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Motivation 
The general objective of this thesis is the development of an adaptive technique for extracting knowledge 
in large databases. 
Nowadays, technology allows storing huge volumes of information.  For this reason, the availability of 
techniques that allow, as a first stage, analyzing that information and obtaining knowledge that can be 
expressed as classification rules, is of interest.  However, the information available is expected to change 
and/or increase with time, and therefore, as a second stage, it would be relevant to adapt the knowledge 
acquired to the changes or variations affecting the original data set. 
The contribution of this thesis is focused on the definition of an adaptive technique that allows extracting 
knowledge from large databases using a dynamic model that can adapt to information changes, thus 
obtaining a data mining technique that can generate useful knowledge and produce results that the end 
user can exploit. 
The results of this research work can be applied to areas such as soil analysis, genetic analysis, biology, 
robotics, economy, medicine, plant failure detection, and mobile systems communications.  In these 
cases, obtaining an optimal result is important, since this helps improve the quality of the decisions made 
after the process. 
 
CLUHR 
When the data domain to be treated is continuous, hyper-rectangles are a convenient way of representing 
the data and have been used in several data mining works.  Hyper-rectangles are a powerful way of 
representing data, since they can describe in an almost natural manner the data subsets that they represent.  
This is because the boundaries of each hyper-rectangle formed in the data model can be used as clauses in 
the IF-THEN rules resulting from the knowledge extraction process.  At the same time, and due to their 
features, they can be easily handled in the input data domain, which enables contracting, merging and 
dividing with simple operations. 
While working on this doctoral thesis, a technique called CLUHR was defined and implemented.  This 
technique extracts knowledge from large volumes of information as classifications rules that help the end 
user understand the data being used and make relevant decisions.  These are strict rules, formed by the 
hyper-rectangles resulting from a data model that is created, and they represent the boundary between two 
hyper-rectangles in a fully rigid way. 
The system generates hyper-rectangles from the initial data and, based on an iterative process that 
removes overlaps, it makes decisions regarding which overlaps should be removed based on the 
computation of a set of overlap indexes that are proposed and developed in this thesis.  These decisions 
cause hyper-rectangles to change their size or be divided.  This optimization process continues until the 
intersection volume between the different classes of hyper-rectangles is minimized (or removed).  Finally, 
the rules resulting from the hyper-rectangles obtained are generated. 
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Building the model with expert monitoring 
To build the data model, the classification algorithm has to make numerous decisions.  Any decision 
regarding which overlap to solve is made by computing the overlap indexes.  This index can be calculated 
in many different ways, and the elements used to calculate it can be weighed differently also.  On the 
other hand, once the overlap that is to be removed has been selected, a decision has to be made regarding 
the need - or not - to divide the hyper-rectangles, reduce their volume, which hyper-rectangle to divide, or 
how to carry out this division.  In this sense, the technique proposed in this thesis does not make any 
decision in particular, since the correct option will to a great extent depend on the problem. 
In any case, all these decisions can be made before building the model, configuring the algorithm to build 
and running the model in a fully automated manner to achieve the end result.  Even though the technique 
proposed in this thesis is entirely flexible in the sense that an expert, before running the process, can 
determine which indexes to use and how to carry out the divisions, customizing the automated process, in 
real problems it is never possible to build an automatic process that is able to improve the “on-line” 
decisions that would make a human being, even more so when this human component is an expert on the 
domain of the problem. 
The strategy presented in this thesis can be used either as a fully automated process or an interactive 
process with the participation of an expert in the domain of the problem, with the following features: 

- Flexibility in the use of indexes. 
- Possibility of assigning different weights to each class. 
- Freedom to decide how to carry out a division or volume reduction. 
- Possibility of running the process in a fully automated mode, fully expert-monitored mode, or 

partially expert-monitored mode. 
 
Adaptability 
As for adaptive behavior, the new data that are entered to the data model cause the hyper-rectangles to 
change, which in turn will eventually cause new splits or joins.  This means that there is no need to 
rebuild the model using the entire data set, but only adapting it by modifying its internal structure upon 
the arrival of new data.  Once the internal structure of the model is updated, the set of existing rules is 
also updated. 
The adaptive strategy proposed is characterized for allowing the user to act as a monitor and take part in 
the decision made by the algorithm when creating or adjusting the hyper-rectangles.  Thus, an expert in 
the domain of the problem can contribute extremely valuable information during the creation of the data 
model. 
At the same time, as well as offering the various alternatives and possible solutions with varying validity 
levels, the model itself can make suggestions to the user regarding specific actions that can be done based 
on the knowledge acquired and data dynamic trends, if they are being updated. 
Thus, an adaptive strategy has been established that is capable of building a first model from a database 
and then gradually adapt as new information is acquired.  Even though this strategy can operate in a fully 
automated manner, it also offers the possibility of having and expert taking part of the process, who can 
participate with various levels of involvement in building the model. 
 
Results 
Firstly, various problems are analyzed with two-dimensional databases.  These problems allow a detailed 
analysis of the operation of the strategy proposed for different spatial distributions of the data used for 
building the model.  These problems used as examples are artificially built databases that allow 
representing in a figure the spatial distribution of their data. 
A series of problems with two, three, and up to four data classes, problems with various spatial 
distributions, problems that can be easily solved, and problems that require several hyper-rectangle split 
operations to build the data model, are also analyzed.  The resources used by the strategy to build a model 
are also analyzed.  The resource measured is the number of times the database is examined while building 
the model.  
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CLUHR was tested with 13 databases from UCI.  This testing process was carried out to compare the 
results obtained with those from methods C4.5 (Quinlan, 1993), EHS-CHC (García et al., 2009) and 
PSO/ACO2 (Holden et al., 2008).  Using the 10-fold cross-validation test, the accuracy achieved by the 
data model built, the number of rules extracted, the average number of clauses per rule, and the number of 
times the database is examined to build the data model, were measured. 
As regards the accuracy obtained by the data model (Table 1), the number of rules extracted (Table 2), 
and the average number of clauses per rule (Table 3), it cannot be concluded that CLUHR is either better 
or worse than the other strategies used for comparison.  It may be slightly worse than PSO/ACO2, since 
this method allows the presence of “ambiguity” in the set of rules.  These rules, on the other hand, have a 
certain order of execution.  Also, since this is an optimization strategy, the expectation is that a particle 
representing an optimal result will be found. 
Even though CLUHR does not seem to be better than the other techniques that were studied, yielding 
similar results regarding accuracy, number of rules extracted and average number of clauses per rule, it 
does present two great advantages: 

- The same as C4.5, CLUHR is a deterministic strategy, meaning that the same input always 
produces the same output, which is something that EHS-CHC and PSO/ACO2, or any other 
optimization strategy for that matter, can ensure. 

- The number of times the database is examined with CLUHR to build the data model is much 
lower than that of the optimization strategies and slightly lower than in the case of C4.5, with an 
average that is twice lower than that of C4.5 (Table 4). 

The incremental aspect of CLUHR was compared against the ITI technique (Utgoff et al., 1996).  The 
main problem with the ITI technique, as with any decision-tree-based technique, is that data build-up and 
node decision function re-assessment make, sooner or later, sub-tree restructuring necessary.  When the 
sub-tree to be redone has as its root a node from one of the first levels, the restructuring work to be done 
is significant, since a large portion of the database has to be re-examined.  The worst-case scenario would 
be when the node to be restructured is the root node of the tree, resulting in a full restructuring process 
with the corresponding full examination of the database.  
In CLUHR, the addition of new data causes changes in only one hyper-rectangle.  If the affected hyper-
rectangle overlaps with other hyper-rectangles, the latter are also modified.  
The results obtained show that CLUHR requires much less computational effort than that required by 
decision trees based on the ITI algorithm (Table 5). 
 
Future Work 
As regards the overlap indexes used to decide which overlap was to be removed, the six indexes that are 
proposed in this thesis proved to be capable of successfully solving numerous problems. 
In this realm, the development of new indexes that measure other aspects of an overlap can be studied, for 
instance, indexes that simultaneously measure the characteristics of more than two classes, or indexes that 
simultaneously measure aspects with more than one dimension. 
In certain cases, smaller hyper-rectangles can be merged into a single, larger one, which would result in 
fewer rules in the data model. 
Also of interest is researching the possibility of merging hyper-rectangles from a same class while the 
model is being built, or if this merging process should be considered as an additional activity that should 
be carried out as the final stage of the simplified-rule extraction process.  Improving this aspect would 
benefit the procedure for extracting simplified rules, since a smaller number of rules would have to be 
used. 
In this regard, on of CLUHR's weaknesses is that the end process for extracting a set of simplified rules 
uses a greedy, order O(n2) procedure.  Even though different approximations have been proposed to 
perform this work in a more efficient manner, the possibility of somehow “marking” those hyper-
rectangle faces that represent a boundary within the data space is of interest.  Since from each of the faces 
of a hyper-rectangle a clause is extracted for the rule corresponding to that hyper-rectangle, if the faces 
representing data space boundaries were identified, the corresponding rules would be directly excluded 
and no simplification method would be required. 
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Tables 

Table 1.  Model accuracy achieved by each of the studied strategies and for each of the tested databases. 

 C4.5 EHS-CHC PSO/ACO2 CLUHR 
E. coli 0.7964 (0.0141) 0.7948 - 0.7891 (0.0160) 
Glass 0.6576 (0.0302) 0.6287 0.7095 (0.075) 0.6215 (0.0360) 
Haberman 0.7103 (0.0202) 0.7122 - 0.7356 (0.0064) 
Image 0.8586 (0.0155) - 0.9667 (0.0117) 0.8538 (0.0135) 
Ionosphere 0.9054 (0.0151) - 0.8806 (0.0491) 0.8777 (0.0169) 
Iris 0.9420 (0.0077) 0.9267 0.9467 (0.0526) 0.9300 (0.0079) 
Liver 0.6418 (0.0300) 0.6167 - 0.5918 (0.0211) 
Pima 0.7434 (0.0093) 0.7384 - 0.5595 (0.0191) 
Sonar 0.7235 (0.0247) 0.7650 0.7505 (0.0911) 0.6666 (0.0283) 
Vehicle 0.7111 (0.0099) - 0.7305 (0.0445) 0.6819 (0.0171) 
Vowel 0.6008 (0.0158) - 0.8616 (0.0347) 0.7120 (0.0132) 
Wine 0.9141 (0.0145) 0.9490 - 0.9530 (0.0113) 
Wisconsin 0.9446 (0.0047) 0.9599 0.9487 (0.0253) 0.9251 (0.0102) 
Forest covertype 0.7063 (0.0187) - - 0.6928 (0.0149) 

 

Table 2.  Number of rules extracted by each of the studied strategies and for each of the tested 
databases. 

 C4.5 EHS-CHC PSO/ACO2 CLUHR 
E. coli 12.1 (1.45) 11.1 - 12.62 (1.44) 
Glass 14.8 (0.79) 12.2 20.4 (1.35) 15.17 (1.30) 
Haberman 10.7 (3.62) 4.4 - 4.29 (0.33) 
Image 10.6 (0.70) - 21.9 (0.99) 10.93 (0.47) 
Ionosphere 10.2 (2.04) - 3.6 (0.97) 3.98 (0.37) 
Iris 4.0 (0.47) 3.4 3.0 (0.00) 3.21 (0.12) 
Liver 23.9 (4.46) 9.8 - 17.79 (2.21) 
Pima 13.2 (1.40) 11 - 10.45 (0.91) 
Sonar 10.9 (1.60) 10.3 4.4 (1.58) 4.14 (0.20) 
Vehicle 31.0 (2.31) - 37.8 (1.2) 32.35 (2.03) 
Vowel 32.8 (2.20) - 29.0 (0.82) 31.74 (0.78) 
Wine 5.1 (0.57) 3.6 - 3.18 (0.11) 
Wisconsin 11.9 (1.79) 3.8 10.2 (1.87) 9.63 (1.39) 
Forest covertype 39.7 (2.35) - - 41.25 (2.05) 
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Table 3.  Average number of clauses per rule extracted by each of the studied strategies and for each of 
the tested databases. 

 C4.5 PSO/ACO2 CLUHR 
E. coli 4.32 (0.30) - 4.65 (0.15) 
Glass 5.68 (0.75) 3.11 (0.18) 5.37 (0.18) 
Haberman 4.54 (1.27) - 2.54 (0.06) 
Image 4.31 (0.58) 2.8 (0.27) 3.74 (0.10) 
Ionosphere 5.36 (0.89) 3.33 (0.79) 5.17 (0.18) 
Iris 2.25 (0.27) 0.93 (0.14) 2.08 (0.05) 
Liver 6.80 (1.30) - 5.01 (0.06) 
Pima 4.55 (0.27) - 5.27 (0.12) 
Sonar 3.99 (0.43) 2.6 (0.63) 16.27 (0.72) 
Vehicle 7.10 (0.34) 3.85 (0.18) 7.38 (0.33) 
Vowel 5.69 (0.18) 4.2 (0.25) 8.13 (0.27) 
Wine 2.46 (0.17) - 4.08 (0.09) 
Wisconsin 4.31 (0.39) 1.21 (0.07) 3.59 (0.11) 
Forest covertype 6.67 (0.82) - 6.49 (0.48) 

 

Table ¡Error! No hay texto con el estilo especificado en el documento..  Resources used: number 
of times the database is examined.  Strategies EHS-CHC and PSO/ACO2 require over 2000 times. 

 C4.5 CLUHR Significance 
E. coli 4.19 (0.39) 3.53 (0.33) + 
Glass 5.64 (1.10) 3.97 (0.37) + 
Haberman 3.61 (1.26) 5.28 (0.32) - 
Image 3.84 (0.35) 1.67 (0.06) + 
Ionosphere 5.78 (0.73) 2.47 (0.14) + 
Iris 2.02 (0.13) 1.5 (0.06) + 
Liver 6.59 (1.48) 5.20 (0.50) + 
Pima 3.74 (0.24) 4.97 (0.39) - 
Sonar 4.03 (0.49) 2.41 (0.17) + 
Vehicle 5.98 (0.24) 5.06 (2.56) = 
Vowel 5.54 (0.13) 2.99 (0.11) + 
Wine 2.34 (0.10) 1.20 (0.01) + 
Wisconsin 3.19 (0.35) 3.02 (0.32) = 
Forest covertype 5.71 (0.72) 5.24 (0.45) = 
Total   +7 

 

Table 5.  Resources used: number of times the database is examined. 

 ITI CLUHR Significance 
E. coli 5.19 (0.95) 0.59 (0.45) + 
Glass 14.50 (2.56) 0.44 (0.11) + 
Haberman 12.84 (2.24) 0.99 (0.25) + 
Image 2.37 (0.44) 0.19 (0.15) + 
Ionosphere 1.71 (0.30) 1.59 (0.43) = 
Iris 0.25 (0.05) 0.90 (0.50) - 
Liver 14.58 (2.70) 0.61 (0.16) + 
Pima 21.53 (3.69) 1.31 (0.37) + 
Sonar 5.11 (0.90) 0.06 (0.05) + 
Vehicle 14.42 (2.48) 1.07 (0.32) + 
Vowel 31.20 (5.30) 0.11 (0.05) + 
Wine 1.32 (0.26) 0.26 (0.41) + 
Wisconsin 1.65 (0.30) 8.31 (2.11) - 
Total   +8 
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