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INTRODUCTION 
The human genome contains ca. 20,000 protein coding genes and up to 150 of 
them are validated or are suspected to be imprinted. The process of imprinting 
itself was discovered nearly 30 years ago and for a long time it was suggested as 
a unique mechanism that causes the differences in expression depending on 
allelic origin. Being established in the germline, genomic imprinting was 
thought to be stable and constant within an organism. Later, single evidences 
from different animal and human studies have demonstrated that the expression 
of imprinted genes may depend on the specific tissue and the developmental 
stage of an organism. Moreover, specific epigenomic effects, such as maternal 
genetic effects, were found to mimic genomic imprinting. Also, recent studies 
have demonstrated the overall tendency that expression dependent on parental 
alleles is much more widespread than previously thought. It all lead to com-
bining genomic imprinting and other allele-specific effects into the one group of 
effects called parent-of-origin effects becoming a good practise for the re-
searchers nowadays.   

In this thesis, specifically in the literature overview, I will focus mainly on 
the process of genomic imprinting. Specifically, I will provide an overview of 
the topics that are most relevant to the occurrence of tissue-specificity and the 
non-ubiquitous distribution of imprinted expression across an organism. Also, 
in the literature review, I will present the evidence for the plasticity and dyna-
mics of genomic imprinting. It is important to note that most of the examples 
come from mouse studies, although my preference is for examples that are from 
genes for which imprinted expression is conserved between mouse and human 
genomes.  

The experimental part of this thesis consists of two sections that address the 
tissue-specific imprinting question and effect of imprinted genes on complex 
traits. To test the hypotheses raised in this study we used different datasets, in-
cluding the genome-wide association analysis data from international consortia 
and a panel of post-mortem tissues from donors. Interestingly, at the time of 
publishing the first paper related to the occurrence of tissue-specificity in im-
printed genes, we didn’t have enough data to confirm our hypotheses that would 
explain imprinted expression based on the methylation pattern of the germline 
DMR. One year later, by the time of writing, several studies performed by in-
dependent groups confirmed our earlier hypothesis, making a tremendous im-
pact in this area. With the help of these studies I obtained a vision of this 
process, which I present in the literature overview.   

Exploring the second hypothesis of how imprinted genes modulate the 
complex traits, you may find that I am only in the beginning of this path. My 
thesis is predominated by experiments that resulted in discoveries of associa-
tions between imprinted genes and complex traits, such as age at menarche, 
BMI and blood metabolites. These analyses are very important in the light of 
the further research, where imprinted genes should be examined for the actual 
expression in tissues related to the specific phenotype and their gene dosage 
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effect should be studied more closely. I personally feel that the question of how 
tissue-specificity arises in the human genome is still a terra incognita, and 
future research is required to provide a deeper understanding of the establish-
ment and regulation of imprinted genes throughout the entirety of the human 
life.  
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1. REVIEW OF THE LITERATURE 

1.1. Parent-of-origin effects 
Parent-of-origin effects (POEs) comprise a group of epigenetic phenomena mo-
dulating or affecting different complex traits such as pre- and postnatal develop-
ment, survival and growth of an organism, cognitive abilities, metabolic pro-
cesses, and several human diseases and other complex traits. Specifically, POEs 
refer to a phenomenon in which the gene expression pattern depends on the 
parental allelic origin, caused by a difference in the methylation state of the two 
alleles (Lawson et al., 2013; Reik and Walter, 2001). POEs are caused by 
several different mechanisms that, in the end, have a similar phenotypic out-
come, which is reflected in altered gene expression, thereby making it chal-
lenging to uncover the process behind. Nevertheless such effects may be con-
sidered as an evolutionary driving mechanism of human genome organisation 
allowing regulation of gene dosage at specific moments of development, 
growing and aging (Mohammad et al., 2010; Peters, 2014; Prickett and Oakey, 
2012).  

The process of genomic imprinting can be viewed as a main cause for 
parent-of-origin effects. It is mainly associated with achieving the non-equal 
influence of parental genomes to the offspring (Reik and Walter, 2001). Geno-
mic imprinting is first established in the germline, and results in mainly mono-
allelic gene expression according to the parental origin of the alleles (Li and 
Sasaki, 2011). It is the process that has been widely observed in analyses of 
complex traits, when the effect of epigenetic variation on the genetic archi-
tecture of particular phenotypes is explored. The process of genomic imprinting 
in mammals was discovered nearly 30 years ago in a series of nuclear trans-
plantation experiments (Surani et al., 1984). During these experiments, mouse 
uniparental embryos that had only one out of the two sets of parental chromo-
somes were created. In parallel, an additional mouse model was designed to 
have uniparental disomies, which means that they inherited specific chromo-
somes from one of the parents. Both experiments clearly demonstrated that the 
function of certain genes depends on parental origin, and molecular errors in 
such inheritance are associated with variety of processes (Surani et al., 1984). 
Uniparental inheritance of these regions, later referred to as imprinted, revealed 
the importance of this process in pre- and postnatal development, including 
growth and ability to survive in the first hours after birth, behaviour, maternal 
care, metabolic processes and many others (Peters, 2014). 

Parent-of-origin effects are often considered as being equivalent to the 
process of genomic imprinting. However, there are other phenomena that can 
cause the appearance of such effects. Even if we only concentrate attention on 
these two processes, and admit their synonymy, continuing active study of 
genomic imprinting brings more novel evidence that goes against the initial 
viewpoint of uniformity of this process, and points, instead, to a more complex 
structure of POEs (Peters, 2014). Recently discovered diverse allelic effects 
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found in in neonatal brain that cause mosaics of mutant and wild-type cell for 
heterozygotes may easily lead to the appearance of POE-like phenotypic out-
comes (Huang et al., 2017). The other type of POEs may arise due to diffe-
rential rates of mutational transmission, which lead to a higher likelihood of 
disease-associated mutation transmission from one parent to the offspring, as 
demonstrated in myotonic dystrophy type-1 disorder (Pearson, 2003; Tomé et 
al., 2011). Additional examples include exclusively transmitted genetic factors, 
such as mitochondrial DNA or the Y chromosome, and biased transmissions 
associated with meiosis onset and de novo germline genomic rearrangement 
(Kelsey and Feil, 2013a).  

Maternal genetic effects are another category of POEs that often disguise as 
genomic imprinting. Maternal genetic effects are the mother’s genetically 
mediated phenotype influences on the phenotype of the offspring via maternally 
provided environmental factors, and such effects may extend beyond the direct 
inheritance of alleles (Hager et al., 2008; Svensson et al., 2009). Non-human 
studies clearly demonstrate mimicry of the maternal genetic effects that produce 
the same patterns of phenotypic variation expected from an imprinting (Svens-
son et al., 2009). Mice studies demonstrated that the appearance of maternal 
effects in a heterozygous knock-out mouse model of anxiety, where hetero-
zygous serotonin A1 receptor, Htr1a, mothers gave birth to offspring that did 
not inherit the mutation themselves, but presented an anxiety-like phenotype 
(Gleason et al., 2010). Similar paternal genetic effects are also expected to exist, 
but are assumed to be much less influential to the offspring, as the father does 
not provide such a strong environmental influence to the offspring.  

Taken together, parent-of-origin effects are much more widespread than 
predicted by early studies. Considering parent-of-origin effects as a set of 
several processes that may arise due to different evolutionary processes, but 
have a similar phenotypic outcome at the expression level, would be the best 
strategy for a researcher who aims to catalogue and categorise the parent-of-
origin effects.  

In my thesis, I will focus only on one part of this huge phenomenon – on the 
process of genomic imprinting. Specifically, I will provide an overview of the 
topics that are most relevant to the occurrence of tissue-specificity and the non-
ubiquitous distribution of imprinted expression across an organism. Also, in the 
literature review, I will present the evidence for the plasticity and dynamics of 
genomic imprinting. It is important to note that most of the examples come 
from mouse studies, although my preference is for examples that are from genes 
for which imprinted expression is conserved between mouse and human geno-
mes. I personally feel that the question of how tissue-specificity arises in the 
human genome is still a terra incognita, and future research is required to 
provide a deeper understanding of the establishment and regulation of imprinted 
genes throughout the entirety of the human lifespan.  
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1.2. Features of genomic imprinting 
Imprinted genes have several features that distinguish them from the genes with 
biallelic expression. One of the unique features of imprinted genes is the ability 
of the transcriptional machinery of a cell to enable the expression that is clearly 
denoted as paternal or maternal. Moreover, the mechanism of exclusive expres-
sion from one of the homologs is constant, and repeats after each division of a 
cell. Therefore, the process regulating imprinted expression has at least four 
properties: i) imprinted genes and their regulative sequences have a clear signal 
affecting the transcriptomic pathway by activating or repressing it; ii) an epi-
genetic signal is heritable in somatic lineage, allowing daughter cells to transmit 
the information regarding the parental origin of chromosomes; iii) an epigenetic 
signal is established in a period when maternal and paternal copies of DNA are 
clearly divided, i.e., during gametogenesis and shortly after post-fertilization; 
and iv) an epigenetic signal is erasable, allowing a new signal to be established, 
i.e., the maternally inherited signal is lost during spermatogenesis to mark 
contributing maternal DNA as paternal (Bartolomei and Ferguson-Smith, 2011). 
Taken together, genomic imprinting maintains the complex mechanism of es-
tablishment and cleavage of epigenetic marks that are tightly regulated and are 
necessary for this biological phenomenon. 

Studies in mice demonstrated that nearly 80% of imprinted genes are located 
in clusters that contain between 2 and 15 genes, and vary in size from >100 kb 
to several megabases. To date, most of the clusters are described in the mouse 
genome, while orthologue clusters share the similar regulation arrangement 
between mice and humans (MouseBook Imprinting Catalogue). This clustered 
organization allows cis-regulation of monoallelic expression of an entire cluster 
via imprinting control regions (ICRs) (Barlow, 2011). These regions have been 
validated in a series of mouse knock-out experiments, and have been shown to 
occur in human epigenetic diseases, revealing the unique contribution of the 
respective genes (Chotalia et al., 2009; Sanz et al., 2008). In some studies, the 
equivalence of an ICR to a differentially methylated region (DMR) – the CpG 
rich region that exhibits parent-specific DNA methylation (Kelsey and Feil, 
2013a) – can be seen, while other studies identify ICR as a combination of 
several DMRs (Prickett and Oakey, 2012). I would also favour the idea that ICR 
is the primary DMR established during germline development (gDMR), while 
an ICR itself may also harbour more secondary differentially methylated 
regions, also called somatic DMRs (sDMRs). Somatic DMRs are under the 
hierarchical influence of gDMR (Coombes et al., 2003; Kagami et al., 2010; 
Lopes et al., 2003; Sanchez-Delgado et al., 2016) for which methylation 
acquired after fertilisation (Dent and Isles, 2014). It is always important to note 
the origin of DMRs located within a cluster as their functional consequence can 
differ drastically. For example, some DMRs are established at early stage of 
parental germ cells and maintain imprinted status in all developmental stages 
and tissues of an embryo (Court et al., 2014a). Other DMRs, in contrast, 
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demonstrate multiple changes in their methylation pattern, which is associated 
with appearance of tissue-specific imprinted expression (Dent and Isles, 2014).  
 
 

1.3. Three major phases in life cycle  
of genomic imprinting 

The cycle consists of three major phases: i) establishment that takes place 
during gametogenesis; ii) maintenance after the fertilization process; and iii) 
erasure that occurs again in the germline, but already of a next generation orga-
nism (Figure 1). The last step is followed by establishment, thereby completing 
the cycle (Li and Sasaki, 2011). 
 
 

1.3.1. Establishment of imprinting 

It has been long hypothesized that imprints are established solely in the germ-
line, as this is the time when two genomes are separated and allocated in the 
cell-specific environment (Reik and Dean, 2001). However it is also possible 
that some imprints are established later, during de novo demethylation, which 
takes place immediately after fertilization (Messerschmidt et al., 2014; Robert-
son et al., 1999). Overall, male and female establishment in germline occurs in 
completely different ways, resulting in distinct methylation profiles of a mature 
oocyte and sperm (Figure 1). Indeed, recent genome-wide methylation studies 
revealed a substantial difference in the pattern of two parental DNA molecules. 
In the male germline, the process of establishment starts in the prenatal 
mitotically arrested (G1/G0) prospermatogonia cells, after mouse embryonic 
day 14.5 (E14.5), with progressive de novo methylation (Davis et al., 2000; 
Kato et al., 2007; Kelsey and Feil, 2013a; Ueda et al., 2000). Later, the imprints 
will be fully established during the neonatal stage (Kelsey and Feil, 2013a). In 
contrast, female germline de novo DNA methylation occurs asynchronously 
during the postnatal oocyte growth phase of meiotic prophase I. The maternal 
imprints will already be fully established by the mature oocyte stage.  Es-
tablished imprints in the germline are next transmitted to the fertilized cell and 
maintained through the pre- and postnatal development (Davis et al., 2000; 
Kelsey and Feil, 2013a; Li and Sasaki, 2011; Ueda et al., 2000).  
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The most important question in this stage is how parental alleles are marked with 
their parental origin. The mechanism of recognition of parent-specific regions is 
also important to understand how tissue-specificity may arise. The main research 
focus has shifted to ICRs – key regulatory elements in controlling an entire cluster 
of imprinted genes, although other strategies have also been proposed. As men-
tioned above, ICR encompasses at least one DMR established in the germline 
(Court et al., 2014a; Prickett and Oakey, 2012). DMRs that are maintained 
throughout development are referred to as germline or primary DMRs (gDMR), 
whereas others that activate in later stages of cell development are called somatic 
or secondary DMRs (sDMR) (Court et al., 2014a; Prickett and Oakey, 2012). 
Imprinting control regions were proposed as the first target of recognition by 
methylation machinery, as knock-out methods have demonstrated that loss of 
such regions causes further inability to establish an imprinted pattern for multiple 
genes (Bartolomei and Ferguson-Smith, 2011). Several studies of primordial 
germ cells (PGCs) have demonstrated that the biased timing of establishing 
genomic imprints begins with the ICRs (Cantão et al., 2017; Kelsey and Feil, 
2013b; von Meyenn and Reik, 2015). Most ICRs are methylated on the maternal 
allele (Bourc’his et al., 2001; Kaneda et al., 2004; Li and Sasaki, 2011; Prickett 
and Oakey, 2012). To date, it is known that maternally methylated regions use the 
tetrameric complex that consists of the de novo DNA methyltransferase 
DNMT3A and its stimulatory protein DNMT3L (Aapola et al., 2000; Hata et al., 
2002; Kaneda et al., 2004; Kato et al., 2007). This complex methylates prefe-
rentially CpG sequences, which are 8–10 base pairs apart, are specific for 
maternally, but not paternally methylated loci (Ferguson-Smith and Greally, 
2007). Another proposed strategy comprises of a cascade of oocyte-specific 
transcription across ICRs, followed by establishment or maintenance of open 
chromatin domains that are required for further establishment of DNA methy-
lation. The study performed by Chotalia et al., demonstrated that the transcrip-
tional machinery is directing the DNA methylation and not vise versa (Chotalia et 
al., 2009). Establishment of the imprinting of genes is a complex process that is 
yet to be described, although it is clear that this process includes many factors 
such as CpG spacing, variable timing of establishment, post-translational histone 
modifications and oocyte-specific timed transcription.  
 

 
1.3.2. Maintenance of imprinting 

After imprints are set, they begin to function via appropriate monoallelic 
expression that is maintained throughout the development of an organism. The 
first challenge that DMRs and imprints meet, at this stage, is genome-wide epi-
genetic reprogramming, where DNA methylation and chromatin modifications 
are erased and then reset (Figure 1). The demethylation process, itself, is also 
genome-specific and occurs both by active and by passive mechanisms. Passive 
demethylation is a result of DNMT1 inhibition during the cell proliferation 
process (Hassan et al., 2017; Wu and Zhang, 2010). In contrast, active deme-
thylation is a replication independent process where TET proteins transform  
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5-hydrozymethylcytosine (5hmC) into 5-formylcytosine (5fC) and 5-carbo-
xylcytosine (5caC) (Ito et al., 2011; Wu and Zhang, 2017). TET proteins are 
also known to be part of TET-TDG pathway, where thymine DNA glycosylase 
(TDG) in the process of base excision repair mediates conversion of 5caC back 
to the C nucleotide (Wu and Zhang, 2017). The paternal DNA copy is actively 
demethylated for a few hours after birth, whereas the maternal copy is largely 
demethylated passively (Shen et al., 2014). At this step, both genomes are 
allocated in one cell, so that all DMRs on the maternal strand should be pro-
tected from any unexpected wave of active demethylation triggered by chro-
matin remodelling of paternal genome (Kelsey and Feil, 2013a; Li and Sasaki, 
2011).  

Interestingly, many CpG-rich sequences become DNA-methylated in oocyte 
and sperm, but only a fraction of them survive at early stages of development 
(Bartolomei and Ferguson-Smith, 2011; Kelsey and Feil, 2013a; Wu and Zhang, 
2017). Therefore, the hypothesis of a selection process in pre-implantation 
embryos that specifically protects gDMRs from the demethylation is currently 
an active area of research. Such models include a combination of genetic factors 
that are not imprinted themselves, but provide the appropriate environment. One 
example is ZFP57 – a KRAB zinc finger protein, which is critical for DNA 
methylation maintenance (Abrink et al., 2001; Friedman et al., 1996). Li and his 
colleagues, in the setting of maternal and zygotic knock-out Zfp57 experiments 
in mice, observed embryonic lethality and complete loss of methylation in 
numerous imprinted loci (Li et al., 2008). The follow-up of this study confirmed 
the loss of methylation in murine Snrpn, Peg3, Zac1, Nespas, and H19 DMRs 
(Takahashi et al., 2016). It is also important to note that other studies have 
demonstrated conservation in the role of ZFP57 in maintenance of DNA methy-
lation between mice and humans (Amarasekera et al., 2014; Riso et al., 2016). 
Therefore, maintenance should be viewed as a hugely complex process 
associated with the cell biology of the maturing oocyte. One of the interesting 
findings is that hormone-induced superovulation also affects proper DNA main-
tenance at both maternal and paternal gDMRs, whereas chromatin organisation 
was also suggested to play a role in aberration of proteins in an oocyte (Fauque 
et al., 2007; Market-Velker et al., 2009). Taken together, the process of the 
maintenance is still not fully understood, but future research of these issues 
could explain the connection of the evolution of maintenance factors and their 
involvement in genomic imprinting. 

 
 

1.3.3. Erasure of imprinting 

The start of the erasure process is associated with specification of primordial 
germ cells from epiblast cells. Erasure of genomic imprints occurs together with 
global DNA demethylation and chromatin reorganisation, which ultimately 
leads to the generation of totipotency (Breindel et al., 2017; Hajkova et al., 
2010; von Meyenn and Reik, 2015). Three parallel independent studies pub-
lished in 2015 revealed a remarkable conservation of global methylation erasure 
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between mice and human genomes (Gkountela et al., 2015; Guo et al., 2015; 
Tang et al., 2015). Despite the suggested fundamental conservation of the era-
sure process, some methylation measurements and timelines varied between 
studies. On one hand, such differences can indicate batch effects caused by 
difficulties in isolating human cells and different protocols used in the study. On 
the other hand, it may point to the existence of a biological background of the 
process (von Meyenn and Reik, 2015). The most important differences were 
noted for the erasure time point of ICRs. Compared to mice, human ICRs 
appeared to have an earlier erasure that occurs before genital ridge colonisation 
(Tang et al., 2015), which may contribute to subsequent differences in im-
printed patterns among species.  

The process of erasure is also complex, although it is thought to be similar 
for male and female genomes (Figure 1). One of the mechanisms detected in 
PGCs, which is associated with loss of methylation, is activation-induced 
cytidine deaminase (AID) – a molecule that can catalyse modification of 5mC, 
leading indirectly to removal of methylation (Morgan et al., 2004; Popp et al., 
2010). The idea behind the function of this enzyme, coded by the human 
AICDA gene, is in deamination of 5-methylcytosine (5mC) base followed by 
conversion into thymidine (T). As a result, T-G mismatches are recognized by 
the DNA repair mechanism, whereas thymidine is replaced by an adenine 
nucleotide and thus methylation cannot be restored at this position (Morgan et 
al., 2004). The AID enzyme has been demonstrated to act in both global 
demethylation and imprinted locus-specific demethylation of ICRs, i.e. mouse 
H19 and Kcnq1ot loci (Popp et al., 2010). It is worth noting that the AID system 
is widely used in a variety of processes, such as B cell differentiation, mRNA 
processing, and negative regulation of methylation-dependent chromatin 
silencing – therefore future research might uncover new mechanisms of how 
AID enzymes mediate the demethylation in PGCs. Additionally, the evidence 
that AID-deficient PGCs are still able to continue the process of demethylation 
points to a more complex structure of this process.  

Another strategy of demethylation has also been suggested through the con-
version of 5mC to 5-hydroxymethylcytosine (5hmC) mediated by the trans-
location family proteins (TET), for which significantly increased expression 
was detected at mouse E11.5 and E12.5, when the imprinted DMRs undergo 
demethylation. Specifically, Tet1 plays a critical role in the process of erasure, 
where lack of Tet1 product results in placental, fetal and post-natal defects 
provided by dysregulation of imprinted Peg3 and Peg10 (Yamaguchi et al., 
2013). Another Ten-Eleven Translocator protein, Tet2, was detected as part of 
the erasure complex in the mouse hybrid model (4n). The gene Tet1 is a key 
factor in inducing 5-methylcytosine oxidation at ICRs, whereas Tet2 is further 
required for the reprogramming of embryonic germ cells (Piccolo et al., 2013). 
The process of erasure of imprints is an area of active research, as better under-
standing of each particular step will significantly contribute to a variety of 
processes and techniques, including cell reprogramming technology for animal 
cloning and iPS cell generation. 
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1.4. Dynamics of genomic imprints 
After the wave of genome-wide de-novo methylation, genomic imprints and 
their ICRs are maintained in somatic cells throughout the lifetime of an orga-
nism. More and more evidence demonstrates that the process of genomic im-
printing might be dynamic, with varying degrees of monoallelic expression 
between tissues and developmental stages within the one organism. It is also 
important to note that genomic imprinting is not necessarily conserved between 
species, which makes studying tissue-specific imprinting even more challenging 
(Monk et al., 2006). For example, mouse, macaque and humans share the 
IGF2R gene, which is consistently imprinted in animal species, but not in 
humans (Cheong et al., 2015). In humans, imprinted expression of IGF2R is 
polymorphic and occurs in about 50% of individuals (Vu et al., 2004, 2006).  

One of the first attempts to cluster expression patterns of imprinted genes, 
depending on  tissue sample, was performed using the Web Atlas of Murine 
genomic Imprinting and Differential Expression (WAMIDEX) (Prickett and 
Oakey, 2012; Schulz et al., 2008). When comparing this map to human im-
printed genes, it was noted that both human and mouse genomes maintain the 
relative preservation of imprinted patterns across tissues (Babak et al., 2015). 
The preservation of imprinted status for conserved genes across species does 
not guarantee the presence of the same mechanism of establishment. ICR 
controlling PEG3 and PLAGL1 imprinted expression has been found to be 
established in the post-fertilisation period in non-human primates and humans. 
However, in mice, imprinted expression of these genes is controlled by 
germline ICRs that appear at the one cell stage (Cheong et al., 2015). The major 
switches from monoallelic to biallelic expression are expected between em-
bryonic, extraembryonic and adult organism tissues (Babak et al., 2015; Baran 
et al., 2015; Prickett and Oakey, 2012). Likewise, changes in imprinted expres-
sion can be roughly classified into three categories: i) genes that perform 
switches among the different tissues from one allele to another, while both 
copies remain functional; ii) genes that switch from imprinted expression in 
various types of tissues to biallelic expression in other types of tissues; and iii) 
genes that are known to have mainly biallelic expression, but were detected as 
imprinted in a certain tissue. Understanding the nature of tissue-specific 
changes in imprinted expression is very important in the context of diseases or 
traits affected by these genes, as the function of a gene may also depend on the 
allele expressed. The proposed classification of switches in imprinted expres-
sion was also based on the idea that they might correspond to the stages of 
development, and thus will add the value to the clarification of a diversity and 
the overall evolution pattern of imprinting. 
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1.4.1. Imprinted genes with both active copies 

Mouse Grb10 (Growth Factor Receptor Bound Protein 10) was one of the first 
genes for which tissue-specific imprinting was discovered. Although its expres-
sion pattern is well measured, the mechanisms regulating expression remain 
mostly unknown. The Grb10 gene is unique in exhibiting imprinted expression 
from both parental alleles in a tissue-specific manner (Garfield et al., 2011). 
Moreover, each allele contributes to the distinct function of the gene product. 
Activation of the maternal copy in the placenta controls fetal growth and insulin 
signalling (Monk et al., 2009; Plasschaert and Bartolomei, 2015), while expres-
sion from the paternal copy in the central nervous system is transmitted through 
to adulthood and affects social behaviour (Garfield et al., 2011). Additional 
function of the Grb10 gene in adult stem cells is associated with hematopoietic 
stem cell self-renovation and regeneration (Yan et al., 2016).  

The tissue-specific expression of Grb10 occurs during embryogenesis at 
ICRs, which regulates activation or repression of parental alleles through DNA 
methylation and histone modification (Dent and Isles, 2014). Maternal expres-
sion occurs in placenta and many of the adult tissues, while paternal expression 
occurs primary in neuronal tissues (Plasschaert and Bartolomei, 2015). Maternal 
transcripts arise from the major promoter, whereas paternal expression is 
detected from the three alternative promoters located next to the ICR, which 
contains brain-specific DMR and germline DMR (Figure 2) (Monk et al., 2006; 
Plasschaert and Bartolomei, 2015; Sanz et al., 2008).  
 

 
Figure 2. Schematic representation of the Grb10 locus. Allele-specific expression 
designated as black arrows on both sides of the line (maternal expression above the line, 
paternal expression below the line). The yellow box indicates the ICR that consists of 
two DMRs, regulating the expression of the gene. The black dots located on the ICR 
indicate methylation marks allowing maternal expression in the majority of tissues of an 
adult organism. Adapted from Plasschaert and Bartolomei (2015).  
 
 
ICR-regulation is among the major factors proposed to regulate tissue-specifi-
city, although the interplay between DNA methylation, CTCF-binding protein, 
and histone-modifying enzymes has important supportive role in this mecha-
nism (Hikichi et al., 2003; Kabir and Kazi, 2014; Lin et al., 2011). The absence 
of highly methylated epigenetic marks on the repressive H3K27me3 histone, 
associated with brain-specific somatic DMR, allows paternal expression in the 
developing neural lineage (Plasschaert and Bartolomei, 2015; Sanz et al., 2008). 
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For the same reason, the maternal allele is repressed by histone modification 
H3K9me3 and H4K20me3 (Sanz et al., 2008). It is also worth speculating that 
only one specific paternally expressed transcript of Grb10 was detected in 
neurons, although there are more truncated isoforms that are expected to exist 
because of the presence of major and cell-specific promoters of Grb10 (Mukho-
padhyay et al., 2015; Plasschaert and Bartolomei, 2015; Stringer et al., 2012). 
These transcripts need to be validated, as the complete mechanism of tissue-
specific regulation of this particular locus would not be fully understood with-
out information regarding the final products of Grb10.  

Another example of the ability to keep both alleles as a functional unit is the 
IGF2 (Insulin-like Growth Factor 2) gene, for which expression from the 
maternal allele was demonstrated in the human brain, while other somatic 
tissues canonically express the paternal allele (Baran et al., 2015). It is inte-
resting that, in the case of brain tissue, H19 also remained expressed exclusively 
from the maternal copy (Baran et al., 2015; Renfree et al., 2013), which may 
point to an independent mechanism of regulation. Imprinted clusters are 
generally known to contain at least one non-coding RNA (ncRNA) (Edwards 
and Ferguson-Smith, 2007), playing a direct role in silencing mRNA genes 
within the cluster (Pauler and Barlow, 2006). H19 is also a long non-coding 
RNA gene that controls imprinting of mouse Igf2 and should be expressed from 
the allele opposite to Igf2, which means the maternal allele for the majority of 
tissues (Martinet et al., 2016; Monnier et al., 2013). On the other hand, the Igf2r 
cluster also contains the Air ncRNA, which is necessary to control mRNAs 
within the cluster (Pauler and Barlow, 2006) and its role has not been investi-
gated in the human brain. Such activation of human IGF2 alleles was explained 
by the presence of different promoters, and there was, therefore, also an attempt 
to identify more transcription start sites that are associated with maternal 
expression in the brain. The Database of Transcriptional Start Sites did not 
provide any suggestion for brain versus other tissues (Yamashita et al., 2012). 
The effect found for the human brain serves as an interesting example of non-
canonical regulation within the specific tissue of a brain.  

Further investigation of IGF2 and GRB10 is also important in the light of 
spontaneous abortion and assisted reproductive technology-conceived offspring. 
Higher methylation levels were demonstrated for these genes in case of assisted 
reproductive technology-conceived offspring, although more detailed analysis 
has suggested that aberrant methylation patterns, and thus imprinting defects of 
these genes, are associated with spontaneous abortion, which might not be due 
to assisted reproductive technology treatments (Zheng et al., 2013). Both 
GRB10 and IGF2 tend to be distinct from mainstream imprinted behaviour 
having unique features with unclear etiology of tissue-specificity, providing 
important evidence to further profiling the cell-type specificity of imprinted 
genes. 
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1.4.2. Genes that have imprinted and bi-allelic expression within  
the same organism 

Imprinted genes may also exhibit monoallelic expression in embryonic or extra-
embryonic tissues and biallelic expression in adult tissues. This type of genes 
was found in both human and mouse genomes. One example is the human 
PLAGL1 (ZAC, LOT1, pleomorphic adenoma of the salivary gland gene like 1) 
gene that was found to be expressed exclusively from the paternal allele in most 
tissues during fetal development (Kamiya et al., 2000), including placenta 
(Arima et al., 2001), and throughout life (Kamiya et al., 2000). In contrast, 
human peripheral blood leukocytes and pancreas have demonstrated biallelic 
expression of this gene (Mackay et al., 2002). The tissue-specific phenomenon 
of the PLAGL1 gene was explained by the presence of an alternative promoter 
(P2) located in within a second and unmethylated CpG island (Valleley et al., 
2007). Indeed, the P2 promoter provides a biallelic expression, whereas paternal 
expression is always produced by the P1 promoter, but in lower concentrations, 
thus allowing simultaneous transcription of both products within a specific 
tissue (Valleley et al., 2007). In the mouse genome, the orthologue gene Zac1 is 
conserved and was also denoted as imprinted with paternal expression in the 
majority of tissues of an adult organism (Piras et al., 2000; Smith et al., 2002). 
Biallelic expression in mice is more widespread and was observed in liver, 
kidney and skeletal muscle (Piras et al., 2000). According to the overall expres-
sion level from both P1 and P2 promoters in human liver (Valleley et al., 2007), 
it is possible that PLAGL1 also has both transcripts in this tissue. 

From an evolutionary perspective, the combination of monoallelic and bial-
lelic expression or the situation where only the temporal switch to the biallelic 
state exists could be important in regulation of gene dosage. The original idea of 
gene dosage came from the example of the mouse Kcnq1 gene that reverts from 
maternal to biallelic transcript in cardiac lineages between embryonic days 
E13.5 and E14.5 (Korostowski et al., 2011). It has been demonstrated that 
activation of both copies is concordant with changes to the chromatin structure 
and thus results in an increased amount of product from Kncq1 gene (Koros-
towski et al., 2011). The Kcnq1 gene is almost unique as an example of tem-
poral change to biallelic expression patterns, although the majority of genes that 
maintain the pattern of switches from imprinted to bi-allelic state support the 
model in which imprinted expression manifests during embryogenesis and then 
lost during development (Babak et al., 2015).  

As with the Kcnq1 example, different transcripts and their specific expres-
sion states of PLAGL1 might be associated with distinct functions. Interestingly, 
mouse Plagl1/Zac1 is known to regulate function of the Igf2-H19 locus (Var-
rault et al., 2006, 2017). As in humans, mouse H19 and Igf2 genes are neigh-
bours and, in addition to the ICR, share two enhancers located ~8 kb down-
stream of H19 and ~80 kb downstream of Igf2. Direct binding to these 
enhancers of Plagl1/Zac1 result in transactivation of Igf2 and H19 promoters. 
Interestingly, Plagl1/Zac1 was also shown to regulate a gene network that has at 
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least 246 genes (Varrault et al., 2017). Within this network Plagl1 was also able 
to alter other imprinted genes that do not belong to the Igf2-H19 cluster (Figure 
3) (Varrault et al., 2006).  
 

 
 
Figure 3. The imprinted gene network that controls mouse embryonic growth and 
differentiation. Peg3 gene was identified as a gene altered by Plagl1/Zac1 mutation. 
Other imprinted genes highlighted in black. Adapted from Varrault et al. (2006, 2017). 
 
 
Among the imprinted genes represented in the network that undergoes regu-
lation of the mouse Plagl1/Zac1 gene, the Peg3 gene is another example, which 
in turn impacts on three large gene families to bring about changes in brain and 
placenta tissue (Keverne, 2015). These three large families (prolactins, ceacams, 
and pregnancy-specific glycoproteins) are downstream of Peg3 and together 
provide a robust framework for fetal development (Blois et al., 2014). Thus, 
identification of an exact mechanism of Peg3 alteration by Plagl1/Zac1 is very 
important in the context of embryo development and mother-fetus coadaptive 
processes. Additionally, in this paper, the authors concentrated their attention on 
the paternally expressed transcripts from the main promoter P1 only. However, 
as the P1 promoter seven-finger isoform product was reported to have func-
tional differences from the P2 five-finger isoform product (Bilanges et al., 
2001), it is highly likely that the splicing ratio of these two transcripts has an 
additional function. As the function of the Plagl1/Zac1 gene may depend on the 
specific transcript, further investigation in this direction would be necessary to 
establish all interconnections between imprinted genes, which might give a 
better understanding of their evolutional mission.  
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1.5. Germline DMRs as an indicator of  
imprinted expression 

The Igf2 and Plagl1/Zac1 examples have demonstrated that tissue-specific 
expression may depend on the promoters. Imprinting status of a gene can be 
also detected by studying the methylation status of its germline DMRs. The 
human GNAS cluster serves as an excellent example that illustrates how DMRs 
can provide such regulation. The GNAS cluster is a highly complex structure, as 
it gives rise to maternally, paternally and biallelically expressed transcripts 
determined by differentially imprinted promoters (Figure 4) (Peters et al., 
1999). The upstream first exon of the NESP gene has a maternally expressed 
NESP transcript (Williamson et al., 2006). Exon XL is located downstream of 
the NESP gene and gives rise to a paternally expressed GNASXL transcript 
(Hayward et al., 1998; Peters and Williamson, 2008). In addition, there is a 
GNAS gene that contains 13 exons (Peters et al., 1999), although only the tran-
script produced from exon 1 is called GNAS. To avoid further confusion in the 
following text I will use combination of words such as GNAS locus and GNAS 
transcript to clarify the regulation mechanism. The GNAS transcript is bialle-
lically expressed in many tissues (Mantovani et al., 2004), but was found to 
have maternal expression in anterior pituitary (Hayward et al., 2001), thyroid 
and ovary (Mantovani et al., 2002). Also, the 1A exon located in very close 
proximity to the GNAS exon 1 is a separate unit and produces the paternally 
expressed EXON 1A transcript (Kelsey, 2010). Lastly, the cluster contains the 
NESPAS exon 1 from which paternally expressed noncoding transcripts exist as 
spliced and unspliced forms (Williamson et al., 2004). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Human GNAS cluster. Solid black boxes denote first exons of the NESP (1), 
GNASXL (XL) and GNAS (1) genes. White boxes with numbers indicate other exons of 
a gene, for simplicity exons of GNAS transcript are omitted. Narrows denote direction 
of transcription. Black dots over the boxes represent three DMRs within the cluster. 
Adapted from Kelsey et al. (2010).  



29 

Despite the fact that mouse and human GNAS clusters have almost identical 
structures, except that the GNAS gene contains 12 exons (Peters et al., 1999), 
the mouse Gnas gene has demonstrated maternal expression among tissues that 
do not overlap with human tissues. For example, maternally expressed trans-
cripts in mice were found in renal proximal tubules, and in brown and white 
adipose tissues (Kelsey, 2010; Yu et al., 1998). A different distribution of 
maternally expressed transcripts between mice and humans may point to 
different mechanisms of establishment, for which two models were proposed. 
The GNAS/Gnas cluster contains three DMRs, two germline and one somatic, 
which control allelic expression of the entire cluster (Kelsey, 2010; Peters and 
Williamson, 2008). The GNAS transcript that provides biallelic and monoallelic 
expression is solely regulated by EXON 1A gDMR (Kelsey, 2010; Peters and 
Williamson, 2008). The first model, also called the repressor model, suggests 
that a silencer protein binds to the unmethylated Exon 1A DMR on the paternal 
allele, thus causing prevention of GNAS transcription by establishing a repres-
sive chromatin domain (Peters et al., 2006; Sakamoto et al., 2004; Weinstein et 
al., 2001). This model has a limitation, because in this case a silencer protein 
must be restricted to the tissues in which GNAS shows maternal expression. The 
second model is, in contrast, an insulator model, under which EXON 1A is able 
to bind CTCF protein on the paternal allele. The presence of CTCF protein 
leads us to expecting a block of the GNAS promoter access for enhancers and 
thus the paternal allele would be silenced. The same Exon 1A gDMR located on 
the maternal allele is methylated and therefore cannot act as a CTCF binding 
domain, resulting in expression of the maternal allele (Peters et al., 2006; 
Weinstein et al., 2001). The second model is more probable as the GNAS 
promoter itself is located within a constitutively unmethylated CpG island in 
very close proximity to Exon 1A DMR with methylation on the maternal allele 
(Kelsey, 2010).  

The exact mechanism of tissue-specific DMR methylation is yet to be 
clarified, although there is more and more evidence that DMRs are a valuable 
source for detection of a precise methylation pattern over the regulated genes. 
Likewise, intermediate methylation status of a DMR, which is shown to be 
associated with imprinting, arises from the situation in which one parental allele 
is methylated whereas the other is unmethylated, and thus measuring the 
methylation status of both alleles gives an intermediate value (Bar et al., 2017; 
Court et al., 2014a). The main question regarding the change from imprinted 
status into the biallelic state at gDMRs is whether so called “loss of imprinting” 
itself correlates with changes in DNA methylation at control regions. Corre-
lation analysis of methylation levels of gDMRs and biallelic scores calculated 
genome-wide in human pluripotent stem cells (hPSCs) has clearly demonstrated 
a strong correlation between low methylation of maternal gDMRs and biallelic 
expression of genes (Bar et al., 2017). Also, the clear concordance of inter-
mediate DMR methylation was noted for monoallelic expression of a gene. For 
example, paternal expression of the PSIMCT-1 gene was connected to the 
intermediate methylation status of the related gDMR (Bar et al., 2017; Court et 
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al., 2014a). In the case of clusters that undergo both paternally and maternally 
methylated gDMRs, such as the GNAS locus, opposing methylation changes 
were noted (Bar et al., 2017). This would mean that in the case of loss of im-
printing by several genes within a cluster corresponding maternally imprinted 
DMR have low methylation status, whereas the paternally imprinted DMR, in 
contrast, would be highly methylated. For example, the low methylation level at 
the maternally imprinted promoter of GNASXL and GNAS-AS1 are correlated 
with biallelic expression of the GNAS-AS1 gene. Indeed, as predicted, the same 
sample has also demonstrated biallelic expression for the promoter of the 
NESP55 gene with a high methylation level at paternally imprinted DMR (Bar 
et al., 2017). This mechanism of the distribution of methylation marks over 
maternal and paternal DMRs within a cluster is yet to be explained, although 
knowledge of correlation between gDMRs and imprinted expression within a 
cluster provides great potential for understanding tissue-specific imprinted 
expression. 

 
1.5.1. Placenta-specific germline DMRs 

The appearance of tissue-specific imprinting could be partially explained by 
functional classes of DMRs within the ICR regulating the organisation of a 
cluster. Despite the rapid development of large-scale, base-resolution methy-
lation technologies that allow detection of methylation status of a given allele 
caused by appearance and preservation of imprinted status, the list of germline 
DMRs is, as yet, incomplete. To date, nearly 50 ubiquitous imprinted germline 
DMRs have been described in the human genome with an additional list of 
placenta-specific DMRs (Court et al., 2014a). One of the intriguing discoveries 
for many placenta-specific DMRs, with the exception of ZFAT, GPR1-AS, and 
MIR512-1, is that they do not inherit methylation from the gametes and are 
devoid of methylation in human embryonic stem cells (Court et al., 2014a). 
These data provided preliminary evidence that the differential methylation 
associated with genomic imprinting is a dynamic process that is regulated 
during fusion of gametes at the fertilization phase. Moreover, evidence of pre-
servation of non-inherited methylation status for placenta-specific germline 
DMRs across several somatic tissues tested in this study raised the question of 
an independent and yet unknown mechanism of establishment for these imprints 
(Figure 5) (Court et al., 2014a). 
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Figure 5. Methylation contour plots for human germline DMRs. The plot is originated 
from whole genome-wide bisulphite sequencing data sets for all maternally methylated 
imprinted DMRs and demonstrate preservation of an intermediate methylation status 
across somatic tissues, including placenta, but with significant extent in sperm. Light 
blue colour of the density represents an unmethylated state, which is specific for soma-
tic tissues, except placenta. The red colour indicates the fully methylated DMRs. 
Adapted from Court et al. (2013). 
 
 
A similar study of imprinted DMRs was conducted later in placenta samples, 
where the authors were able to identify 72 novel placenta-specific DMRs, and 
also observed partial loss of methylation for some DMRs (Hanna et al., 2016). 
Detected DMRs were detected as established in oocytes and these data are in 
line with the previous study of imprinted genes in mouse, where all placenta-
specific genes were denoted as having maternal origin (Prickett and Oakey, 
2012).  

Although Court et al., had a sample with only a few somatic tissues that 
include liver-, brain-, and leukocytes samples, they noted a similar switch from 
intermediate methylation to unmethylated status for placenta-specific DMRs in 
the tested somatic tissues (Figure 5) (Court et al., 2014a). Later, Hanna et al. 
attempted to follow this switch in dynamics using isolated embryonic cell types 



 

32 

 

(Hanna et al., 2016). Extraembryonic tissues were chosen due to their close 
proximity to the embryo, as they originate later in development. An inter-
mediate methylation status was detected for trophoblast and mesenchymal core 
of the placental villi, which supports preservation of imprinted status in the 
trophectoderm (TE) and inner cell mass (ICM) after the blastocyst stage. In 
contrast, a low methylation level, instead of average methylation, was registered 
in chorion and amnion. These data suggest that imprinting of placenta-specific 
DMRs in embryonic lineages starts much earlier than was previously predicted 
and should be lost by the time of primitive streak formation (Figure 6). As in 
the example of Kcnq1 it may indicate a required increase of gene products at 
specific periods during development or there is another underlying mechanism 
in which imprinted expression occurs spontaneously due to the specific loss of 
methylation from the maternal allele. The authors concluded that placental-
specific DMRs are either passively or actively losing methylation from the 
maternal allele, while the rest of the genome undergoes de novo methylation 
required for somatic differentiation (Smith et al., 2014). 
 

 
Figure 6. Loss of imprinting from placental-specific DMRs in human embryonic 
lineages. The distribution of methylation levels across several tissues. Maternal im-
printing loss were registered from placental-specific DMRs. Trophectoderm (TE) and 
inner cell mass (ICM) derived cell lines are coloured in blue and green, respectively. 
Adapted from Hanna et al. (2016). 
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1.5.2. Transiently methylated germline DMRs  

While some of the placenta-specific gDMRs and imprinted genes lose their 
methylation during ontogenesis, and thus later exhibit biallelic expression 
across adult tissues, other placenta-specific DMRs are able to keep and maintain 
imprinting after birth. At the blastocyst stage the organism survive the wave of 
methylation erasure process, while some specific sequences located within im-
printed regions and certain repeat-type sequences are able to escape such 
modifications (Messerschmidt et al., 2014; Monk, 2015). Transiently methy-
lated germline DMRs (tDMRs) identified from mouse genome were proposed 
as one of the possible mechanisms allowing maintenance of genomic imprints 
across somatic tissues (Proudhon et al., 2012). Transiently methylated gDMRs 
are themselves not distinguishable from germline DMRs in gametes and the 
preimplantation embryo, although the main difference is their ability to survive 
the post-fertilization demethylation process and later gain methylation on their 
paternal alleles at the time of implantation. The full mechanism by which 
gametes are able to provide a safe environment for tDMRs is not clear yet, 
although an elegant explanation of a mechanism associated with TET3-complex 
was suggested. It is important to note that this suggestion was based on methy-
lation screening analysis in mice and there is no prediction of the number of 
tDMRs that are expected in the human genome and whether they are tDMRs or 
gDMRs with unknown mechanism of regulation.  

Numerous placenta-specific gDMRs that could fit the criteria for tDMRs 
were identified in human cell lines (Sanchez-Delgado et al., 2016). Analysis of 
methyl-seq datasets in blastocysts, placenta and 14 different somatic tissues 
revealed different patterns of constant transfers. 

Another type of pattern was detected for paternally methylated gDMR 
originated from sperm in humans, IG-DMR, which was partially methylated in 
blastocyst, indicating a partial loss of methylation after the germline stage, and 
resulting in imprinted expression for five somatic tissues (Sanchez-Delgado et 
al., 2016). Mouse H19 is also known to be protected by the Dppa3 protein 
during active demethylation of the male pronucleus (Nakamura et al., 2007). 
The Dppa3 protein, also known as Stella, protects the maternal genome from 
contaminant demethylation and protamine exchange by binding with the 
H3K9me2 histone (Mihaylova et al., 2012; Wossidlo et al., 2011). At the same 
time, the paternally methylated IG-DMR was not associated with Dppa3 pro-
tection, presumably because it is not enriched for H3K9me2 nucleosomes 
(Delaval et al., 2007). Therefore, it is necessary to clarify whether observed 
patterns are indeed associated with potential tDMRs or became visible due to 
specific protection during demethylation. Nevertheless, taking into account the 
chance of the partially methylated state within the cell the authors observed 60 
DMRs of oocyte origin with imprinted expression in more than 12 tissues 
(Sanchez-Delgado et al., 2016).  
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Analysis of imprinted gene expression in placenta in mice has demonstrated 
100% maternal origin and thus DMRs regulating such expression are also 
expected to be paternally methylated or in other words repressed (Prickett and 
Oakey, 2012). In the case of assumed placenta-specific tDMRs established in 
this study, maternal methylation that dictates paternal expression was found for 
9 genes in humans and non-human primates that were not previously known to 
be imprinted, including AGO1, USP4, SH3BP2, FAM149A, MOCS1, R3HCC1, 
JMJD1C, PAK1 and PAPLN-AS. Moreover, attempts to show that such regions 
and their orthologues correspond to the mouse genome did not provide any 
successful results (Sanchez-Delgado et al., 2016). Such evidence supports the 
idea that similar mechanisms exist in human and mouse genomes, while parti-
cular sequences that undergo epigenetic modification with following denoting 
of paternal origin can be species-specific. Discovery of an additional set of 
placenta-specific germline DMRs that transfer their imprinted expression into 
adulthood would clearly demonstrate that this process is more widespread and 
abundant in human genome than expected.  

 
 

1.6. Post-natal loss of imprinted expression 
The switch from imprinted to biallelic expression can indeed be associated with 
the origin of germline DMRs and the time of their establishment. This obser-
vation can be supported by another study, where the loss of imprinted expres-
sion was observed in a series of mouse experiments. The authors aimed to 
detect the presence of autosomal epigenetic allele-specific expression (ASE) 
effects (Huang et al., 2017). It is important to note that in this case genomic 
imprinting, cell-specific genomic imprinting and cell-specific random mono-
allelic effects were combined into one common category called DAEEs – diffe-
rential allele expression effects. This was preceded by an observation that 
parental alleles are only weakly correlated or not correlated at all (Figure 7).  
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Figure 7. Schematic representation of different allelic effects at the cellular level. 
Allele-specific effects are divided into three categories used in this study – i) allele co-
expression effects (CoEEs) that are expected in case of classical biallelic expression, ii) 
differential allele expression effects (DAEEs) that are expected in case of genomic 
imprinting, and iii) antagonistic allele expression effects (AAEEs) that are expected to 
involve random monoallelic expression. Black arrows correspond to the expression of a 
parental allele. Linear regressions on the right side represent allelic correlation, where 
red and blue arrows denote increasing maternal and paternal expression, respectively. 
Adapted from Huang et al. (2017). 
 

 
As genomic imprinting is expected to be more common in brain when com-
pared to other somatic tissues (Babak et al., 2015; Perez et al., 2015), analyses 
that aimed to understand the dynamics of ASE effects were performed on the 
dorsal raphe nucleus (DRN), which is the largest serotonergic region of fore-
brain associated with a variety of brain functions and also implicated in several 
mental illnesses. At the stage of post-natal P5 and P15 juveniles of DRN drastic 
loss of DAEEs was observed from 88% to 11%, while the number of genes of 
P15 stage remain the same as in observations from other somatic tissues (Figure 
8).  
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Figure 8. ASE effects at different developmental stages and somatic tissues of an adult 
organism. The scale that represent the percentage of all measured expressed genes in a 
panel of tissues. DAEEs are prevalent in the P5 DRN of neonates, while CoEEs are 
more prevalent starting from P15 stage. Adapted from Huang et al. (2017). 
 
 
The number of genes with CoEEs increased ~50 fold between P5 and P15 of 
DRN (Huang et al., 2017). Situation with the opposite exchange of numbers 
between P5 and P15 of CoEEs and DAEEs could be viewed from different 
perspectives. On one hand, the authors have suggested the idea of a profound 
increase in DAEEs, while on the other hand, the numbers represented in Figure 
8 could denote the transition from DAEEs to CoEEs within 10 days between P5 
neonates and P15 juveniles. Although the authors report 77% loss of DAEEs 
within the 10 day period of neonates, there is a 7-fold increase seen for genes 
with uncategorized ASE effects, suggesting the idea that part of the genes might 
truly change their type of expression from imprinted to biallelic, while the 
number of such genes could be much lower due to the increased amount of 
uncategorized genes. 
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2. AIMS OF THE STUDY 

The aim of the thesis is to investigate the methylation features of imprinted 
genes, identify novel imprinted genes and study their effects on human complex 
traits. 
 
The specific objectives of the thesis are as follows: 
1. To investigate imprinting-specific methylation status of imprinted genes and 

germline differentially methylated regions (gDMRs) in a wide panel of 
somatic tissues of adult humans.  

2. To identify parent-of-origin effects for complex phenotypes such as NMR 
metabolites, body mass index (BMI) and age at menarche.  
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3. RESULTS AND DISCUSSION 

3.1. Imprinted genes and imprinting control  
regions are stable and show predominant  

intermediate methylation (Ref. I) 
Genomic imprinting is an epigenetic process that starts with establishment in 
the germline and results in monoallelic expression for specific groups of genes. 
Human imprinted genes are mostly clustered (Babak et al., 2015), being under 
cis-regulation of an imprinting control region (ICR) (Barlow, 2011), which has 
at least one germline differentially methylated region (gDMR) (Court et al., 
2014a; Prickett and Oakey, 2012). Conserved imprinted patterns between mice 
and humans do not necessarily reflect the identity of ICRs, therefore validation 
of regions that were established in human germline and maintain imprinted 
expression into adulthood is important in the context of understanding their 
effect on complex traits. 

Imprinted genes are predominantly found in placenta and other extra-
embryonic tissues, although some genes are also found to be imprinted in adult 
somatic tissues. The full catalogue of imprinted genes in humans is not yet 
complete, therefore characterisation of specific methylation patterns in a panel 
of somatic tissues of an adult human organism would help to identify novel 
imprinted genes in a specific tissue sample. A recent paper by Baran et al. 
suggests that the pattern of tissue-specific imprinting in adult somatic tissues is 
expected to be relatively stable, while major differences could still be found 
between embryonic and adult tissues (Baran et al., 2015). Hence, it is advanta-
geous to investigate the common methylation pattern in somatic tissues deve-
loped from different embryonic layers, including nerve and brain tissue 
samples, to improve our understanding of the nature of imprinted genes.  
 
 

3.1.1. Description of cohort and materials 

The study was performed using two datasets: 17 post-mortem tissues obtained 
from four autopsy patients and whole blood samples from 97 healthy indi-
viduals (Nmale = 48, Nfemale = 49) from the Estonian Genome Center, University 
of Tartu (EGCUT) biobank.  

The first dataset consists of four individuals – one female and three males. 
All tissue samples were collected between four and eight hours after death. The 
samples were selected to complement the panel that would cover tissues formed 
from all three germ layers during embryogenesis: mesodermal (e.g., adipose 
tissue, bone and lymph nodes), endodermal (e.g., gastric mucosa and tonsils), 
ectodermal (e.g., coronary artery) and even neuroectodermal (e.g. ischiatic 
nerve and medulla oblongata).  
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After DNA purification and bisulphite-conversion, all samples were 
hybridised on the Infinium Human Methylation 450 BeadChip array according 
to the Infinium HD methylation protocol. As one of the datasets represents post-
mortem tissues, we selected negative and positive controls that would allow us 
to assess the quality of the samples. The Pearson correlation coefficients, which 
were >0.99, were calculated for both technical and biological replicates, con-
firming a good level of reproducibility for the array analysis. Methylation 
normalisation and further quality control was performed using the SWAN 
method (Maksimovic et al., 2012).  To estimate the quality of genotyped CpG 
sites, detection p-values were calculated for each probe per sample. Probes with 
detectable methylation levels in <5% of samples with detection p-value <0.01, 
were cross-reactive, and with SNPs inside the gene body were excluded, which 
left 353,094 probes for further analysis. 
 
 

3.1.2. Detection of methylation patterns for imprinted and  
non-imprinted genes 

Imprinted genes and imprinting control regions are expected to have inter-
mediate methylation status, which is explained simply by the distribution of 
methylated marks over two alleles, where one allele remains unmethylated to 
perform expression, while the other is methylated to deactivate transcription. 
Intermediate methylation status as a quantitative outcome is expected to be 
equal to 0.5. With the rapid development of array and sequence-based methy-
lation profiling methods, the exact definition of an intermediate status became 
important in developing a standard that could be used uniformly across multiple 
studies. We therefore aimed to define the exact frame for β-values that would 
represent intermediate methylation status. To do this, we created the list of well-
defined imprinted genes and gDMRs. We used two publicly available cata-
logues of imprinted genes to create an initial list. A literature search from 
‘PubMed’ was applied to the list of genes to verify that imprinted genes were 
indeed shown to be imprinted in humans, with results replicated by independent 
studies. In total, the resulting list contained 76 known human imprinted genes 
(Suppl. Table 1 in Ref. I). The list of human-specific gDMRs was obtained 
from the study by Court et al (Court et al., 2014a).  

To define a better frame for the intermediate methylation level, we cal-
culated the proportions of different CpG methylation ranges and performed a 
one-tailed chi-squared test with one degree of freedom. By shifting frames in a 
range of 0.3–0.8, we found that the biggest difference in methylation for 
imprinted and non-imprinted genes was for β-values corresponding to 0.5–0.7 
frame (p=9.33×10–187) (Suppl. Table 2 in Ref. I). Genome-wide visualisation of 
imprinted (N=76) and non-imprinted genes (N=20,515) revealed that the 
number of methylated probes with β-value 0.5–0.7 for imprinted genes was 
higher (25.5%) compared to non-imprinted genes (10%) (Figure 9). 
Surprisingly, the number of probes with smaller β-value (<0.5), indicating the 
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unmethylated state, was lower for imprinted genes (28.2%) than for non-
imprinted genes (48.1%). Also, significant differences were found for both 
groups of genes in respect of higher methylation levels (>0.7), showing 46.2% 
for imprinted and 41.9% for non-imprinted genes (Figure 9). 

 
Figure 9. Visualisation of beta-density and methylation level (beta) for imprinted (A) 
and non-imprinted (B) genes, captured by the methylation array. Positive and negative 
controls are represented by blue and red lines, respectively. Somatic tissues tested are 
shown by grey lines. The grey box area depicts the proportion of defined intermediately 
methylated range which corresponds to β-value of 0.5-0.7. 
 
 
To take account of the fact that tissue samples were collected after death, we 
compared the genome-wide methylation pattern of autopsy samples to whole-
blood methylation levels measured in healthy individuals. We observed a 
similar distribution of the proportion of probes in the three categories of methy-
lation status for both groups of genes. Intermediately methylated probes also 
demonstrated the highest interval between imprinted and non-imprinted genes 
(21.2% and 12.0%, respectively, p=1.76×10–121). It is well-known that expres-
sion patterns are comparable for post-mortem and before death samples, while 
methylation was expected to change significantly. The global overlap observed 
in this study clearly indicates that blood is an excellent candidate for both 
studying methylation patterns and further discovery of imprinted expression. 
 

 
3.1.3. Equality of variances 

Given the fact that imprinted genes indeed contain a higher proportion of 
intermediately methylated probes, we next hypothesised that the variance of β-
values is expected to be smaller for imprinted genes than for non-imprinted 
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genes. The motivation for this estimation comes from the knowledge that im-
printed genes, being subordinated to germline DMRs would keep their im-
printed pattern presumably across a variety of somatic tissues in adulthood. 
Thus, this specific feature should be contrasted by non-imprinted genes, for 
which expression is highly tissue-dependent, resulting in a more stochastic 
methylation pattern and therefore in higher variance for β-values that 
correspond to methylation probes. Levene’s test (levenes.test in R, version 
3.2.1) was selected as an instrument to compare the variance of methylation 
levels for imprinted and non-imprinted genes. We compared 76 previously 
selected imprinted genes with 76 randomly selected genes for each of the 17 
post-mortem tissues, iterating the procedure 100 times. An identical procedure 
was performed for blood samples from healthy individuals. As hypothesized, 
imprinted genes demonstrated smaller variance of β-values within the 18 tissues 
calculated out of all replications (e.g., p=2.31×10-14 for brain tissue and 
p=4.22×10-12 for nerve tissue). Iteration procedure of this test also demonstrated 
that the number of genes with methylation patterns similar to imprinted genes is 
expected to be relatively low, as selection of random non-overlapping non-
imprinted genes showed comparable variance for β-values.  
 
 

3.1.4. The location of intermediately methylated probes 

The Illumina Infinium 450K methylation array provides access to six regions of 
a gene: promoter area, 5’UTR, first exon, gene body and 3’UTR, while the 
promoter area is divided into two regions spanning up to 200 bp and 200-1500 
bp from the transcription start site (TSS200 and TSS1500, respectively). We 
therefore examined whether intermediately methylated probes tend to be 
grouped in specific gene regions or are equally distributed across the length of a 
gene. Due to the evidence that germline DMRs are often located within the 
promoter area, we excluded 49 gDMRs prior to the analysis. We discovered that 
TSS1500 is the only region that maintains the significant difference after 
multiple testing correction with an increased proportion of intermediately 
methylated probes for 22.8% (p=6.57×10-5) (Figure 2 in Ref. I). This finding is 
clearly in line with the fact that epigenetic gene regulation is mediated through 
promoter regulation. However, to our knowledge, this is the first evidence that, 
in the case of imprinted genes, intermediately methylated probes tend to localise 
in the extended region of the promoter spanning from 200 to 1500 bp from the 
transcriptional start site. 
 
 

3.1.5 Germline DMRs are not ubiquitously  
methylated across somatic tissues   

Levene’s test provided us with evidence that genes imprinted in humans 
selected for this study are expected to maintain their imprinted expression 
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across different somatic tissues. We also tested whether regulatory germline 
DMRs also preserve their intermediate methylation status. We tested 59 gDMRs 
including 45 ubiquitous gDMRs and 14 placenta-specific gDMRs (Suppl. Table 
4 in Ref. I). As was predicted by other studies, the 45 ubiquitously imprinted 
gDMRs demonstrated remarkable stability of methylation patterns, maintaining 
β-values in the range from 49% to 77% across all 18 somatic tissues tested. In 
contrast, the 12 placenta-specific gDMRs had methylation patterns with β-
values ranging from 10% to 20%, except for two regions: GPR1-AS and 
MIR512. Both of these regions have a pattern characterized by intermediate 
methylation status, quantified as 55% and 67%, respectively, while only GPR1-
AS methylation pattern corresponds to ubiquitously imprinted germline DMRs 
(Figure 10).  

A study of polymorphic methylation in placenta links the unmethylated 
status of gDMRs with biallelic expression of imprinted genes (Sanchez-Delgado 
et al., 2016), thus demonstrating a possibility for loss of an imprinted pattern for 
genes that are regulated by such DMRs. The same set of placenta-specific 
gDMRs that remained unmethylated in our study was demonstrated to have 
intermediate methylation status in embryonic and extraembryonic tissues and, 
being a stochastic trait in placenta, supports the idea that a significant pro-
portion of transcripts are monoallelically expressed in cleavage embryo, 
escaping further imprinted expression (Court et al., 2014a; Sanchez-Delgado et 
al., 2016). The other 45 tested gDMRs demonstrated a clear preservation of 
intermediate methylation levels pointing to the widespread and probable 
constant genomic imprinting expression across somatic tissues of an adult 
organism. Intriguingly, all gDMRs selected for this study were identified as 
established in the germline, while the part of gDMRs did not inherit the 
methylation from gametes. Changes in their methylation pattern cannot be 
associated with placental expression, as the identified GPR1-AS exception 
maintains an intermediate methylation status. Although our study has extended 
the knowledge of the tissue-specific nature of imprinted genes, further studies 
are required to provide a deeper understanding of regulatory factors that allow 
maintenance or loss of imprinted expression throughout the development and 
aging of an organism. 
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Figure 10. Visualized methylation pattern across 17 human somatic tissues for known 
germline DMRs. Each tissue is shown by a grey line with the black line representing the 
mean of all tissues. Controls that correspond to unmethylated and fully methylated 
status are shown by the red and blue lines. Visualized DMRs can be divided into two 
categories: ubiquitously imprinted DMRs and placenta-specific DMRs with two 
exceptions GPR1-AS and MIR-512. 
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Circulating metabolites serve as a bridge connecting genetic variants and 
associations with chronic diseases, and for this reason they are widely used as 
an intermediate trait in genome-wide association studies (GWAS). While as-
sociations with human metabolites have already been established for hundreds 
of genetic variants, in only a few cases have the levels of metabolites been 
found to be impacted by parent-of-origin effects (POEs). Genomic imprinting, 
as a key driver of POEs, is also known to be strongly associated with a range of 
metabolic processes in mammals, including glucose metabolism and maintenan-
ce of the body temperature of new-borns (Peters, 2014; Yan et al., 2016), 
although the key observations are focused on the specific group of genes that 
are already known to be imprinted. In contrast, human circulating metabolites 
are a large collection of molecules that are often highly correlated, and it is 
advantageous to view them as a complex to find more gene-phenotype con-
nections. The human nuclear magnetic resonance (1H-NMR) technique, there-
fore, serves as a powerful tool for measuring metabolites that can be used for a 
broad range of investigations, including systematic discovery of possible 
parent-of-origin effects, genome-wide. 

In the case of parent-of-origin effects, both the presence of the mutant allele 
and the allelic origin can affect a phenotype. We were therefore interested in 
discovering whether the level of human circulating metabolites is modulated by 
imbalanced expression of alleles. To investigate this hypothesis, we performed 
a genome-wide scan for 14,815 individuals of European ancestry to identify 
POEs of common (MAF > 1%) variants in 82 1H-NMR metabolites.  
 
 

3.2.1. Description of cohorts and methods 

The study was performed on three European cohorts – one Estonian (EGCUT, 
N=5,861) and two Finnish (FINRISK1997, N=8,438 and DILGOM, N=516). 
Each cohort was genotyped with a genome-wide commercial array according to 
standard protocols and further imputed using the 1000 Genomes Project multi-
ethnic reference panel (Suppl. Table 3. In Ref. II).  

The quantification of NMR biomarkers (N=135) was performed using proton 
1H-NMR spectroscopy of native blood plasma in the Estonian cohort and serum 
in the Finnish cohorts. All measurements were quantified using the same high-
throughput NMR platform in the same analysis laboratory as described by 
Soininen et al (Soininen et al., 2009). As part of the quality control procedures, 
metabolites with missing data and outliers were discarded (Kettunen et al., 
2016), leaving 82 metabolites for the further analysis. Imputation of missing 1H-
NMR values was performed using the MICE R package (Azur et al., 2011). In 

3.2. Parent-of-origin effects in PTPRD gene affect  
the level of triglycerides in medium very low density 

lipoprotein NMR metabolite (Ref. II) 
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the final step, residuals for metabolites were calculated adjusting for sex, age, 
age2, BMI and the first ten genetic principal components.  

To search for possible parent-of-origin effects, we applied a method based 
on a modified Brown-Forsythe test, comparing the phenotypic variance of the 
heterozygous group to the variance of both homozygous groups, which allows 
detection of potential POE effects from population-based data (Hoggart et al., 
2014). To measure allelic imbalance, RNA-sequencing libraries were prepared 
using 482 EGCUT RNA blood samples according to the Illumina manu-
facturer’s instructions. Allele-specific expression (ASE) was further determined 
using maximum likelihood estimation in combination with a likelihood ratio 
test (LRT). The statistical power of the ASE was increased by combining 
multiple SNPs per region and comparing them to the SNP of interest.  

 
 

The approach used in this investigation was chosen because it is sufficiently 
simple and is effective in scanning for potential POE signals using data from 
unrelated individuals, which are widely available in many cohorts. This method 
has been used successfully to identify two genes – KCNK9 and SLC2A10 – 
having POE in the analysis of BMI, and these results were replicated using 
family trio data.  

Genome-wide meta-analysis of 1000G reference panel imputed SNP panel 
using 14,815 individuals revealed a variant, rs1412727 (MAF=0.17, p=8.29×10-11), 
located in the intron of the PTPRD (protein-tyrosine phosphatase, receptor-type, 
D) gene (Figure 11) that is associated with the metabolite called ‘triglycerides 
in medium size VLDL’. The designation of the identified molecule as ‘tri-
glycerides in medium size VLDL’ reflects the number of endogenously secreted 
triglycerides attached to the core of very low-density lipoprotein molecules. 
Although triglycerides associated with VLDL molecules are the source of 
energy for cells of the human body, they have been shown to be causally related 
to coronary heart disease (Chasman et al., 2009; Sacks, 2015). An additional 
eight independent SNPs that reached the genome-wide significance threshold, 
but failed to reach p-value after multiple testing correction, were also selected 
for further validation (Table 1 in Ref. II).  
  

3.2.2. Meta-analysis revealed an effect of  
PTPRD gene to VLDL lipoprotein 
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Figure 11. The variability of triglycerides molecules associated with normalized values 
of medium sized VLDL (M.VLDL.TG) by genotype of rs1412727. The violin plot 
describes the density of data and the box plot shows median with first and third 
quartiles, with the whiskers extending from the borders to ±1.5xIQR, where IQR stands 
for inter-quantile range, the distance between the first and third quantiles. 
 
 
In addition to genome-wide POE analysis, we were interested whether parent-
of-origin effects can also be found for previously established GWAS signals of 
NMR metabolites (Kettunen et al., 2016). In total, we found five signals that 
reached a nominal significance threshold (p<0.05) (Suppl. Table 1 in Ref. II), 
but none of them reached this threshold after adjusting for multiple testing.  

 
 

3.2.3. Allele-specific expression analysis 

The POE method enables identification of plausible parent-of-origin effects that 
may also result in the state of allelic imbalance. We therefore aimed to perform 
ASE analysis of nine POE signals that were identified in the meta-analysis 
described above, and five additional nominally significant signals identified 
from the GWAS study of Kettunen et al (Kettunen et al., 2016). As RNA-seq 
measurements were made using blood samples, it is important to first consider 
expression levels for identified signals. The main signal that was associated 
with the PTPRD gene was not detected to be expressed in EGCUT blood 
samples. Indeed, experiments in mice and humans detected PTPRD expression 
in the specific regions of the brain, including the hippocampal CA2 and CA3 
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regions, B lymphocytes, and in the thymic medulla (Lash et al., 2000; Uetani et 
al., 2000). Investigation of EGCUT blood samples demonstrated that only two 
genes, EEPD1 and LGI2, can be considered for further ASE analysis, while 
others were discarded as they were not expressed in blood samples or due to the 
lack of informative SNPs to distinguish parental alleles. No SNPs in these two 
genes were detected to have allelic imbalance.  

The PTPRD gene is reported by many studies to be associated with several 
distinct phenotypes, such as age at menarche (the onset of first menstruation in 
girls that indicates the start of reproductive capacity) (Perry et al., 2014), 
restless legs syndrome (Winkelmann et al., 2011), type 2 diabetes (Below et al., 
2011; Tsai et al., 2010), epilepsy (Speed et al., 2014) and many others (Deming 
et al., 2017; Johnson et al., 2010; Kim et al., 2013; Mattheisen et al., 2015; 
Schosser et al., 2013; Traylor et al., 2016), although little is known about this 
gene and its functional background. PTPRD has been reported to belong to the 
protein tyrosine phosphatase (PTP) family, and knock-out mice exhibited 
learning impairment associated with increased magnitudes of long-term poten-
tiation in the hippocampal region of the brain. Although we were not able to 
demonstrate allelic imbalance for PTPRD, this gene remains a highly probable 
candidate for having POE. Through analysis of independent maternal and fetal 
genetic effects, the PTPRD gene was found to affect the level of maternal 
circulating organohalogens associated with active control of toxicant disposition 
between the mother and fetus (Traglia et al., 2017). This study gives rise to the 
idea that POE identified in our study could be driven by maternal of fetal 
genetic effects, rather than by genomic imprinting. The association signal for 
age at menarche, rs7865468, that is linked to the PTPRD gene, was tested for 
imprinted expression in the deCODE study, but did not demonstrate either 
paternal- or maternal-specific association (Perry et al., 2014). Because 
rs7865468 is effectively independent of the signal identified in our study 
(r2=0.0001, D’= 0.0179), it would also be worth testing this signal for the 
presence of exclusively maternal or paternal expression. Thus, we believe that 
our results provide great potential both for researchers who are interested in 
uncovering the nature of genomic imprinting and those who are looking for 
clarification of the underlying pathophysiology of many diseases.  

 
 

3.3. Parent-of-origin allelic association affecting BMI and 
Age at Menarche complex traits (Ref. III and Ref. IV) 

Imprinted genes have key regulatory effects on complex traits in both the em-
bryonic state and adulthood (Peters, 2014). Given the fact that imprinted expres-
sion is a dynamic process, and assuming the idea of regulation of gene dosage 
(Korostowski et al., 2011), uncovering imprinted genes associated with BMI 
and age at menarche traits become important because these phenotypes are 
associated with the risk of type 2 diabetes (Abbasi et al., 2017), cardiovascular 
diseases (Twig et al., 2017) and breast cancer (Perry et al., 2014). The causal 
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relationship between BMI and pubertal timing is yet to be clarified. The vast 
majority of studies worldwide report that age at menarche highly depends on 
nutrition and has an inverse relationship with pubertal timing and BMI (Bratke 
et al., 2017; Talma et al., 2013; Wang et al., 2016). On the other hand, the 
physiological features of an organism, reflected in increased weight and height 
at menarche, cannot be ignored, as they indeed have higher BMI than girls of 
the same age who have not started menstruating (Stark et al., 1989). Phenotypic 
correlation of these two traits can also occur as a result of a pleiotropic effect 
from shared genetic background. For example, the LIN28B gene, for which im-
printed expression is known to be restricted to the placenta, was among the first 
genes associated with pubertal timing (Ong et al., 2011). Later, it was 
demonstrated to modulate BMI and body shape of adult organisms (Leinonen et 
al., 2012). We therefore aimed to identify more imprinted genes that may also 
effect both BMI and age at menarche phenotypes. Discovery of imprinted genes 
was one of the projects launched by GIANT and ReproGen consortia using, 
among others, data from EGCUT, which aimed to find novel loci associated 
with these two traits. 
 
 

3.3.1. Description of cohort and materials 

For both studies, we used EGCUT cohort samples. For BMI and age at 
menarche studies, 9,274 and 4,747 individuals were available, respecti- 
vely. DNA from the samples was genotyped with both the Illumina 
HumanOmniExpress and the Human370CNV Beadchip. Genotyping data was 
imputed up to the HapMap2 reference panel (Suppl. Table 3 in Ref. III and 
Suppl. Table 1 in Ref. IV). Association analysis for BMI was performed using 
the POE method implemented in the QUICKTEST software, while GWAS 
analysis for age at menarche was performed using the SNPTESTv2 software.  
 
 

3.3.2. Association analysis revealed enrichment in  
imprinted genes 

In total, data from 56,092 individuals from 15 studies and 132,989 women from 
57 studies were available for BMI and age at menarche analyses, respectively, 
where EGCUT data was part of these analyses. After imputation, genome-wide 
data were available in up to 2.6M SNPs for BMI analysis and 2.4M SNPs for 
age at menarche analysis. BMI analysis was performed separately in men and 
women, although no sex-specific differences in effect were observed, and there-
fore summary statistics from sex-stratified analysis were then meta-analysed 
together. Age at menarche analysis was performed in women only. Parent-of-
origin effects affecting BMI were tested as described in reference II, and then 
validated in family based-studies, whilst for age at menarche, genetic variants 
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were first tested with linear regression and then replicated in the deCODE Study 
in 35,377 women with available data regarding parental origins. 

As a result, two loci (mapping near SLC2A10 and KCNK9 genes) 
demonstrating parent-of-origin effects were found for the BMI phenotype and 
three loci (DLK1/WDR25, MKRN3/MAGEL2 and KCNK9) for age at menarche. 
Association analyses for BMI and age at menarche revealed not only that both 
phenotypes are enriched in imprinted regions, but also that there are variants in 
the same gene, KCNK9, that are associated with both phenotypes. Although the 
KCNK9 variant reported for BMI, rs2471083, study is independent of that 
reported for age of menarche, rs1469039 (r2=0.0054, D’=0.2649), the possibi-
lity of a shared genetic background deserves further investigation. The KCNK9 
gene exhibits tissue-specific imprinted expression (Luedi et al., 2007; Morcos et 
al., 2011). It is expressed predominantly in the brain (Kim et al., 2000; Rajan et 
al., 2000), and has also been found to exclusively have maternal expression in 
the fetal brain (Luedi et al., 2007), but biallelic expression in lymphoblasts and 
fibroblast cell lines (Morcos et al., 2011). The KCNK9 gene encodes a protein 
that functions as a pH-dependent potassium channel (Kim et al., 2000), whereas 
the mutation of the maternal allele at nucleotide 770 in exon 2 is causal for 
Birk-Barel syndrome that is characterized by intellectual disability, hypotonia, 
hyperactivity, and changes in face structure (Barel et al., 2008). The operation 
of human KCNK9 imprinted expression is under regulation of the PEG13 
maternally methylated germline DMR (Court et al., 2014b). PEG13 binds 
CTCF-cohesin complex that regulates the separation of sister chromatids during 
cell division and facilitates downstream DNA repair by recombination (Hanssen 
et al., 2017). Thus KCNK9 is a valuable candidate gene for BMI and age at 
menarche phenotypes, as earlier onset of menstruation was also previously 
associated with higher risk of cancer (Dall and Britt, 2017). I believe that the 
effect of gene dosage and expression patterns in tissues related to the examined 
phenotypes should be viewed more closely to uncover the etiology and as-
sociation with a pathophysiological pathway.  
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CONCLUSIONS 

Studying of the tissue-specific imprinted expression patterns would bring a 
better understanding of how these genes can modulate diseases or specific traits 
in humans and animals. Comprehensive imprinting panels would shed light to 
the specific tissues and developmental stage of an organism, which would lead 
to the exploring the allelic effect of a gene in pathophysiological pathways of a 
disease.  

The main conclusions drawn from this thesis are as follows: 
 The first aim of the research presented in this thesis was to define the methy-

lation patterns for imprinted genes and germline DMRs in somatic tissues of 
adult organisms. Using a panel of 18 somatic tissues, we identified an 
imprinting-specific methylation pattern that is characterized by an increased 
number of intermediately methylated probes within a specific area of the 
promoter. Although we were not yet able to show how this distribution of 
methylation marks affects the expression of imprinted genes, we believe that 
our results will contribute to further characterization of tissue-specific 
imprinting patterns.  

 The panel of post-mortem tissues used in the first study was complemented 
with blood samples from living individuals, which confirmed earlier sug-
gestions that blood tissue is a valuable resource for studying imprinted 
genes. On the other hand, it is important to note that the parent-of-origin 
effect is less pronounced, and could therefore be overlooked because of the 
high complexity of this particular tissue.  

 We were also able to show that germline DMRs, established in the pre-
fertilization period, lose their intermediate methylation status and become 
unmethylated. Unmethylated status was later linked with the biallelic expres-
sion of genes that are regulated by germline DMRs within a cluster. The loss 
of methylation was detected mainly for placenta-specific germline DMRs. 
Thus, it is highly probable that genes that were detected as imprinted in 
placenta have biallelic expression in tissues presented in this study. To date, 
it is not known when the switch from the monoallelic to the biallelic state 
occurs, although it is likely that this happens shortly after birth. The mecha-
nism for the loss of imprinting suggested in this study is human-specific, and 
it is possible that the same conserved imprinted genes in other species have a 
different expression pattern, as this depends on germline DMRs, which are 
highly species-specific.  

 The concept of dynamic and highly tissue-specific imprinting is important in 
the light of how imprinted genes modulate diseases and traits. In our study of 
age at menarche, we showed that there is enrichment for associated genes in 
imprinted regions of the genome. Further research would be necessary to 
measure the expression of imprinted genes in relevant reproductive tissues to 
understand the effect of gene dosage on this particular phenotype. 
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 We also found that parent-of-origin effects impact BMI and may affect the 
level of a specific metabolite through the PTPRD gene, which was also 
found in our study to be associated with the age at menarche phenotype. The 
association of BMI and age at menarche phenotypes is not novel, although 
our study shows, for the first time, the importance of taking metabolite mea-
surements into account to clarify the causal relationship between these traits.  
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SUMMARY IN ESTONIAN 

Geneetilise vermimise mõju komplekstunnustele 

Juba 1980. aastate alguses läbiviidud katsed loomade rakutuumade siirdamisega 
paljastasid epigeneetilise nähtuse nimega geneetiline vermimine (genomic im-
printing), mille tõttu tekivad vanemaspetsiifilised erinevused geenide ekspres-
sioonis. Diploidses organismis ekspresseeruvad tavaliselt mõlemalt vanemalt 
päritud geenikoopiad. Vermitud geenide puhul ekspresseerub ainult üks geeni-
koopia ja teine on deaktiveeritud. 

Nüüdseks on inimestel leitud juba peaaegu 150 vermitud geeni. Need geenid 
on väga tugeva valikusurve all ning nad mõjutavad väga paljusid bioloogilisi 
protsesse ning tunnuseid nagu näiteks pre- ja postnataalset arengut, organismi 
ellujäämist ja kasvu, kognitiivsete võimete ja metaboolsete protsessidega seotud 
tunnuseid, ning mitmete haiguseid, milledest tuntuimad oleks Angelmani, 
Prader-Willi ja Beckwith-Weidemanni sündroomid. On oluline mainida, et kuna 
geneetilise vermimise korral on aktiivne ainult üks geenikoopia, siis iga mutat-
sioon vermitud geenis võib omada väga suurt mõju tervisele. Seetõttu on 
geneetilise vermimise mustrite uurimine väga oluline ka kliinilise geneetika 
seisukohalt, sest see aitab paremini mõista erinevate haiguste tekkemehhanisme. 

Kuna geneetiline vermimine pannakse paika sugurakkudes, arvati pikka 
aega, et see muster püsib sarnasena kõikides kudedes. Uuemad tööd, mis on 
tehtud nii inimese kui ka katseloomade erinevaid rakke kasutades, on siiski 
näidanud, et vermitud geenide ekspressioonimuster sõltub nii koest kui ka orga-
nismi arengujärgust. Suurimaid erinevusi võiks oodata embrüonaalsete ja 
ekstrambrüonaalsete kudede ning täiskasvanu somaatiliste kudede vahel. 
Enamik vermitud geene on leitud platsentast või embrüonaalsetes kudedes ning 
on vähe informatsooni samade geenide ekspressioonimustrite kohta täiskasva-
nud organismi kudedes. Seetõttu on oluline uurida iga vermitud geeni puhul 
eraldi selle vermimismudelit erinevates kudedes eraldi, et oleks võimalik hin-
nata selle geeni mõju haigusele. 

Leidmaks geneetilise vermimise koespetsiifilisust, uurisin juba teadaolevalt 
vermitud geenide ning nendega seotud vermimise kontrollregioonide (ICR, 
imprinting control region) metülatsioonimustreid kasutades täiskasvanud ini-
mese organismi somaatilisi kudesid. Vermimise kontroll regioonid on suhte-
liselt väikesed genoomi regioonid, mis on erinevalt metüleeritud sõltuvalt vane-
ma alleelist ning asuvad vermitud geenide lähedal või sees. Nende funktsioo-
niks on reguleerida vermitud klastris olevate geenide ekspressiooni. Seetõttu 
uurisin neid ka eraldi oma töös ja näitasin nende spetsiifilist metülatsiooni 
mustrit, mis erineb vermitud geenide omast. Vermitud geenide ja nendega seo-
tud erinevalt metüleeritud regioonide uurimiseks kasutasime 18 somaatilist 
autopsia teel saadud kudet ning lisaks ka vereproove tervetelt doonoritelt. 
Kudede valikul lähtuti sellest, et katta kõik kolm lootelehte: endoderm, ekto-
derm ja mesoderm. 
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Kasutades inimese koeproove, leidsin, et vermitud geene iseloomustab pro-
mootori spetsiifilises piirkonnas rohkem poolmetüleeritud nukleotiide, mis 
võiks viidata vanema-spetsiifilisele metülatsioonile. Varasemad epigeneetilised 
uuringud on andnud vastuolulisi tulemusi, kui on kasutatud inimese täisvere 
proove, sest veri koosneb paljude erinevate rakkude segust, millede metülat-
sioonimuster võib olla erinev. Uurides vermitud geenide metülatsioonimustreid 
näitasin, et inimese verekoe proovid on siiski hea instrument vermitud geenide 
tuvastamiseks ning et metülatsioonimustrid on enamasti somaatiliste rakkude 
vahel püsivad. Lisaks leidsin, et ICR-id geeniregioonides, mis oli algselt ver-
mitud sugurakkudes ehk ootsüütides ja spermatosoidides, võivad hilisemalt 
somaatilistes rakkudes oma poolmetüleeritud oleku kaotada. Sellist muutust 
nägin ennekõike platsenta-spetsiifiliste ICR-ide puhul. Hilisemad uuringud on 
seostanud poolmetüleeritud oleku kadu bialleelse ekspressiooni tekkega. See-
tõttu võiks oletada, et geenid, mis on vermitud platsentas, võivad hilisemates 
arengustaadiumites omada bialleelset ekspressiooni.  

Töö teises pooles olen otsinud uusi vermitud geene, mis mõjutavad erinevaid 
inimese fenotüüpe: kehamassiindeksit (KMI), vere metaboliite ja menarhe iga. 
Menarhe ea analüüsis leidsime assotsiatsioone mitmes teadaolevat vermitud 
geenide klastris, nagu näiteks DLK1-WDR25 ja MKRN3-MAGEL2 klastrid. 
Lisaks kinnitasime varem teadaolevaid seoseid, et vermitud geenid KCNK9 ja 
SLC2A10 on seotud nii KMI kui ka menarche eaga. 

Kuna nii KMI kui ka menarhe iga on seotud ka metaboliitide tasemetega 
(eriti lipiidide tasemetega), siis viisin läbi uuringu, kus otsisin vanema-spet-
siifilisi assotsiatsioone ka vere metaboliitidega. Leidsin, et PTPRD geen, mida 
meie varasem uuring on seostunud menarhe eaga, mõjutab vanemaspetsiifiliselt 
ka metaboliidi taset. Uuringus leidsin, et metaboliit “triglütseriidid, mis on 
seotud keskmise suurusega VLDL molekuliga” oli assotsieerunud geneetiliste 
variantidega PTPRD geeni piirkonnas. See metaboliit koosneb kahest mole-
kulist – endogeenselt sekreteeritud triglütseriidist, mis on seotud VLDL 
molekuli tuumaga. See kompleks on rakkude energia allikaks ja uuringud on 
näidatud selle metaboliidi seost südamehaigustega. Seetõttu on väga oluline viia 
läbi edasiseid uuringuid kus uuritakse selle metaboliidi seoseid KMI ja menarhe 
eaga. Sellised uuringud võimaldavad tulevikus uurida vermitud geenides 
asuvate geneetiliste variantide mõju geeniekspressioonile konkreetse tunnuse 
või haiguse seisukohalt olulistes kudedes.  
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