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ABSTRACT

Background Cancer has been extensively characterized on the basis of genomics. The integration of genetic information about cancers with data
on how the cancers respond to target based therapy to help to optimum cancer treatment.

Objective The increasing usage of sequencing technology in cancer research and clinical practice has enormously advanced our understanding of cancer
mechanisms. The cancer precision medicine is becoming a reality. Although off-label drug usage is a common practice in treating cancer, it suffers from the
lack of knowledge base for proper cancer drug selections. This eminent need has become even more apparent considering the upcoming genomics data.
Methods In this paper, a personalized medicine knowledge base is constructed by integrating various cancer drugs, drug-target database, and knowl-
edge sources for the proper cancer drugs and their target selections. Based on the knowledge base, a bioinformatics approach for cancer drugs selec-
tion in precision medicine is developed. It integrates personal molecular profile data, including copy number variation, mutation, and gene expression.
Results By analyzing the 85 triple negative breast cancer (TNBC) patient data in the Cancer Genome Altar, we have shown that 71.7% of the
TNBC patients have FDA approved drug targets, and 51.7% of the patients have more than one drug target. Sixty-five drug targets are identified as
TNBC treatment targets and 85 candidate drugs are recommended. Many existing TNBC candidate targets, such as Poly (ADP-Ribose) Polymerase
1 (PARP1), Cell division protein kinase 6 (CDK6), epidermal growth factor receptor, etc., were identified. On the other hand, we found some addi-
tional targets that are not yet fully investigated in the TNBC, such as Gamma-Glutamyl Hydrolase (GGH), Thymidylate Synthetase (TYMS), Protein
Tyrosine Kinase 6 (PTK6), Topoisomerase (DNA) I, Mitochondrial (TOP1MT), Smoothened, Frizzled Class Receptor (SMO0), etc. Our additional analy-
sis of target and drug selection strategy is also fully supported by the drug screening data on TNBC cell lines in the Cancer Cell Line Encyclopedia.
Conclusions The proposed bioinformatics approach lays a foundation for cancer precision medicine. It supplies much needed knowledge base for
the off-label cancer drug usage in clinics.
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BACKGROUND

The landscape of cancer genomics reveals that various cancer types,
although having different organ originalities, share many driving muta-
genesis mechanisms and their corresponding molecular signaling
pathways in several core cellular processes, such as cell fate, cell sur-
vival, and genome maintenance.” This powerful pan-cancer discovery
guides cancer biology research on these essential pathways, while
more challenging questions are waiting for answers, such as unex-
plained drug resistance and tumor recurrence, genomic tumor hetero-
geneity, and limited knowledge of the drugs and their combination
usage. These cancer precision medicine research topics are highly ad-
vocated in the recent vision statement and National Institutes of Health
of United State Initiative by Drs Collins and Varmus? in 2015. In their
report, novel clinical trial designs and new bioinformatics tools have
also been identified as top prioritized methodology research fields in
cancer precision medicine.

Matching the right drugs to the right patients is the primary goal of
precision medicine. In the early precision medicine cancer trials, such
as Investigation of Serial Studies to Predict Your Therapeutic Response
with Imaging and Molecular Analysis® and Biomarker-integrated
Approaches of Targeted Therapy for Lung Cancer Elimination,”* either
multi-gene transcription signatures or candidate genetic mutation or
protein expression biomarkers were used to adaptively select a proper
cancer patient sub-population for pre-specified drug therapies.
Recently, novel precision medicine clinical trials, such as Molecular

Analysis for Therapy Choice Trial® and Targeted Agent and Profiling
Utilization Registry,® conducted sequencing for both drug target identi-
fication and drug selections. One important rational reason behind the
recent trial is to allow patients from various cancer types that share
the same targets to receive the same drug therapy. This pan-cancer
target identification is well supported by the strong pan-cancer muta-
tions” and copy number (CN) alteration® patterns observed from the
data in the triple Cancer Genome Altar (TCGA) project. Another critical
rational reason that drives the precision medicine cancer therapy, ei-
ther in the clinical practice or trials, is the popular off-label drug use.’
Although off-label drug use has its potential regulatory'® challenge
and a risk of reimbursement,’" it has been a common medical prac-
tice for both patients and physicians. When some aggressive cancer
types have only limited therapeutic options, the off-label drug use will
provide much needed options, and become particularly appealing.
However, the primary challenge of the off-label drug use is the lack of
preclinical and clinical evidence, and guidance for drug selection.'?
With the available TCGA data in the clinical tumor samples and other
large-scale cancer cell line drug screening data, such as the Cancer
Cell Line Encyclopedia (CCLE),"® we anticipate that the bioinformatics
data integration and analysis will make up this knowledge gap.

Recent bioinformatics research has attempted to develop compu-
tational models, which translate the genomic signatures derived from
cell line drug screening data to guide drug selections for cancer pa-
tients.™ However, these models through have their own theoretical
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value, have not yet been designed to address practical needs in target
and drug database integration, target selection, and drug-target
matching. In this paper, we will use triple negative breast cancer
(TNBC) as an example, to build up a roadmap for its precision medi-
cine. This patient population, by definition, is resistant to traditional
nonspecific cytotoxic chemotherapy. In addition, by nature of the high
risk of relapse, they are clearly in need of additional (and hopefully su-
perior) targeted therapy. Using bioinformatics approaches, we will ad-
dress several important questions: what are the FDA approved
targeted drug therapies for cancer? What are those targeted drugs
that can be in off-label use for TNBC patients? Are there any TNBC cell
studies and evidence that support the off-label use targeted drug
therapies?

METHODS

Overview: in our proposed drug-selection computational model for
precision medicine, the cancer treatment decision is tailored toward
an individual patient. A targeted cancer treatment is recommended
based on a patient’s genomic and transcriptomic profile and computa-
tional searching strategy. Our proposed model is composed of four
parts: the information input of an individual cancer patient, the drug-
target relationship knowledge dataset, the cancer type specific back-
ground knowledge, and the feature integration and matching algorithm
for drug-targeted selection. Figure 1B shows how these four parts
work together. Using the TNBC as an example, we show how this
model works in detail. FDA approved cancer drugs and their targets
dataset construction, TNBC individual patients, and patient-specific
target and drug selection implementation are shown in the following.

Cancer Drugs Collection. Cancer therapy has many forms: surgery,
radiation therapy, chemotherapy, target-based therapy, and, most
recently, immunotherapy. The following are two primary data sources
- the National Cancer Institute (NCI) and the National Comprehensive
Cancer Network (NCCN) - are used for selecting FDA approved cancer
drugs.

NCI (http://www.cancer.gov/) is the United States federal govern-
ment’s principal agency for cancer research. NCI played a prominent
role in the discovery of cancer mechanisms and anti-cancer drugs.
According to the NCI Dictionary (http://www.cancer.gov/publications/
dictionaries/cancer-drug), there are 416 drugs related to 39 cancer
subtypes approved by the FDA. Of which, there are 45 drugs combina-
tion for different types of cancer treatment.

NCCN is an alliance of the world’s leading cancer centers (http://
www.ncen.org/). It is recognized by NCI in United States. NCCN cre-
ates important clinical guidelines for patients, clinicians, and other
health care decision-makers. The NCCN Drugs and Biologics
Compendium is a mandated reference for medicare coverage deci-
sions about the appropriate use of drugs and biologics in cancer
care.' In the NCCN 2015 version, there are 239 unique drugs (nor-
malized by the brand names and DrugBank ID in DrugBank, (http://
www.drugbank.ca/) approved by FDA for cancer treatment and com-
plementary therapies, it covers 51 subtypes cancers’ treatments. In
NCCN drugs, many drugs are non-cancer-related drugs as a cancer
adjuvant therapy, such as anti-inflammatory action and side effects
alleviation of chemotherapy. A pharmacologic adrenocortical steroid is
a typical class for anti-inflammatory action as a cancer adjuvant ther-
apy. Mitotane and prednisone are often used in clinic. Pharmacologic

Figure 1: The flowchart for patient-based drug selection modeling construction. (A) The process of drug and its targets collection; (B) the

patient-specific target gene and drug selection process.
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substances such as p/neurokinin-1 receptor antagonist are for preven-
tion of chemotherapy-induced nausea and vomiting in the clinic.
These drugs will be removed from cancer drug datasets here. A total
of 85 drugs are, thus, removed.

The drugs from NCI and from NCCN are merged, and duplicates
are removed. In total, 238 drugs make up the cancer drug dataset.
The detailed process is shown in Figure 1A.

Cancer Drug Target Collection. Three drug databases are integrated
to identify the above-mentioned drugs targets. They are DrugBank
(http://www.drugbank.ca/), Therapeutic Target Database (http://bidd.
nus.edu.sg/group/cjttd/), and DailyMed (http://dailymed.nim.nih.gov/dai-
lymed/). These data constitute the critical knowledge base that connects
drugs and their targets. Figure 1A shows the detailed process of drug
and its target collection. Two hundred and thirty-eight drugs are
mapped to dataset DrugBank, Therapeutic Target Database, and
DailyMed for their targets searching. A total 598 targets are found.
Drugs and their targets (genes) sets are constructed by 238 drugs and
598 targets (genes). However, some genes involved in the drug metabo-
lism and transportation, such as CYP2D6 and OATP1B1, are excluded.
These genes are related to pharmacokinetics, but not drug targets. In
addition, if the drug target is to a whole DNA, and not a gene, its record
is also removed from the drugs-targets dataset. After selection for
drugs-targets, the total 148 drugs-272 targets are used in data analysis.
Supplementary 1 Table 1 presents all these drugs and their targets.

Triple Negative Breast Cancer Samples. Three types of molecular
profiles: mRNA gene expression (GE), DNA CN variation (CNV), and DNA
exome sequencing (mutation) were retrieved from CCLE'® and TCGA'”
databases. This breast cancer study cohort consisted of 85 TNBC
tumors and 18 TNBC cell lines. TCGA data and clinic patient annotation
were downloaded from website https://tcga-data.nci.nih.gov/tcga/
dataAccessMatrix.htm?mode=ApplyFilter with tumor matched selec-
tion and level 3 data. In TCGA, DNA exome sequencing data is con-
ducted by the second-generation sequencing lllumina GAllx platform.
Mutation types for missense, nonsense, silent, frame-shift and splice
site for each gene are denoted in level 3 data. Here, the gene mutation
is signed as 0 or 1 to show if the gene has function loss of mutation or
not. The data will be used in drug selection analysis. For mRNA expres-
sion, the TCGA for TNBC test uses the AgilentG4502A_07_3 platform.
The data is based on its level 2 signals data, where per probe or probe
set for each participant’s tumor sample has already been normalized
according to the description of TCGA data types at the data levels web
site  (https://tcga-data.nci.nih.gov/tcga/tcgaDataType.jsp). TCGA CN
alteration is detected using the Affymetrix 6.0 single nucleotide poly-
morphism array (SNP-array). CN is measured by a probe corresponding
to a segment based upon specific linear calibration curves. The circular
binary segmentation algorithm is used to normalize the segmentations
(generally, 10g,‘®¥?) in the range of [-7,5]. The segmentation mean
values of each gene will be used as a background reference to identify
the gene focal amplification/deletions and arm-level gains in individu-
als. From the CCLE database, all data and its annotations can be down-
loaded from a data portal (http://www.broadinstitute.org/ccle/data/
browseData?conversationPropagation=nbegin). In CCLE, only the GE
platform is different from TCGA,'® which uses Affymatrix HU133 Plus
2.0. For cell line sensitivities with small molecules, it refers to
Cance1r8Therapeutics Response Portal (https://www.broadinstitute.org/
ctrp/).

TNBC is definite as the marker deficiency in the estrogen receptor,
the progesterone receptor (PR) and the human epidermal growth

factor receptor 2 (HER2) (estrogen receptor-/PR-/HER2-). All of these
tumors were identified according to the TCGA annotation file. On the
other hand, cell line subtypes were defined according to the literature
[16]. The summarized 85 patients’ characteristics and 18 cell line of
TNBC are listed in Supplementary 2 Tables 1 and 2.

In order to detect the differential GE, 9 adjacent non-tumor breast
tissue samples in TCGA are defined as normal and are regarded as
the control group. These GE profiles from adjacent normal tissue will
be used as the mRNA background comparison with new patients’ GE.
All of the samples are shown in Supplementary 2 Table 3.

Patient-Specific Target and Drug Selection. Personalized medicine
can use patients’ unique genetic profiles to guide the treatment of dis-
ease. Our approach is closely based on this idea. The patient molecu-
lar feature includes a GE profile, CNV, and gene mutation that are
integrated to identify optimal drug targets from the FDA approved can-
cer drugs. Figure 1B shows our scheme of patient-specific target and
drug selection. Firstly, a drug and its targets are constructed following
the flowchart in Figure 1A. It provides important connections between
FDA-approved drugs and their targets. Secondly, using the GE profiles
of the adjacent normal tissue as the control, a new patient’s differen-
tial GE will be calculated, including the gene variation folder change
and two groups’ variation of significant P-value. Together with CNV
and gene mutation data, they are the input data of our proposed algo-
rithm for target identification, and finally the target-drug matching out-
put. Table 1 shows the algorithmic process. In this algorithm, the
chosen target genes shall have a high GE, CN amplification, and no
mutation compared to their controls. A stringent selection threshold
can warrant that the targeted gene has a significant meaning for the
individual gene-based therapy. Here, the threshold of differential
expression gene (DEG) selects the baseline corresponding to the top
5% regulation DEG both in the folder-change and the P-value; the
threshold of CN amplification is 2.62. There is no mutation threshold.
Once GE and CNV of the targeted gene are higher than their threshold
simultaneously, while the gene is not a mutation, the gene will be
chosen as a target for this new patient therapy, at the same time as
their matched drugs are searched and output.

As for DEG analysis, the following shows the process. For
a patient, the GEp is the P-value of a 2sample-t-test. This test com-
pared the patient GE with the normal breast cancer GE as the
following:

Table 1: Target Identification and Drug Matching Algorithm

Input Patient (GEp, CNVp, MUp)
Knowledge Visiting all of the targeted genes, for each of genes
Base ) GEp is compared with these normal tissue GE
Comparison
by t-test, where P-value is less than a threshold and
folder change value is higher than another threshold.
CNVp means that CNV is higher than a CNV threshold
MUp means no mutation
If all these conditions are met, the gene is chosen as the
drug target.
Search drugs for the target in drug-target knowledge base
Output Patient-specific recommendation drugs list
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Given an adjacent normal sample y; ~ N(, 82), j=1,2,n,its
mean ¥ distribution is ¥ ~ N(PB, 8%/n), nis the number of normal tis-
sue samples. For a new sample x; from patient tumor, its distribution
is assumed to be independently distributed with a homogeneity var-
iance, x; ~ N(u;, 62). A statistical hypothesis is to test the similarity
between x; and y by a ttest method. Here the null hypothesis is HO:
B = u;; the alternative hypothesis is a one-sided H1: § < uj;

The difference between xiand y can be tested in

T=x.7/\/0 +8°/n~ N(0,5°(1+1/n)), and its t-statistics
can be calculated as

Xi-y (-7
t=——-—-, where s= —_

This is a one-sided t-test with a degree of freedom (df) of n and its
significance level of 1%. In our TNBC data analysis, the dfis 9.

Cell Line-Based Target Selection Algorithm using Genomics and
Transcriptomics Data.  Unlike primary tumor samples that have nor-
mal controls, cell lines do not have normal controls. Therefore, highly
expressed genes are judged if their expressions are higher than the
medians. These highly expressed genes are selected as drug targets.
Like the primary tumor samples, genes with CN amplifications (ampli-
fication threshold larger than 2.62) and without mutations are selected
as the drug targets.

Drug-Target and Drug Potency Correlation Analysis in Cancer Cell
Lines. An area under the concentration curve (AUC) is used as the
drug potency measurement for its effect on a cancer cell line. In a cell
line, the presence of a drug targeted gene is defined by a CN amplifi-
cation >2.62 and no mutations, or the drug targeted GE is higher than
its median expression level; otherwise the drug targeted gene is
absent. We hypothesized that cell lines with the presence of a drug
targeted gene will have higher drug potency than the cell lines that
have the absence of the targeted genes. The potency comparisons are
compared using a two-sample f-test. This cell line based drug-target
potency analysis will supply much needed additional evidence for the
TNBC off-target drug use.

RESULTS

Drug Target Distribution.  Targeted genes usually are the easiest way
to understand cancer mechanisms. Our first set of analysis focuses on
the molecular functions and signaling pathways of these targeted
genes. Using the analysis software, David (https://david.ncifcrf.gov/),
we select the KEGG pathway mapping result (see Figure 2). The target
gene distribution in the molecular function is displayed in Figure 2A.
The most popular gene function is the phosphoprotein. Among our
272 target genes, 148 are phosphoproteins. Other top functional
classes include 96 membrane proteins, 84 nucleotide binding pro-
teins, etc. Looking into the enriched signaling pathways (Figure 2B),
top pathways include MAPK, cytokine-cytokine receptor interactions,
ErbB, B- and T-cell receptor, Jak-STAT, VEGF, GnRH, mTOR, DNA rep-
lication, and P53.

Drugs and Their Pharmacologic Class. Chemotherapeutic agents pri-
marily inhibit mitosis (cell reproduction), induce apoptosis (cell death),
and sometimes inhibit metabolic functions of the cancer cell. For
example, vinca alkaloids block microtubule assembly, taxanes block
microtubule disassembly, alkylating with or without platinum prevents
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DNA crosslinking, DNA replication inhibitor, etc.; these drugs are
called “cytotoxic.” The main targets of these chemotherapeutic agents
are DNA or cell cycle proteins. Figure 3 clearly displays the distribu-
tions of these chemo agents based on their pharmacology mecha-
nisms. The other drug subgroup is to target one or several proteins, in
order to disrupt the growth of tumor cells. Monoclonal antibodies,
cytokines, antisense, peptide molecules, and kinase inhibitors are the
major sub-categories (Figure 3). According to NCCN data collection
from different cancer tissues, there are 3604 drug treatment records
involving 238 drugs across 124 cancer subtypes (51 different tissues).
The drug distribution is calculated and analyzed. Figure 3 shows the
distribution of these 238 drugs, of which 63% drugs are chemo
agents, while the other non-chemotherapy are more target-based.

Drug targets and Drug Selections for TNBC Patients. In selecting
drug targets for TNBC patients, the threshold of GEp P-value is 0.01,
folder change is higher than five comparing TNBC sample to normal
sample, and CNVp threshold is 0.4 in log-scale (2.62 times CN

Figure 2: Two hundred and seventy-two drug targets distri-
bution and their involvement in the genes function pathway
in drugs-targets knowledge. (A) Genes function distribution
to these drug targets; (B) The targets’ genes involved in the
function pathway by KEGG analysis.
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Figure 3: All 238 drugs in distribution in different cancer sub-
types by NCCN statistics.

‘ chemaotherapeuti
agents , 63%

Table 2: The Number of Drug Targets per TNBC Patient

Number of drug targets TNBC patient frequency
0 24
1 18
2 17
3 1
4 7
5 8
6 4
7 4

amplification in raw scale). Using genomic profiling data in CNV, muta-
tion, and GE, 61 out of 85 TNBC patients (71.8%) have at least one
identified drug target, 44 out of 85 patients (51.8%) have at least two
drug targets, while 24 patients (28.2%) do not have drug targets
(Table 2). The average number of drug targets per patient is 2.05 with
standard deviation of 1.94. Some drug-targeted genes, whose molec-
ular genomic data do not show significant up-regulation or CN amplifi-
cation, were removed as drug-targets.

We then focus on those 61 patients who have identified drug tar-
gets. Table 3 presents these selected drug targets and their selection
frequency. PARP1 comes out as the highest frequently selected tar-
gets, 20 times among 61 TNBC patients who have identified drug tar-
gets. The second highest selected is GGH at the frequency of 14,
while PTK6 and TOP1MT tied at 7 next. There are totally 62 selected
drug targets.

Using our constructed drug-target relationship  table
(Supplementary 1 Table 1), the targeted drugs were then selected for
each patient. Table 4 shows the drug selection frequency for the 61
TNBC patients. Methotrexate has the highest selection frequency, 22;
Olaparib ranks second, 20; and the next two are Vandetanib and
Regorafenib, which were selected 12 and 11 times, respectively. In
total, there are 88 selected drugs based on their targets. The top
ranked drugs and the top targets match very well. Comparing
Tables 3 and 4, Olaprib is a well-known PARP1 inhibitor; methotrexate
is a well-established inhibitor for GGH and TYMS; and Vandetanib
inhibits genes PTK6 and epidermal growth factor receptor (EGFR).

There is one patient who has seven identified drug targets,
which are (BRAF, CYP51A1, LIMK1, PLA2G4A, POR, PRKCQ, SMO).
The potential targeted drugs include: Dabrafenib, Regorafennib,
Vemurafenib, Sorafenib, Ketoconazole, Epirubicin, Aldesleukin,
Daunorubicin, Doxorubicin, Nilutamide, Mitomycin, tamoxifen, and
Vismodegib.

TNBC Cell Drug Screening Data Support Off-Label Precision Medicine
Drug Usage. Using the TNBC cell line drug response and genomic
profiles in the CCLE database, we investigated drug sensitivity based
on our proposed target-gene and drug selection algorithm. Figure 4A
illustrates the selection of ABL1-Bosutinib, and its TNBC cell line-
based drug sensitivity data. AUC represents the total percent of cell
toxicity due to the drug treatment. The larger the AUC is, the stronger
the drug sensitivity. Figure 4A suggests that TNBC cells that have high
ABL1 GE, more amplification, and less mutation, are more sensitive to
Bosutinib than the others (P=.0013). Similarly, TNBC cells that have
high FLT1 GE, more amplification, and less mutation, are more sensi-
tive to Lenvatinib than the others (P=.0013). While neither Bosutinib
nor Lenvatinib is indicted for TNBC therapy, these data would support
the efficacy of the off-label usage of these two drugs.

DISCUSSION

Comparing our reported drugs and targets (Tables 3 and 4) to the
existing FDA approved TNBC drugs and other approved drugs, we
found many consistent results in the recent research work on the drug
selections for the TNBC patients.'®?° These selected inhibitors for
TNBC by our method were: PARP1 inhibitors (eg, Olaparib), CDK6
inhibitors (eg, Palbociclib), EGFR inhibitors (eg, Gefitinib, Erlotinib,
Lapatinib), are very well documented. On the other hand, we have
identified a number of drug targets that have not yet been studied in
the TNBC patient population, such as GGH and TYMS and their inhibi-
tor Methotrexate, PTK6 and its inhibitor Vandetanib, TOP1MT and its
inhibitor Irinotecan, SMO and its inhibitor Vismodegib, etc. However,
our method also missed a few drug targets, such as for phosphatidyli-
nositide 3-kinases CD (PI-3Ks family), mTOR, and AKT. PIK3CA is the
oncogene, and belongs to one of important PI-3Ks member involved in
cellular functions such as cell growth, proliferation, and differentiation.
PIK3CA shows the highest frequency of gain-of-function mutations in
breast cancer, nearly 33% mutation frequency in breast cancer
patients and 37% in TNBC.2"?? These gain function mutations indicate
the benefit of PI3K/mTOR pathway inhibitors. The PIK3CD inhibitor ide-
lalisib (marketed as Zydelig, CAL-101) was an unique drug approved
by US FDA as a treatment for patients with chronic lymphocytic leuke-
mia in 2014,%% and it exists in our knowledge base. However, our cur-
rent algorithm shields all mutations and target selection in the
downstream signaling. Hence, PIK3CA is missed in our target selec-
tion. This issue shall be addressed in the future. With regard to mTOR,
its GE is absent in the GE data in TCGA, although our knowledge base
has it and its targets. Hence, our drug selection missed it. AKT, which
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Table 3: Selected Drug Targets and Their Frequencies for TNBC Patients

Involved pathway Target Frequency Involved Pathway Target Frequency
PARP1 20 RALBP1 2
GGH 14 ErbB, VEGF, GnRH signaling pathway SRC 2
PTK6 7 TPMT 2
TOPIMT 7 YES1 2
SMO 6 ABCA3 1
TUBB 6 ATIC 1
TYMS 6 DGUOK 1
Jak-STA, p53 signaling pathway CCND1 5 ErbB signaling pathway ERBB2 1
p53 signaling pathway RRM2 5 FCGR2A 1
MAPK, ErbB, Neurotrophin and BRAF 4 FMO03 1
mTOR signaling pathway
MAPK signaling pathway FGFR2 4 FOLR1 1
GPRC5A 4 GART 1
LIMK1 4 HDAC1 1
PSMD2 4 Cytokine-cytokine receptor interaction, IFNAR2 1
Jak-STAT signaling pathway
TUBB3 4 LIG3 1
DNMT1 3 GnRH, MAPK signaling pathway MAP3K2 1
MAPK, ErbB signaling pathway EGFR 3 NDUFS2 1
IMPDH1 3 VEGF signaling pathway NOS3 1
MAP2 3 ORM1 1
DNA replication POLE2 3 ORM2 1
PPAT 3 Cytokine-cytokine receptor interaction, PDGFRA 1
MAPK signaling pathway
T cell receptor signaling pathway PRKCQ 3 POLB 1
p53 signaling pathway CDK6 2 DNA replication POLE 1
CYP51A1 2 POR 1
EBP 2 PSMB10 1
FRK 2 p53 signaling pathway RRM2B 1
HDAC2 2 SULT1A1 1
Cytokine-cytokine receptor interac- IL2RA 2 TOP2A 1
tion, Jak-STAT signaling pathway
LYN 2 TUBG1 1
MAPK, VEGF, GnRH signaling PLA2G4A 2 TXNRD1 1
pathway
VEGF signaling pathway PTGS2 2 UPP1 1

include AKT1, AKT2, and AKT3, is now known to play a central role in
regulating cellular processes. If deregulated, it contributes to the
development or progression of cancer.* In our differential gene
between TNBC and its adjacent normal, AKT1 has only 1.68 fold
higher expression in the TNBC than the normal. It has CN deletion.
Therefore, these conditions led to the missing of AKT and its drug
selection.

Our current methodology also has some limitations. One limitation
is that we exclude all the genes with loss function mutations. Although
these function loss mutated genes themselves cannot serve as drug
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targets, full functional genes in their downstream signaling can still be
validated as drug targets. For example, PTEN mutations usually indi-
cate its downstream activation of PI3CA and/or mTOR. Mutated PTEN
itself is not a valid drug target, but PI3CA and/or mTOR can very well
be. Another example is the BRCA1 loss function mutation that often
suggests an active PARP122 in its downstream. Our current bioinfor-
matics algorithm cannot yet integrate and query the pathways of these
mutated genes. Hence, it remains a potential research topic. The sec-
ond limitation is the drug selection for TNBC patients who have multi-
ple targets and drugs. Our data report that 51.7% of TNBC patients
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Table 4: Selected Drugs and Their Frequencies for TNBC Patients

Target Frequency Target Frequency Target Frequency
Methotrexate 22 Afatinib 4 Alemtuzumab 1
Olaparib 20 Bortezomib 4 Bevacizumab 1
Vandetanib 12 Cetuximab 4 Bleomycin 1
Regorafenib 1 Erlotinib 4 Carfilzomib 1
Cladribine 10 Gefitinib 4 Cytarabine 1
Fluorouracil 10 Ixabepilone 4 Dactinomycin 1
Ponatinib 9 Lapatinib 4 Dexrazoxane 1
Thalidomide 9 Lenvatinib 4 Gemtuzumab 1
Dabrafenib 8 Palifermin 4 Ibritumomab 1
Mercaptopurine 8 Tretinoin 4 Idarubicin 1
Pemetrexed 8 Azacitidine 3 Mitomycin 1
Vincristine 8 Decitabine 3 Mitoxantrone 1
Irinotecan 7 Docetaxel 3 Nelarabine 1
Tamoxifen 7 Epirubicin 3 Nilutamide 1
Topotecan 7 Etoposide 3 Panobinostat 1
Vinblastine 7 Imatinib 3 Pazopanib 1
Vismodegib 7 Paclitaxel 3 Pertuzumab 1
Aldesleukin 6 Panitumumab 3 Rituximab 1
Arsenic 6 Vorinostat 3 Romidepsin 1
Capecitabine 6 Cisplatin 2 Sunitinib 1
Doxorubicin 6 Daunorubicin 2 Tositumomab 1
Floxuridine 6 Denileukin 2 Valrubicin 1
Gemcitabine 6 Ketoconazole 2 ado-trastuzumab 1
Pralatrexate 6 Lenalidomide 2 Alfa-2a 1
Sorafenib 6 Palbociclib 2 Alfa-2b 1
Vinorelbine 6 Peginterferon 2 Emtansine 1
trioxide 6 Pomalidomide 2 0zogamicin 1
Bosutinib 5 diftitox 2

Dasatinib 5

Trastuzumab 5

Vemurafenib 5

have at least two drug targets. This will require more advanced rank-
ing schemes for the drug targets and drugs. The third limitation is the
drug-targets knowledge of cancer should be filtered. A number of
drug off-targets were in our current database. In TNBC patient drug
selections, some drugs were not selected based on their main tar-
geted genes. Using trastuzumab for an example, it is a monoclonal
antibody directed against the extracellular domain of the tyrosine kin-
ase receptor HER2. Trastuzumab is used for HER2-overexpressing
breast cancers in the clinic.?> However, in our knowledge base, trastu-
zumab can target 15 genes except EGFR and HER2. Most of these are
off-targets of trastuzumab. In our current drug-target selection algo-
rithms for TNBC, trastuzumab is selected due to its off-targets.

Among the current characterization of the molecular mechanisms
of the TNBC patients and their target drugs,26 the primary approach

was to use GE signatures to cluster the TNBC patients into subtypes,
such as Basal-like 1, Basal-like 2, immunomodulatory, mesenchymal,
and mesenchymal stem-like. Then the corresponding drugs were
selected based on the pathway enrichment among these selected sub-
types, rather than the direct drug target selection. Our proposed
method, on the other hand, focuses more on the drug target selec-
tions, and then their corresponding drugs. This strategy fits well with
the available genomic data on CNV, mutation, and GE, and is much
easier for off-label drug usage in clinical practice. However, in order to
reduce the practical challenge of our multi-target and
multi-drug problem, we shall also integrate the strength of pathway
information. On the other hand, we also believe the multi-target and
multi-drug problem will not go away even if we have the optimal rank-
ing system. Multiple drug selection, ie, drug combinatory prediction, is
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Figure 4: Target-based drugs screening in TNBC cell lines.
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an unavoidable reality. It motivates additional cancer biology and com-
putational biology research alone this line.

In this paper, for the first time, we have shown a bioinformatics
approach that integrates various drugs, targets, and genomic data
sources, and automatically predicts and selects drugs for the identified
drug targets among TNBC individuals. We then further demonstrate
the value of the cell line drug screening data for the off-label drug use
in the TNBC precision medicine scenario by the CCLE and Cancer
Therapeutics Response Portal. Using the cell line-based drug
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screening data, we have found significant evidence that drug targets
having high GE, more amplification, and less mutation will be more
sensitive to their corresponding drugs.
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