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INTRODUCTION 

Bacteria have developed several mechanisms to cope with the changing condi-
tions of the surrounding environment. The charge and other characteristics of 
cell surface can passively help to deal with unfavourable conditions or can be 
involved in the switch between two different life-forms: free-swimming aka 
planktonic lifestyle and surface-attached aka biofilm aka sessile lifestyle. The 
transition from planktonic to sessile happens when bacteria attach to the surface 
and/or each-other. In this process, the adhesion abilities to different surfaces 
play an important role in bacterial survival. In most cases, the adhesion proper-
ties of bacteria are defined by cell surface hydrophobicity. The hydrophobicity 
of cell surface may also play a protective role for bacteria. For example, the 
surface of P. putida becomes more hydrophobic in the presence of different 
kind of environmental stressors including toxic organic solvents (Heipieper et 
al. 2007). In this way the cells increase the aggregation with each-other, thus 
minimizing accessibility of their surface to toxic compounds. Cell surface 
hydrophobicity can be affected by several factors including lipopolysaccharides 
(LPS), lipoteichoic acids (LTA), S-layer proteins and adhesins. In gram-nega-
tive bacteria these components are mostly located on the outer membrane, 
which is the first barrier of bacteria to its surrounding environment. The compo-
nents and structure of outer membrane can be reorganised in response to 
environmental factors. For enabling all these changes, bacteria must rearrange 
its physiology by altering a large number of genes. That kind of regulation is 
often executed by global transcription regulators. In this thesis, I will focus on 
the global transcription regulator Fis’ (factor for inversion stimulation) role in 
affecting the transcription of biofilm-related gene lapF and influencing the 
hydrophobicity of soil bacterium Pseudomonas putida. 

P. putida is a cosmopolitan bacterium able to colonize the rhizosphere of 
plant roots and dislodge the pathogenic microbes also inhabiting the same 
environment. The overexpression of fis is shown to increase P. putida biofilm 
formation and therefore it may be an important factor for plant root colonization 
(Jakovleva et al. 2012). 

The initial aim of this study was to determine the factors through which Fis 
affects the biofilm of P. putida. After finding the regulative connection between 
Fis and the biofilm-related adhesins LapA and LapF, the aim of this thesis 
further focused on LapF – the second largest adhesin of P. putida. The role of 
LapF in P. putida’s biofilm formation has been briefly studied before. The 
involvement of LapF in cell-cell interaction in mature biofilm has been shown 
previously (Martinez-Gil et al. 2010), although, we did not see any effect of 
LapF in the Fis-induced biofilm of P. putida. As cells growing in a biofilm are 
shown to be more hydrophobic, we decided to investigate the possibility of 
LapF being involved in the cell surface hydrophobicity of P. putida and further 
study the role of Fis in the regulation of this process. Thus the aim of this study 
was driven by the initial finding of the connection between Fis and LapF, which 
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surprisingly did not involve biofilm formation by P. putida. Therefore the 
intriguing questions were raised: how Fis regulates lapF, could LapF be 
engaged in the surface hydrophobicity and if yes, then what would be the 
purpose of it regarding the survival and adaptation of soil bacterium P. putida? 

In the first part of this thesis, I give an overview of the current knowledge 
about the bacterial response to environmental changes, cell surface hydro-
phobicity and its factors, biofilm formation, including the role of adhesins LapA 
and LapF in it and transcription regulator Fis. The experimental part of the 
thesis focuses on the characterization of the mechanisms involved in the 
regulation of hydrophobicity of P. putida by Fis via regulating the transcription 
of adhesion protein LapF. Additionally, I will propouse a model of biofilm 
formation, and hydrophobicity regulation systems in P. putida in light of my 
experimental results and previously published data.  
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REVIEW OF LITERATURE 

1. Bacterial adhesion 
A critical approach for bacteria to adapt to the surrounding environment is to 
switch between planktonic and sessile lifestyles. Planktonic cells move freely; 
however, appropriate conditions can trigger attachment to abiotic or biotic sur-
faces, and bacteria switch over to sessile growth, also called biofilm. The varie-
ty of surfaces and environments that bacteria are able to occupy are almost 
infinite. The planktonic bacteria can adhere to metal, plastic, soil particles, 
medical implant materials or eukaryotic tissues (Costerton et al. 1999). The first 
colonists usually form a weak reversible attachment, which can become stron-
ger and more permanent, when cells start to anchor themselves more and more 
on the surface and to one another, using surface proteins to bind other cells in a 
process called cell adhesion (Garrett et al. 2008). 

The physicochemical interactions between bacteria and surface involve 
attractive forces which usually can be either electrostatic or chemical forces 
such as van der Waals bonds, hydrogen bonds or hydrophobic interactions. 
More closely the interactions between cell and its substrate depend on the 
attractive and repulsive forces between the ion layer of bacteria and the charge 
of the surface. Therefore, the attachment of a cell with a negative charge is 
stronger to a positively charged surface and vice versa (Montville and Schaffner 
2003). Several bacteria possess large surface proteins with a net negative charge 
contributing to adhesion to different substrates, thereby initiating biofilm forma-
tion (Soni et al. 2008). 

 
 

1.1. Importance of bacterial cell surface hydrophobicity 

Cell surface hydrophobicity has been shown to affect the interaction to abiotic 
surfaces for species like Escherichia coli, Pseudomonas aeruginosa, Strepto-
coccus pyogenes and Staphylococcus aureus (Yousefi Rad et al. 1998). Despite 
the fact that hydrophobicity regulates bacterial physiology only passively, its 
influence on the competitiveness of bacteria is remarkable. For example, the P. 
putida toluene tolerant strain IH-2000, which surface has a lower hydrophobi-
city than the surface of toluene-sensitive mutant, exhibits decreased consump-
tion of aromatic compounds p-xylene and cyclohexane (Kobayashi et al. 1999). 
Furthermore, some gram-positive bacteria, like Bacillus licheniformis S86 
decrease the level of their hydrophobicity in the presence of toxic organic 
compounds like 3-methyl-1-butanol and therefore show low affinity against this 
compound (Torres et al. 2011). Bacterial surface hydrophobicity can influence 
even the effectiveness of bacterial motility in the soil. For example, compared to 
hydrophilic strain LAM1 the Pseudomonas fluorescens hydrophobic strain 
LAM2 shows a much higher adherence and migration abilities in different types 
of soils: clay loam, sandy loam and sandy soil (van Loosdrecht et al. 1987, 
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Singh et al. 2002). On the contrary, the hydrophobic bacterial cell surface has 
been shown to conduce to cell aggregation in a mixed population habitating soil 
(Liu et al. 2009). This can facilitate degradation of aromatic compounds such as 
phenol, pyridine or its derivatives via different metabolic pathways (Adav et al. 
2008). In 1987 van Loosdrecht et al found that cell surface hydrophobicity is 
the main dominant characteristic of bacteria that assure adhesion (van Loos-
drecht et al. 1987). Meaning that the hydrophobicity of the cell surface and the 
ability to regulate it is an essential factor for bacterial adaptation to different 
environmental conditions (Segura et al. 1999, Heipieper et al. 2007). 

The hydrophobicity of cell surface may play a protective role for bacteria. 
For example, in response to different kind of environmental stressors including 
osmotic stress, heat shock, and solvents, the bacterial surface becomes more 
hydrophobic (Heipieper et al. 2007). In gram-negative bacteria the stress 
causing agents usually strike the outer membrane first. Therefore it is logical 
that surface changes are involved in stress response. 

One of the mechanisms related to the changes in the surface of gram-nega-
tive bacteria is the formation of outer membrane vesicles (Baumgarten et al. 
2012). P. putida strain DOT-T1E has been shown to release membrane vesicles 
within 10 minutes after encountering different stressors: toxic concentrations of 
long-chain alcohols, EDTA, NaCl and heat shock (Neumann et al. 2006, 
Heipieper et al. 2007, Baumgarten et al. 2012). The vesicles are often as-
sociated with the release of virulence factors of P. aeruginosa, which help the 
bacteria to survive in human lung epithelium (Kulp and Kuehn 2010). Another 
function of membrane vesicles occurs in the cell aggregation, where it helps 
bacteria to become more tolerant against antibiotics and biocides (Beveridge et 
al. 1997). The stress-induced release of membrane vesicles and increase of cell 
surface hydrophobicity consequently enhance the aggregation of bacteria 
(Neumann et al. 2006, Heipieper et al. 2007, Baumgarten et al. 2012). A poten-
tial mechanism or phenomenon for this is called depletion attraction, which 
means the aggregation of large particles (bacteria) increases the free movement 
of small particles (Dorken et al. 2012). The particles in a colloid cannot 
approach the surface of other particles no more than the distance of their own 
radius. Therefore every particle is surrounded by a so-called depletion zone and 
the free movement of particles reduces when the number of particles increases 
in the medium (Dorken et al. 2012). Thus, if two large particles get closer to 
each other, their depletion zones overlap, creating more space for smaller 
particles in a medium. In other words, the entropy of the smaller particles in a 
system increases and therefore the aggregation of hydrophobic bacteria is 
favored (Dorken et al. 2012). 

To sum up, the hydrophobicity of cell surface plays an important role for 
microorganisms in adhesion and attachment to various surfaces, in biofilm 
formation as well as in tolerance against toxic organic compounds. 
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1.2. Bacterial surface hydrophobicity factors 

Cell surface is the first barrier of bacteria. For example, the cell surface of all 
gram-negative bacteria consists of an outer membrane that can quickly react to 
environmental conditions and reorganise the structure of membrane compo-
nents. Lipopolysaccharides (LPS), adhesins, lipoteichoic acids, S-layer proteins 
and other proteins are located on the outer membrane of cells and therefore are 
the first contact elements between bacteria and its surrounding environment. 
Surface hydrophobicity of cells is influenced by various factors. Their contri-
bution and properties to hydrophobicity can also differ. 

One of the main factors influencing bacterial surface hydrophobicity is 
lipopolysaccharides (LPS) on the outer membrane of gram-negative bacteria 
(Fig 1). LPS consist of hydrophobic fatty acid chain harbouring lipid A – a 
glucosamine disaccharide, which differs from a typical phospholipid by posses-
sing six unsaturated fatty acid chains instead of two saturated or unsaturated 
chains. LPS also comprises of a heterogeneous core oligosaccharide linked to 
lipid A and the O-antigen, which is an immunogenic oligosaccharide consisting 
of 1-40 repeating subunits (Fig 1). These are the features that make the asym-
metric outer membrane bilayer more hydrophobic compared to a typical 
phospholipid bilayer, by having strong lateral connections between LPS mole-
cules and low fluidity (Neidhardt and Curtiss 1996). In Legionella pneu-
mophila, the O-antigen of LPS forms a homopolymer lacking free hydroxyl-
groups, making the surface more hydrophobic and therefore can assist the 
attachment of bacteria to target cells (Zahringer et al. 1995). 

 

 
Figure 1. The localization of hydrophobicity factors (LPS, fimbriae, surface proteins 
and S-layer proteins) in the outer membrane of gram-negative bacteria. 

 
 

In addition, lipid A also plays an important, yet indirect part in providing hydro-
phobic barrier to bacterial cells. For example, the repression of lipid A bio-
synthesis reduces the production of lipopolysaccharides, which therefore is 
shown to increase the permeability of hydrophobic antibiotics and can lead to 
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gram-negative bacteria becoming susceptible to them (Wyckoff et al. 1998). 
Consequently the role of LPS in cell surface hydrophobicity occurs mainly 
through changing the overall barrier of cell surface, which hinders the move-
ment of different compounds between cell and its environment. 

Similarly to LPS, S-layer proteins can also influence the hydrophobicity by 
contributing to the general surface hydrophobicity and protective barrier of the 
cells (Fig 1). Similarly to gram-negative bacteria most members of gram-
positive Bacillaceae family are also covered with S-layer, which form a porous 
crystalline layer containing high amounts of hydrophobic amino acids (U. B. 
Sleytr et al. 1993). S-layers can function as protective coats or structural ele-
ments  promoting adhesion and target surface recognition (Uwe B. Sleytr et al. 
1994). Furthermore, the S-layer proteins have been reported to be involved in 
the surface hydrophobicity of Lactobacillus acidophilus ATCC 4356 (Smit et 
al. 2001) or Bacillus cereus (Kotiranta et al. 1998). Studies have shown that the 
changes in S-layer influence the surface hydrophobicity of B. cereus, which 
protect bacteria against the ingestion of polymorphonuclear leukocytes (Koti-
ranta et al. 1998). 

Another factor demonstrated to be involved in general surface hydrophobi-
city and protection of bacterial cells is mycolic acids (MA). The cell envelope 
of gram-positive Rhodococcus opacus is described to possess long chain α-
alkyl-β-hydroxy fatty acids, also known as mycolic acids (Asselineau and 
Lederer 1950). Mycolic acids, forming an outer lipid layer of the cell wall, are 
one of the main factors to provide tolerance for R. opacus and Mycobacterium 
tuberculosis against antibiotics and other stressful conditions (Alvarez et al. 
2004, Barkan et al. 2009). Recently it was demonstrated that if grown in liquid 
medium and treated with toxic concentrations of NaCl or 4-chlorophenol the 
cells of R. opacus PWD4 respond by decreasing the average chain length of 
mycolic acids and the average amount of double-bonds in them. This was 
shown to be in correlation with higher saturation of membrane fatty acids and 
increased hydrophobicity of cell surface of R. opacus PWD4 (de Carvalho et al. 
2016). 

In addition to the factors influencing the general cell surface hydrophobicity, 
other factors, such as hydrophobic fimbrial adhesins can also affect the attatch-
ment of bacteria to surfaces (Fig 1) (Zahringer et al. 1995, Sidhu and Olsen 
1997, Higashi et al. 1998). For instance, enteric bacteria use fimbriae for adhe-
sion to host cells via interaction of fimbrial lectin to carbohydrate of host cells 
(Isberg and Barnes 2002). This interaction can be specific however adhesion 
can be reduced by electrostatic repulsion that exists between the host cell and 
the surface of bacteria. These fimbriae contain a high number of hydrophobic 
amino acids that probably help overcome the initial electrostatic repulsion 
barrier (Corpe 1980, Rosenberg and Kjelleberg 1986). 

In common with fimbriae, several proteins have been shown to be connected 
with cell surface hydrophobicity which helps mediate the adhesion to surfaces. 
For example, a yeast protein, CSH1p was the first described hydrophobic pro-
tein on the surface of Candida albicans. The hydrophobicity of cells lacking csh 



14 

gene reduces 75% along with the adhesion to the extracellular matrix protein 
fibronectin (Singleton et al. 2005). However, it is suggested that CSH1p has a 
pleiotropic nature and its pathogenic contribution (e.g., adhesion to fibronectin) 
and lower cell surface hydrophobicity are independent of one-another (Single-
ton et al. 2005). 

In C. albicans another hydrophobicity-related adhesin is Als3 – agglutinin-
like sequence (ALS) family protein which contributes to yeast aggregation and 
adhesion to epithelium (Dranginis et al. 2007, Aoki et al. 2012). The enhanced 
exposure of Als3 on the surface of C. albicans provides hydrophobic hyphae 
and causes stronger adhesion to the hydrophobic substrate (Beaussart et al. 
2012). 

One more cell wall protein of yeast – Rbt1 is described to affect the adhesion 
of the cells via hydrophobicity. The N-terminal region of Rbt1 in C. albicans is 
demonstrated to be the key-factor for promoting the hydrophobicity of cell 
surface and therefore the adherence to polystyrene (Monniot et al. 2013). It is 
also demonstrated that in the central part of the protein, a domain consisting of 
42 amino acids is responsible for the cell-cell interactions by promoting the 
aggregation of hyphea (Monniot et al. 2013). Furthermore, while Rbt1 protein 
shows similar anchorage in the cell wall of both cell types as yeast and as 
hyphae, then Rbt1 proteins are more exposed to the surface and unmasked in 
hyphae. This means that significant changes in the structure of cell walls, which 
could occur in the fimbriae layer, might allow to cover the surface proteins in 
yeast cells and expose in hyphae cells (Monniot et al. 2013). In 1997 Braun and 
Johnson characterized a gene, TUP1, which deletion caused C. albicans cells to 
grow in a filamentous state in the absence of any environmental inducing signal 
(Braun and Johnson 1997). A few years later it was demonstrated that TUP1 
represses the expression of hyphal-specific rbt gene family, including the cell-
wall protein Rbt1 (Braun et al. 2000). Although these given examples of 
proteins involved in hydrophobicity and adhesion illustrate the mechanisms 
studied in yeast C. albicans, which cell wall structure is different from that of 
bacteria. Nevertheless, these examples enlighten the importance of hydro-
phobicity in microorganisms in general and explain the factors involved in this. 
However, in bacteria, there are also several proteins described to be involved in 
adhesion and hydrophobic interactions. 

It was only recently demonstrated that Helicobacter pylori protein Hsp60 
can function as a chaperone in acidic conditions, whereas the interactions 
between Hsp60 and other proteins undergoing acid-induced denaturation are 
occurring due to hydrophobic surfaces (Mendoza et al. 2017). A hydrophobic 
reporter probe 1,1`-bis(4-anilino) naphthalene-5,5`-disulfonic acid (bisANS) 
was used, which is non-fluorescent in an aqueous environment, but becomes 
fluorescent in contact with proteins having hydrophobic surfaces (Hawe et al. 
2008). Measurements with bisANS showed high fluorescence in contact with 
Hsp60, demonstrating the hydrophobic surface of Hsp60. Furthermore, the 
fluorescence of bisANS was found to increase even more in moderately lower 
pH conditions (Mendoza et al. 2017). With this ability Hsp60, functioning as a 
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chaperone could protect other proteins from acidic environment, like in gastric 
epithelium of humans, which H. pylori colonizes. 

The first large bacterial adhesion protein Bap (biofilm-associated protein) 
was described in Staphylococcus aureus (Cucarella et al. 2001). Disrupting the 
S. aureus bap gene decreases the surface hydrophobicity and subsequently 
reduces both, initial attachment to polystyrene and diminishes intercellular 
adhesion (Cucarella et al. 2001). Pseudomonas fluorescens and Pseudomonas 
putida have similar large adhesins: LapA in both species and LapF in P. putida 
(Hinsa et al. 2003). These large adhesins share common structural and characte-
ristic features: high molecular weight, tandem repeats, cell-surface location and 
have relevant role in bacterial adhesion and biofilm formation (Lasa and 
Penades 2006). 

P. putida utilizes these large extracellular adhesins, LapA and LapF, for 
attachment to abiotic and biotic surfaces (Yousef and Espinosa-Urgel 2007). 
LapF consists of 6310 amino acids and has only one large repeat domain, 
comprising of 64 repeating sequences, each of them with a length of 83-91 
amino acids (Martinez-Gil et al. 2010). Whereas P. putida LapA consists of 
8682 amino acids with two repeat domains, including 37 repeated hydrophobic 
sequences, each of comprising 100 amino acids. The accumulation of LapA 
protein on the cell-surface interface leads to the adhesion of bacteria to hydro-
phobic substrate (Espinosa-Urgel et al. 2000, Hinsa et al. 2003, Fuqua 2010, El-
Kirat-Chatel et al. 2014). Therefore, it is suggested that LapA plays a crucial 
part in attachment and thus, is mostly responsible for biofilm initiation 
(Martinez-Gil et al. 2010). Whereas LapF is produced later, therefore, provides 
cell-cell interactions that lead to the formation of a mature biofilm (Martinez-
Gil et al. 2010). 

To conclude, the factors influencing cell surface hydrophobicity can act via 
providing the general hydrophobic barrier to the cells mediated by LPS and S-
layer proteins. Hydrophobicity factors can also act via adhesion and attachment 
of cells to the surface and each-other, in which adhesive fimbriae and different 
membrane proteins having hydrophobic characteristics are shown to be in-
volved. 

 
 

1.3. The regulation of cell surface hydrophobicity 

Bacteria can quickly change cell surface properties by physiologically regulated 
mechanisms. However, the control of so-called hydrophobicity factors’ expres-
sion is one potential regulation mechanism as well, although much slower 
compared to physiologically regulated mechanisms. 

One of the physiological regulation methods for bacteria to change their 
surface hydrophobicity is to alter the molecular weight of the LPS layer. Baum-
garten et al. in 2012 analysed the LPS composition of P. putida DOT-T1E in 
response to n-alkanols, which increase the cell surface hydrophobicity of DOT-
T1E (Baumgarten et al. 2012). They used micellar electrokinetic chromato-
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graphy (MEKC) to analyse the composition of LPS and found that decrease of 
LPS’ molecular mass correlates to the increase of hydrophobicity and vesicu-
lation. Similarly to P. putida, the loss of high-molecular-weight LPS has been 
linked to the formation of outer membrane vesicles in P. aeruginosa (Kaduruga-
muwa and Beveridge 1995, Makin and Beveridge 1996). The change of cell 
surface’s hydrophobicity has been shown to be reversible. When P. putida 
DOT-T1E was treated with 1-octanol, the increase of cell surface hydropho-
bicity was quick. But the surface hydrophobicity started to gradually decrease 
when the cells were pelleted, washed and resuspended in fresh medium without 
1-octanol (Baumgarten et al. 2012). It was proposed that the decrease in hydro-
phobicity is slow due to de novo synthesis of high molecular weight LPS. 

In addition to physiological adjustment of LPS, the regulation can occur by 
alternative sigma factors controlling the expression of hydrophobicity-related 
genes. In 2014 Klein et al demonstrated that the lack of yciM (lapB) increases 
the envelope stress response of E. coli, which control the main steps of LPS 
biosynthesis and assembly (Klein et al. 2014). LapB is a lipopolysaccharide 
assembly protein B encoded by lapB gene, formerly known as yciM (Klein et al. 
2014). The defects caused by lack of the LapB have been shown to be suppres-
sed by alternative sigma factor RpoE and two-component system CpxRA, 
which contribute to envelope stress response (Klein et al. 2014). The heat-shock 
inducible alternative sigma factor σE (RpoE) and two-component signal 
transduction system CpxRA have both been demonstrated to be adjusted to 
extracytoplasmic stimuli (Mecsas et al. 1993, Snyder et al. 1995). For example, 
the level of proteins on the outer membrane influences the activity of RpoE 
(Mecsas et al. 1993). In E. coli the lack of rpoE can cause defects in outer 
membrane permeability, which has been linked to increased sensitivity to deter-
gents and hydrophobic substances (Raina et al. 1995). One of the transcription 
targets for RpoE is degP, which product is a periplasmic protease specified for 
the degradation of various atypical extracytoplasmic polypeptides (Strauch and 
Beckwith 1988). The degP locus is also activated by the response regulator 
CpxR of the two-component system CpxRA (Raina et al. 1995). CpxR is 
activated by the inner-membrane sensor CpxA which in turn gets stimulated by 
the overproduction of NlpE – an outer-membrane located lipoprotein in E. coli 
(Snyder et al. 1995). These examples suggest that both sigma-factor RpoE and 
two-component system CpxRA play a central role in envelope stress response, 
which could be the key factor in covering the defects of decreased hydro-
phobicity caused by the lack of LPS in the cell surface of bacteria. 

Another example of hydrophobicity regulation involving alternative sigma 
factor is related to the expression control of large adhesion protein Bap, which 
is involved in adhesion, biofilm formation and virulence of S. aureus (Tormo et 
al. 2005, Tormo et al. 2007). Bap is shown to be positively regulated by SarA 
(Tormo et al. 2005, Tormo et al. 2007). SarA is a DNA-binding protein which 
generally activates the agr promoters, which produce Agr proteins. Agr in turn 
controls the expression of several virulence factors in response to increasing cell 
density (Novick 2003). Though, SarA is also able to activate some virulence 
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genes independently from agr (Novick 2003). For example, SarA binds the bap 
promoter independently from agr, therefore SarA is a positive regulator for 
Bap-mediated biofilm of S. aureus (Tormo et al. 2005, Tormo et al. 2007). One 
of the two alternative sigma factors described in S. aureus – σB affects the 
expression of multiple genes, including virulence genes (Horsburgh et al. 2002). 
It has been demonstrated that the lack of σB impaires the Bap-mediated biofilm 
(Marti et al. 2010). The extracellular proteases Aur and SspA, which are 
capable of degrading Bap, have been shown to be overexpressed in σB mutant, 
thus increasing the degradation of Bap protein and reducing protein-dependent 
biofilm formation of S. aureus (Marti et al. 2010). In the same work it was also 
demonstrated that in the σB gene and agr double-mutant, where the extracellular 
proteases are not being overexpressed, the biofilm formation is restored. This 
suggests that in S. aureus a protein-mediated biofilm could be controlled by a 
pathway, where global transcription regulators play a central role via regulating 
the expression of extracellular proteases (Marti et al. 2010). 

Global transcription regulators have also been shown to be involved in the 
regulation of lipoteichoic acid (LTA)-related hydrophobicity in gram-positive 
bacteria. In addition, affecting hydrophobicity of Streptococcus pyogenes, LTA 
also helps to mediate the adhesion to the host cells (Hasty et al. 1992). The LTA 
of S. pyogenes forms complexes with surface proteins in a way where fatty 
acids of LTA can be exposed to the surface of bacteria (Ofek et al. 1983). The 
LTA complex with surface proteins is therefore responsible for mediating or 
inhibiting the adhesion of S. pyogenes to host cell receptors. A group of proteins 
of S. pyogenes called M-protein family has been demonstrated to be involved in 
anchoring LTA to the surface of the cells resulting in a more hydrophobic surface 
and enhanced biofilm formation (Courtney et al. 2009). M-proteins are in turn 
regulated by a global transcription regulator Mga (Caparon and Scott 1987). 
Specific binding of Mga to the promoter regions of genes encoding for M-pro-
teins helps to strengthen the binding of RNA polymerase and therefore increases 
the transcription (McIver et al. 1995). The 45-bp Mga binding consensus (N5 
AGGTCAA(C)AAAGNT N4 AA N5 AAAAANCTGG(A)T(C)CTTTA) com-
prises of two highly conserved regions called CL and CR separated by an 11-bp 
sequence of more variable nucleotides with conserved adenine-pair in the 
middle (McIver et al. 1995). The CR region of Mga binding site overlaps the -35 
sequence of promoters, thus showing this region as a binding site for both Mga 
and RNA polymerase. Furthermore, mga promoter itself is positively auto-
regulated by Mga (Okada et al. 1993). In a serotype M6 of Group A strepto-
coccus strain JRS4 it is shown that the expression of mga and the genes under 
its control emm and scpA are active in logarithmic phase but are turned off upon 
entry into stationary growth phase (McIver and Scott 1997). One possible 
advantage for expressing these genes only in exponential phase is to save 
energy in starvation conditions, as proposed by the authors (McIver and Scott 
1997). The products of emm and scpA genes could be very stable on the surface 
of Group A streptococcus, and the sufficient amount of these proteins may be 
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enough for the time when bacteria reach to stationary growth phase, and the 
further transcription may not be needed (McIver and Scott 1997). 

Previous examples of the regulation of hydrophobicity factors included 
mostly the control on transcription level. However, the regulation of hydro-
phobicity factor’s expression can also happen via modification of translational 
efficiency. For example, the translation of slpA mRNA encoding S-protein in 
Lactobacillus acidophilus ATCC 4356 depends on the secondary structure of 
5`end of mRNA, which exposes the ribosome binding site (Boot et al. 1996). 
As shown by reporter gene analysis in Lactobacillus casei, the cutting of the 
leader sequence of mRNA leads to decrease in SlpA production (Boot et al. 
1996). This leader sequence in 5’ end of mRNA is untranslated; however, it is 
necessary to ensure the half-life of mRNA (Boot et al. 1996). 

In general, the regulation of cell surface hydrophobicity could occur via 
quick physiological changes or through different gene expression pathways, 
involving alternative sigma factors, two-component signal transduction systems 
or global transcription regulators. All these complex regulation cascades depend 
on the environmental conditions and signals received by bacterial cells, which 
respond to it by activating or repressing the right genes at the right time. 

 
 

2. Bacterial biofilm 
Biofilm is a phenotype of bacterial population that has several functions. Bacte-
ria can protect themselves from rough environment by forming biofilm or on 
the other hand the formation of biofilm could help them to settle down where 
conditions are better facilitating their existing as a community (Jefferson 2004). 
In biofilm bacteria can withstand hazardous abiotic factors like UV (Espeland 
and Wetzel 2001), high osmotic stress, dryness (Le Magrex-Debar et al. 2000), 
antibiotics and antimicrobial agents (Stewart and Costerton 2001) much better 
compared to planktonic cells. The matrix produced in biofilm acts as a barrier 
between bacteria and environment, which helps bacteria to tolerate stress better 
(Donlan and Costerton 2002). 

On the other hand, biofilm formation does not occur only in response to 
stress conditions. An example would be bacterial biofilm on the roots of plants. 
In the rhizosphere, an ecological niche is formed, where nutrients are more 
freely available, and microorganisms have developed specific mechanisms to 
exploit this niche. Plant roots excrete a variety of components, such as amino 
acids, organic acids, simple sugars, carbohydrates and enzymes (Lynch and 
Whipps 1990). These exudates are released mainly through the tips of the roots, 
which are constantly growing. Therefore to take advantage of this nutritional 
paradise, in contrast to biofilm formation, microorganisms must be able to 
migrate along with the growth of roots. This means that for successful adap-
tation to different environmental conditions, bacteria have to be able to rapidly 
change their lifestyle and disperse from biofilm to recolonize new locations. For 
example, in P. putida it has been demonstrated that (among other factors) 
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nutrient deprivation, more specifically carbon starvation causes biofilm to 
disperse (Gjermansen et al. 2005). 

In nature biofilm usually consist of bacteria from multiple species, which 
compete, cooperate and communicate with each other (Amann et al. 1995). For 
instance, the fermentative bacteria produce different acids and alcohols. These 
are in turn used as substrates by acetogenic bacteria, and after that methano-
genic microorganisms can get energy by converting carbon dioxide, acetate, and 
hydrogen into methane (Davey and O'Toole G 2000). Another example of 
biofilm formation unrelated to stress has been demonstrated in E. coli, where 
bacteria can form biofilm in response to an increase in cell density through 
quorum sensing. A signal autoinducer 2 (AI-2) enhances the initial stages of 
biofilm formation in E. coli via stimulating the motility-related genes motA and 
fliA (Gonzalez Barrios et al. 2006). Therefore AI-2 increases the initial attach-
ment of E. coli cells to the surface and thus improves the first steps needed for 
biofilm formation (L. A. Pratt and Kolter 1998). 

In natural biofilms, microorganisms also compete with each-other for 
nutrients and try to inhibit the growth of other species in the community. For 
example, Streptococcus oligofermentans produces hydrogen peroxide (H2O2) 
from peptone by using L-amino acid oxidase to inhibit the growth of Strepto-
coccus mutans in multi-species biofilms growing in the peptone-rich environ-
ment (Tong et al. 2008). Marine bacterium Pseudoalteromonas tunicate is 
shown to produce protein AlpP which has antibacterial properties and therefore 
living in the same environment can repress the growth of another marine bacte-
rium such as Cellulophaga fucicola and Alteromonas sp (Rao et al. 2005). 

The human society has learned to benefit from the bacterial biofilm. For 
example, microorganisms are used for bioremediation to remove contaminants 
like oil spills (Radwan et al. 2002), nitrogen compounds (Li et al. 2003) or 
industrial waste (Sekoulov and Brinke-Seiferth 1999). However, the formation 
of biofilms can also cause problems for humans. Hospital-related infections are 
one of the examples. Surgical instruments, like drips, scalpels, and catheters, are 
common sources of biofilm growth and subsequent infection. Biofilm forming 
methicillin-resistant Staphylococcus aureus (MRSA) is particularly important 
due to its resistance to multiple antibiotics, whereas frequent sources of MRSA 
are the patients themselves (Godwin et al. 2001, Salgado et al. 2003). Another 
critical area is the oil industry, where biofilm formation by sulphate-reducing 
bacteria (SRB) causes pipe and rig corrosion, blockage of filtration systems and 
oil spoilage (Santegoeds et al. 1998). 

 
 

3. The regulation of biofilm-related adhesins  
LapA and LapF 

Probably due to their different functions in biofilm, the synthesis of LapA and 
LapF are regulated differently (Fuqua 2010). The expression of lapF is 
controlled by stationary phase sigma RpoS in P. putida (Martinez-Gil et al. 
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2010), but the regulation of lapA expression seems to be more complicated. In 
P. putida the transcription of lapA is shown to be under control of 6 promoters, 
whereas only 3 of them display a moderate RpoS-dependence (Ainelo et al. 
2017). Moreover, Fis activates the transcription of lapA by binding to 2 diffe-
rent sites identified in the promoter region of lapA (Ainelo et al. 2017). In P. 
putida the two-component signal transduction system GacS/GacA seems to be 
involved in biofilm formation, influencing the expression of both – LapA and 
LapF (Fig 2) (Martinez-Gil et al. 2014). As shown in P. aeruginosa, when gacS 
is mutated, the detachment from biofilm increases (Petrova and Sauer 2009). 

       
Figure 2. A potential model for a regulatory network of lapA and lapF transcription in 
the biofilm formation process of P. putida. Large ellipses demonstrate bacterial cells, 
red and blue circles on the surface of cells indicate LapA and LapF respectively. Direct 
positive effects are indicated with solid lines, dotted lines demonstrate activation of 
transcription without any indication of specific binding sites in front of genes. Gradient 
line represents partial regulation of lapA by RpoS, which means that only 3 out of 6 
lapA promoters seem to be RpoS-dependent. 

 
 

Part of the GacS/A signal transduction pathway is small RNA-binding trans-
criptional regulators. In P. putida these small regulators, like RsmA and RsmE 
repress diguanylate cyclase cfcR translation through regulation of rpoS expres-
sion (Huertas-Rosales et al. 2017). Furthermore, CfcR seems to be the key 
generator of the free pool of c-di-GMP in stationary phase P. putida and also a 
positive regulator for biofilm when Rsm proteins are absent (Huertas-Rosales et 
al. 2017). The secondary messenger c-di-GMP affects the expression of adhe-
sine genes lapA and lapF in opposite ways. In response to artificially increased 
c-di-GMP, the transcription from lapA promoter increases (Martinez-Gil et al. 
2014). On the other hand, the expression of lapA through c-di-GMP seems to 
require a flagellar regulator FleQ (Fig 2). In P. aeruginosa FleQ has been 
demonstrated to be involved in the expression of biofilm-related components, 
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like exopolysaccharides (Baraquet et al. 2012). C-di-GMP represses the ATPase 
activity of FleQ, therefore causing a down-regulation of flagellar gene 
expression. In contrast, the absence of c-di-GMP influences FleQ to activate Pel 
polysaccharide expression in P. aeruginosa (Hickman and Harwood 2008, 
Baraquet et al. 2012). In P. fluorescens F113, the swimming motility is shown 
to be regulated by GacS/GacA via controlling FleQ (Navazo et al. 2009). 
Furthermore, using -galactosidase assay and RT-PCR Martinez-Gil et al in 
2014 found that the GacS/A two-component system is modulating the expres-
sion of RpoS and is therefore indirectly involved in the regulation of lapF 
expression. 

The expression of lapF is negatively regulated in early stages of biofilm of 
the P. putida strain, which overproduces c-di-GMP. This indicates that LapF is 
not needed in initial steps of biofilm formation (Fig 2). It is previously shown, 
that the lack of either adhesin LapA or LapF results in higher expression of 
exopolysaccharides, hinting that there might be some internal mechanism for 
balancing the biofilm structural components (Martinez-Gil et al. 2013). So far, 
the assessment of lapF transcription using β-galactosidase assay has de-
monstrated, that LapF is extensively expressed in the stationary phase but not in 
exponentially growing cells (Martinez-Gil et al. 2010, Martinez-Gil et al. 
2014). 

The expression of LapF and exposition to the surface of bacteria are sug-
gested to be separate from LapA. LapF transportation to the cell surface is 
probably mediated by ABC-type transporter encoded by the other genes of the 
operon LapHIJ. However, there is no direct evidence that LapHIJ are involved 
in the transport of LapF (Fuqua 2010, Martinez-Gil et al. 2010). 

LapF is important for P. putida to colonize plant roots. The lapF-mutants are 
unable to infect the roots properly: low infection ability appears both alone and 
in collaboration with the wild-type strain. Microscopy analysis shows that 
although lapF mutants are unable to form biofilm on plant roots alone, they are 
still viable in biofilm with the wild-type strain. This implies for the necessity of 
LapF in cell-cell interactions, as the LapF-nonproducing mutants can at least 
benefit from LapF expressed by wild-type strain (Martinez-Gil et al. 2010). 

 
 

4. Global transcription regulator Fis 
Fis (factor for inversion stimulation) is a small homodimeric protein found in 
both gammaproteobacteria families Enterobacteriaceae and Pseudomonada-
ceae (Beach and Osuna 1998, Boswell et al. 2004). Fis is thoroughly studied in 
E. coli, but there is a lot less information about Fis in genus Pseudomonas. Fis 
potein is conserved between Enterobacteria and Pseudomonases (Azam and 
Ishihama 1999). The protein identity is 64.8 %, and the similarity is 81.7 % 
between Fis in E. coli K12 and P. putida KT2440 (protein alignment tool 
http://cmr.jcvi.org). Despite the similarity of the proteins, the DNA-binding 
properties and therefore also the target genes can still differ in different orga-
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nisms (Osuna et al. 1995, Bradley et al. 2007). For example, Salmonella 
enterica serovar Typhimurium LT2 and E. coli K12, which often share a similar 
environment and possess similar regulatory mechanisms, have different Fis 
regulons for their virulence genes (Wang et al. 2013). It has been demonstrated 
that E. coli Fis alone is responsible for the regulation of 76 genes directly and 
15 genes in collaboration with other transcriptional factors (Martinez-Antonio 
and Collado-Vides 2003). According to microarray analysis performed by 
Bradley et al, E. coli Fis regulates indirectly the expression of 231 genes al-
together. These genes can be divided into 15 different categories by their 
function, including motility, stress, biosynthesis of nucleotides and amino acids, 
energy metabolism, nutrient transportation etc (Bradley et al. 2007). Further-
more, Fis dictates the transcription of the genes encoding for four transcription 
factors and sigma-factors σ70, σ38 and σ32 (Martinez-Antonio and Collado-Vides 
2003). 

In E. coli Fis regulates its transcription both directly and indirectly. Fis 
protein binds to the promoter of fis gene, blocking the binding of RNA poly-
merase and thereby the transcription of itself (Ninnemann et al. 1992). There 
are six different Fis binding sites in the promoter region of fis and two of them 
overlap the binding site for RNA polymerase (Ball et al. 1992). The indirect 
regulation of Fis takes place through the change of DNA topology, increasing 
the negative supercoiling (Schneider et al. 2000). Also, the expression of fis has 
been shown to be regulated by another global transcription factor – IHF. In E. 
coli IHF binds to the promoter of fis and increases the transcription from it up to 
4 times (T. S. Pratt et al. 1997). Furthermore, cAMP-receptor protein (CRP) 
also directly regulates the expression of fis. In 2001 Nasser et al demonstrated 
the involvement of CRP in the formation of nucleoprotein complexes that are 
able to activate or repress the transcription of fis (Nasser et al. 2001). 

Fis can be both, the activator or repressor of transcription, depending on the 
binding position on the promoter region of target genes. Prokaryotic transcrip-
tion factors are generally classified into class I and class II activators (Fig 3) 
(Smolke 2009). Class I activator`s binding sites are usually located more than -
61 bp from the transcription start site, and they secure the transcription acti-
vation by binding to the RNA polymerase (RNAP) α-subunit`s C-terminus (Fig 
3) (Smolke 2009). Class II activators tend to bind the DNA near the -35 element 
of promoters and strengthen the RNAP binding via the N-terminus of RNAP α-
subunit (Fig 3) (Smolke 2009). Class I and class II activators can also co-
activate the same promoters. For example in E. coli proP P2 promoter is 
activated by CRP, acting as a class I activator by binding to the position at -
121.5 bp from the transcription start site, while Fis binds to -41.5 position, 
acting as a class II activator (McLeod et al. 2002). Some transcription activators 
can also bind DNA far away from the transcription start site, thus activating the 
transcription by bending the DNA (Browning et al. 2004). Transcription repres-
sion usually occurs via binding between the -10 and -35 elements of promoter 
region and therefore blocking the binding of RNAP (Fig 3) (Smolke 2009). 
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Figure 3. An illustration of class I and class II activation and repression mechanisms of 
transcription factors interacting with RNA polymerase (RNAP) inspired by Smolke et al 
2009. Class I and II activation by TF occur via mediating RNAP to the right position 
and repression via TF happens by blocking the binding of RNAP. TF represents 
transcription factor, -10 and -35 mark the promoter elements, the arrow show the 
transcription start site and RNAP different subunits are α, β, β`, whereas α(C) and α(N) 
represent the C and N terminus of α-subunit. 

 
 

Although Fis is important for bacteria in many processes, it does not seem to be 
essential for Enterobacteriaceae family members like E. coli or S. enterica 
serovar Typhimurium. Both bacteria have been shown to be viable and well 
growing after fis deletion, although the lag-phase of fis null-mutant may be 
prolonged (Johnson et al. 1988, Osuna et al. 1995, Bradley et al. 2007). Cont-
rary to preceding members of Enterobacteriaceae, fis seems to be essential for 
the species from the genus Pseudomonas, as the cells cannot tolerate the lack of 
functional Fis protein (Liberati et al. 2006, Teras et al. 2009, Yeung et al. 
2009). Liberati et al (2006) conducted an experiment, where they constructed a 
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non-redundant library of P. aeruginosa PA14 transposon mutants. This library 
consisted of nonessential PA14 genes with single transposon insertions chosen 
from an extensive library of transposon mutants. Insertions of 4468 genes were 
obtained, which make up 75 % of the genome of PA14. Only one mutant 
carried an insertion in the fis gene, and even this was located in a stop codon of 
the fis gene (Liberati et al. 2006). In 2009 Yeung et al used the very same 
transposon mutant in their experiments and demonstrated a significant reduction 
in growth rate in liquid swarming medium (Yeung et al. 2009). This suggests 
that fis is a potentially essential gene in P. aeruginosa PA14 (Liberati et al. 
2006). Similarly, in our laboratory, the attempts for creating a fis knockout 
mutant in P. putida have not been successful (Teras et al. 2009). 

The studies of expression regulation of fis in E. coli have shown, that the 
amount of Fis increases rapidly near to maximum of 50 000 molecules after 
inoculated with rich medium (Ball et al. 1992, Ali Azam et al. 1999). After 
growth in logarithmic phase for 90 minutes the amount of Fis starts to decrease 
till in stationary phase, there are less than 100 molecules of Fis in each cell (Ball 
et al. 1992, Ali Azam et al. 1999). Such rapid changes in protein level for 
bacteria could be important for growth phase-dependent regulation of different 
biological processes. The changes in the protein and mRNA level of fis appear 
similarly, but the changes in mRNA level start approximately 15 minutes 
earlier. Thus the most critical regulatory phase for fis expression in E. coli is 
transcription (Ninnemann et al. 1992). 

 
 

4.1. DNA-binding properties of Fis 

Fis is able to bind specific DNA by bending it up to 90° (Azam and Ishihama 
1999). It has been showed that Fis participates in certain site-specific DNA 
recombination processes as well as suppressing DNA supercoiling in E. coli, 
which affects the under-winding of DNA strands and therefore indirectly the 
expression of genes. Fis can modulate the topology of DNA directly or indirect-
ly via regulation of topoisomerase genes. For example, Fis binds the promoter 
of gyrase gene and represses the transcription from it (Travers et al. 2001). 

In E. coli Fis, there are 4 tyrosine residues in positions 38, 51, 69 and 95, 
each of them is responsible for specific intra- and intermolecular interactions. 
Two of them – Tyr51 and Tyr95 are both participating in hydrogen bonding-salt 
bridge networking and therefore play a significant role in stabilization and 
flexibility of Fis protein (Boswell et al. 2004). 

By the crystal structures of the Fis protein of E. coli, it is demonstrated, that 
Fis consists of 4 α-helixes and β-sheets, that form excrescent hairpin structures 
(Kostrewa et al. 1991, Hancock et al. 2013). The α-A helix in the N-terminus of 
the protein is essential for recombination and α-C, and α-D helixes in the C-
terminus form a helix-turn-helix motif, needed for the binding with DNA (Yuan 
et al. 1991). Tyrosine residues responsible for recognizing specific DNA 
sequences are located in α-D helixes (Feldman-Cohen et al. 2006). In Fis-dimer 
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the distance between DNA-binding α-helixes is only 25 Å, which does not 
change in the binding process. Thus, Fis can only bind DNA by bending it 
(Kostrewa et al. 1991, Merickel et al. 2002). 

The DNA-binding consensus of Fis in E. coli is GNTYAAAWTTTRANC, 
where Y = pyrimidine, R = purine, W = A or T and N = any nucleotide (Shao et 
al. 2008). The most critical nucleotides for high-affinity binding of Fis are G, A, 
T, and C in positions 1, 5, 11 and 15 respectively. Furthermore, the binding is 
shown to be stronger in the occurrence of A, and T nucleotide repeats in the 
middle of binding consensus and adjacent to it (Shao et al. 2008). In E. coli Fis, 
first of all, prefers to bind to DNA, which has very good similarity to consensus. 
When such sites are saturated with Fis, free Fis binds to less conserved DNA 
(Feldman-Cohen et al. 2006). 

 

 
4.2. The role of Fis in regulating bacterial physiology 

The whole process of adapting to different conditions in surrounding environment 
requires changes in bacterial physiology, which can be maintained by altering the 
expression of large number of genes (Ramos-Gonzalez et al. 2005, Matilla et al. 
2007). Fis is a global regulator modulating the physiological state of bacteria by 
regulating the expression of multiple growth-related genes, chemotaxis, response 
to environmental changes, motility and biofilm (Ishihama 2009). 

In Enterobacteriaceae, Fis is mainly known to be active in logarithmic 
phase. Therefore Fis has an opposite function to the stationary phase-specific 
sigma factor RpoS. In E. coli Fis  controls the expression of rRNAs and tRNAs, 
which are needed in maximum quantities in fast-growing bacteria. On the other 
hand, the gene promoters needed for growth are inactivated in stationary phase, 
and RpoS upregulates the ones that are needed for more stressful conditions (Xu 
and Johnson 1995). 

Fis can affect biofilm formation in both directions: activating or repressing 
it. In enteroaggregative Escherichia coli (EAEC) Fis has been shown to faci-
litate biofilm formation by regulating the biosynthesis of aggregative adherence 
fimbriae (AAF/II), which are important for EAEC to be able to form biofilm in 
the human intestinal mucosa. Fis regulates the transcription of 3 genes required 
for AAF/II fimbriae synthesis: aggR encoding for synthesis activator, aafD 
encoding for chaperon and aafA encoding for a subunit of fimbriae (Sheikh et 
al. 2001). The example of repression of biofilm by Fis is Dickeya dadantii. The 
main component of the biofilm matrix of D. dadantii is cellulose, produced by 
bcs operon, which transcription is repressed by Fis, therefore inhibiting the 
formation of biofilm (Prigent-Combaret et al. 2012). Fis also represses the 
synthesis of curli – adhesive fimbriae in enteropathogenic E. coli (EPEC) strain 
E2348/69. Fis inhibits the expression of the main subunit of curli and therefore 
reduces biofilm formation (Saldana et al. 2009). In P. putida fis overexpression 
has been shown to repress the motility of bacteria and enhance biofilm for-
mation (Jakovleva et al. 2012, Ainelo et al. 2017). 
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THE AIM OF THE THESIS 

This work was initiated by the finding that fis overexpression enhances biofilm 
formation in P. putida (Jakovleva et al. 2012). The colonization experiments on 
barley roots demonstrated that fis-overexpressing P. putida is unable to move 
on the barley roots, instead the bacteria stay in the region where they were at the 
beginning of the colonization (Jakovleva et al. 2012). Motility being the oppo-
site phenotype of biofilm formation raised a question, is Fis affecting biofilm 
indirectly or directly via regulating the transcription of biofilm-related genes. 
To answer the question we decided to study how Fis is taking part of regulation 
of genes involved in biofilm formation. We found that the gene expression of 
biofilm-related adhesins LapA and LapF are controlled by Fis. Regarding the 
circumstance that biofilm-forming cells have more hydrophobic surface, it was 
only logical to investigate the possibility that LapA and LapF are involved in 
influencing the cell surface hydrophobicity of P. putida. The aim of this work 
was focused more on studying the Fis regulation mechanism of adhesin-coding 
gene lapF, because of a controversial finding that the absence of lapF had no 
effect on Fis-induced biofilm formation of P. putida. Therefore we wanted to 
elucidate the potential purpose of LapF in the adaptation and survival processes 
of P. putida. 
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RESULTS AND DISCUSSION 

1. The lack of LapF has no effect on P. putida biofilm grown 
in LB medium (Ref I) 

To identify the biofilm-related genes that could be affected by Fis, mutagenesis 
with transposon mini-Tn5 was conducted with P. putida fis-overexpression 
strain F15. This strain had an extra gene copy of fis under the control of tac 
promoter induced by IPTG (Jakovleva et al. 2012). Transconjugants with 
recovered motility were selected as the cells with opposite phenotype to biofilm 
formation. The improved motility was studied on the King B medium with 
IPTG in comparison with F15. The localization analysis of 76 colonies with 
mini-Tn5 insertions in F15 strain revealed 68 independent hits in the lap genes 
(Ref I). Among them, 56 independent insertions were found in lapA, the gene of 
biggest adhesin in P. putida. Whereas no insertions were found in the gene of 
the second extracellular adhesin – lapF. In general, this test-system with mini-
Tn5 could not ascertain the biofilm related genes which are repressed by fis-
overexpression, as gene is already repressed and insertion did not activate 
genes. 

Subsequently, we focused our research on lap genes and measured the bio-
film formation of these transposon mutants compared with wild-type strain PSm 
and fis-overexpression strain F15. The biofilm formation of three independent 
lapA-transposon mutants in F15 exhibited approximately 2-times weaker bio-
film formation compared with original F15 (Ref I, Table 2). To further confirm 
the lap-related biofilm regulation by Fis, we constructed lapA as well as lapF-
deletion mutants of PSm and F15 strains (Ref I, Table 1). We decided to further 
investigate the biofilm involvement of both biggest adhesins in Fis-over-
expression conditions, despite no findings of insertions in the lapF gene with 
transposon mutagenesis. When the deletion of lapA reduced biofilm formation 
in all constructed PSm and F15 mutants compared to wild-type strains, then the 
elimination of lapF had no effect on P. putida biofilm formation in LB-medium 
compared to wild-type PSm (Ref I, Fig 4). Also, the biofilm of the lapF-
deletion mutant in F15 increased similarly to original F15, which further con-
firmed that the lack of LapF has no effect in Fis-induced biofilm formation of P. 
putida in LB medium. The results of wild-type strain are in good accordance 
with previously published data that LapF-deficiency has a negative impact on P. 
putida biofilm formation only in glucose minimal medium but not in complex 
medium LB (Martinez-Gil et al. 2010). Although, it is proposed that LapF is 
playing a role in cell-cell interactions in mature biofilm (Martinez-Gil et al. 
2010). 
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2. Overexpression of fis represses  
the expression of lapF (Ref I) 

Previous works have shown that lapF mutant was less capable of both indivi-
dual and competitive plant root colonization, thus LapF could be important in 
the mature biofilm formation and can also contribute to colonization ability 
(Martinez-Gil et al. 2010). Therefore, the expression of lapF was assessed as a 
potential gene that can be involved in adhesion without Fis regulation. 

At first, the amounts of adhesines LapA and LapF were quantified with the 
background of fis overexpression in different growth phases of P. putida. The 
cells were grown in LB medium for 2.5h and 18h, and the proteins from cell 
lysates were separated and quantified using silver stained SDS-polyacrylamide 
gels. In fast-growing cells, the amount of LapA was not affected and LapF was 
not detectable at all in wild-type nor fis-overexpression strains (Ref I, Fig 5). 
This corresponds to previously published data, where transcription activity 
measurements showed no expression of lapF in logarithmic growth phase P. 
putida cells (Martinez-Gil et al. 2014). In 18-hours-grown cells, the overexpres-
sion of fis increased LapA 1.6 times, but surprisingly the amount of LapF was 
decreased approximately 4 times by fis overexpression compared to the wild-
type cells. This clearly suggests that Fis affects the expression of both adhesins 
LapA and LapF in P. putida. Also, it could indicate, that the mature biofilm of 
P. putida is mainly affected by LapA and the dispersion of wild-type biofilm, 
without fis overexpression, may be due to decreased levels of LapA. However, 
the results indicating the regulation of lapF expression by Fis centered the focus 
of this thesis to LapF and to the ascertainment of specific control of lapF`s 
transcription by Fis and LapF’s role in P. putida. 

 
 

3. Fis binds to the promoter of lapF (Ref II) 
RpoS-dependency of lapF’s transcription was previously published by 
Martinez-Gil and coworkers (Martinez-Gil et al. 2010), although, without the 
exact position of lapF’s promoter. Thus, at first, the location of lapF’s promoter 
was needed to be identified. Therefore, the assumption was to find a recognis-
able -10 element of the RpoS-dependent promoter upstream of lapF gene. We 
used RACE method to map the lapF mRNA 5`ends and found 120 bp upstream 
of lapF starting codon one mRNA 5` end. Six nucleotides upstream of the 
founded mRNA 5` end we identified a putative -10 promoter sequence (Ref II, 
Fig 1). 

For determination of potential Fis binding sequence(s), we used in silico 
prediction of Fis binding sites on upstream (-500 bp) and downstream (+100 bp) 
region of the lapF gene. Surprisingly no Fis-binding sites were found on an 
upstream region of lapF, but one binding site Fis-F1 was predicted appro-
ximately 65 bp downstream of lapF starting codon (Ref II, Fig 1). Verification 
of predicted Fis-binding site was conducted in vitro by DNaseI footprint 
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analysis, which did not confirm the binding of Fis to the predicted Fis-F1 
sequence (data not shown). Instead, this assay revealed another Fis-binding site 
Fis-F2, upstream of the lapF gene (Ref II, Fig 1). Attractively the localization 
of Fis-F2 overlapped a putative -10 promoter sequence, which confirms the 
hypothesis of the binding of Fis to the promoter of lapF and by counteracting 
the binding of RNA polymerase. Therefore, Fis could directly repress the 
transcription of lapF. Fis binding to the Fis-F2 site was further confirmed by 
mutating the most critical nucleotides for Fis binding in Fis-F2 sequence. With 
these mutations, Fis was not able to bind to the Fis-F2-mut sequence in vitro 
(Ref II, Fig 1), which confirms the binding of Fis to the promoter region of 
lapF. 

 
 

4. The overexpression of fis represses  
the transcription of lapF (Ref II) 

To elucidate the direct effect of Fis on the transcription of the lapF gene, the 
promoter region of lapF was cloned into a promoter probe test system and the 
activity of lapF promoter was measured as β-galactosidase activity in vivo, 
where wild-type (PSm) and fis-overexpressing F15 strains were grown into 
stationary phase. The promoter region of lapF containing native Fis-binding site 
Fis-F2 or mutated version Fis-F2mut was cloned in front of reporter gene lacZ. 
F15 cells harbouring the native Fis-F2 binding site showed a drastic decrease in 
β-galactosidase activity when fis was overexpressed by the addition of 1 mM 
IPTG (Ref II, Fig 3). When Fis-binding site Fis-F2 was mutated, the over-
expression of fis did not decrease the β-galactosidase activity anymore, 
compared with F15 without IPTG (Ref II, Fig 3), indicating the essential nature 
of this binding sequence for Fis-mediated repression. However, the mutations in 
Fis-F2 increased the LacZ activity in general. One possible explanation for this 
could be the introduced mutations in Fis-F2-mut, which diminished Fis binding 
but also changed the promoter sequence enough to result in higher transcription 
of lacZ gene and therefore β-galactosidase activity. Furthermore the transcrip-
tion regulation of lapF could be carried out mutually by Fis and RpoS. As the 
trigger of exponential growth, Fis could be the repressor of lapF in fast-growing 
cells and RpoS could be the activator of lapF in stationary phase cells. 
Although this brings up a question of the necessity to repress the expression of 
lapF in bacterial logarithmic growth phase. 
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5. LapF provides the hydrophobicity to the surface of P. 
putida cells in stationary growth phase (Ref III) 

From our studies, LapF has no fis-overexpression related effect on P. putida 
biofilm formation in LB medium, yet Fis still significantly reduces the amount 
of LapF. Moreover, the adhesin LapA seems to be the primary factor for P. 
putida biofilm formation. While LapA is shown to be important in the early 
attachment of cells to different types of surfaces, then LapF is described to be 
more significant in a mature biofilm for cell-cell connections (Fuqua 2010, 
Martinez-Gil et al. 2010). Also, P. putida cell surface growing in a biofilm is 
more hydrophobic (Baumgarten et al. 2012, Montag et al. 2012, Ruhs et al. 
2014). Therefore it was intriguing to study the role of adhesins LapA and LapF 
in the regulation of P. putida cell surface hydrophobicity. 

The hydrophobicity of the cells was measured as a contact angle between a 
water droplet and a filter paper covered with cell lawn. To elucidate the effect 
of adhesins on hydrophobicity, we measured the contact angles of deletion 
mutants of PSm ΔlapA and PSm ΔlapF strains grown for 3 h and 18 h in LB 
medium. As expected, the wild-type cells of stationary phase were more hydro-
phobic than cells in logarithmic phase (Ref III, Fig 2A), which correlates to the 
finding, that stressed cells exhibit more hydrophobic surface (Baumgarten et al. 
2012). The most surprising result was the remarkable decrease in contact angles 
(from 76° to 47°) of the stationary phase cells lacking lapF comparing to wild-
type strain PSm (Ref III, Fig 2A). At the same time, the lack of lapA did not 
show any difference in hydrophobicity compared to wild-type cells. Correspon-
dingly, the role of LapA in attachment to surfaces has been shown to be 
independent of hydrophobicity, as it is capable of binding both hydrophilic and 
hydrophobic surfaces (Boyd et al. 2014). 

The finding of LapF`s participation in cell surface hydrophobicity of P. 
putida brought up a potential role of Fis in regulating hydrophobicity via LapF. 
For verifying that hypothesis, we constructed three types of strains carrying 
lapF promoter area modification in chromosome (Ref III, Fig 1). F15KmFm, 
where Fis binding site Fis-F2 upstream of the lapF gene was mutated, therefore 
decreasing the direct repression of lapF by Fis. PSmlapF3 and F15lapF3, where 
native promoter region of lapF was deleted from the chromosome and replaced 
by Ptac promoter inducible with IPTG for lapF overexpression. And third, 
PSmKm and F15Km, as so-called wild-type control strains for the first two. The 
contact angle measurements of these strains confirmed that LapF is an 
important factor for hydrophobicity in stationary phase P. putida cells grown in 
LB-medium (Ref III, Fig 2 and 6). The wild-type originated strain PSmlapF3 is 
not able to express lapF without IPTG (Ref III, Fig 3) and is less hydrophobic 
than wild-type cells (Ref III, Fig 2). Though, the PSmlapF3 cell surface 
hydrophobicity is possible to induce by adding IPTG to medium. IPTG triggers 
lapF expression in PSmlapF3 cells, and the cells become more hydrophobic 
(Ref III, Fig 2C). Additionally, it is possible to induce lapF expression as well 
as the higher hydrophobicity of both logarithmic and stationary phase growing 
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PSmlapF via IPTG supplementation, when lapF is natively downregulated (Ref 
III, Fig 2). 

In fis overexpression conditions as with F15-originated strains, it is clear that 
Fis regulates the hydrophobicity of P. putida via regulating the expression of 
lapF. This is in good agreement with our findings by Fis binding to the Fis-F2 
site on the promoter of lapF and therefore suppressing the transcription from 
lapF gene (Ref II), whereas mutating the Fis-F2 abolishes Fis’ repression. This 
is further confirmed by the contact angle measurement result of F15KmFm in 
stationary phase, where mutations in Fis-F2 binding site diminishes Fis binding, 
thus providing P. putida cells LapF-mediated hydrophobicity (Ref III, Fig 6). In 
other words, mutating the Fis-F2 binding site changes the phenotype of the 
cells, which confirms the involvement of Fis in direct regulation of hydro-
phobicity of P. putida via LapF. 

In S. aureus a biofilm-associated protein Bap, which carries similar structu-
ral features with LapF, has also been shown to be involved in the regulation of 
hydrophobicity. S. aureus cells with a mutation in bap gene show decreased 
surface hydrophobicity compared to wild-type cells and therefore reduced the 
initial attachment to polystyrene as well as intercellular adhesion (Cucarella et 
al. 2001). In S. aureus Bap is involved in several stages of biofilm, starting 
from initial attachment, whereas LapF has been shown to be important only in 
mature biofilm (Cucarella et al. 2001, Martinez-Gil et al. 2010). Moreover, in S. 
aureus, the surface adhesion proteins are usually expressed in stationary and 
early exponential phase, while in P. putida the LapF is only expressed in 
stationary phase cells. This suggests that the two characteristically similar adhe-
sins in different species have potentially different functions. 

 
 
5.1. LapF-provided hydrophobicity as a potential defensive 

factor for P. putida (Ref III) 

It is known that LapF is not essential for fis-induced biofilm in P. putida and the 
main adhesin for biofilm is LapA, which can bind to both hydrophobic and 
hydrophilic surfaces (Boyd et al. 2014, Moor et al. 2014). Cells growing in 
biofilm tend to be more hydrophobic, although the lack of lapF in P. putida 
makes cell surface more hydrophilic than wild-type cells, these hydrophilic cells 
can still form biofilm (Ref II, Ref III). What could be the reason of hydrophobic 
surface for P. putida and is LapF needed for biofilm formation or for something 
else? To answer these questions, we decided to test the viability of P. putida 
cells with and without lapF against hydrophilic and hydrophobic compounds. 
Methanol as a representative of hydrophilic and 1-octanol as a representative of 
hydrophobic chemicals was used in different concentrations to assess the effect 
on P. putida wild-type cells and cells lacking lapF. Stationary phase LB-grown 
bacteria, where LapF provides a hydrophobic surface, have more cells with 
intact membrane compared to cells lacking LapF, when treated with hydrophilic 
methanol (Ref III, Table 4). Similarly, when lacking lapF, there are more cells 
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with intact membrane when treated with hydrophobic 1-octanol, suggesting that 
LapF might play a role in defence mechanisms of P. putida against hydrophilic 
compounds. Furthermore, this means that Fis could have an important part in 
defensive regulation also, as the main repressor of lapF in P. putida. 

P. putida is a rhizospheric bacterium (Lugtenberg and Bloemberg 2004) and 
therefore has to deal with reactive oxygen species (ROS) including hydrogen 
peroxide (H2O2) produced by plant roots (Apel and Hirt 2004, Matilla et al. 
2007). Plants secrete ROS through their roots into rhizosphere for protection 
against pathogenic microorganisms. Plant growth promoting bacteria like P. 
putida also have to cope with this. Previously described results with methanol 
as an example of hydrophilic toxic compound, showed that P. putida cells over-
expressing lapF had more hydrophobic surface and therefore were protected 
against methanol treatment compared with cells lacking lapF (Ref III). Thus 
these results suggest the possibility that LapF may protect the cell against other 
hydrophilic toxic compounds like H2O2. It has been previously described that 
the ability of LapF-deficient P. putida strain to colonize plant roots has dropped 
compared to the wild-type strain (Martinez-Gil et al. 2010). Therefore, LapF 
may also protect the rhizospheric P. putida against ROS and facilitate coloni-
zation, although, the most essential defensive factors against ROS are oxido-
reductases that reduce ROS directly, for example, catalases (Kat), catalase-
peroxidases (CP), superoxide dismutases (SOD) (Passardi et al. 2007). This 
possibility enlightens the role of adhesine LapF, not only being involved in 
mature biofilm formation (Martinez-Gil et al. 2010) but also playing a part in 
situations, where bacteria need to protect themselves against hydrophilic com-
pounds or improve the ability to absorb nutrients from the environment for a 
better adaptation in changing conditions.  

 
 

6. Model for the potential regulatory mechanism  
of LapF and Fis in P. putida 

Here I propose a potential scheme for Fis-mediated regulation of LapF in P. 
putida cell aggregation and hydrophobicity regulation (Fig 4). Fis is a negative 
regulator of LapF, which expression is thereby repressed in the exponential 
growth phase. When cells enter the stationary phase, different stressors in-
cluding nutrient deficiency start to set in. Stationary phase specific sigma factor 
RpoS activates and induces the expression of lapF as soon as Fis levels start to 
decrease and RpoS level increases. LapF provides P. putida a more hydro-
phobic surface that can passively protect cells against toxic hydrophilic com-
pounds. When cells are confronted with toxic substances, the hydrophobicity of 
the cell surface increases and bacteria start to aggregate (Baumgarten et al. 
2012). In this way, they could reduce the surface area of the cells exposed to the 
toxic compounds. 

The ability of better defense against different kinds of chemicals and com-
pounds found in the rhizosphere helps bacteria to compete with other micro-
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organisms, especially plant pathogenic bacteria. In that way, bacteria acquire a 
better recolonization ability, which could improve the survival of bacteria on 
plant roots. 

 
Figure 4. Proposed scheme for Fis-dependent regulation of P. putida biofilm formation 
and hydrophobicity via regulating the expression of the adhesine gene lapF. Solid lines 
with arrows indicate positive regulation and solid lines with blunt ends mark repression. 
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CONCLUSIONS 

Pseudomonas putida is a soil bacterium mainly residing in the rhizosphere of 
plants. That kind of habitation is strongly dependent on the roots exudates, 
which include both nutrients and toxic compounds for bacteria. In order to 
survive and outcompete other microorganisms in the rhizosphere P. putida must 
be able to quickly adapt to the changes in its surrounding environment. For 
example staying put by forming biofilm or moving freely to recolonize new 
parts of plant roots for better conditions. Often, such extensive changes involve 
global transcription regulators, which are able to control the expression of 
several genes from different categories. Global regulator Fis is previously 
shown to enhance the biofilm formation of P. putida and reduce its recoloni-
zation ability on barley roots. 

The first contact with environment happens through the surface of bacteria, 
which has developed the ability to change its composition and properties for 
better adaptation. One of the mechanisms for this is to alter the hydrophobicity 
of the cell surface. It can be done via different factors, like lipopolysaccharides, 
lipoteichoic acids, fimbriae, S-layer proteins or several surface proteins. Prior 
this work, a surface protein LapF, had only been described as a biofilm-related 
protein, having a role in cell-cell connections in the mature biofilm. Also, there 
was no detailed information published about the transcription regulation of lapF 
in P. putida. The aim of this research was to study and enlighten the role of 
LapF in P. putida, and it`s transcriptional regulation by global regulator Fis and 
the potential involvement of Fis and LapF in altering the hydrophobicity of P. 
putida`s surface. The main findings of this work can be summarized as follows: 
 The absence of LapF does not affect the ability to form biofilm of P. putida 

in LB medium. This finding is in good accordance with previous work 
showing the LapF is needed for mature biofilm only in minimal medium and 
not in LB medium. However, it may suggest that LapF might have additional 
properties for P. putida besides biofilm formation. 

 Fis regulates the expression of lapF. This thesis is the first to present that Fis 
binds to the promoter sequence of lapF by covering the -10 element of lapF 
promoter and therefore represses the transcription. In P. putida lapF is 
shown to be activated in stationary phase by sigma factor RpoS and no 
expression of lapF is detected in the logarithmic phase. Therefore it seems 
that Fis and RpoS might act counteractively in regulating the expression of 
lapF – repression by Fis in logarithmic phase and activation by RpoS in 
stationary phase. 

 The stationary phase cells of P. putida expressing lapF are more hydro-
phobic than cells without LapF. 

 LapF might have a potential role as a protective factor for P. putida. More 
hydrophobic bacteria can be more aggregative and therefore might help the 
cells reduce the surface exposed to the environment. This can be a passive 
protection mechanism against toxic organic compounds. The results of 
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measuring the ability of P. putida to tolerate different toxic compounds, like 
hydrophobic 1-octanol and hydrophilic methanol or hydrogen peroxide in 
the presence or absence of LapF, might suggest an additional role of LapF in 
P. putida.  
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SUMMARY IN ESTONIAN 

Globaalse regulaatorvalgu Fis-i roll lapF geeni ekspressiooni  
reguleerimisel ja rakupinna hüdrofoobsuse mõjutamisel  

mullabakteris Pseudomonas putida 

Bakteritel on pikaaegse evolutsiooni käigus välja kujunenud omadused ja 
mehhanismid selleks, et olla kohanemisvõimelised ja jääda ellu mitmesugustes 
keskkonnatingimustes. Vastavalt vajadusele muudavad bakterid oma eluvormi, 
ujudes vabalt keskkonnas ringi või olles paiksed ja moodustades koos teiste 
bakteritega biofilmi. Üleminek liikuvalt eluviisilt paiksele algab tavaliselt 
bakterite kinnitumisega elusale või elutule pinnale. 

Üks peamisi bakteriraku pinna omadusi, mis aitab kinnitumisele kaasa, on 
hüdrofoobsus. Hüdrofoobsema pinnaga rakud agregeeruvad omavahel paremini, 
tänu millele nad vähendavad eksponeeritavat rakupinda kahjulikele ainetele. 
Näiteks mullabakter Pseudomonas putida muudab oma rakupinda hüdrofoobse-
maks kokkupuutel erinevate toksiliste ainetega. Bakterite pinna hüdrofoobsust 
võivad mõjutada mitmesugused rakumembraaniga seotud faktorid, sh lipo-
polüsahhariidid, S-kihi valgud ja ka adhesiinvalgud. Nende faktorite olemasolu 
või puudumine rakupinnal aitab bakteril vastavalt vajadusele suurendada või 
vähendada oma pinna hüdrofoobsust. See omakorda soodustab keskkonnaga 
kohanemist ning vajadusel kaitseb rakku toksiliste ainete eest. Suuremahuliste 
füsioloogiliste muutuste läbiviimiseks on bakteril vaja aktiveerida või maha 
suruda palju geene, mida viivad läbi globaalsed regulaatorid. Käesolevas töös 
kirjeldatakse P. putida pinna hüdrofoobsufaktorit LapF-i ning selle geeni 
ekspressiooni regulatsiooni Fis-ga. 

P. putida on kosmopoliitne bakter, mis tihti koloniseerib taimejuuri ja soo-
dustab taimede kasvu. Üldiselt mullabakterid eelistavad elada risosfääris, sest 
taimed eritavad juurte kaudu bakterite jaoks kergesti kasutatavaid süsinik-
allikaid. Samas, taimed võivad juurte kaudu ümbritsevasse mulda eritada ka 
toksilisi ühendeid. Seega bakterid peavad risosfääris kohanema nii kasvu soo-
dustavate kui ka pärssivate tingimustega. Näiteks, P. putida puhul oleme varem 
näidanud, et üleekspresseeritud fis-i korral jäävad bakterid paikseks, moodus-
tades rohkem biofilmi, ja nende liikumine on pärsitud. Liikumine on omakorda 
oluline taimejuurte uute osade koloniseerimiseks. Seega, Fis mõjutab oluliselt 
P. putida konkurentsi- ja kohanemisvõimet. Uurides Fis-st sõltuvaid geene, mis 
osalevad biofilmi reguleerimisel, leidsime, et Fis represseerib lapF-i transkript-
siooni, samas oli teada, et LapF on oluline taime juurte koloniseerimiseks. Võt-
tes arvesse, et biofilmi moodustavad bakterid võivad olla hüdrofoobsemad, 
huvitas meid just LapF-i potentsiaalne roll P. putida pinna hüdrofoobsuse 
mõjutamisel. Enne käesoleva töö ilmumist ei ole varem avaldatud seoseid 
LapF-i ja P. putida pinna hüdrofoobsuse vahel ega ole ka teada detailsemat 
informatsiooni lapF geeni ekspressiooni regulatsiooni kohta. Saadud tulemused 
võib kokku võtta järgnevalt: 
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 LapF-i puudumine ei mõjuta P. putida biofilmi moodustamisvõimet toit-
ainerikkas LB-söötmes. Saadud tulemus langeb hästi kokku varem avalda-
tuga, kus on näidatud, et LapF on oluline ainult minimalssöötmes kasvanud 
rakkude biofilmi moodustumiseks ning seda biofilmi hilistes etappides. 

 Globaalne regulaatorvalk Fis seondub lapF geeni promootorile, takistades 
sellega RNA polümeraasi seondumist ja lapF-i transkriptsiooni. Kuna Fis-i 
hulk on kõrge bakteripopulatsiooni eksponentsiaalses kasvufaasis, siis Fis 
käitub antagonistlikult statsionaarse sigmafaktori RpoS-ga, mis aktiveerib 
lapF-i transkriptsiooni. 

 P. putida, mis toodab LapF-i, on statsionaarses kasvufaasis hüdrofoobsem 
võrreldes rakkudega, kus puudub LapF. LapF-st tulenev hüdrofoobsem 
rakupind võib omada potentsiaalset kaitsvat rolli P. putida’le. LapF-ga P. 
putida’l on soodustatud rakkude agregeerumine, tänu millele vähendatakse 
toksilistele ainetele kättesaadavat rakupinda. Kirjeldatud kaudne kaitse-
mehhanism võib olla üks seni avastamata LapF-i rolle mullabakteris P. 
putida. 

  



38 

REFERENCES 

Adav SS, Lee DJ, Show KY and Tay JH (2008) Aerobic granular sludge: recent advan-
ces. Biotechnol Adv 26(5): 411–423. 

Ainelo H, Lahesaare A, Teppo A, Kivisaar M and Teras R (2017) The promoter region 
of lapA and its transcriptional regulation by Fis in Pseudomonas putida. PLoS One 
12(9): e0185482. 

Ali Azam T, Iwata A, Nishimura A, Ueda S and Ishihama A (1999) Growth phase-
dependent variation in protein composition of the Escherichia coli nucleoid. J 
Bacteriol 181(20): 6361–6370. 

Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Reichelt R, Keller U, 
Malkus U, Rasch C, Maskow T, Mayer F and Steinbuchel A (2004) Physiological 
and morphological responses of the soil bacterium Rhodococcus opacus strain 
PD630 to water stress. FEMS Microbiol Ecol 50(2): 75–86. 

Amann RI, Ludwig W and Schleifer KH (1995) Phylogenetic identification and in situ 
detection of individual microbial cells without cultivation. Microbiological Reviews 
59(1): 143–169. 

Aoki W, Kitahara N, Miura N, Morisaka H, Kuroda K and Ueda M (2012) Profiling of 
adhesive properties of the agglutinin-like sequence (ALS) protein family, a virulent 
attribute of Candida albicans. FEMS Immunol Med Microbiol 65(1): 121–124. 

Apel K and Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and 
signal transduction. Annu Rev Plant Biol 55: 373–399. 

Asselineau J and Lederer E (1950) Structure of the mycolic acids of Mycobacteria. 
Nature 166(4227): 782–783. 

Azam TA and Ishihama A (1999) Twelve species of the nucleoid-associated protein 
from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J 
Biol Chem 274(46): 33105–33113. 

Ball CA, Osuna R, Ferguson KC and Johnson RC (1992) Dramatic changes in Fis levels 
upon nutrient upshift in Escherichia coli. J Bacteriol 174(24): 8043–8056. 

Baraquet C, Murakami K, Parsek MR and Harwood CS (2012) The FleQ protein from 
Pseudomonas aeruginosa functions as both a repressor and an activator to control 
gene expression from the pel operon promoter in response to c-di-GMP. Nucleic 
Acids Res 40(15): 7207–7218. 

Barkan D, Liu Z, Sacchettini JC and Glickman MS (2009) Mycolic acid cyclopropa-
nation is essential for viability, drug resistance, and cell wall integrity of Myco-
bacterium tuberculosis. Chem Biol 16(5): 499–509. 

Baumgarten T, Sperling S, Seifert J, von Bergen M, Steiniger F, Wick LY and 
Heipieper HJ (2012) Membrane vesicle formation as a multiple-stress response 
mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity 
and biofilm formation. Appl Environ Microbiol 78(17): 6217–6224. 

Baumgarten T, Vazquez J, Bastisch C, Veron W, Feuilloley MG, Nietzsche S, Wick LY 
and Heipieper HJ (2012) Alkanols and chlorophenols cause different physiological 
adaptive responses on the level of cell surface properties and membrane vesicle 
formation in Pseudomonas putida DOT-T1E. Appl Microbiol Biotechnol 93(2): 
837–845. 

Beach MB and Osuna R (1998) Identification and characterization of the fis operon in 
enteric bacteria. J Bacteriol 180(22): 5932–5946. 

Beaussart A, Alsteens D, El-Kirat-Chatel S, Lipke PN, Kucharikova S, Van Dijck P and 
Dufrene YF (2012) Single-molecule imaging and functional analysis of Als adhesins 



39 

and mannans during Candida albicans morphogenesis. ACS Nano 6(12): 10950–
10964. 

Beveridge TJ, Makin SA, Kadurugamuwa JL and Li Z (1997) Interactions between 
biofilms and the environment. FEMS Microbiol Rev 20(3–4): 291–303. 

Boot HJ, Kolen CP, Andreadaki FJ, Leer RJ and Pouwels PH (1996) The Lactobacillus 
acidophilus S-layer protein gene expression site comprises two consensus promoter 
sequences, one of which directs transcription of stable mRNA. J Bacteriol 178(18): 
5388–5394. 

Boswell S, Mathew J, Beach M, Osuna R and Colon W (2004) Variable contributions of 
tyrosine residues to the structural and spectroscopic properties of the factor for 
inversion stimulation. Biochemistry 43(10): 2964–2977. 

Boyd CD, Smith TJ, El-Kirat-Chatel S, Newell PD, Dufrene YF and O'Toole GA 
(2014) Structural features of the Pseudomonas fluorescens biofilm adhesin LapA 
required for LapG-dependent cleavage, biofilm formation, and cell surface locali-
zation. J Bacteriol 196(15): 2775–2788. 

Bradley MD, Beach MB, de Koning AP, Pratt TS and Osuna R (2007) Effects of Fis on 
Escherichia coli gene expression during different growth stages. Microbiology 
153(Pt 9): 2922–2940. 

Braun BR, Head WS, Wang MX and Johnson AD (2000) Identification and charac-
terization of TUP1-regulated genes in Candida albicans. Genetics 156(1): 31–44. 

Braun BR and Johnson AD (1997) Control of filament formation in Candida albicans 
by the transcriptional repressor TUP1. Science 277(5322): 105–109. 

Browning DF, Beatty CM, Sanstad EA, Gunn KE, Busby SJ and Wolfe AJ (2004) 
Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter 
by nucleoprotein complexes: anti-activation by the nucleoid proteins FIS and IHF. 
Mol Microbiol 51(1): 241–254. 

Caparon MG and Scott JR (1987) Identification of a gene that regulates expression of M 
protein, the major virulence determinant of group A streptococci. Proc Natl Acad 
Sci U S A 84(23): 8677–8681. 

Corpe WA (1980). Microbial surface components involved in the adsorbtion of micro-
organisms onto surfaces. Adsorption of Microorganisms to Surfaces. Marshall 
GBaKC. New York, Wiley-Interscience: pp. 105–144. 

Costerton JW, Stewart PS and Greenberg EP (1999) Bacterial biofilms: a common 
cause of persistent infections. Science 284(5418): 1318–1322. 

Courtney HS, Ofek I, Penfound T, Nizet V, Pence MA, Kreikemeyer B, Podbielski A, 
Hasty DL and Dale JB (2009) Relationship between expression of the family of M 
proteins and lipoteichoic acid to hydrophobicity and biofilm formation in 
Streptococcus pyogenes. PLoS One 4(1): e4166. 

Cucarella C, Solano C, Valle J, Amorena B, Lasa I and Penades JR (2001) Bap, a 
Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 
183(9): 2888–2896. 

Davey ME and O'Toole G A (2000) Microbial biofilms: from ecology to molecular 
genetics. Microbiol Mol Biol Rev 64(4): 847–867. 

de Carvalho C, Fischer MA, Kirsten S, Wurz B, Wick LY and Heipieper HJ (2016) 
Adaptive response of Rhodococcus opacus PWD4 to salt and phenolic stress on the 
level of mycolic acids. AMB Express 6(1): 66. 

Donlan RM and Costerton JW (2002) Biofilms: survival mechanisms of clinically 
relevant microorganisms. Clin Microbiol Rev 15(2): 167–193. 



40 

Dorken G, Ferguson GP, French CE and Poon WC (2012) Aggregation by depletion 
attraction in cultures of bacteria producing exopolysaccharide. J R Soc Interface 
9(77): 3490–3502. 

Dranginis AM, Rauceo JM, Coronado JE and Lipke PN (2007) A biochemical guide to 
yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol 
Rev 71(2): 282–294. 

El-Kirat-Chatel S, Boyd CD, O'Toole GA and Dufrêne YF (2014) Single-Molecule 
Analysis of Pseudomonas fluorescens Footprints. ACS nano 8(2): 1690–1698. 

Espeland EM and Wetzel RG (2001) Complexation, Stabilization, and UV Photolysis of 
Extracellular and Surface-Bound Glucosidase and Alkaline Phosphatase: Impli-
cations for Biofilm Microbiota. Microb Ecol 42(4): 572–585. 

Espinosa-Urgel M, Salido A and Ramos JL (2000) Genetic analysis of functions in-
volved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182(9): 2363–2369. 

Feldman-Cohen LS, Shao Y, Meinhold D, Miller C, Colon W and Osuna R (2006) 
Common and variable contributions of Fis residues to high-affinity binding at 
different DNA sequences. J Bacteriol 188(6): 2081–2095. 

Fuqua C (2010) Passing the baton between laps: adhesion and cohesion in Pseudo-
monas putida biofilms. Mol Microbiol 77(3): 533–536. 

Garrett TR, Bhakoo M and Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. 
Progress in Natural Science 18(9): 1049–1056. 

Gjermansen M, Ragas P, Sternberg C, Molin S and Tolker-Nielsen T (2005) Characte-
rization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ 
Microbiol 7(6): 894–906. 

Godwin PG, Choyce A and McCarthy S (2001) The prevalence of MRSA carriage mea-
sured over five years in a District General Hospital. J Hosp Infect 47(1): 73–75. 

Gonzalez Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE and Wood TK (2006) 
Autoinducer 2 controls biofilm formation in Escherichia coli through a novel 
motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188(1): 305–316. 

Hancock SP, Ghane T, Cascio D, Rohs R, Di Felice R and Johnson RC (2013) Control 
of DNA minor groove width and Fis protein binding by the purine 2-amino group. 
Nucleic Acids Res 41(13): 6750–6760. 

Hasty DL, Ofek I, Courtney HS and Doyle RJ (1992) Multiple adhesins of streptococci. 
Infect Immun 60(6): 2147–2152. 

Hawe A, Sutter M and Jiskoot W (2008) Extrinsic fluorescent dyes as tools for protein 
characterization. Pharm Res 25(7): 1487–1499. 

Heipieper HJ, Neumann G, Cornelissen S and Meinhardt F (2007) Solvent-tolerant 
bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol 
Biotechnol 74(5): 961–973. 

Hickman JW and Harwood CS (2008) Identification of FleQ from Pseudomonas 
aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69(2): 
376–389. 

Higashi JM, Wang IW, Shlaes DM, Anderson JM and Marchant RE (1998) Adhesion of 
Staphylococcus epidermidis and transposon mutant strains to hydrophobic 
polyethylene. J Biomed Mater Res 39(3): 341–350. 

Hinsa SM, Espinosa-Urgel M, Ramos JL and O'Toole GA (2003) Transition from 
reversible to irreversible attachment during biofilm formation by Pseudomonas 
fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol 
Microbiol 49(4): 905–918. 



41 

Horsburgh MJ, Aish JL, White IJ, Shaw L, Lithgow JK and Foster SJ (2002) sigmaB 
modulates virulence determinant expression and stress resistance: characterization of 
a functional rsbU strain derived from Staphylococcus aureus 8325–4. J Bacteriol 
184(19): 5457–5467. 

Huertas-Rosales O, Romero M, Heeb S, Espinosa-Urgel M, Camara M and Ramos-
Gonzalez MI (2017) The Pseudomonas putida CsrA/RsmA homologues negatively 
affect c-di-GMP pools and biofilm formation through the GGDEF/EAL response 
regulator CfcR. Environ Microbiol 19(9): 3551–3566. 

Isberg RR and Barnes P (2002) Dancing with the host; flow-dependent bacterial 
adhesion. Cell 110(1): 1–4. 

Ishihama A (2009) The Nucleoid: an Overview. EcoSal Plus 3(2). 
Jakovleva J, Teppo A, Velts A, Saumaa S, Moor H, Kivisaar M and Teras R (2012) Fis 

regulates the competitiveness of Pseudomonas putida on barley roots by inducing 
biofilm formation. Microbiology 158(Pt 3): 708–720. 

Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 
236(2): 163–173. 

Johnson RC, Ball CA, Pfeffer D and Simon MI (1988) Isolation of the gene encoding 
the Hin recombinational enhancer binding protein. Proc Natl Acad Sci U S A 85(10): 
3484–3488. 

Kadurugamuwa JL and Beveridge TJ (1995) Virulence factors are released from 
Pseudomonas aeruginosa in association with membrane vesicles during normal 
growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J 
Bacteriol 177(14): 3998–4008. 

Klein G, Kobylak N, Lindner B, Stupak A and Raina S (2014) Assembly of 
lipopolysaccharide in Escherichia coli requires the essential LapB heat shock 
protein. J Biol Chem 289(21): 14829–14853. 

Kobayashi H, Takami H, Hirayama H, Kobata K, Usami R and Horikoshi K (1999) 
Outer membrane changes in a toluene-sensitive mutant of toluene-tolerant Pseudo-
monas putida IH-2000. J Bacteriol 181(15): 4493–4498. 

Kostrewa D, Granzin J, Koch C, Choe HW, Raghunathan S, Wolf W, Labahn J, 
Kahmann R and Saenger W (1991) Three-dimensional structure of the E. coli DNA-
binding protein FIS. Nature 349(6305): 178–180. 

Kotiranta A, Haapasalo M, Kari K, Kerosuo E, Olsen I, Sorsa T, Meurman JH and 
Lounatmaa K (1998) Surface structure, hydrophobicity, phagocytosis, and adhe-
rence to matrix proteins of Bacillus cereus cells with and without the crystalline 
surface protein layer. Infect Immun 66(10): 4895–4902. 

Kulp A and Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial 
outer membrane vesicles. Annu Rev Microbiol 64: 163–184. 

Lasa I and Penades JR (2006) Bap: a family of surface proteins involved in biofilm 
formation. Res Microbiol 157(2): 99–107. 

Le Magrex-Debar E, Lemoine J, Gelle MP, Jacquelin LF and Choisy C (2000) 
Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int J Food 
Microbiol 55(1–3): 239–243. 

Li BY, Liang YZ, Hu Y, Du YP, Song YQ and Cui H (2003) Evaluation of gas 
chromatography-mass spectrometry in conjunction with chemometric resolution for 
identification of nitrogen compounds in crude oil. Talanta 61(6): 803–809. 

Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T 
and Ausubel FM (2006) An ordered, nonredundant library of Pseudomonas 



42 

aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 
103(8): 2833–2838. 

Liu XW, Sheng GP and Yu HQ (2009) Physicochemical characteristics of microbial 
granules. Biotechnol Adv 27(6): 1061–1070. 

Lugtenberg BJJ and Bloemberg GV (2004). Life in the rhizosphere. Pseudomonas. 
Ramos J. New York, Kluwer Academic / Plenum Publishers. Vol.1 pp. 403- 430. 

Lynch JM and Whipps JM (1990) Substrate flow in the rhizosphere. Plant and Soil 
129(1): 1–10. 

Makin SA and Beveridge TJ (1996) Pseudomonas aeruginosa PAO1 ceases to express 
serotype-specific lipopolysaccharide at 45 degrees C. J Bacteriol 178(11): 3350–
3352. 

Marti M, Trotonda MP, Tormo-Mas MA, Vergara-Irigaray M, Cheung AL, Lasa I and 
Penades JR (2010) Extracellular proteases inhibit protein-dependent biofilm 
formation in Staphylococcus aureus. Microbes Infect 12(1): 55–64. 

Martinez-Antonio A and Collado-Vides J (2003) Identifying global regulators in 
transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6(5): 482–489. 

Martinez-Gil M, Quesada JM, Ramos-Gonzalez MI, Soriano MI, de Cristobal RE and 
Espinosa-Urgel M (2013) Interplay between extracellular matrix components of 
Pseudomonas putida biofilms. Res Microbiol 164(5): 382–389. 

Martinez-Gil M, Ramos-Gonzalez MI and Espinosa-Urgel M (2014) Roles of cyclic Di-
GMP and the Gac system in transcriptional control of the genes coding for the 
Pseudomonas putida adhesins LapA and LapF. J Bacteriol 196(8): 1484–1495. 

Martinez-Gil M, Yousef-Coronado F and Espinosa-Urgel M (2010) LapF, the second 
largest Pseudomonas putida protein, contributes to plant root colonization and 
determines biofilm architecture. Mol Microbiol 77(3): 549–561. 

Matilla MA, Espinosa-Urgel M, Rodriguez-Herva JJ, Ramos JL and Ramos-Gonzalez 
MI (2007) Genomic analysis reveals the major driving forces of bacterial life in the 
rhizosphere. Genome Biol 8(9): R179. 

McIver KS, Heath AS, Green BD and Scott JR (1995) Specific binding of the activator 
Mga to promoter sequences of the emm and scpA genes in the group A strepto-
coccus. J Bacteriol 177(22): 6619–6624. 

McIver KS and Scott JR (1997) Role of mga in growth phase regulation of virulence 
genes of the group A streptococcus. J Bacteriol 179(16): 5178–5187. 

McLeod SM, Aiyar SE, Gourse RL and Johnson RC (2002) The C-terminal domains of 
the RNA polymerase alpha subunits: contact site with Fis and localization during co-
activation with CRP at the Escherichia coli proP P2 promoter. J Mol Biol 316(3): 
517–529. 

Mecsas J, Rouviere PE, Erickson JW, Donohue TJ and Gross CA (1993) The activity of 
sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by 
expression of outer membrane proteins. Genes Dev 7(12B): 2618–2628. 

Mendoza JA, Weinberger KK and Swan MJ (2017) The Hsp60 protein of helicobacter 
pylori displays chaperone activity under acidic conditions. Biochem Biophys Rep 9: 
95–99. 

Merickel SK, Sanders ER, Vazquez-Ibar JL and Johnson RC (2002) Subunit exchange 
and the role of dimer flexibility in DNA binding by the Fis protein. Biochemistry 
41(18): 5788–5798. 

Monniot C, Boisrame A, Da Costa G, Chauvel M, Sautour M, Bougnoux ME, Bellon-
Fontaine MN, Dalle F, d'Enfert C and Richard ML (2013) Rbt1 protein domains 



43 

analysis in Candida albicans brings insights into hyphal surface modifications and 
Rbt1 potential role during adhesion and biofilm formation. PLoS One 8(12): e82395. 

Montag D, Frant M, Horn H and Liefeith K (2012) Dependence of the initial adhesion 
of biofilm forming Pseudomonas putida mt2 on physico-chemical material 
properties. Biofouling 28(3): 315–327. 

Montville R and Schaffner DW (2003) Inoculum size influences bacterial cross 
contamination between surfaces. Appl Environ Microbiol 69(12): 7188–7193. 

Moor H, Teppo A, Lahesaare A, Kivisaar M and Teras R (2014) Fis overexpression 
enhances Pseudomonas putida biofilm formation by regulating the ratio of LapA 
and LapF. Microbiology 160(Pt 12): 2681–2693. 

Nasser W, Schneider R, Travers A and Muskhelishvili G (2001) CRP modulates fis 
transcription by alternate formation of activating and repressing nucleoprotein 
complexes. J Biol Chem 276(21): 17878–17886. 

Navazo A, Barahona E, Redondo-Nieto M, Martinez-Granero F, Rivilla R and Martin 
M (2009) Three independent signalling pathways repress motility in Pseudomonas 
fluorescens F113. Microb Biotechnol 2(4): 489–498. 

Neidhardt FC and Curtiss R (1996) Escherichia coli and Salmonella : cellular and 
molecular biology. Washington, D.C., ASM Press. 

Neumann G, Cornelissen S, van Breukelen F, Hunger S, Lippold H, Loffhagen N, Wick 
LY and Heipieper HJ (2006) Energetics and surface properties of Pseudomonas 
putida DOT-T1E in a two-phase fermentation system with 1-decanol as second 
phase. Appl Environ Microbiol 72(6): 4232–4238. 

Ninnemann O, Koch C and Kahmann R (1992) The E.coli fis promoter is subject to 
stringent control and autoregulation. EMBO J 11(3): 1075–1083. 

Novick RP (2003) Autoinduction and signal transduction in the regulation of 
staphylococcal virulence. Mol Microbiol 48(6): 1429–1449. 

Ofek I, Whitnack E and Beachey EH (1983) Hydrophobic interactions of group A 
streptococci with hexadecane droplets. J Bacteriol 154(1): 139–145. 

Okada N, Geist RT and Caparon MG (1993) Positive transcriptional control of mry 
regulates virulence in the group A streptococcus. Mol Microbiol 7(6): 893–903. 

Osuna R, Lienau D, Hughes KT and Johnson RC (1995) Sequence, regulation, and 
functions of fis in Salmonella typhimurium. J Bacteriol 177(8): 2021–2032. 

Passardi F, Zamocky M, Favet J, Jakopitsch C, Penel C, Obinger C and Dunand C 
(2007) Phylogenetic distribution of catalase-peroxidases: Are there patches of order 
in chaos? Gene 397(1–2): 101–113. 

Petrova OE and Sauer K (2009) A novel signaling network essential for regulating 
Pseudomonas aeruginosa biofilm development. PLoS Pathog 5(11): e1000668. 

Pratt LA and Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: 
roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30(2): 285–293. 

Pratt TS, Steiner T, Feldman LS, Walker KA and Osuna R (1997) Deletion analysis of 
the fis promoter region in Escherichia coli: antagonistic effects of integration host 
factor and Fis. J Bacteriol 179(20): 6367–6377. 

Prigent-Combaret C, Zghidi-Abouzid O, Effantin G, Lejeune P, Reverchon S and 
Nasser W (2012) The nucleoid-associated protein Fis directly modulates the synthe-
sis of cellulose, an essential component of pellicle-biofilms in the phytopathogenic 
bacterium Dickeya dadantii. Mol Microbiol 86(1): 172–186. 

Radwan SS, Al-Hasan RH, Salamah S and Al-Dabbous S (2002) Bioremediation of oily 
sea water by bacteria immobilized in biofilms coating macroalgae. International 
Biodeterioration & Biodegradation 50(1): 55–59. 



44 

Raina S, Missiakas D and Georgopoulos C (1995) The rpoE gene encoding the sigma E 
(sigma 24) heat shock sigma factor of Escherichia coli. EMBO J 14(5): 1043–1055. 

Ramos-Gonzalez MI, Campos MJ and Ramos JL (2005) Analysis of Pseudomonas 
putida KT2440 gene expression in the maize rhizosphere: in vivo [corrected] 
expression technology capture and identification of root-activated promoters. J 
Bacteriol 187(12): 4033–4041. 

Rao D, Webb JS and Kjelleberg S (2005) Competitive interactions in mixed-species 
biofilms containing the marine bacterium Pseudoalteromonas tunicata. Appl 
Environ Microbiol 71(4): 1729–1736. 

Rosenberg M and Kjelleberg S (1986). Hydrophobic interactions: Role in bacterial 
adhesion. Advances in Microbial Ecology. Marshall KC. New York, Plenum Press. 
9: pp. 353–393. 

Ruhs PA, Bocker L, Inglis RF and Fischer P (2014) Studying bacterial hydrophobicity 
and biofilm formation at liquid-liquid interfaces through interfacial rheology and 
pendant drop tensiometry. Colloids Surf B Biointerfaces 117: 174–184. 

Saldana Z, Xicohtencatl-Cortes J, Avelino F, Phillips AD, Kaper JB, Puente JL and 
Giron JA (2009) Synergistic role of curli and cellulose in cell adherence and biofilm 
formation of attaching and effacing Escherichia coli and identification of Fis as a 
negative regulator of curli. Environ Microbiol 11(4): 992–1006. 

Salgado CD, Calfee DP and Farr BM (2003) Interventions to prevent methicillin-
resistant Staphylococcus aureus transmission in health care facilities: What works? 
Clinical Microbiology Newsletter 25(18): 137–144. 

Santegoeds CM, Ferdelman TG, Muyzer G and de Beer D (1998) Structural and 
Functional Dynamics of Sulfate-Reducing Populations in Bacterial Biofilms. 
Applied and Environmental Microbiology 64(10): 3731–3739. 

Schneider R, Travers A and Muskhelishvili G (2000) The expression of the Escherichia 
coli fis gene is strongly dependent on the superhelical density of DNA. Mol 
Microbiol 38(1): 167–175. 

Segura A, Duque E, Mosqueda G, Ramos JL and Junker F (1999) Multiple responses of 
gram-negative bacteria to organic solvents. Environ Microbiol 1(3): 191–198. 

Sekoulov I and Brinke-Seiferth S (1999) Application of biofiltration in the crude oil 
processing industry. Water Science and Technology 39(8): 71–76. 

Shao Y, Feldman-Cohen LS and Osuna R (2008) Functional characterization of the 
Escherichia coli Fis-DNA binding sequence. J Mol Biol 376(3): 771–785. 

Sheikh J, Hicks S, Dall'Agnol M, Phillips AD and Nataro JP (2001) Roles for Fis and 
YafK in biofilm formation by enteroaggregative Escherichia coli. Mol Microbiol 
41(5): 983–997. 

Sidhu MS and Olsen I (1997) S-layers of Bacillus species. Microbiology 143 (Pt 4): 
1039–1052. 

Singh T, Srivastava AK and Arora DK (2002) Horizontal and vertical movement of 
Pseudomonas fluorescens toward exudate of Macrophomina phaseolina in soil: 
influence of motility and soil properties. Microbiological Research 157(2): 139–
148. 

Singleton DR, Fidel PL, Jr., Wozniak KL and Hazen KC (2005) Contribution of cell 
surface hydrophobicity protein 1 (Csh1p) to virulence of hydrophobic Candida 
albicans serotype A cells. FEMS Microbiol Lett 244(2): 373–377. 

Sleytr UB, Messner P, Pum D and Sara M (1993) Crystalline bacterial cell surface 
layers. Mol Microbiol 10(5): 911–916. 



45 

Sleytr UB, SÁRa M, Messner P and Pum D (1994) Application Potential of 2D Protein 
Crystals (S-Layers)a. Annals of the New York Academy of Sciences 745(1): 261–
269. 

Smit E, Oling F, Demel R, Martinez B and Pouwels PH (2001) The S-layer protein of 
Lactobacillus acidophilus ATCC 4356: identification and characterisation of do-
mains responsible for S-protein assembly and cell wall binding. J Mol Biol 305(2): 
245–257. 

Smolke C (2009) The Metabolic Pathway Engineering Handbook: Fundamentals, CRC 
Press. 

Snyder WB, Davis LJ, Danese PN, Cosma CL and Silhavy TJ (1995) Overproduction of 
NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic 
LacZ by activation of the Cpx signal transduction pathway. J Bacteriol 177(15): 
4216–4223. 

Soni KA, Balasubramanian AK, Beskok A and Pillai SD (2008) Zeta potential of 
selected bacteria in drinking water when dead, starved, or exposed to minimal and 
rich culture media. Curr Microbiol 56(1): 93–97. 

Stewart PS and Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. 
Lancet 358(9276): 135–138. 

Strauch KL and Beckwith J (1988) An Escherichia coli mutation preventing 
degradation of abnormal periplasmic proteins. Proc Natl Acad Sci U S A 85(5): 
1576–1580. 

Zahringer U, Knirel YA, Lindner B, Helbig JH, Sonesson A, Marre R and Rietschel ET 
(1995) The lipopolysaccharide of Legionella pneumophila serogroup 1 (strain 
Philadelphia 1): chemical structure and biological significance. Prog Clin Biol Res 
392: 113–139. 

Teras R, Jakovleva J and Kivisaar M (2009) Fis negatively affects binding of Tn4652 
transposase by out-competing IHF from the left end of Tn4652. Microbiology 
155(Pt 4): 1203–1214. 

Tong H, Chen W, Shi W, Qi F and Dong X (2008) SO-LAAO, a novel L-amino acid 
oxidase that enables Streptococcus oligofermentans to outcompete Streptococcus 
mutans by generating H2O2 from peptone. J Bacteriol 190(13): 4716–4721. 

Tormo MA, Knecht E, Gotz F, Lasa I and Penades JR (2005) Bap-dependent biofilm 
formation by pathogenic species of Staphylococcus: evidence of horizontal gene 
transfer? Microbiology 151(Pt 7): 2465–2475. 

Tormo MA, Ubeda C, Marti M, Maiques E, Cucarella C, Valle J, Foster TJ, Lasa I and 
Penades JR (2007) Phase-variable expression of the biofilm-associated protein (Bap) 
in Staphylococcus aureus. Microbiology 153(Pt 6): 1702–1710. 

Torres S, Pandey A and Castro GR (2011) Organic solvent adaptation of Gram positive 
bacteria: applications and biotechnological potentials. Biotechnol Adv 29(4): 442–
452. 

Travers A, Schneider R and Muskhelishvili G (2001) DNA supercoiling and transcrip-
tion in Escherichia coli: The FIS connection. Biochimie 83(2): 213–217. 

van Loosdrecht MC, Lyklema J, Norde W, Schraa G and Zehnder AJ (1987) Electro-
phoretic mobility and hydrophobicity as a measured to predict the initial steps of 
bacterial adhesion. Applied and Environmental Microbiology 53(8): 1898–1901. 

Wang H, Liu B, Wang Q and Wang L (2013) Genome-Wide Analysis of the Salmonella 
Fis Regulon and Its Regulatory Mechanism on Pathogenicity Islands. PLOS ONE 
8(5): e64688. 



46 

Wyckoff TJ, Raetz CR and Jackman JE (1998) Antibacterial and anti-inflammatory 
agents that target endotoxin. Trends Microbiol 6(4): 154–159. 

Xu J and Johnson RC (1995) Identification of genes negatively regulated by Fis: Fis and 
RpoS comodulate growth-phase-dependent gene expression in Escherichia coli. J 
Bacteriol 177(4): 938–947. 

Yeung AT, Torfs EC, Jamshidi F, Bains M, Wiegand I, Hancock RE and Overhage J 
(2009) Swarming of Pseudomonas aeruginosa is controlled by a broad spectrum of 
transcriptional regulators, including MetR. J Bacteriol 191(18): 5592–5602. 

Yousef F and Espinosa-Urgel M (2007) In silico analysis of large microbial surface 
proteins. Res Microbiol 158(6): 545–550. 

Yousefi Rad A, Ayhan H and Piskin E (1998) Adhesion of different bacterial strains to 
low-temperature plasma-treated sutures. J Biomed Mater Res 41(3): 349–358. 

Yuan HS, Finkel SE, Feng JA, Kaczor-Grzeskowiak M, Johnson RC and Dickerson RE 
(1991) The molecular structure of wild-type and a mutant Fis protein: relationship 
between mutational changes and recombinational enhancer function or DNA 
binding. Proc Natl Acad Sci U S A 88(21): 9558–9562. 

 
 

  



47 

ACKNOWLEDGEMENTS 

First of all I would like to thank my supervisor and mentor Riho for all the great 
years that I`ve worked and studied in his research group. I sincerely thank you 
for all the help, support and knowledge you`ve given me and especially for 
believing in me and motivating me with your clever tricks. You are a great 
teacher! 

I am grateful to have been a part of Fis-research group, with all the great 
people over the years: Julia, Anna, Annika, Hanna, Jana, Pavel and Johana – 
thank you all for the help and team-work. Extra thanks go to Hanna, for taking 
some time from your busy schedule to read my thesis and give me greatly 
useful tips and comments. And Annika, believe me, if I can do it, you can! 

I am also thankful to all the people in department of genetics for creating a 
friendly atmosphere. People from room 111: Julia, Tanja, Kärt, Tanel, Signe – 
thank you for the music! My fellow students from room 106: Andres, Hedvig, 
Kadi, Karl, Mari – thank you for the humour. I am grateful for all the advice 
from Maia, Rita, Heili and all the other brilliant scientists from genetics 
department. And special thanks to Julia and Hedvig for both of your theses, they 
have been a huge help for me. 

I also truly appreciate the help from Dimitri Lubenets with FACS analysis 
and Annely Kukk, Ene Põldroos, Milvi Siniroht and Mart Roos for helping with 
other technical and administrative issues. 

Margus Leppik, my gratitude to you for useful corrections and comments on 
my thesis. And also thank you for all the help in isotope measurements. 

My greatest thanks also go to Hermann from UFZ Leipzig for temporarily 
taking me into your research group and giving me a great opportunity for 
collaboration and working in a lab abroad. Also many thanks to all the other 
people from UFZ lab, I really appreciate the help and advice with my experi-
ments. 

Last but not least, I want to thank my family. My parents and grandparents 
for all the support over the years. My big brother for all the awesome music that 
you`ve shared with me, which has helped me relax and reduce stress. And 
Kirsika, words can't describe how thankful I am to you for being there on my 
side. I couldn`t have done it without you! 
  



 

  



 

 
 

 

 

 

PUBLICATIONS 

  



 

CURRICULUM VITAE 

Name: Andrio Lahesaare 
Date of Birth: February 18, 1986 
Citizenship: Estonian 
Contact: Veerenni 53a, Tallinn, Estonia 
 andrio.lahesaare@gmail.com 
 +372 53982871 
Education:  
Since 2011 University of Tartu, PhD student (molecular and cell biology); 
2009–2011 University of Tartu, MSc (gene technology); 
2005–2009 University of Tartu, BSc (gene technology); 
1993–2005 Pärnu Koidula Gymnasium 
 
Language skills: 
Estonian, English; Russian in intermediate level 
 
Research interests: 
Global transcription regulator Fis and its role in regulating the adaptation 
mechanisms of soil bacterium Pseudomonas putida. 
 
List of publications: 
1. Moor H, Teppo A, Lahesaare A, Kivisaar M, Teras R. Fis overexpression 

enhances Pseudomonas putida biofilm formation by regulating the ratio of 
LapA and LapF. Microbiology. 2014 Dec. 160(Pt 12): 2681–93. 

2. Lahesaare A, Moor H, Kivisaar M, Teras R. Pseudomonas putida Fis binds 
to the lapF promoter in vitro and represses the expression of LapF. PloS 
ONE. 2014 Dec. 9(12):e115901. 

3. Lahesaare A, Ainelo H, Teppo A, Kivisaar M, Heipieper HJ, Teras R. 
LapF and its regulation by Fis affect the cell surface hydrophobicity of 
Pseudomonas putida. PloS ONE. 2016 Nov. 11(11):e0166078. 

4. Ainelo H, Lahesaare A, Teppo A, Kivisaar M, Teras R. The promoter 
region of lapA and its transcriptional regulation by Fis in Pseudomonas 
putida. PloS ONE. 2017 Sep. 12(9):e0185482. 

 
Scholarships and research grants: 
1. FEMS Research Grant, 2014 and 2015 
2. Kristjan Jaak Scholarship, 2015 
3. Olev and Talvi Maimets scholarship, 2016 
 
Other organisational and professional activities: 
1. Supervisor of Practical Course in Genetics, 2012–2014 
2. Member of Estonian Society for Microbiologists, since 2013 
3. Participated in several international conferences 

106 



 

ELULOOKIRJELDUS 

Nimi: Andrio Lahesaare 
Sünniaeg: 18. veebruar 1986 
Kodakondsus: Eesti 
Kontaktandmed: Veerenni 53a, Tallinn, Eesti 
 andrio.lahesaare@gmail.com 
 +372 53982871 
Hariduskäik:  
Alates 2011 Tartu Ülikool, doktorantuur (molekulaar- ja rakubioloogia); 
2009–2011 Tartu Ülikool, MSc (geenitehnoloogia); 
2005–2009 Tartu Ülikool, BSc (geenitehnoloogia); 
1993–2005 Pärnu Koidula Gümnaasium 
 
Keeleoskus: 
Eesti ja inglise keel; vene keel kesktasemel 
 
Teadustegevus: 
Globaalse regulaatorvalgu Fis roll keskkonnatingimustega kohanemiseks vajali-
ke mehhanismide reguleerimisel mullabakteris Pseudomonas putida. 
 
Publikatsioonide loetelu: 
1. Moor H, Teppo A, Lahesaare A, Kivisaar M, Teras R. Fis overexpression 

enhances Pseudomonas putida biofilm formation by regulating the ratio of 
LapA and LapF. Microbiology. 2014 Dec. 160(Pt 12): 2681–93. 

2. Lahesaare A, Moor H, Kivisaar M, Teras R. Pseudomonas putida Fis binds 
to the lapF promoter in vitro and represses the expression of LapF. PloS 
ONE. 2014 Dec. 9(12):e115901. 

3. Lahesaare A, Ainelo H, Teppo A, Kivisaar M, Heipieper HJ, Teras R. 
LapF and its regulation by Fis affect the cell surface hydrophobicity of 
Pseudomonas putida. PloS ONE. 2016 Nov. 11(11):e0166078. 

4. Ainelo H, Lahesaare A, Teppo A, Kivisaar M, Teras R. The promoter 
region of lapA and its transcriptional regulation by Fis in Pseudomonas 
putida. PloS ONE. 2017 Sep. 12(9):e0185482. 

 
Saadud uurimistoetused ja stipendiumid: 
1. FEMS`i noore teadlase stipendium, 2014 ja 2015 
2. Kristjan Jaagu välissõidu stipendium, 2015 
3. Olev ja Talvi Maimetsa stipendium, 2016 
 
Muu teaduslik organisatsiooniline ja erialane tegevus: 
1. Geneetika praktikumi juhendamine, 2012–2014 
2. Eesti Mikrobioloogide ühenduse (EMÜ) liige, alates 2013 
3. Osalemine mitmetel rahvusvahelistel konverentsidel 

107 



108 

DISSERTATIONES BIOLOGICAE 
UNIVERSITATIS TARTUENSIS 

 
  1. Toivo Maimets. Studies of human oncoprotein p53. Tartu, 1991, 96 p. 
  2. Enn K. Seppet. Thyroid state control over energy metabolism, ion trans-

port and contractile functions in rat heart. Tartu, 1991, 135 p.  
  3. Kristjan Zobel. Epifüütsete makrosamblike väärtus õhu saastuse indikaa-

toritena Hamar-Dobani boreaalsetes mägimetsades. Tartu, 1992, 131 lk. 
  4. Andres Mäe. Conjugal mobilization of catabolic plasmids by transpos-

able elements in helper plasmids. Tartu, 1992, 91 p. 
  5. Maia Kivisaar. Studies on phenol degradation genes of Pseudomonas sp. 

strain EST 1001. Tartu, 1992, 61 p. 
  6. Allan Nurk. Nucleotide sequences of phenol degradative genes from 

Pseudomonas sp. strain EST 1001 and their transcriptional activation in 
Pseudomonas putida. Tartu, 1992, 72 p. 

  7. Ülo Tamm. The genus Populus L. in Estonia: variation of the species bio-
logy and introduction. Tartu, 1993, 91 p. 

  8. Jaanus Remme. Studies on the peptidyltransferase centre of the E.coli 
ribosome. Tartu, 1993, 68 p. 

  9. Ülo Langel. Galanin and galanin antagonists. Tartu, 1993, 97 p. 
10. Arvo Käärd. The development of an automatic online dynamic fluo-

rescense-based pH-dependent fiber optic penicillin flowthrought biosensor 
for the control of the benzylpenicillin hydrolysis. Tartu, 1993, 117 p. 

11. Lilian Järvekülg. Antigenic analysis and development of sensitive immu-
noassay for potato viruses. Tartu, 1993, 147 p. 

12. Jaak Palumets. Analysis of phytomass partition in Norway spruce. Tartu, 
1993, 47 p. 

13. Arne Sellin. Variation in hydraulic architecture of Picea abies (L.) Karst. 
trees grown under different enviromental conditions. Tartu, 1994, 119 p.  

13. Mati Reeben. Regulation of light neurofilament gene expression. Tartu, 
1994, 108 p. 

14. Urmas Tartes. Respiration rhytms in insects. Tartu, 1995, 109 p. 
15. Ülo Puurand. The complete nucleotide sequence and infections in vitro 

transcripts from cloned cDNA of a potato A potyvirus. Tartu, 1995, 96 p. 
16. Peeter Hõrak. Pathways of selection in avian reproduction: a functional 

framework and its application in the population study of the great tit 
(Parus major). Tartu, 1995, 118 p. 

17. Erkki Truve. Studies on specific and broad spectrum virus resistance in 
transgenic plants. Tartu, 1996, 158 p. 

18. Illar Pata. Cloning and characterization of human and mouse ribosomal 
protein S6-encoding genes. Tartu, 1996, 60 p. 

19. Ülo Niinemets. Importance of structural features of leaves and canopy in 
determining species shade-tolerance in temperature deciduous woody 
taxa. Tartu, 1996, 150 p. 



109 

20. Ants Kurg. Bovine leukemia virus: molecular studies on the packaging 
region and DNA diagnostics in cattle. Tartu, 1996, 104 p. 

21. Ene Ustav. E2 as the modulator of the BPV1 DNA replication. Tartu, 1996, 
100 p. 

22. Aksel Soosaar. Role of helix-loop-helix and nuclear hormone receptor 
transcription factors in neurogenesis. Tartu, 1996, 109 p. 

23. Maido Remm. Human papillomavirus type 18: replication, transforma-
tion and gene expression. Tartu, 1997, 117 p. 

24. Tiiu Kull. Population dynamics in Cypripedium calceolus L. Tartu, 1997,  
124 p. 

25. Kalle Olli. Evolutionary life-strategies of autotrophic planktonic micro-
organisms in the Baltic Sea. Tartu, 1997, 180 p. 

26. Meelis Pärtel. Species diversity and community dynamics in calcareous 
grassland communities in Western Estonia. Tartu, 1997, 124 p. 

27. Malle Leht. The Genus Potentilla L. in Estonia, Latvia and Lithuania: 
distribution, morphology and taxonomy. Tartu, 1997, 186 p. 

28. Tanel Tenson. Ribosomes, peptides and antibiotic resistance. Tartu, 1997,  
80 p. 

29. Arvo Tuvikene. Assessment of inland water pollution using biomarker 
responses in fish in vivo and in vitro. Tartu, 1997, 160 p. 

30. Urmas Saarma. Tuning ribosomal elongation cycle by mutagenesis of  
23S rRNA. Tartu, 1997, 134 p. 

31. Henn Ojaveer. Composition and dynamics of fish stocks in the gulf of 
Riga ecosystem. Tartu, 1997, 138 p. 

32. Lembi Lõugas. Post-glacial development of vertebrate fauna in Estonian 
water bodies. Tartu, 1997, 138 p. 

33. Margus Pooga. Cell penetrating peptide, transportan, and its predecessors, 
galanin-based chimeric peptides. Tartu, 1998, 110 p. 

34. Andres Saag. Evolutionary relationships in some cetrarioid genera 
(Lichenized Ascomycota). Tartu, 1998, 196 p. 

35. Aivar Liiv. Ribosomal large subunit assembly in vivo. Tartu, 1998, 158 p. 
36.  Tatjana Oja. Isoenzyme diversity and phylogenetic affinities among the 

eurasian annual bromes (Bromus L., Poaceae). Tartu, 1998, 92 p. 
37. Mari Moora. The influence of arbuscular mycorrhizal (AM) symbiosis 

on the competition and coexistence of calcareous grassland plant species. 
Tartu, 1998, 78 p. 

38. Olavi Kurina. Fungus gnats in Estonia (Diptera: Bolitophilidae, Keropla-
tidae, Macroceridae, Ditomyiidae, Diadocidiidae, Mycetophilidae). Tartu, 
1998, 200 p.  

39. Andrus Tasa. Biological leaching of shales: black shale and oil shale. 
Tartu, 1998, 98 p. 

40. Arnold Kristjuhan. Studies on transcriptional activator properties of 
tumor suppressor protein p53. Tartu, 1998, 86 p. 

41.  Sulev Ingerpuu. Characterization of some human myeloid cell surface 
and nuclear differentiation antigens. Tartu, 1998, 163 p. 



110 

42.  Veljo Kisand. Responses of planktonic bacteria to the abiotic and biotic 
factors in the shallow lake Võrtsjärv. Tartu, 1998, 118 p. 

43. Kadri Põldmaa. Studies in the systematics of hypomyces and allied 
genera (Hypocreales, Ascomycota). Tartu, 1998, 178 p. 

44. Markus Vetemaa. Reproduction parameters of fish as indicators in en-
vironmental monitoring. Tartu, 1998, 117 p. 

45. Heli Talvik. Prepatent periods and species composition of different Oeso-
phagostomum spp. populations in Estonia and Denmark. Tartu, 1998, 
104 p. 

46. Katrin Heinsoo. Cuticular and stomatal antechamber conductance to water 
vapour diffusion in Picea abies (L.) karst. Tartu, 1999, 133 p. 

47. Tarmo Annilo. Studies on mammalian ribosomal protein S7. Tartu, 1998, 
77 p. 

48. Indrek Ots. Health state indicies of reproducing great tits (Parus major): 
sources of variation and connections with life-history traits. Tartu, 1999, 
117 p. 

49. Juan Jose Cantero. Plant community diversity and habitat relationships in 
central Argentina grasslands. Tartu, 1999, 161 p. 

50. Rein Kalamees. Seed bank, seed rain and community regeneration in 
Estonian calcareous grasslands. Tartu, 1999, 107 p. 

51.  Sulev Kõks. Cholecystokinin (CCK) – induced anxiety in rats: influence 
of environmental stimuli and involvement of endopioid mechanisms and 
serotonin. Tartu, 1999, 123 p. 

52. Ebe Sild. Impact of increasing concentrations of O3 and CO2 on wheat, 
clover and pasture. Tartu, 1999, 123 p. 

53. Ljudmilla Timofejeva. Electron microscopical analysis of the synaptone-
mal complex formation in cereals. Tartu, 1999, 99 p. 

54. Andres Valkna. Interactions of galanin receptor with ligands and  
G-proteins: studies with synthetic peptides. Tartu, 1999, 103 p. 

55. Taavi Virro. Life cycles of planktonic rotifers in lake Peipsi. Tartu, 1999, 
101 p. 

56.  Ana Rebane. Mammalian ribosomal protein S3a genes and intron-
encoded small nucleolar RNAs U73 and U82. Tartu, 1999, 85 p. 

57.  Tiina Tamm. Cocksfoot mottle virus: the genome organisation and trans-
lational strategies. Tartu, 2000, 101 p. 

58. Reet Kurg. Structure-function relationship of the bovine papilloma virus 
E2 protein. Tartu, 2000, 89 p. 

59. Toomas Kivisild. The origins of Southern and Western Eurasian popula-
tions: an mtDNA study. Tartu, 2000, 121 p. 

60. Niilo Kaldalu. Studies of the TOL plasmid transcription factor XylS. 
Tartu, 2000, 88 p. 

61. Dina Lepik. Modulation of viral DNA replication by tumor suppressor 
protein p53. Tartu, 2000, 106 p. 



111 

62. Kai Vellak. Influence of different factors on the diversity of the bryo-
phyte vegetation in forest and wooded meadow communities. Tartu, 2000, 
122 p. 

63. Jonne Kotta. Impact of eutrophication and biological invasionas on the 
structure and functions of benthic macrofauna. Tartu, 2000, 160 p. 

64. Georg Martin. Phytobenthic communities of the Gulf of Riga and the 
inner sea the West-Estonian archipelago. Tartu, 2000, 139 p. 

65.  Silvia Sepp. Morphological and genetical variation of Alchemilla L. in 
Estonia. Tartu, 2000. 124 p. 

66. Jaan Liira. On the determinants of structure and diversity in herbaceous 
plant communities. Tartu, 2000, 96 p. 

67. Priit Zingel. The role of planktonic ciliates in lake ecosystems. Tartu, 
2001, 111 p. 

68. Tiit Teder. Direct and indirect effects in Host-parasitoid interactions: 
ecological and evolutionary consequences. Tartu, 2001, 122 p. 

69. Hannes Kollist. Leaf apoplastic ascorbate as ozone scavenger and its 
transport across the plasma membrane. Tartu, 2001, 80 p. 

70. Reet Marits. Role of two-component regulator system PehR-PehS and 
extracellular protease PrtW in virulence of Erwinia Carotovora subsp. 
Carotovora. Tartu, 2001, 112 p. 

71. Vallo Tilgar. Effect of calcium supplementation on reproductive perfor-
mance of the pied flycatcher Ficedula hypoleuca and the great tit Parus 
major, breeding in Nothern temperate forests. Tartu, 2002, 126 p. 

72. Rita Hõrak. Regulation of transposition of transposon Tn4652 in Pseudo-
monas putida. Tartu, 2002, 108 p. 

73. Liina Eek-Piirsoo. The effect of fertilization, mowing and additional 
illumination on the structure of a species-rich grassland community. 
Tartu, 2002, 74 p. 

74. Krõõt Aasamaa. Shoot hydraulic conductance and stomatal conductance 
of six temperate deciduous tree species. Tartu, 2002, 110 p. 

75. Nele Ingerpuu. Bryophyte diversity and vascular plants. Tartu, 2002, 
112 p. 

76. Neeme Tõnisson. Mutation detection by primer extension on oligonucleo-
tide microarrays. Tartu, 2002, 124 p. 

77. Margus Pensa. Variation in needle retention of Scots pine in relation to 
leaf morphology, nitrogen conservation and tree age. Tartu, 2003, 110 p. 

78. Asko Lõhmus. Habitat preferences and quality for birds of prey: from 
principles to applications. Tartu, 2003, 168 p. 

79. Viljar Jaks. p53 – a switch in cellular circuit. Tartu, 2003, 160 p. 
80. Jaana Männik. Characterization and genetic studies of four ATP-binding 

cassette (ABC) transporters. Tartu, 2003, 140 p. 
81. Marek Sammul. Competition and coexistence of clonal plants in relation 

to productivity. Tartu, 2003, 159 p 
82. Ivar Ilves. Virus-cell interactions in the replication cycle of bovine 

papillomavirus type 1. Tartu, 2003, 89 p.  



112 

83. Andres Männik. Design and characterization of a novel vector system 
based on the stable replicator of bovine papillomavirus type 1. Tartu, 
2003, 109 p. 

84.  Ivika Ostonen. Fine root structure, dynamics and proportion in net pri-
mary production of Norway spruce forest ecosystem in relation to site 
conditions. Tartu, 2003, 158 p. 

85.  Gudrun Veldre. Somatic status of 12–15-year-old Tartu schoolchildren. 
Tartu, 2003, 199 p. 

86.  Ülo Väli. The greater spotted eagle Aquila clanga and the lesser spotted eagle 
A. pomarina: taxonomy, phylogeography and ecology. Tartu, 2004, 159 p.  

87.  Aare Abroi. The determinants for the native activities of the bovine 
papillomavirus type 1 E2 protein are separable. Tartu, 2004, 135 p. 

88.  Tiina Kahre. Cystic fibrosis in Estonia. Tartu, 2004, 116 p. 
89.  Helen Orav-Kotta. Habitat choice and feeding activity of benthic suspension 

feeders and mesograzers in the northern Baltic Sea. Tartu, 2004, 117 p. 
90.  Maarja Öpik. Diversity of arbuscular mycorrhizal fungi in the roots of 

perennial plants and their effect on plant performance. Tartu, 2004, 175 p.  
91.  Kadri Tali. Species structure of Neotinea ustulata. Tartu, 2004, 109 p. 
92.  Kristiina Tambets. Towards the understanding of post-glacial spread of 

human mitochondrial DNA haplogroups in Europe and beyond: a phylo-
geographic approach. Tartu, 2004, 163 p. 

93.  Arvi Jõers. Regulation of p53-dependent transcription. Tartu, 2004, 
103 p. 

94.  Lilian Kadaja. Studies on modulation of the activity of tumor suppressor 
protein p53. Tartu, 2004, 103 p. 

95.  Jaak Truu. Oil shale industry wastewater: impact on river microbial  
community and possibilities for bioremediation. Tartu, 2004, 128 p. 

96.  Maire Peters. Natural horizontal transfer of the pheBA operon. Tartu, 
2004, 105 p. 

97.  Ülo Maiväli. Studies on the structure-function relationship of the bacterial 
ribosome. Tartu, 2004, 130 p.  

98.  Merit Otsus. Plant community regeneration and species diversity in dry 
calcareous grasslands. Tartu, 2004, 103 p. 

99. Mikk Heidemaa. Systematic studies on sawflies of the genera Dolerus, 
Empria, and Caliroa (Hymenoptera: Tenthredinidae). Tartu, 2004, 167 p. 

100. Ilmar Tõnno. The impact of nitrogen and phosphorus concentration and 
N/P ratio on cyanobacterial dominance and N2 fixation in some Estonian 
lakes. Tartu, 2004, 111 p. 

101. Lauri Saks. Immune function, parasites, and carotenoid-based ornaments 
in greenfinches. Tartu, 2004, 144 p.  

102. Siiri Rootsi. Human Y-chromosomal variation in European populations. 
Tartu, 2004, 142 p. 

103. Eve Vedler. Structure of the 2,4-dichloro-phenoxyacetic acid-degradative 
plasmid pEST4011. Tartu, 2005. 106 p.  



113 

104. Andres Tover. Regulation of transcription of the phenol degradation 
pheBA operon in Pseudomonas putida. Tartu, 2005, 126 p. 

105. Helen Udras. Hexose  kinases  and  glucose transport  in  the  yeast Han-
senula  polymorpha. Tartu, 2005, 100 p. 

106. Ave Suija. Lichens and lichenicolous fungi in Estonia: diversity, distri-
bution patterns, taxonomy. Tartu, 2005, 162 p. 

107. Piret Lõhmus. Forest lichens and their substrata in Estonia. Tartu, 2005, 
162 p.  

108. Inga Lips. Abiotic factors controlling the cyanobacterial bloom occur-
rence in the Gulf of Finland. Tartu, 2005, 156 p. 

109. Kaasik, Krista. Circadian clock genes in mammalian clockwork, meta-
bolism and behaviour. Tartu, 2005, 121 p. 

110. Juhan Javoiš. The effects of experience on host acceptance in ovipositing 
moths. Tartu, 2005, 112 p.  

111. Tiina Sedman. Characterization  of  the  yeast Saccharomyces  cerevisiae 
mitochondrial  DNA  helicase  Hmi1. Tartu, 2005, 103 p.  

112. Ruth Aguraiuja. Hawaiian endemic fern lineage Diellia (Aspleniaceae): 
distribution, population structure and ecology. Tartu, 2005, 112 p.  

113. Riho Teras. Regulation of transcription from the fusion promoters ge-
nerated by transposition of Tn4652 into the upstream region of pheBA 
operon in Pseudomonas putida. Tartu, 2005, 106 p.  

114. Mait Metspalu. Through the course of prehistory in india: tracing the 
mtDNA trail. Tartu, 2005, 138 p.  

115. Elin Lõhmussaar. The comparative patterns of linkage disequilibrium in 
European populations and its implication for genetic association studies. 
Tartu, 2006, 124 p. 

116. Priit Kupper. Hydraulic and environmental limitations to leaf water rela-
tions in trees with respect to canopy position. Tartu, 2006, 126 p. 

117. Heili Ilves. Stress-induced transposition of Tn4652 in Pseudomonas 
Putida. Tartu, 2006, 120 p. 

118. Silja Kuusk. Biochemical properties of Hmi1p, a DNA helicase from 
Saccharomyces cerevisiae mitochondria. Tartu, 2006, 126 p. 

119. Kersti Püssa. Forest edges on medium resolution landsat thematic mapper 
satellite images. Tartu, 2006, 90 p. 

120. Lea Tummeleht. Physiological condition and immune function in great 
tits (Parus major l.): Sources of variation and trade-offs in relation to 
growth. Tartu, 2006, 94 p. 

121. Toomas Esperk. Larval instar as a key element of insect growth sche-
dules. Tartu, 2006, 186 p.  

122. Harri Valdmann. Lynx (Lynx lynx) and wolf (Canis lupus)  in the Baltic 
region: Diets, helminth parasites and genetic variation. Tartu, 2006. 102 p. 

123. Priit Jõers. Studies of the mitochondrial helicase Hmi1p in Candida albi-
cans and Saccharomyces cerevisia. Tartu, 2006. 113 p. 

124. Kersti Lilleväli. Gata3 and Gata2 in inner ear development. Tartu, 2007, 
123 p.  



114 

125. Kai Rünk. Comparative ecology of three fern species: Dryopteris carthu-
siana (Vill.) H.P. Fuchs, D. expansa (C. Presl) Fraser-Jenkins & Jermy and 
D. dilatata (Hoffm.) A. Gray (Dryopteridaceae). Tartu, 2007, 143 p.  

126. Aveliina Helm. Formation and persistence of dry grassland diversity: role 
of human history and landscape structure. Tartu, 2007, 89 p.  

127. Leho Tedersoo. Ectomycorrhizal fungi: diversity and community struc-
ture in Estonia, Seychelles and Australia. Tartu, 2007, 233 p.  

128. Marko Mägi. The habitat-related variation of reproductive performance of 
great tits in a deciduous-coniferous forest mosaic: looking for causes and 
consequences. Tartu, 2007, 135 p.  

129. Valeria Lulla. Replication strategies and applications of Semliki Forest 
virus. Tartu, 2007, 109 p.  

130. Ülle Reier. Estonian threatened vascular plant species: causes of rarity and 
conservation. Tartu, 2007, 79 p. 

131. Inga Jüriado. Diversity of lichen species in Estonia: influence of regional 
and local factors. Tartu, 2007, 171 p. 

132. Tatjana Krama. Mobbing behaviour in birds: costs and reciprocity based 
cooperation. Tartu, 2007, 112 p. 

133. Signe Saumaa. The role of DNA mismatch repair and oxidative DNA 
damage defense systems in avoidance of stationary phase mutations in 
Pseudomonas putida. Tartu, 2007, 172 p. 

134. Reedik Mägi. The linkage disequilibrium and the selection of genetic 
markers for association studies in european populations. Tartu, 2007, 96 p.  

135. Priit Kilgas. Blood parameters as indicators of physiological condition 
and skeletal development in great tits (Parus major): natural variation and 
application in the reproductive ecology of birds. Tartu, 2007, 129 p.  

136. Anu Albert. The role of water salinity in structuring eastern Baltic coastal 
fish communities. Tartu, 2007, 95 p.  

137. Kärt Padari. Protein transduction mechanisms of transportans. Tartu, 2008, 
128 p. 

138. Siiri-Lii Sandre. Selective forces on larval colouration in a moth. Tartu, 
2008, 125 p. 

139. Ülle Jõgar. Conservation and restoration of semi-natural floodplain mea-
dows and their rare plant species. Tartu, 2008, 99 p. 

140. Lauri Laanisto. Macroecological approach in vegetation science: gene-
rality of ecological relationships at the global scale. Tartu, 2008, 133 p. 

141. Reidar Andreson. Methods and software for predicting PCR failure rate 
in large genomes. Tartu, 2008, 105 p.  

142. Birgot Paavel. Bio-optical properties of turbid lakes. Tartu, 2008, 175 p. 
143. Kaire Torn. Distribution and ecology of charophytes in the Baltic Sea. 

Tartu, 2008, 98 p.  
144. Vladimir Vimberg. Peptide mediated macrolide resistance. Tartu, 2008, 

190 p. 
145. Daima Örd. Studies on the stress-inducible pseudokinase TRB3, a novel 

inhibitor of transcription factor ATF4. Tartu, 2008, 108 p. 



115 

146. Lauri Saag. Taxonomic and ecologic problems in the genus Lepraria 
(Stereocaulaceae, lichenised Ascomycota). Tartu, 2008, 175 p. 

147. Ulvi Karu. Antioxidant protection, carotenoids and coccidians in green-
finches – assessment of the costs of immune activation and mechanisms of 
parasite resistance in a passerine with carotenoid-based ornaments. Tartu, 
2008, 124 p. 

148. Jaanus Remm. Tree-cavities in forests: density, characteristics and occu-
pancy by animals. Tartu, 2008, 128 p. 

149. Epp Moks. Tapeworm parasites Echinococcus multilocularis and E. gra-
nulosus in Estonia: phylogenetic relationships and occurrence in wild 
carnivores and ungulates. Tartu, 2008, 82 p. 

150. Eve Eensalu. Acclimation of stomatal structure and function in tree ca-
nopy: effect of light and CO2 concentration. Tartu, 2008, 108 p. 

151. Janne Pullat. Design, functionlization and application of an in situ synthe-
sized oligonucleotide microarray. Tartu, 2008, 108 p. 

152. Marta Putrinš. Responses of Pseudomonas putida to phenol-induced 
metabolic and stress signals. Tartu, 2008, 142 p.  

153.  Marina Semtšenko. Plant root behaviour: responses to neighbours and 
physical obstructions. Tartu, 2008, 106 p. 

154. Marge Starast. Influence of cultivation techniques on productivity and 
fruit quality of some Vaccinium and Rubus taxa. Tartu, 2008, 154 p.  

155. Age Tats. Sequence motifs influencing the efficiency of translation. Tartu, 
2009, 104 p. 

156. Radi Tegova. The role of specialized DNA polymerases in mutagenesis in 
Pseudomonas putida. Tartu, 2009, 124 p. 

157. Tsipe Aavik. Plant species richness, composition and functional trait 
pattern in agricultural landscapes – the role of land use intensity and land-
scape structure. Tartu, 2009, 112 p. 

158. Kaja Kiiver. Semliki forest virus based vectors and cell lines for studying 
the replication and interactions of alphaviruses and hepaciviruses. Tartu, 
2009, 104 p. 

159. Meelis Kadaja. Papillomavirus Replication Machinery Induces Genomic 
Instability in its Host Cell. Tartu, 2009, 126 p. 

160. Pille Hallast. Human and chimpanzee Luteinizing hormone/Chorionic 
Gonadotropin beta (LHB/CGB) gene clusters: diversity and divergence of 
young duplicated genes. Tartu, 2009, 168 p. 

161. Ain Vellak. Spatial and temporal aspects of plant species conservation. 
Tartu, 2009, 86 p. 

162. Triinu Remmel. Body size evolution in insects with different colouration 
strategies: the role of predation risk. Tartu, 2009, 168 p. 

163. Jaana Salujõe. Zooplankton as the indicator of ecological quality and fish 
predation in lake ecosystems. Tartu, 2009, 129 p. 

164. Ele Vahtmäe. Mapping benthic habitat with remote sensing in optically 
complex coastal environments. Tartu, 2009, 109 p.  



116 

165. Liisa Metsamaa. Model-based assessment to improve the use of remote 
sensing in recognition and quantitative mapping of cyanobacteria. Tartu, 
2009, 114 p. 

166. Pille Säälik. The role of endocytosis in the protein transduction by cell-
penetrating peptides. Tartu, 2009, 155 p. 

167. Lauri Peil. Ribosome assembly factors in Escherichia coli. Tartu, 2009,  
147 p. 

168. Lea Hallik. Generality and specificity in light harvesting, carbon gain 
capacity and shade tolerance among plant functional groups. Tartu, 2009, 
99 p. 

169. Mariliis Tark. Mutagenic potential of DNA damage repair and tolerance 
mechanisms under starvation stress. Tartu, 2009, 191 p. 

170. Riinu Rannap. Impacts of habitat loss and restoration on amphibian po-
pulations. Tartu, 2009, 117 p. 

171. Maarja Adojaan. Molecular variation of HIV-1 and the use of this know-
ledge in vaccine development. Tartu, 2009, 95 p. 

172. Signe Altmäe. Genomics and transcriptomics of human induced ovarian 
folliculogenesis. Tartu, 2010, 179 p. 

173. Triin Suvi. Mycorrhizal fungi of native and introduced trees in the 
Seychelles Islands. Tartu, 2010, 107 p. 

174. Velda Lauringson. Role of suspension feeding in a brackish-water coastal 
sea. Tartu, 2010, 123 p. 

175. Eero Talts. Photosynthetic cyclic electron transport – measurement and 
variably proton-coupled mechanism. Tartu, 2010, 121 p.  

176. Mari Nelis. Genetic structure of the Estonian population and genetic 
distance from other populations of European descent. Tartu, 2010, 97 p. 

177. Kaarel Krjutškov. Arrayed Primer Extension-2 as a multiplex PCR-based 
method for nucleic acid variation analysis: method and applications. Tartu, 
2010, 129 p. 

178. Egle Köster. Morphological and genetical variation within species comp-
lexes: Anthyllis vulneraria s. l. and Alchemilla vulgaris (coll.). Tartu, 2010, 
101 p. 

179. Erki Õunap. Systematic studies on the subfamily Sterrhinae (Lepidoptera: 
Geometridae). Tartu, 2010, 111 p.  

180. Merike Jõesaar. Diversity of key catabolic genes at degradation of phenol 
and p-cresol in pseudomonads. Tartu, 2010, 125 p. 

181. Kristjan Herkül. Effects of physical disturbance and habitat-modifying 
species on sediment properties and benthic communities in the northern 
Baltic Sea. Tartu, 2010, 123 p. 

182. Arto Pulk. Studies on bacterial ribosomes by chemical modification 
approaches. Tartu, 2010, 161 p. 

183. Maria Põllupüü. Ecological relations of cladocerans in a brackish-water 
ecosystem. Tartu, 2010, 126 p.  

184. Toomas Silla. Study of the segregation mechanism of the Bovine 
Papillomavirus Type 1. Tartu, 2010, 188 p. 



117 

185. Gyaneshwer Chaubey. The demographic history of India: A perspective 
based on genetic evidence. Tartu, 2010, 184 p. 

186. Katrin Kepp. Genes involved in cardiovascular traits: detection of genetic 
variation in Estonian and Czech populations. Tartu, 2010, 164 p. 

187. Virve Sõber. The role of biotic interactions in plant reproductive per-
formance. Tartu, 2010, 92 p. 

188. Kersti Kangro. The response of phytoplankton community to the changes 
in nutrient loading. Tartu, 2010, 144 p. 

189. Joachim M. Gerhold. Replication and Recombination of mitochondrial 
DNA in Yeast. Tartu, 2010, 120 p. 

190. Helen Tammert. Ecological role of physiological and phylogenetic diver-
sity in aquatic bacterial communities. Tartu, 2010, 140 p. 

191. Elle Rajandu. Factors determining plant and lichen species diversity and 
composition in Estonian Calamagrostis and Hepatica site type forests. 
Tartu, 2010, 123 p. 

192. Paula Ann Kivistik. ColR-ColS signalling system and transposition of 
Tn4652 in the adaptation of Pseudomonas putida. Tartu, 2010, 118 p. 

193. Siim Sõber. Blood pressure genetics: from candidate genes to genome-
wide association studies. Tartu, 2011, 120 p. 

194. Kalle Kipper. Studies on the role of helix 69 of 23S rRNA in the factor-
dependent stages of translation initiation, elongation, and termination. 
Tartu, 2011, 178 p. 

195. Triinu Siibak. Effect of antibiotics on ribosome assembly is indirect. 
Tartu, 2011, 134 p. 

196. Tambet Tõnissoo. Identification and molecular analysis of the role of 
guanine nucleotide exchange factor RIC-8 in mouse development and 
neural function. Tartu, 2011, 110 p. 

197. Helin Räägel. Multiple faces of cell-penetrating peptides – their intra-
cellular trafficking, stability and endosomal escape during protein trans-
duction. Tartu, 2011, 161 p.  

198. Andres Jaanus. Phytoplankton in Estonian coastal waters – variability, 
trends and response to environmental pressures. Tartu, 2011, 157 p. 

199. Tiit Nikopensius. Genetic predisposition to nonsyndromic orofacial clefts. 
Tartu, 2011, 152 p. 

200. Signe Värv. Studies on the mechanisms of RNA polymerase II-dependent 
transcription elongation. Tartu, 2011, 108 p. 

201. Kristjan Välk. Gene expression profiling and genome-wide association 
studies of non-small cell lung cancer. Tartu, 2011, 98 p. 

202. Arno Põllumäe. Spatio-temporal patterns of native and invasive zoo-
plankton species under changing climate and eutrophication conditions. 
Tartu, 2011, 153 p. 

203. Egle Tammeleht. Brown bear (Ursus arctos) population structure, demo-
graphic processes and variations in diet in northern Eurasia. Tartu, 2011, 
143 p.  



118 

205. Teele Jairus. Species composition and host preference among ectomy-
corrhizal fungi in Australian and African ecosystems. Tartu, 2011, 106 p.   

206. Kessy Abarenkov. PlutoF – cloud database and computing services 
supporting biological research. Tartu, 2011, 125 p.  

207. Marina Grigorova. Fine-scale genetic variation of follicle-stimulating 
hormone beta-subunit coding gene (FSHB) and its association with repro-
ductive health. Tartu, 2011, 184 p. 

208. Anu Tiitsaar. The effects of predation risk and habitat history on butterfly 
communities. Tartu, 2011, 97 p. 

209. Elin Sild. Oxidative defences in immunoecological context: validation and 
application of assays for nitric oxide production and oxidative burst in a 
wild passerine. Tartu, 2011, 105 p. 

210. Irja Saar. The taxonomy and phylogeny of the genera Cystoderma and 
Cystodermella (Agaricales, Fungi). Tartu, 2012, 167 p. 

211. Pauli Saag. Natural variation in plumage bacterial assemblages in two 
wild breeding passerines. Tartu, 2012, 113 p. 

212. Aleksei Lulla. Alphaviral nonstructural protease and its polyprotein sub-
strate: arrangements for the perfect marriage. Tartu, 2012, 143 p. 

213. Mari Järve. Different genetic perspectives on human history in Europe 
and the Caucasus: the stories told by uniparental and autosomal markers. 
Tartu, 2012, 119 p. 

214. Ott Scheler. The application of tmRNA as a marker molecule in bacterial 
diagnostics using microarray and biosensor technology. Tartu, 2012, 93 p. 

215. Anna Balikova. Studies on the functions of tumor-associated mucin-like 
leukosialin (CD43) in human cancer cells. Tartu, 2012, 129 p. 

216. Triinu Kõressaar. Improvement of PCR primer design for detection of 
prokaryotic species. Tartu, 2012, 83 p. 

217. Tuul Sepp. Hematological health state indices of greenfinches: sources of 
individual variation and responses to immune system manipulation. Tartu, 
2012, 117 p. 

218.  Rya Ero. Modifier view of the bacterial ribosome. Tartu, 2012, 146 p. 
219. Mohammad Bahram. Biogeography of ectomycorrhizal fungi across dif-

ferent spatial scales. Tartu, 2012, 165 p. 
220. Annely Lorents. Overcoming the plasma membrane barrier: uptake of 

amphipathic cell-penetrating peptides induces influx of calcium ions and 
downstream responses. Tartu, 2012, 113 p. 

221. Katrin Männik. Exploring the genomics of cognitive impairment: whole-
genome SNP genotyping experience in Estonian patients and general 
population. Tartu, 2012, 171 p. 

222. Marko Prous. Taxonomy and phylogeny of the sawfly genus Empria 
(Hymenoptera, Tenthredinidae). Tartu, 2012, 192 p. 

223. Triinu Visnapuu. Levansucrases encoded in the genome of Pseudomonas 
syringae pv. tomato DC3000: heterologous expression, biochemical 
characterization, mutational analysis and spectrum of polymerization pro-
ducts. Tartu, 2012, 160 p. 



119 

224. Nele Tamberg. Studies on Semliki Forest virus replication and patho-
genesis. Tartu, 2012, 109 p. 

225. Tõnu Esko. Novel applications of SNP array data in the analysis of the ge-
netic structure of Europeans and in genetic association studies. Tartu, 
2012, 149 p. 

226. Timo Arula. Ecology of early life-history stages of herring Clupea haren-
gus membras in the northeastern Baltic Sea. Tartu, 2012, 143 p. 

227. Inga Hiiesalu. Belowground plant diversity and coexistence patterns in 
grassland ecosystems. Tartu, 2012, 130 p. 

228. Kadri Koorem. The influence of abiotic and biotic factors on small-scale 
plant community patterns and regeneration in boreonemoral forest. Tartu, 
2012, 114 p.  

229. Liis Andresen. Regulation of virulence in plant-pathogenic pectobacteria. 
Tartu, 2012, 122 p. 

230. Kaupo Kohv. The direct and indirect effects of management on boreal 
forest structure and field layer vegetation. Tartu, 2012, 124 p. 

231. Mart Jüssi. Living on an edge: landlocked seals in changing climate. 
Tartu, 2012, 114 p. 

232. Riina Klais. Phytoplankton trends in the Baltic Sea. Tartu, 2012, 136 p. 
233. Rauno Veeroja. Effects of winter weather, population density and timing 

of reproduction on life-history traits and population dynamics of moose 
(Alces alces) in Estonia. Tartu, 2012, 92 p.  

234. Marju Keis. Brown bear (Ursus arctos) phylogeography in northern Eura-
sia. Tartu, 2013, 142 p.  

235. Sergei Põlme. Biogeography and ecology of alnus- associated ecto-
mycorrhizal fungi – from regional to global scale. Tartu, 2013, 90 p. 

236. Liis Uusküla. Placental gene expression in normal and complicated 
pregnancy. Tartu, 2013, 173 p. 

237. Marko Lõoke. Studies on DNA replication initiation in Saccharomyces 
cerevisiae. Tartu, 2013, 112 p. 

238. Anne Aan. Light- and nitrogen-use and biomass allocation along pro-
ductivity gradients in multilayer plant communities. Tartu, 2013, 127 p.   

239. Heidi Tamm. Comprehending phylogenetic diversity – case studies in 
three groups of ascomycetes. Tartu, 2013, 136 p.  

240. Liina Kangur. High-Pressure Spectroscopy Study of Chromophore-
Binding Hydrogen Bonds in Light-Harvesting Complexes of Photo-
synthetic Bacteria. Tartu, 2013, 150 p.  

241. Margus Leppik. Substrate specificity of the multisite specific pseudo-
uridine synthase RluD. Tartu, 2013, 111 p. 

242. Lauris Kaplinski. The application of oligonucleotide hybridization model 
for PCR and microarray optimization. Tartu, 2013, 103 p. 

243. Merli Pärnoja. Patterns of macrophyte distribution and productivity in 
coastal ecosystems: effect of abiotic and biotic forcing. Tartu, 2013, 155 p. 

244. Tõnu Margus. Distribution and phylogeny of the bacterial translational 
GTPases and the Mqsr/YgiT regulatory system. Tartu, 2013, 126 p. 



120 

245. Pille Mänd. Light use capacity and carbon and nitrogen budget of plants: 
remote assessment and physiological determinants. Tartu, 2013, 128 p.  

246. Mario Plaas. Animal model of Wolfram Syndrome in mice: behavioural, 
biochemical and psychopharmacological characterization. Tartu, 2013,  
144 p.  

247. Georgi Hudjašov. Maps of mitochondrial DNA, Y-chromosome and tyro-
sinase variation in Eurasian and Oceanian populations. Tartu, 2013,  
115 p. 

248.  Mari Lepik. Plasticity to light in herbaceous plants and its importance for 
community structure and diversity. Tartu, 2013, 102 p. 

249. Ede Leppik. Diversity of lichens in semi-natural habitats of Estonia. 
Tartu, 2013, 151 p.  

250. Ülle Saks. Arbuscular mycorrhizal fungal diversity patterns in boreo-
nemoral forest ecosystems. Tartu, 2013, 151 p.  

251.  Eneli Oitmaa. Development of arrayed primer extension microarray 
assays for molecular diagnostic applications. Tartu, 2013, 147 p. 

252. Jekaterina Jutkina. The horizontal gene pool for aromatics degradation: 
bacterial catabolic plasmids of the Baltic Sea aquatic system. Tartu, 2013, 
121 p. 

253. Helen Vellau. Reaction norms for size and age at maturity in insects: rules 
and exceptions. Tartu, 2014, 132 p.  

254. Randel Kreitsberg. Using biomarkers in assessment of environmental 
contamination in fish – new perspectives. Tartu, 2014, 107 p.  

255. Krista Takkis. Changes in plant species richness and population per-
formance in response to habitat loss and fragmentation.Tartu, 2014, 141 p. 

256. Liina Nagirnaja. Global and fine-scale genetic determinants of recurrent 
pregnancy loss. Tartu, 2014, 211 p.  

257. Triin Triisberg. Factors influencing the re-vegetation of abandoned 
extracted peatlands in Estonia. Tartu, 2014, 133 p. 

258. Villu Soon. A phylogenetic revision of the Chrysis ignita species group 
(Hymenoptera: Chrysididae) with emphasis on the northern European 
fauna. Tartu, 2014, 211 p. 

259. Andrei Nikonov. RNA-Dependent RNA Polymerase Activity as a Basis 
for the Detection of Positive-Strand RNA Viruses by Vertebrate Host 
Cells. Tartu, 2014, 207 p. 

260. Eele Õunapuu-Pikas. Spatio-temporal variability of leaf hydraulic con-
ductance in woody plants: ecophysiological consequences. Tartu, 2014, 
135 p.  

261. Marju Männiste. Physiological ecology of greenfinches: information con-
tent of feathers in relation to immune function and behavior. Tartu, 2014, 
121 p. 

262. Katre Kets. Effects of elevated concentrations of CO2 and O3 on leaf photo-
synthetic parameters in Populus tremuloides: diurnal, seasonal and inter-
annual patterns. Tartu, 2014, 115 p. 



121 

263. Külli Lokko. Seasonal and spatial variability of zoopsammon commu-
nities in relation to environmental parameters. Tartu, 2014, 129 p.  

264. Olga Žilina. Chromosomal microarray analysis as diagnostic tool: Esto-
nian experience. Tartu, 2014, 152 p.  

265. Kertu Lõhmus. Colonisation ecology of forest-dwelling vascular plants 
and the conservation value of rural manor parks. Tartu, 2014, 111 p. 

266. Anu Aun. Mitochondria as integral modulators of cellular signaling. Tartu, 
2014, 167 p.  

267. Chandana Basu Mallick. Genetics of adaptive traits and gender-specific 
demographic processes in South Asian populations. Tartu, 2014, 160 p. 

268.  Riin Tamme. The relationship between small-scale environmental hetero-
geneity and plant species diversity. Tartu, 2014, 130 p. 

269. Liina Remm. Impacts of forest drainage on biodiversity and habitat qua-
lity: implications for sustainable management and conservation. Tartu, 
2015, 126 p.  

270. Tiina Talve. Genetic diversity and taxonomy within the genus Rhinanthus. 
Tartu, 2015, 106 p. 

271. Mehis Rohtla. Otolith sclerochronological studies on migrations, spawning 
habitat preferences and age of freshwater fishes inhabiting the Baltic Sea. 
Tartu, 2015, 137 p. 

272. Alexey Reshchikov. The world fauna of the genus Lathrolestes (Hyme-
noptera, Ichneumonidae). Tartu, 2015, 247 p. 

273. Martin Pook. Studies on artificial and extracellular matrix protein-rich 
surfaces as regulators of cell growth and differentiation. Tartu, 2015, 142 p. 

274. Mai Kukumägi. Factors affecting soil respiration and its components in 
silver birch and Norway spruce stands. Tartu, 2015, 155 p. 

275. Helen Karu. Development of ecosystems under human activity in the 
North-East Estonian industrial region: forests on post-mining sites and 
bogs. Tartu, 2015, 152 p. 

276. Hedi Peterson. Exploiting high-throughput data for establishing relation-
ships between genes. Tartu, 2015, 186 p. 

277.  Priit Adler. Analysis and visualisation of large scale microarray data, 
Tartu, 2015, 126 p.  

278.  Aigar Niglas. Effects of environmental factors on gas exchange in deci-
duous trees: focus on photosynthetic water-use efficiency. Tartu, 2015, 
152 p.  

279. Silja Laht. Classification and identification of conopeptides using profile 
hidden Markov models and position-specific scoring matrices. Tartu, 2015, 
100 p. 

280.  Martin Kesler. Biological characteristics and restoration of Atlantic 
salmon Salmo salar populations in the Rivers of Northern Estonia. Tartu, 
2015, 97 p. 

281. Pratyush Kumar Das. Biochemical perspective on alphaviral nonstruc-
tural protein 2: a tale from multiple domains to enzymatic profiling. Tartu, 
2015, 205 p 



122 

282.  Priit Palta. Computational methods for DNA copy number detection. 
Tartu, 2015, 130 p.  

283. Julia Sidorenko. Combating DNA damage and maintenance of genome 
integrity in pseudomonads. Tartu, 2015, 174  p.  

284.  Anastasiia Kovtun-Kante. Charophytes of Estonian inland and coastal 
waters: distribution and environmental preferences. Tartu, 2015, 97 p. 

285. Ly Lindman. The ecology of protected butterfly species in Estonia. Tartu, 
2015, 171 p. 

286. Jaanis Lodjak. Association of Insulin-like Growth Factor I and Corti-
costerone with Nestling Growth and Fledging Success in Wild Passerines. 
Tartu, 2016, 113 p.  

287.  Ann Kraut. Conservation of Wood-Inhabiting Biodiversity – Semi-Natural 
Forests as an Opportunity. Tartu, 2016, 141 p. 

288. Tiit Örd. Functions and regulation of the mammalian pseudokinase TRIB3. 
Tartu, 2016, 182. p. 

289. Kairi Käiro. Biological Quality According to Macroinvertebrates in 
Streams of Estonia (Baltic Ecoregion of Europe): Effects of Human-induced 
Hydromorphological Changes. Tartu, 2016, 126 p. 

290.  Leidi Laurimaa. Echinococcus multilocularis and other zoonotic parasites 
in Estonian canids. Tartu, 2016, 144 p. 

291. Helerin Margus. Characterization of cell-penetrating peptide/nucleic acid 
nanocomplexes and their cell-entry mechanisms. Tartu, 2016, 173 p. 

292. Kadri Runnel. Fungal targets and tools for forest conservation. Tartu, 
2016, 157 p.  

293. Urmo Võsa. MicroRNAs in disease and health: aberrant regulation in lung 
cancer and association with genomic variation. Tartu, 2016, 163 p.  

294.  Kristina Mäemets-Allas. Studies on cell growth promoting AKT signa-
ling pathway – a promising anti-cancer drug target. Tartu, 2016, 146 p. 

295. Janeli Viil. Studies on cellular and molecular mechanisms that drive 
normal and regenerative processes in the liver and pathological processes 
in Dupuytren’s contracture. Tartu, 2016, 175 p. 

296. Ene Kook. Genetic diversity and evolution of Pulmonaria angustifolia L. 
and Myosotis laxa sensu lato (Boraginaceae). Tartu, 2016, 106 p. 

297. Kadri Peil. RNA polymerase II-dependent transcription elongation in 
Saccharomyces cerevisiae. Tartu, 2016, 113 p.  

298. Katrin Ruisu. The role of RIC8A in mouse development and its function 
in cell-matrix adhesion and actin cytoskeletal organisation. Tartu, 2016, 
129 p.   

299. Janely Pae. Translocation of cell-penetrating peptides across biological 
membranes and interactions with plasma membrane constituents. Tartu, 
2016, 126 p.   

300. Argo Ronk. Plant diversity patterns across Europe: observed and dark 
diversity. Tartu, 2016, 153 p. 



123 

301. Kristiina Mark. Diversification and species delimitation of lichenized 
fungi in selected groups of the family Parmeliaceae (Ascomycota). Tartu, 
2016, 181 p. 

302. Jaak-Albert Metsoja. Vegetation dynamics in floodplain meadows: 
influence of mowing and sediment application. Tartu, 2016, 140 p. 

303. Hedvig Tamman. The GraTA toxin-antitoxin system of Pseudomonas 
putida: regulation and role in stress tolerance. Tartu, 2016, 154 p. 

304. Kadri Pärtel. Application of ultrastructural and molecular data in the 
taxonomy of helotialean fungi. Tartu, 2016, 183 p. 

305. Maris Hindrikson. Grey wolf (Canis lupus) populations in Estonia and 
Europe: genetic diversity, population structure and -processes, and hybridi-
zation between wolves and dogs. Tartu, 2016, 121 p. 

306. Polina Degtjarenko. Impacts of alkaline dust pollution on biodiversity of 
plants and lichens: from communities to genetic diversity. Tartu, 2016,  
126 p. 

307.  Liina Pajusalu. The effect of CO2 enrichment on net photosynthesis of 
macrophytes in a brackish water environment. Tartu, 2016, 126 p.  

308. Stoyan Tankov. Random walks in the stringent response. Tartu, 2016,  
94 p. 

309.  Liis Leitsalu. Communicating genomic research results to population-
based biobank participants. Tartu, 2016, 158 p. 

310. Richard Meitern. Redox physiology of wild birds: validation and appli-
cation of techniques for detecting oxidative stress. Tartu, 2016, 134 p. 

311. Kaie Lokk. Comparative genome-wide DNA methylation studies of healthy 
human tissues and non-small cell lung cancer tissue. Tartu, 2016, 127 p. 

312. Mihhail Kurašin. Processivity of cellulases and chitinases. Tartu, 2017, 
132 p. 

313. Carmen Tali. Scavenger receptors as a target for nucleic acid delivery 
with peptide vectors. Tartu, 2017, 155 p. 

314. Katarina Oganjan. Distribution, feeding and habitat of benthic sus-
pension feeders in a shallow coastal sea. Tartu, 2017, 132 p. 

315.  Taavi Paal. Immigration limitation of forest plants into wooded landscape 
corridors. Tartu, 2017, 145 p.  

316. Kadri Õunap. The Williams-Beuren syndrome chromosome region protein 
WBSCR22 is a ribosome biogenesis factor. Tartu, 2017, 135 p. 

317.  Riin Tamm. In-depth analysis of factors affecting variability in thiopurine 
methyltransferase activity. Tartu, 2017, 170 p. 

318.  Keiu Kask. The role of RIC8A in the development and regulation of mouse 
nervous system. Tartu, 2017, 184 p. 

319.  Tiia Möller.  Mapping and modelling of the spatial distribution of benthic 
macrovegetation in the NE Baltic Sea with a special focus on the eelgrass 
Zostera marina Linnaeus, 1753. Tartu, 2017, 162 p. 

320. Silva Kasela. Genetic regulation of gene expression: detection of tissue- 
and cell type-specific effects. Tartu, 2017, 150 p. 



321. Karmen Süld. Food habits, parasites and space use of the raccoon dog 
Nyctereutes procyonoides: the role of an alien species as a predator and 
vector of zoonotic diseases in Estonia. Tartu, 2017, p. 

322. Ragne Oja. Consequences of supplementary feeding of wild boar – concern 
for ground-nesting birds and endoparasite infection. Tartu, 2017, 141 p. 

323. Riin Kont. The acquisition of cellulose chain by a processive cellobio-
hydrolase. Tartu, 2017, 117 p. 

324. Liis Kasari. Plant diversity of semi-natural grasslands: drivers, current 
status and conservation challenges. Tartu, 2017, 141 p. 

325. Sirgi Saar. Belowground interactions: the roles of plant genetic related-
ness, root exudation and soil legacies. Tartu, 2017, 113 p. 

326. Sten Anslan. Molecular identification of Collembola and their fungal 
associates. Tartu, 2017, 125 p. 

327. Imre Taal. Causes of variation in littoral fish communities of the Eastern 
Baltic Sea: from community structure to individual life histories. Tartu, 
2017, 118 p. 

328. Jürgen Jalak. Dissecting the Mechanism of Enzymatic Degradation of 
Cellulose Using Low Molecular Weight Model Substrates. Tartu, 2017,  
137 p. 

329.  Kairi Kiik. Reproduction and behaviour of the endangered European mink 
(Mustela lutreola) in captivity. Tartu, 2018, 112 p. 

330. Ivan Kuprijanov. Habitat use and trophic interactions of native and 
invasive predatory macroinvertebrates in the northern Baltic Sea. Tartu, 
2018,  117 p. 

331.  Hendrik Meister. Evolutionary ecology of insect growth: from geo-
graphic patterns to biochemical trade-offs. Tartu, 2018, 147 p. 

332.  Ilja Gaidutšik. Irc3 is a mitochondrial branch migration enzyme in 
Saccharomyces cerevisiae. Tartu, 2018, 161 p. 

333. Lena Neuenkamp. The dynamics of plant and arbuscular mycorrhizal 
fungal communities in grasslands under changing land use. Tartu, 2018, 
241 p. 

334. Laura Kasak. Genome structural variation modulating the placenta and 
pregnancy maintenance. Tartu, 2018, 181 p. 

335.  Kersti Riibak. Importance of dispersal limitation in determining dark 
diversity of plants across spatial scales. Tartu, 2018, 133 p. 

336.  Liina Saar. Dynamics of grassland plant diversity in changing landscapes. 
Tartu, 2018,  206 p. 

337.  Hanna Ainelo. Fis regulates Pseudomonas putida biofilm formation by 
controlling the expression of lapA. Tartu, 2018, 143 p. 

338.  Natalia Pervjakova. Genomic imprinting in complex traits. Tartu, 2018, 
176 p. 


	I Moor et al 2014.pdf
	Table 1
	Fig 1
	Fig 2
	Table 2
	Fig 3
	Fig 4
	Fig 5
	Fig 6
	Reference 1
	Reference 2
	Reference 3
	Reference 4
	Reference 5
	Reference 6
	Reference 7
	Reference 8
	Reference 9
	Reference 10
	Reference 11
	Reference 12
	Reference 13
	Reference 14
	Reference 15
	Reference 16
	Reference 17
	Reference 18
	Reference 19
	Reference 20
	Reference 21
	Reference 22
	Reference 23
	Reference 24
	Reference 26
	Reference 27
	Reference 28
	Reference 29
	Reference 30
	Reference 31
	Reference 32
	Reference 33
	Reference 34
	Reference 35
	Reference 36
	Reference 37
	Reference 38
	Reference 39
	Reference 40
	Reference 41
	Reference 42
	Reference 43
	Reference 44
	Reference 45
	Reference 46
	Reference 47
	Reference 48
	Reference 49
	Reference 50
	Reference 51
	Reference 52
	Reference 53
	Reference 54
	Reference 55
	Reference 56
	Reference 57
	Reference 58
	Reference 59
	Reference 60
	Reference 61
	Reference 62
	Reference 63
	Reference 64
	Reference 65
	Reference 66
	Reference 67
	Reference 68
	Reference 69
	Reference 70
	Reference 71
	Reference 72
	Reference 73
	Reference 74
	Reference 75
	Reference 76
	Reference 77
	Reference 78
	Reference 79
	Reference 80

	II Lahesaare et al 2014.pdf
	Section_1
	Section_2
	Section_3
	Section_4
	Section_5
	Section_6
	TABLE_1
	Figure 1
	Section_7
	Section_8
	Section_9
	Section_10
	Section_11
	Section_12
	Section_13
	Figure 2
	Figure 3
	Section_14
	Reference 1
	Reference 2
	Reference 3
	Reference 4
	Reference 5
	Reference 6
	Reference 7
	Reference 8
	Reference 9
	Reference 10
	Reference 11
	Reference 12
	Reference 13
	Reference 14
	Reference 15
	Reference 16
	Reference 17
	Reference 18
	Reference 19
	Reference 20
	Reference 21
	Reference 22
	Reference 23
	Reference 24
	Reference 25
	Reference 26
	Reference 27
	Reference 28
	Reference 29
	Reference 30
	Reference 31
	Reference 32
	Reference 33
	Reference 34
	Reference 35
	Reference 36
	Reference 37
	Reference 38
	Reference 39
	Reference 40
	Reference 41




