

N
o

—

Xp
N
o

Ye
s

N
o

N
o

—

CT
L

A
pU

q
N
o

N
o

N
o

Ye
s

A
co
m
bi
na
tio

n
of

A
lg
or
ith

m
1a
nd

th
e

ex
pe
rim

en
ts
in

[5
5]

A
Fp

N
o

N
o

N
o

Ye
s

AG
p

N
o

N
o

N
o

Ye
s

A
Xp

N
o

N
o

N
o

Ye
s

Ep
U
q

N
o

N
o

N
o

Ye
s

Th
ee

xp
er
im

en
ts
fo
r𝜑
1
in

Se
ct
io
n
4.
1

EF
p

Ye
s

N
o

N
o

Ye
s

A
co
m
bi
na
tio

n
of

A
lg
or
ith

m
2
an
d
th
e

ex
pe
rim

en
ts
in

[5
5]

EG
p

N
o

N
o

N
o

Ye
s

EX
p

N
o

N
o

N
o

Ye
s

IT
L

(𝑝
1
U

𝑞 1
);

(𝑝
2
U

𝑞 2
)

N
o

N
o

N
o

Ye
s

Th
ee

xp
er
im

en
ts
fo
r𝜑
2
in

Se
ct
io
n
4.
2

(𝑝
U

𝑞)
∗

N
o

N
o

N
o

Ye
s

Th
ee

xp
er
im

en
ts
fo
r𝜑
3
in

Se
ct
io
n
4.
2

PT
L

((
𝑝
1
U

𝑞 1
),

(𝑝
2
U

𝑞 2
))

pr
j(

𝑝
3
∧
X𝑞
3
)

N
o

N
o

N
o

Ye
s

Th
ee

xp
er
im

en
ts
fo
r𝜑
4
in

Se
ct
io
n
4.
3

BioMed Research International 25

Melt profile

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fr
ac

tio
n

of
 b

as
es

 u
np

ai
re

d

2.0 8.00.0 4.0 6.0 10.0

Temperature (∘C)

(a) From 0 degrees Celsius to 10 degrees Celsius

Melt profile

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fr
ac

tio
n

of
 b

as
es

 u
np

ai
re

d

18.0 22.010.0 30.0 38.034.026.014.0

Temperature (∘C)

(b) From 10 degrees Celsius to 40 degrees Celsius

Melt profile

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fr
ac

tio
n

of
 b

as
es

 u
np

ai
re

d

60.048.0 52.0 68.040.0 64.044.0 56.0

Temperature (∘C)

(c) From 40 degrees Celsius to 70 degrees Celsius

Melt profile

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
Fr

ac
tio

n
of

 b
as

es
 u

np
ai

re
d

82.078.0 90.0 98.070.0 94.074.0 86.0

Temperature (∘C)

(d) From 70 degrees Celsius to 100 degrees Celsius

Figure 25: Effect of reaction temperature on hybridization for 𝜑2: forming complete double strands (rate of unpaired bases).

cannot deal with any ITL/PTL formulas, whereas the
new method can deal with them.

(ii) There are some previous DNA-computing-based
approaches for checking all of the four basic LTL
formulas and some popular LTL formulas [54, 55].
However, these methods cannot work on any of the
CTL formula, ITL formula, and PTL formula. In
comparison, the new method can conduct model
checking for all of the basic formulas of the above
three temporal logic types. In particular, the relation-
ship of the expressive abilities of these three temporal
logic types is shown in Figure 29.

In summary, our new method extends the range of the DNA
model checking, and some stronger temporal properties can
be checked. In addition, the new method does not simply

call the algorithm TL-MC-DNA in [55]. There are some key
differences between the two methods.

(i) First, the new approach has employed some formal
technique based on the semantic equivalent transfor-
mations before calling the algorithm TL-MC-DNA.

(ii) Second, the new approach extends the scope of input
parameters of the algorithm TL-MC-DNA.

(iii) Third, we have designed a number of the new DNA
encoding schemes which are more effective and used
together with the new algorithms.

(iv) Fourth, the targeted problems are different. The
algorithm TL-MC-DNA is used for the basic LTL
model checking,whereas the newapproach is used for
the basic CTL model checking, the basic ITL model

26 BioMed Research International

Melt profile

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fr
ac

tio
n

of
 b

as
es

 u
np

ai
re

d

2.0 4.0 6.0 8.0 10.00.0

Temperature (∘C)

(a) From 0 degrees Celsius to 10 degrees Celsius

Melt profile

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fr
ac

tio
n

of
 b

as
es

 u
np

ai
re

d

14.0 18.0 22.0 26.0 30.0 34.0 38.010.0

Temperature (∘C)

(b) From 10 degrees Celsius to 40 degrees Celsius

Melt profile

44.0 48.0 52.0 56.0 60.0 64.0 68.040.0

Temperature (∘C)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fr
ac

tio
n

of
 b

as
es

 u
np

ai
re

d

(c) From 40 degrees Celsius to 70 degrees Celsius

Melt profile

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
Fr

ac
tio

n
of

 b
as

es
 u

np
ai

re
d

74.0 78.0 82.0 86.0 90.0 94.0 98.070.0

Temperature (∘C)

(d) From 70 degrees Celsius to 100 degrees Celsius

Figure 26: Effect of reaction temperature on specific hybridization for 𝜑3: forming complete double strands (rate of unpaired bases).

checking, and the basic PTLmodel checking. In other
words, the latter problems are reduced to the former
solved problem, using a series of logical ways and
molecular biological ones.This is the research scheme
in this paper.

In addition, Sections 4.1, 4.2, and 4.3 have confirmed that
the simulated biochemical experiments can ensure the cor-
rectness and effectiveness for DNA model checking. In com-
parison, the simulated experiments on molecular kinetics
in Section 4.5 further demonstrate that the DNA model
checking can be biochemically implemented in acceptable
time.

4.6.2. Comparing the New Method to the Classical Model
Checking Algorithms. As shown in Section 3.1.4, the model
checking method using DNA molecules is different from the

model checking algorithms based on electronic computing
devices, in terms of the computing mechanism due to the
different computing carriers. As a result, the newmethod and
the classical ones in [43] are complementary.

4.6.3. Additional Discussions. In [60], Professor Lamport
talked about the problems that he knows with liveness. One
problem is that “more than 90% (probably more than 95%) of
the errors in real systems are violations of safety properties.”
TheCTL formulaAF𝑝 is usually employed to describe a safety
property in practical model checking. Our new method can
check AF𝑝 via DNA molecules, as illustrated in Algorithm 1.
Therefore, the core of CTL in this paper is useful in practice
of computing.

Previous research has demonstrated that the DNA
model checking technique using sticker automata can be

BioMed Research International 27

60,000
55,000
50,000
45,000
40,000
35,000
30,000
25,000
20,000
15,000
10,000
5,000

0

Va
lu

e

strand1_strand2_strand3_strand4
strand2

strand3strand1
strand4

0 1 2 3 4 5 6 7 8 9 10

Time

(a) Molecular number changes: reactants and specific products

9000
8500
8000
7500
7000
6500
6000
5500
5000
4500
4000
3500
3000
2500
2000
1500
1000
500

0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time

Strand1_strand2
Strand1_strand3
Strand1_strand2_strand3
Strand1_strand3_strand4
Strand1_strand2_strand4
Strand1_strand4

Va
lu

e

(b) Molecular number changes (0–2 seconds): nonspecific products

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0
0 25 50 75 100 125 150 175 200

Time

Strand1_strand2
Strand1_strand3
Strand1_strand2_strand3
Strand1_strand3_strand4
Strand1_strand2_strand4
Strand1_strand4

Va
lu

e

(c) Molecular number changes (0–200 seconds): nonspecific products (d) Maximum molecular number of specific products

Figure 27: Simulated experiments in molecular kinetics: complete double strands formed for checking 𝜑1.

implemented in molecular biology [55], if the number of the
nodes of FSA of a logical formula is not greater than 7 and
the number of the edges of FSA of the logical formula is
not greater than 42. It is obvious that the new method aims
to deal with CTL/ITL/PTL formulas using sticker automata.
Thus, our molecular biology technique mentioned above

indicates that not only all of the basic formulas but also
some popular CTL/ITL/PTL formulas in practice can be
dealt with, by extending the new method, which is similar to
the case of LTL in [55]. In addition, the methods based on
sticker automata can deal with the complete decidable sets
of temporal logic using some extended DNA encoding, in

28 BioMed Research International

0 5 10 15 20 25 30 35 40 45 50 55 60

Time

strand1
strand4
strand1_strand2_strand3_strand4_strand5
strand5
strand2
strand3

60,000
55,000
50,000
45,000
40,000
35,000
30,000
25,000
20,000
15,000
10,000
5,000

0

Va
lu

e

(a) For 𝜑2: number changes: reactants and specific products

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time

0

strand1_strand2
strand1_strand2_strand3
strand1_strand2_strand3_strand4
strand1_strand2_strand3_strand5
strand1_strand2_strand4
strand1_strand2_strand4_strand5
strand1_strand2_strand5
strand1_strand3
strand1_strand3_strand4
strand1_strand3_strand4_strand5
strand1_strand3_strand5
strand1_strand4
strand1_strand4_strand5
strand1_strand5

Va
lu

e

(b) For 𝜑2: number changes (0–2 seconds): nonspecific products

8000
7500
7000
6500
6000
5500
5000
4500
4000
3500
3000
2500
2000
1500
1000
500

0
0 5 10 15 20 25 30 35 40 45 50 55 60

Time

STRAND1_STRAND2

STRAND1_STRAND2_STRAND3

STRAND1_STRAND2_STRAND3_STRAND4

STRAND1_STRAND2_STRAND3_STRAND5

STRAND1_STRAND2_STRAND4

STRAND1_STRAND2_STRAND4_STRAND5

STRAND1_STRAND2_STRAND5

STRAND1_STRAND3

STRAND1_STRAND3_STRAND4

STRAND1_STRAND3_STRAND4_STRAND5

STRAND1_STRAND3_STRAND5

STRAND1_STRAND4

STRAND1_STRAND4_STRAND5

STRAND1_STRAND5

Va
lu

e

(c) For 𝜑2: number changes (0–60 seconds): nonspecific products

0 5 10 15 20 25 30 35 40 45 50 55 60

Time

60,000
55,000
50,000
45,000
40,000
35,000
30,000
25,000
20,000
15,000
10,000
5,000

0

strand1
strand1_strand2_strand3

strand2
strand3

Va
lu

e

(d) For 𝜑3: number changes: reactants and specific products

Figure 28: Experiments in molecular kinetics: complete double strands formed for checking 𝜑2 and 𝜑3.

BioMed Research International 29

PTL ITL LTL CTL

Figure 29: Comparison of power among the several logic types
(comparison of action ranges among the new method and the
existing ones).

theoretical computing [55].The details of these extensions are
omitted from the paper due to the scope of this paper and the
limitation of space.

5. Conclusions

Early studies on DNA computing focused on nonau-
tonomous models and algorithms. The DNA computing
techniques have been optimized with self-assembly in recent
years. This paper has presented a novel DNA computing
method using sticker automata for model checking temporal
logic formulas. Particularly, our newly developed algorithms
are based on the self-assembly of sticker automata.

The state of the art of the universal DNA computer
is encouraging [15, 30], and it is in a great need for new
components to enhance the theoretical architecture of DNA
computing, especially for the temporal logic model check-
ing, which is a complex computational problem. The new
algorithms have been implemented and model checking
was conducted via DNA molecules for the basic formulas
of CTL, ITL, and PTL. The model checking technique
based on molecular computation has its intrinsic advantages
of parallel computing, compared with the classical model
checkingmethods.The newDNA computing approach based
on sticker automata will develop a molecular solution and
expand the previous DNA computational problem library.

There are several directions that can be further explored
based on the newmethod described in this paper. One area is
to apply the cellular model checking technique for genomic
research. For example, it can be used to study DNA repairing
and mismatching during cell division, which was believed
to be associated with cancer occurrence [56]. In order to
improve the ability of discovery and repair of abnormal genes
not only at the structural level but also at the functional level,
it is necessary to study the temporal and spatial expression
of genes. Some previous research has employed the cellular
computation technique to provide an autonomous intelligent

method for the molecular diagnosis and treatment of some
human diseases which are caused by genetic mutation [56].
However, the new method can deal with more temporal
relationships. Therefore, one of the future works of our study
is to incorporate our new DNA computing approach for
model checking temporal logic into the artificial controlled
gene repair techniques. This will develop a molecular means
for the early detection, diagnosis, and treatment of cancer.
It will impact the prognosis and the survival rate of cancer
patients.

A specific future application of ourmethod is to study the
gastric cardiac cancer for the stage of gastric inflammation
and precancerous lesions, which showed some abnormal
behavioral changes in genes with temporal characteristics. To
give an example, previous study discovered a susceptibility
gene locus of gastric cardiac cancer in the Han population
of Northern China [61]. Future research will focus on how to
embed the autonomous model checking method into living
human cells. Such an approach can be used to develop a
molecular robot technique to repair susceptibility loci or
DNA mismatches in the gastric cancer cells or the normal
cells. To be a little more specific, the basic CTL formulas
can be applied to describe the branch temporal relationships
among dynamic changes in genes, the basic ITL formulas for
the simple interval relationships among dynamic changes in
genes, and the basic PTL formula for the general relationships
between intervals and their effects of dynamic changes in
genes. These basic temporal logical formulas are sufficient to
describe the dynamic changes of genes and no other formulas
are needed.

Appendix

Sections 2.1, 2.2, 2.3, and 2.4 give the intuitive meaning of
the four temporal logic types. The Appendix gives the formal
descriptions of these temporal logic types.

A. Linear Temporary Logic (LTL)

Definition A.1 (syntax of propositional LTL [43], LTL for
short). Let AP be a set of atomic propositions; then,

(i) for all 𝑝 ∈ AP, 𝑝 is a LTL formula;
(ii) if 𝜑 is a LTL formula, then ¬𝜑 is a LTL formula;
(iii) if 𝜑 and 𝜓 are LTL formulas, then 𝜑 ∨ 𝜓 is a LTL

formula;
(iv) if 𝜑 is a LTL formula, then X𝜑 is a LTL formula;
(v) if 𝜑 and 𝜓 are LTL formulas, then 𝜑U𝜓 is a LTL

formula.

Definition A.2 (derived LTL formulas). F𝜑 = 𝑡𝑟𝑢𝑒U𝜑, G𝜑 =
¬F¬𝜑, 𝜑 ∧ 𝜓 = ¬(¬𝜑 ∨ ¬𝜓).

Definition A.3 (model for LTL). A LTL model is a triple M =
(𝑆, 𝑅, 𝐿𝐴𝐵𝐸𝐿), where

(i) 𝑆 is a nonempty denumerable set of states,
(ii) 𝑅 : 𝑆 → 𝑆 assigns to 𝑠 ∈ 𝑆 its unique successor state

𝑅(𝑠),

30 BioMed Research International

(iii) 𝐿𝐴𝐵𝐸𝐿 : 𝑆 → 2AP assigns to each state 𝑠 ∈ 𝑆 the
atomic propositions 𝐿𝐴𝐵𝐸𝐿(𝑠) that are valid in 𝑠.

Definition A.4 (semantic of LTL). Let 𝑝 ∈ AP be an atomic
proposition, M = (𝑆, 𝑅, 𝐿𝐴𝐵𝐸𝐿) a LTL model, 𝑠 ∈ 𝑆, and 𝜑, 𝜓
PLTL formulas; the satisfaction relation ⊨ is defined by

(i) 𝑠 ⊨ 𝑝 if and only if (iff, for short) 𝑝 ∈ 𝐿𝐴𝐵𝐸𝐿(𝑠),
(ii) 𝑠 ⊨ ¬𝜑 if and only if ¬(𝑠 ⊨ 𝜑),
(iii) 𝑠 ⊨ 𝜑 ∨ 𝜓 if and only if (𝑠 ⊨ 𝜑) ∨ (𝑠 ⊨ 𝜓),
(iv) 𝑠 ⊨ X𝜑 if and only if 𝑅(𝑠) ⊨ 𝜑,
(v) 𝑠 ⊨ 𝜑U𝜓 if and only if ∃𝑗 ≥ 0.𝑅𝑗(𝑠) ⊨ 𝜓∧(∀0 ≤ 𝑘 < 𝑗.

𝑅𝑘(𝑠) ⊨ 𝜑).

Here, 𝑅0(𝑠) ⊨ 𝑠, and 𝑅𝑛+1(𝑠) = 𝑅𝑛(𝑅(𝑠)) for any 𝑛 ≥ 0, where
𝑅(𝑠) = 𝑠󸀠 and the state 𝑠󸀠 is called a direct successor of 𝑠.

B. Interval Temporal Logic (ITL)

Definition B.1 (syntax of propositional ITL [50], ITL for
short). (i) For all 𝑝 ∈ AP, 𝑝 is an ITL formula.

(ii) If 𝜑, 𝜓 are ITL formulas, so are the constructs ¬𝜑, 𝜑 ∨
𝜓, X𝜑, 𝜑; 𝜓, 𝜑∗.

Definition B.2. An interval of states is defined and also
denoted as 𝜎 = ⟨𝑠0, 𝑠1, . . . , 𝑠𝑖, . . .⟩, where 𝑠𝑖 is a state.

Definition B.3. An interpretation is a quadruple 𝐼 = (𝜎, 𝑖, 𝑘, 𝑗),
where𝜎 is a sequence of states over ⟨𝑠𝑖, . . . , 𝑠𝑘, . . . , 𝑠𝑗⟩, 𝑖, 𝑘, 𝑗 ∈
𝑁, and 𝑠𝑘 is the current state.Weuse the notation len(𝜎)� 𝜎 ⊨
𝑗 − 𝑖 for the number of states in interval.

Definition B.4 (semantic of ITL). Let 𝑐 ∈ 𝑁 and 𝑠𝑝(𝑘) be the
true value of 𝑝 ∈ AP in state 𝑠𝑘. The satisfaction relation is
inductively defined as follows:

(1) 𝐼 ⊨ 𝑝 iff 𝑠𝑝(𝑘) = true,
(2) 𝐼 ⊨ ¬𝜑 iff ¬(𝐼 ⊨ 𝜑),
(3) 𝐼 ⊨ 𝜑1 ∨ 𝜑2 iff 𝐼 ⊨ 𝜑1 or 𝐼 ⊨ 𝜑2,
(4) 𝐼 ⊨ 𝑠𝑘𝑖𝑝 iff len(𝜎) = 1,
(5) 𝐼 ⊨ X𝜑 iff (𝜎, 𝑖, 𝑘 + 1, 𝑗) ⊨ 𝜑,
(6) 𝐼 ⊨ 𝜑1; 𝜑2 iff ∃𝑟, 𝑘 ≤ 𝑟 ≤ 𝑗, such that (𝜎, 𝑖, 𝑘, 𝑟) ⊨ 𝜑1

and (𝜎, 𝑖, 𝑘, 𝑟) ⊨ 𝜑2,
(7) 𝐼 ⊨ 𝜑∗ iff (i) there exist finitely many 𝑟0, . . . , 𝑟𝑛 ∈

𝑁𝜔, such that 𝑘 = 𝑟0 ≤ 𝑟1 ≤ ⋅ ⋅ ⋅ ≤ 𝑟𝑛−1 ≤
𝑟𝑛 = 𝑗, (𝜎, 𝑖, 𝑘, 𝑟0) ⊨ 𝜑, and for every 1 ≤ 𝑙 ≤
𝑛, (𝜎, 𝑟𝑙−1, 𝑟𝑙−1, 𝑟𝑙) ⊨ 𝜑; (ii) or 𝑘 = 𝑗.

Definition B.5 (derived ITL formulas). F𝜑 = 𝑡𝑟𝑢𝑒; 𝜑, G𝜑 =
¬F¬𝜑, 𝜑 ∧ 𝜓 = ¬(¬𝜑 ∨ ¬𝜓), 𝜑1 ‖ 𝜑2 = 𝜑1 ∧ (𝜑2; 𝑡𝑟𝑢𝑒) ∨ 𝜑2 ∧
(𝜑1; 𝑡𝑟𝑢𝑒).

C. Computational Tree Logic (CTL)

Definition C.1 (syntax of propositional CTL [49], CTL for
short). Given a set of basic propositions 𝑃, a CTL formula

𝜙 on 𝑃 is any recursive combination of the propositions of 𝑃
through the Boolean connectives not (¬𝜙), and (𝜙1 ∧𝜙2), and
through the temporal operators existential until (E[𝜙1U𝜙2])
universal until (A[𝜙1U𝜙2]):

𝜙 = 𝑝 󵄨󵄨󵄨󵄨¬𝜙1
󵄨󵄨󵄨󵄨 𝜙1 ∧ 𝜙2

󵄨󵄨󵄨󵄨E [𝜙1U𝜙2]
󵄨󵄨󵄨󵄨A [𝜙1U𝜙2] (C.1)

with 𝑝 ∈ 𝑃.

Definition C.2 (semantic of CTL). Given a state transition
system 𝑆 and a state 𝑠0 ∈ 𝑆, a CTL formula 𝜙 is interpreted on
𝑆 according to the satisfaction relation 𝑠0 ⊨ 𝜙 (read 𝑠0 satisfies
𝜙) defined by the following clauses:

(i) 𝑠0 ⊨ 𝑝 iff the proposition 𝑝 holds in 𝑠0;
(ii) 𝑠0 ⊨ ¬𝜙1 iff 𝜙1is not satisfied in 𝑠0;
(iii) 𝑠0 ⊨ 𝜙1 ∧ 𝜙2 iff both 𝜙1 and 𝜙2 are satisfied in 𝑠0;
(iv) 𝑠0 ⊨ E[𝜙1U𝜙2] iff there exists a path starting from 𝑠0

which reaches a future state in which 𝜙2 is satisfied
and such that 𝜙1 is satisfied in every intermediate
state;

(v) 𝑠0 ⊨ A[𝜙1U𝜙2] iff along every path starting from
𝑠0 a future state is eventually reached in which 𝜙2
is satisfied, and 𝜙1 is satisfied in all the intermediate
states.

Definition C.3 (short hands). Further operators can be
defined as short hands by combining Boolean connectives
and temporal operators.

(i) Boolean connectives such as or (∨) and implies (→),
with their usual meaning, can be derived as

𝜙1 ∨ 𝜙2 = ¬ (¬𝜙1 ∧ ¬𝜙2) ,

𝜙1 󳨀→ 𝜙2 = ¬ (𝜙1 ∧ (¬𝜙2)) .
(C.2)

(ii) Temporal operators eventually (F) and always (G),
with existential and universal path quantification, are
derived as follows:

EF𝜙2 == E [𝑡𝑟𝑢𝑒U𝜙2] ,

AF𝜙2 == A [𝑡𝑟𝑢𝑒U𝜙2] ,

EG𝜙1 == ¬AF (¬𝜙1) ,

AG𝜙1 == ¬EF (¬𝜙1) .

(C.3)

D. Projection Temporal Logic (PTL)

Definition D.1 (syntax of propositional PTL [52], PTL for
short). Let 𝑝 and 𝑞 be atomic propositions. The formula 𝑃
of PPTL is given by the following grammar:

𝑃 & 𝑝 |X𝑃| ¬𝑃 󵄨󵄨󵄨󵄨𝑃1 ∨ 𝑃2
󵄨󵄨󵄨󵄨 (𝑃1, . . . , 𝑃𝑚) 𝑝𝑟𝑗 𝑃, (D.1)

where 𝑝 ∈ 𝑃𝑟𝑜𝑝, 𝑃1, . . . , 𝑃𝑚 and 𝑃 are all well-formed PPTL
formulas.

BioMed Research International 31

Definition D.2 (semantic of PTL).

(1) States. Following the definition of Kripke’s structure, we
define a state 𝑠 over 𝑃𝑟𝑜𝑝 to be a mapping from 𝑃𝑟𝑜𝑝 to 𝐵 =
{𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}, 𝑠 : 𝑃𝑟𝑜𝑝 → 𝐵. We will use 𝑠[𝑝] to denote the
valuation of 𝑝 at state 𝑠.

(2) Intervals. An interval 𝜎 is a nonempty sequence of states,
which can be finite or infinite. The length, |𝜎|, of 𝜎 is 𝜔 if 𝜎
is infinite, with the number of states minus 1 if 𝜎 is finite. To
have a uniform notation for both finite and infinite intervals,
we will use extended integers as indices. That is, we consider
the set 𝑁0 of nonnegative integers and 𝜔, 𝑁𝜔 = 𝑁0 ∪ {𝜔},
and extend the comparison operators, =, <, ≤, to 𝑁𝜔 by
considering 𝜔 = 𝜔, and for all 𝑖 ∈ 𝑁0, 𝑖 < 𝜔. Moreover, we
define ⪯ as ≤−{(𝜔, 𝜔)}. To simplify definitions, we will denote
𝜎 by ⟨𝑠0, . . . , 𝑠|𝜎|⟩, where 𝑠|𝜎| is undefined if 𝜎 is infinite. With
such a notation,𝜎(𝑖,...,𝑗) 0 ≤ 𝑖 ⪯ 𝑗 ≤ |𝜎|denotes the subinterval
⟨𝑠𝑖, . . . , 𝑠𝑗⟩ and 𝜎(𝑘) (0 ≤ 𝑘 ⪯ |𝜎|) denotes ⟨𝑠𝑘, . . . , 𝑠|𝜎|⟩. The
concatenation of a finite 𝜎 with another interval (or empty
string) 𝜎󸀠 is denoted by 𝜎 ⋅ 𝜎󸀠.

Let 𝜎 = ⟨𝑠0, 𝑠1, . . . , 𝑠|𝜎|⟩ be an interval and 𝑟1, . . . , 𝑟ℎ be
integers (ℎ ≥ 1) such that 0 ≤ 𝑟1 ≤ 𝑟2 ≤ ⋅ ⋅ ⋅ ≤ 𝑟ℎ ⪯ |𝜎|.
The projection of 𝜎 onto 𝑟1, . . . , 𝑟ℎ is the interval (namely,
projected interval)

𝜎 ↓ (𝑟1, . . . , 𝑟ℎ) = ⟨𝑠𝑡1, 𝑠𝑡2, . . . , 𝑠𝑡𝑙⟩ , (D.2)

where 𝑡1, . . . , 𝑡𝑙 is obtained from 𝑟1, . . . , 𝑟ℎ by deleting all
duplicates. That is, 𝑡1, . . . , 𝑡𝑙 is the longest strictly increasing
subsequence of 𝑟1, . . . , 𝑟ℎ. For instance,

⟨𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4⟩ ↓ (0, 0, 2, 2, 2, 3) = ⟨𝑠0, 𝑠2, 𝑠3⟩ . (D.3)

This is convenient to define an interval obtained by taking
the endpoints (rendezvous points) of the intervals over which
𝑃1, . . . , 𝑃𝑚 are interpreted in the projection construct.

(3) Interpretations and Satisfaction Relation. An interpreta-
tion is a triple 𝐼 = (𝜎, 𝑘, 𝑗), where 𝜎 is an interval, 𝑘 is an
integer, and 𝑗 is an integer or 𝜔 such that 𝑘 ⪯ 𝑗 ≤ |𝜎|. We
use the notation (𝜎, 𝑘, 𝑗) ⊨ 𝑃 to denote that formula 𝑃 is
interpreted and satisfied over the subinterval ⟨𝑠𝑘, . . . , 𝑠𝑗⟩ of
𝜎 with the current state being 𝑠𝑘.

The satisfaction relation (⊨) is inductively defined as
follows:

(1) 𝐼 ⊨ 𝑝 iff 𝑠𝑘[𝑝] = 𝑡𝑟𝑢𝑒, for any given proposition 𝑝;
(2) 𝐼 ⊨ ¬𝑃 iff 𝐼 ⊭ 𝑃;
(3) 𝐼 ⊨ 𝑃 ∨ 𝑄 iff 𝐼 ⊨ 𝑃 or 𝐼 ⊨ 𝑄;
(4) 𝐼 ⊨ X𝑃 iff 𝑘 < 𝑗 and (𝜎, 𝑘 + 1, 𝑗) ⊨ 𝑃;
(5) 𝐼 ⊨ (𝑃1, . . . , 𝑃𝑚) 𝑝𝑟𝑗 𝑄 if there exist integers 𝑘 =

𝑟0 ≤ 𝑟1 ≤ ⋅ ⋅ ⋅ ≤ 𝑟𝑚 ≤ 𝑗 such that (𝜎, 𝑟0, 𝑟1) ⊨ 𝑃1,
(𝜎, 𝑟𝑙−1, 𝑟𝑙) ⊨ 𝑃𝑙, 1 < 𝑙 ≤ 𝑚, and (𝜎󸀠, 0, |𝜎󸀠|) ⊨ 𝑄 for
one of the following 𝜎󸀠:

(a) 𝑟𝑚 < 𝑗 and 𝜎󸀠 = 𝜎 ↓ (𝑟0, . . . , 𝑟𝑚) ⋅ 𝜎(𝑟
𝑚
+1⋅⋅⋅𝑗);

(b) 𝑟𝑚 = 𝑗 and 𝜎󸀠 = 𝜎 ↓ (𝑟0, . . . , 𝑟ℎ) for some 0 ≤
ℎ ≤ 𝑚.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work has been supported by the National Natu-
ral Science Foundation of China under Grants U1204608
and 61572444, China Postdoctoral Science Foundation
under Grant 2015M572120, and Science Foundation for
the Excellent Young Teachers in Henan Province under
Grant 2014GGJS-001, as well as Scientific and Technological
Project of Henan Province under Grants 152300410055 and
152102410033.

References

[1] L. M. Adleman, “Molecular computation of solutions to com-
binatorial problems,” Science, vol. 266, no. 5187, pp. 1021–1023,
1994.

[2] R. J. Lipton, “DNA solution of hard computational problems,”
Science, vol. 268, no. 5210, pp. 542–545, 1995.

[3] Q. Ouyang, P. D. Kaplan, S. Liu, and A. Libchaber, “DNA
solution of the maximal clique problem,” Science, vol. 17, pp.
446–449, 1997.

[4] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Llvneh, and E.
Shapiro, “Programmable and autonomous computing machine
made of biomolecules,” Nature, vol. 414, no. 6862, pp. 430–434,
2001.

[5] L. Adleman, “On Constructing AMolecular Computer,” in Pro-
ceedings of the conference on DNA based Computers, Princeton
University, Princeton, New Jersey, USA, 1995.

[6] S. Roweis, E.Winfree, R. Burgoyne et al., “A sticker-basedmodel
forDNA computation,” Journal of Computational Biology, vol. 5,
no. 4, pp. 615–629, 1998.

[7] J. Kuramochi and Y. Sakakibara, “Intensive in vitro experiments
of implementing and executing finite automata in test tube,”
in Proceedings of the International Workshop on DNA-Based
Computers, DNA Computing, vol. 3892 of Lecture Note in Com-
puter Science, pp. 193–202, Springer press, Berlin, Heidelberg,
Germany.

[8] I. M. Mart́ınez-Pérez, G. Zhang, Z. Ignatova, and K.-H.
Zimmermann, “Computational genes: A tool for molecular
diagnosis and therapy of aberrant mutational phenotype,” BMC
Bioinformatics, vol. 8, no. 1, 365 pages, 2007.

[9] P. Yin, A. J. Turberfield, S. Sahu, and J. H. Reif, “Design
of an autonomous DNA nanomechanical device capable of
universal computation and universal translational motion,” in
DNA Computing, vol. 3384 of Lecture Note in Computer Science,
pp. 426–444, Springer, Milan, Italy, 2005, Tenth International
Meeting on DNA Computing.

[10] J. Xu, X. Qiang, Y. Yang et al., “An unenumerative DNA com-
puting model for vertex coloring problem,” IEEE Transactions
on Nanobioscience, vol. 10, no. 2, pp. 94–98, 2011.

[11] J.-H. Xiao and J. Xu, “The DNA computation model based on
giant magnetoresistance for SAT problem,” Chinese Journal of
Computers, vol. 36, no. 4, pp. 829–835, 2013 (Chinese).

[12] C. Zhang, L.-N. Ma, Y.-F. Dong et al., “Molecular logic
computing model based on DNA self-assembly strand branch

32 BioMed Research International

migration,” Chinese Science Bulletin, vol. 57, no. 31, pp. 2909–
2915, 2012.

[13] C. Zhang, J. Yang, and J. Xu, “Molecular logic computingmodel
based on self-assembly of DNA nanoparticles,” Chinese Science
Bulletin, vol. 56, no. 33, pp. 3566–3571, 2011.

[14] K.-L. Li, X. Luo, F. Wu et al., “An algorithm in tile assembly
model for maximum clique problem,” Journal of Computer
Research and Development, vol. 50, no. 3, pp. 666–675, 2013
(Chinese).

[15] J. Xu, “Probe machine,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 27, no. 7, pp. 1405–1416, 2016.

[16] J. Xu, X. Qiang, K. Zhang et al., “A parallel type of DNA com-
putingmodel for graph vertex coloring problem,” in Proceedings
of the 2010 IEEE 5th International Conference on Bio-Inspired
Computing: Theories and Applications, BIC-TA 2010, pp. 231–
235, IEEE, Changsha, China, September 2010.

[17] F. Wu and K.-L. Li, “An algorithm in tile assembly model for
N queen problem,” Tien Tzu Hsueh Pao/Acta Electronica Sinica,
vol. 41, no. 11, pp. 2174–2180, 2013 (Chinese).

[18] X. Zhou, K.-L. Li, G.-X. Le et al., “A volume molecular
solution for the maximum matching problem on DNA-based
computing,” Journal of Computer Research and Development,
vol. 48, no. 11, pp. 2147–2154, 2011 (Chinese).

[19] F. Wu, K. Li, A. Sallam, and X. Zhou, “A molecular solution for
minimumvertex cover problem in tile assemblymodel,” Journal
of Supercomputing, vol. 66, no. 1, pp. 148–169, 2013.

[20] X. Zhou, Y. Zhou, K. Li, A. Sallam, and K. Li, “Molecular
solutions for minimum and exact cover problems in the tile
assembly model,” Journal of Supercomputing, vol. 69, no. 2, pp.
976–1005, 2014.

[21] K.-L. Li, F.-J. Yao, J. Xu et al., “An O(1.414n) volume molecular
solutions for the subset-sum problem on dna-based supercom-
puting,” Chinese Journal of Computers, vol. 30, no. 11, pp. 1947–
1953, 2007 (Chinese).

[22] X. Zhou, K. Li, M. Goodman et al., “A novel approach for
the classical ramsey number problem on DNA-based super-
computing,”Communications inMathematical and in Computer
Chemistry, vol. 66, no. 1, pp. 347–370, 2011.

[23] X. Liu, L. Xiang, and X. Wang, “Spatial cluster analysis by
the adleman-lipton DNA computing model and flexible grids,”
Discrete Dynamics in Nature and Society, vol. 2012, Article ID
894207, 32 pages, 2012.

[24] X. Liu and J. Xue, “Spatial cluster analysis by the bin-packing
problem and DNA computing technique,”Discrete Dynamics in
Nature and Society, vol. 2013, Article ID 891428, 8 pages, 2013.

[25] H. Taghipour, M. Rezaei, and H. A. Esmaili, “Solving the 0/1
knapsack problem by a biomolecularDNA computer,”Advances
in Bioinformatics, vol. 2013, Article ID 341419, 6 pages, 2013.

[26] J. Yang, C. Dong, Y. Dong et al., “Logic nanoparticle beacon
triggered by the binding induced effect of multiple inputs,”ACS
Applied Materials & Interfaces, vol. 6, no. 16, pp. 14486–14492,
2014.

[27] C. Zhang, L. Wu, J. Yang et al., “A molecular logical switch
beacon controlled by thiolated DNA signals,” Chemical Com-
munications, vol. 49, no. 96, pp. 11308–11310, 2013.

[28] C. Zhang, J. Ma, and J. Yang, “Nanoparticle aggregation logic
computing controlled by DNA branch migration,” Applied
Physics Letters, vol. 103, no. 9, pp. 93–106, 2013.

[29] M. Chen, X.-Q. Chen, L. Zhang, and J. Xu, “A biobrick inversion
cellular computing model for satisfiability problem,” Jisuanji
Xuebao/Chinese Journal of Computers, vol. 36, no. 12, pp. 2537–
2544, 2013.

[30] J. Xu, “Forthcoming era of biological computer,” Bulletin of the
Chinese Academy of Sciences, vol. 29, no. 1, pp. 42–54, 2014
(Chinese).

[31] M. Karakose and U. Cigdem, “QPso-based adaptive DNA
computing algorithm,” The Scientific World Journal, vol. 2013,
Article ID 160687, 8 pages, 2013.

[32] X. Zheng, B. Wang, C. Zhou, X. Wei, and Q. Zhang, “Parallel
DNA arithmetic operation with one error detection based on
3-moduli set,” IEEE Transactions on Nanobioscience, vol. 15, no.
5, pp. 499–507, 2016.

[33] P. Y. De Silva and G. U. Ganegoda, “New Trends of Digital
Data Storage inDNA,” BioMed Research International, vol. 2016,
Article ID 8072463, 2016.

[34] W.-L. Chang and A. V. Vasilakos, “DNA algorithms of imple-
menting biomolecular databases on a biological computer,”
IEEE transactions on nanobioscience, vol. 14, no. 1, pp. 104–111,
2014.

[35] A. Eshra and A. El-Sayed, “An odd parity checker prototype
using DNAzyme finite state machine,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 11, no. 2, pp.
316–324, 2014.

[36] J. Wang and R. Huang, “Design and implementation of a
microfluidic half adder chip based on double-stranded DNA,”
IEEE Transactions on Nanobioscience, vol. 13, no. 2, pp. 146–151,
2014.

[37] S. Zhou, B.Wang, X. Zheng, andC. Zhou, “An image encryption
scheme based on DNA computing and cellular automata,”
Discrete Dynamics in Nature and Society, vol. 2016, Article ID
5408529, 9 pages, 2016.

[38] B. Wang, Y. Xie, S. Zhou, C. Zhou, and X. Zheng, “Reversible
Data Hiding Based on DNA Computing,” Computational Intel-
ligence and Neuroscience, vol. 2017, Article ID 7276084, 9 pages,
2017.

[39] H.-C. Huang, S. S.-D. Xu, and H.-S. Hsu, “Hybrid taguchi DNA
swarm intelligence for optimal inverse kinematics redundancy
resolution of six-DOF humanoid robot arms,” Mathematical
Problems in Engineering, vol. 2014, Article ID 358269, 9 pages,
2014.

[40] M. Baygin and M. Karakose, “Immunity-based optimal esti-
mation approach for a new real time group elevator dynamic
control application for energy and time saving,” The Scientific
World Journal, vol. 2013, Article ID 805343, 12 pages, 2013.

[41] H. Jiao, Y. Zhong, and L. Zhang, “Artificial DNA computing-
based spectral encoding andmatching algorithm for hyperspec-
tral remote sensing data,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 50, no. 10, pp. 4085–4104, 2012.

[42] H. Jiao, Y. Zhong, and L. Zhang, “An unsupervised spectral
matching classifier based on artificial DNA computing for
hyperspectral remote sensing imagery,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 52, no. 8, pp. 4524–4538,
2014.

[43] E. Clarke et al., Model Checking, MIT press, Massachusetts,
USA, 1999.

[44] J. Barnat, P. Bauch, L. Brim et al., “Designing fast LTL model
checking algorithms for many-core GPUs,” Journal of Parallel
and Distributed Computing, vol. 72, no. 9, pp. 1083–1097, 2012.

[45] R. Carbone, “LTL model-checking for security protocols,” AI
Communications, vol. 24, no. 4, pp. 281–283, 2011.

[46] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay,
and J.-F. Raskin, “Featured transition systems: Foundations for
verifying variability-intensive systems and their application to

BioMed Research International 33

LTL model checking,” IEEE Transactions on Software Engineer-
ing, vol. 39, no. 8, pp. 1069–1089, 2013.

[47] A. Pnueli, “The temporal logic of programs,” in Proceedings
of the 18th Annual Symposium on Foundations of Computer
Science, pp. 46–57, IEEE Computer Society, Washington, DC,
USA, 1977.

[48] M. Ben-Ari, A. Pnueli, and Z. Manna, “The temporal logic of
branching time,” Acta Informatica, vol. 20, no. 3, pp. 207–226,
1983.

[49] E. A. Emerson and E. M. Clarke, “Using branching time
temporal logic to synthesize synchronization skeletons,” Science
of Computer Programming, vol. 2, no. 3, pp. 241–266, 1982.

[50] B. Moszkowski, Reasoning about Digital Circuits [PhD thesis],
Department of Computer Science, Stanford University, 1983.

[51] Z. Chaochen, C. A. R. Hoare, and A. P. Ravn, “A calculus of
durations,” Information Processing Letters, vol. 40, no. 5, pp.
269–276, 1991.

[52] Z. Duan, C. Tian, and L. Zhang, “A decision procedure for
propositional projection temporal logic with infinite models,”
Acta Informatica, vol. 45, no. 1, pp. 43–78, 2008.

[53] E. A. Emerson, K. D. Hager, and J. H. Konieczka, “Molecular
model checking,” International Journal of Foundations of Com-
puter Science, vol. 17, no. 4, pp. 733–741, 2006.

[54] W.-J. Zhu, Q.-L. Zhou, and Y.-L. Li, “LTLmodel checking based
on DNA computing,” Acta Electronica Sinica, vol. 44, no. 6, pp.
1265–1271, 2016 (Chinese).

[55] W.-J. Zhu, Q.-L. Zhou, and Q.-X. Zhang, “A LTL model
checking approach based on DNA computing,” Chinese Journal
of Computers, vol. 39, no. 12, pp. 2578–2597, 2016 (Chinese).

[56] K. Zimmermann, Z. Ignatova, and I. Martinez-Pérez, DNA
Computing Models, Springer press, New York, NY, USA, 2008.

[57] NUPACK, 2015, http://www.nupack.org/partition/new.
[58] Y.-F. Wang and G.-Z. Cui, The design and optimization of

DNA coding sequence, PublishingHouse of Electronics Industry,
Beijing, China, 2013.

[59] Dizzy Home Page, 2008, http://magnet.systemsbiology.net/
software/Dizzy/.

[60] “Liveness Manifestos,” 2016, http://www.cs.nyu.edu/acsys/be-
yond-safety/liveness.htm.

[61] L. D. Wang, F. Y. Zhou, X. M. Li et al., “Genome-wide
association study of esophageal squamous cell carcinoma in
Chinese subjects identifies susceptibility loci at PLCE1 and
C20orf54,” Nature Genetics, vol. 42, pp. 759–763, 2010.

http://www.nupack.org/partition/new
http://magnet.systemsbiology.net/software/Dizzy/
http://magnet.systemsbiology.net/software/Dizzy/
http://www.cs.nyu.edu/acsys/beyond-safety/liveness.htm
http://www.cs.nyu.edu/acsys/beyond-safety/liveness.htm

