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Abstract—At present there are different TCP versions pro-
viding different performances. In this work the three of them:
Reno, CUBIC and Vegas are considered. We simulate a
WAN type network analyzing the throughput and perfor-
mance of these TCP variants in order to discover which of
them has a better performance.
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1 INTRODUCTION

A LTHOUGH it is one of the first protocols
developed for Internet its study and analysis

has not stopped. The present features in the new data
networks make further protocol developments and
modifications. Since Jacobson and Karels presented,
in 1988, its congestion control mechanism, called
TCP Tahoe, many amendments have been done to
TCP, resulting in different implementations of the
same. The main changes point to the Congestion
Control mechanism and it is the aim of this study to
compare the performance in high speed networks.

In order to make efficient use of network
bandwidth, TCP controls its flow rate using
feedback provided by the network (the feedback is
generated through message loss, delays or through
network itself as in the case of Explicit Congestion
Notification (ECN)), thereby preventing the collapse
of Internet due to congestion. In addition, TCP has
achieved considerable success in maximizing link
efficiency through a balance in all existing flows.
However, it has been found that TCP underutilizes
the digital bandwidth large BDP(Bandwidth Delay
Product) networks.

As speeds and lengths of networks increase, the
performance of TCP has been challenged. These
networks are characterized by having a BDP high,
which implies a significant number of packets in
transit necessary to maintain the bandwidth of the
network completely used, that is, the congestion
window size should be high in order to make

efficient use of network resources.

This paper compares the performance of three
variants of the TCP protocol. The selected Implemen-
tations are: TCP Reno [1] , CUBIC TCP Reno and
TCP Vegas.TCP Reno as it represents the evolution
of the original implementation; TCP CUBIC for being
present in most Linux platforms and TCP Vegas by
carrying out a proactive congestion control model,
moving away from traditional approaches.

2 CONGESTION CONTROL ALGORITHMS ANA-
LYZED

2.1 TCP Reno

I T emerged in 1990 and was implemented initially
on a BSD Unix operating system. It is the successor

of TCP Tahoe and basically proposes improvements
thereon. Maintains all its main features (Slow Start,
Congestion Avoidance and Fast Retransmit) but adds
Fast Recovery. Both mechanisms were proposed by
Van Jacobson.

TCP Reno, as TCP Tahoe, implements an Additive
Increase Multiplicative Decrease (AIMD)algorithm.
That is, increments or decrements the size of
the window depending on whether the packet is
acknowledged or lost (its time-out has expired or
the source has received over a three repeated ACKs).

TCP Reno adjusts its window according to the
phase in which it is:

Slow Start (SS):
In this phase, which is the initial , the
window size increases exponentially. The
session begins with a unitary window which
is increased in one segment by each segment
validated through an ACK. This phase also
is initiated after a loss is detected by time-
out. The limit of this phase is found when
the window reaches a threshold called Slow
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Start Threshold (ssthresh), that at the begin-
ning of the connection is established to a
high value.

Congestion Avoidance (CA):
This phase begins at the end of Slow Start
or after a loss is detected by the reception of
duplicate ACKs. TCP continues to increase
its congestion window as 1/CWnd (CWnd
= Congestion Window) each time it receives
an ACK.

Fast Retransmit:
Packet loss is detected, as well as when
the time-out expires and the package has
not been confirmed (corresponding ACK re-
ceived), for the reception of three duplicate
ACKs (ie 4 equal ACK packets). In this case,
it must be retransmitted only the package
supposed to be lost, but not the rest of the
packages, without waiting for the time-out
to expire. Congestion Avoidance phase is
performed again. This is TCP Tahoe.

Fast Recovery:
This phase goes on as follows:

• Slow Start Threshold (ssthresh) is set
half the current value of the congestion
window

• The congestion window, cwnd is set to
ssthresh value plus 3 times the package
size

• Each time the sender receives a dupli-
cate ACK, cwnd increases in one packet
and sends a new packet

• When the first non-duplicate ACK ar-
rives, cwnd is set to ssthresh value

All these steps define the Fast Recovery
mechanism.

2.2 TCP CUBIC

THIS is the default TCP algorithm in GNU /
Linux. The differences with the other variants

considered are scalability and mainly the fact that the
window updates are independent of RTT, achieving
a better distribution of bandwidth among all active
sessions.
It is equivalent to Reno in stages Slow Start (in
[4] there is a slight variation at this stage), Fast
Retransmit and Fast Recovery. It differs from the
standard TCP solely on the adjustment of the
congestion window, replacing the linear growth
function of a standard TCP for a cubic function
in order to achieve the improvements mentioned
above.
On loss, reason for setting the congestion window
(cwnd), the value reached is recorded as Wmax and
the window is decreased by a factor β = 0.2.
From that time a new window is calculated as:

W (t) = C(t−K)3 +Wmax (1)

The values of C and K are to be determined such
that Wmax be the turning point of the function W (t),
t is the time since the last window reduction .

K be the time required by the window to reaches
the value Wmax with no loss:

K = 3
√
Wmax ∗ (β/C)

C = 0, 4 usually.

It is shown in the following figure, extracted from
[4], the behaviour of the cubic function defined for
this implementation:

It is then set the value of W (t) and the value of the
window that would have come with standard TCP,
WTCP (t)

WTCP (t) =Wmax ∗ (1− β) + 3 ∗ β

2− β
∗ t

RTT

The window grows as follow for each ACK received

• If W (t) < WTCP (t), then CUBIC TCP operates
in support or friendly mode, setting the window
according to the value of WTCP (t)

• If W (t) < Wmax, then it is in the concave region
of the curve or stable mode [5]. The window is
adjusted according to W (t).

• If W (t) > Wmax, then it is in the convex region
of the curve or exploratory mode. The window
is adjusted according to W (t).

2.3 TCP Vegas

THE novelty of Vegas is its proactive character be-
cause determines if there is an incipient conges-

tion by observing the difference between the actual
throughput (that calculated from RTT measurement)
and the maximum (which is calculated at the start of
the session). TCP Vegas adjusts the delivery rate of
the source node (i.e. its congestion window) in order
to maintain a small number of packets in the buffers
of the routers. It was developed at the University of
Arizona by Larry L. and Lorenzo Brakmo Peterson
in 1994 [2], [3]. Today it is implemented on various
platforms, but due to the competition with other
algorithms such as Reno or CUBIC, is not widely
used.
While conceptually it contrasts with Reno it runs
the same mechanisms, with differences in their im-
plementations. Obviously, the congestion window is
updated according the phase in which it is currently
running.
Let’s see the differences:

• The RTT, key parameter to trigger the various
mechanisms, is measured with a finer granu-
larity, away from Reno 500 msec. RTT value is
directly determined by the difference in time of
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sending a packet and receiving the correspond-
ing ACK for each packet sent.

• This more accurate RTT value is to be used to
determine the retransmission in two stages:

– When receiving a duplicate ACK, if the RTT
is larger than RTO.

– When receiving a non duplicate ACK that is
not the first or second after a retransmission,
if the RTT is larger than the RTO.

• In the TCP Congestion Avoidance phase Vegas
estimates the amount of data that can exist in
the buffers of the switches and / or routers and
according to that, decide whether to increase or
decrease its congestion window by one packet.
This estimation is performed for each of the
measured RTT as follows:

CWnd =


CWnd+ 1, if Diff < α

CWnd− 1, if Diff > β

CWnd, otherwise

Where:
Diff = (Expected−Actual)
Expected = CWnd/BaseRTT . Maximum
Throughput expected.
Actual = CWnd/RTT . Measured Throughput.
BaseRTT . Minimum RTT.
The thresholds, α and β, correspond approxi-
mately to have little and much backlog of pack-
ets in the network, respectively. α must be less
than β.
Obviously, the further the current throughput is
from the expected more congestion exists in the
network, which means that the sender should
reduce its sending rate. The threshold β triggers
this decrease of the congestion window. On the
other hand, if the actual throughput gets too
close to the expected , the connection may not
be using the available bandwidth. The threshold
α triggers this increase.

• The mechanism of Slow Start exponentially in-
creases CWND every two RTT, (Reno does in
all RTT). At the other RTT, the window does
not change. This phase ends when a growth is
found in the buffer queues. This occurs when the
congestion window reaches a value for which
Diff = (Expected−Actual) exceeds a threshold
δ . When this happens, TCP Vegas enters the
Congestion Avoidance phase.

3 LAB TESTS

THE test environment, Figure 1, simulates the
characteristics of a WAN network , in which

the central link fulfills that role setting its digital
bandwidth to 100Mbps and with several different
delays. About the end links between routers and
stations, we did not make any changes being the
same with a speed of 1Gbps and usual delay of a
LAN.

In much of the literature tests are conducted on
simulators like NS-2 [9], in this case the approach
seeks to make them on a real environment. In previ-
ous tests it has been observed that simulators often

Fig. 1: Test Environment

lose characteristics that become visible in real en-
vironments, giving different results. The tests were
conducted on physical machines with enough mem-
ory and CPU, AMD with 2 cores and 3GB of RAM
running OS GNU / Linux Red Hat Enterprise Server
6 with kernel version 2.6.32-71-7-1.el6 of 64bits for
all devices, both routers and workstations. To make
changes to link parameters we used Linux tools Tc
(Traffic Control) and Linux Netem (Network Emu-
lation) [10]. The configurations for testing the link
between routers are:

• Bandwidth 100Mbps, LAN delay (no changes),
test results were taken only as references, these
were not analyzed.

• Bandwidth 100Mbps, delay d = 100ms (50ms +
50ms) without jitter , j = 0ms.

• Bandwidth 100Mbps, delay d = 100ms (50ms +
50ms) with jitter: j = +/ − 1ms on each end-
router.

• Bandwidth 100Mbps, delay d = 200ms (100ms +
100ms) without jitter, j = 0ms.

• Bandwidth 100Mbps, delay d = 200ms (100ms +
100ms) with jitter: j = +/ − 1ms on each end-
router.

The jitter (j) has a uniform variation of +/-1ms.
For each set of tests there were not made competitive
analysis with another traffic.

Each test was run five or more times with
variations in the TCP congestion control algorithms
mentioned in the introduction.

The tool used to generate traffic at the end nodes
was iperf(1) [6]. To capture traffic behavior and
congestion control algorithm we took messages
from the physical interfaces from the sending host
with tcpdump/Wireshark [7]. The kernel module
tcp_probe (TCP cwnd snooper) [8] allowed to
follow the behaviour of the congestion window,
cwnd, and SSTH threshold, for different TCP
sessions. For the value of CWND and SSTH, in
every case, all values were monitored over time and
not just the changes. This fact is clarified since the
tool can also be used to monitor changes only.

The test environment with respect to the kernel
parameters configured on computers for the first tests
is the default and configured to not cache results of
previous connections. Linux TCP normally remem-
bers some parameters of the last links in a flow cache.
This configuration is recommended for benchmarks
(tests).
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Fig. 2: Reno throughput in bps, for 100Mbps d=100ms, j=0ms

Fig. 3: CUBIC throughput in bps for 100Mbps, d=100ms,
j=0ms

Fig. 4: Vegas throughput in bps for 100Mbps, d=100ms,
j=0ms

4 RESULTS

4.1 TCP Tests: 100Mbps, 100ms delay without
jitter

THE tests were conducted for 100 seconds and
were repeated several times for each algorithm.

Not any extension in time was required because the
results were as expected. Each variant of congestion
control algorithm of TCP obtained almost the highest
possible performance in test time.

Figures 2, 3 and 4 show obtained throughput.
Figures 5, 6 and 7 show the evolution of the

congestion window and SSTH for each one.
During the initial phases the curves show that

CUBIC is a bit slower, but this time in which works
somewhat below the rest, in the total test is almost
negligible.

4.2 TCP Tests: 100Mbps, 100ms delay with jitter
+/-1ms

We started with a jitter of j = +/− 1ms, testing for
100 seconds and later, for a better analysis a little
more time. In the case of Reno in 30% of the cases it

Fig. 5: Reno CWND/SSTH evolution for 100Mbps, d=100ms,
j=0ms

Fig. 6: CUBIC CWND/SSTH evolution for 100Mbps,
d=100ms, j=0ms

Fig. 7: Vegas CWND/SSTH evolution for 100Mbps,
d=100ms, j=0ms

gets a throughput over the average (70Mbps, approx),
in the remaining 70% because of selecting low value
of SSTH, it goes immediately into phase CA and
gets the maximum throughput slowly; approximately
in 300 seconds. Figure 8 shows the evolution of
CWND/SSTH with a low performance in the short-
term.

Figure 11 shows in pulse lines the low performance
of Reno in most of the cases.

Figure 10 shows the evolution of the window and
threshold in the few cases where the algorithm starts
well and quickly reaches the ceiling. A feature seen in
the Linux implementation is that it rises the threshold
according to the window during phase CA.

If the tests run longer it shows that the algorithm
is stable in the long term, behaviour that is seen in
Figure 9 showing the evolution of the parameters that
control performance.

In contrast, with CUBIC the results were more even
reaching better results in the short term. Figures 11
and 12 shows the test results with this algorithm,
both performance and CWND / SSTH evolution. The
performance is compared with that obtained with
Reno.

Vegas behaviour was completely outside the ex-
pected since the same curves as in the case of Reno
were obtained. Figure 13 shows CWND evolution. It
seems that this implementation of Vegas behaves like
Reno in the presence of jitter.

JCS&T Vol. 13 No. 1                                                                                                                                April 2013

4



Fig. 8: Reno CWND/SSTH evolution for 100Mbps, d=100ms,
j=+/-1ms in 100s

Fig. 9: Reno CWND/SSTH evolution for 100Mbps, d=100ms,
j=+/-1ms with extended time

Fig. 10: Reno CWND/SSTH evolution for 100Mbps,
d=100ms, j=+/-1ms good start

Fig. 11: CUBIC throughput(line) vs. Reno(pulse) for
100Mbps, d=100ms, j=+/-1ms

Fig. 12: CUBIC CWND/SSTH evolution for 100Mbps,
d=100ms, j=+/-1ms

Fig. 13: Vegas CWND/SSTH evolution for 100Mbps,
d=100ms, j=+/-1ms, extended execution

4.3 TCP Tests : 100Mbps, 200ms delay without
jitter

In this case, the tests have a double BDP
(Bandwidth Delay Product), causing the usual
buffer’s parameters, directly associated with the
maximum CWND are not adequate and by having
a large RTT, there is a slower growth.

Reno, in tests of 100 seconds, reaches an average
of 65Mbps without optimization. The performance is
similar to CUBIC and Vegas in the same environment.
While CUBIC is much more aggressive in growth at
the beginning, showing peaks at the end all reach
similar performance.

Performing the following optimization, the results
are different.
sysctl net.ipv4.tcp_rmem=’’4098 87380
46777216’’
sysctl net.core.rmem_max=46777216
sysctl net.ipv4.tcp_wmem=’’4098 87380
46777216’’
sysctl net.core.wmem_max=46777216

With these modifications, Reno achieves better re-
sults. The second phase of CA does not begin from
below but does so from the middle of SSTH, that
in the short-term with tests lasting 100ms, gives an
average of 80Mbps. This can be seen in Figures 14
and 15 showing the performance and evolution of
the parameters for congestion control running in an
optimized way.

In CUBIC, for its part, the peaks do not return to
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Fig. 14: Reno throughput in bps for 100Mbps, d=200ms,
j=0ms, optimized

Fig. 15: Reno CWND/SSTH evolution for 100Mbps,
d=200ms, j=0ms, optimized

zero, therefore, a better final performance is obtained,
which can be seen in Figures 16 and 17.

The results obtained with Vegas optimized are
quite similar to those of Reno once again. The graphs
are not provided.

Extending the time of testing the final digital band-
widths averages are somewhat better and the perfor-
mance of each algorithm is observed correctly. CUBIC
has similar behaviour in both the short and the long
term because the cycles are much shorter. In the long
term, Reno works as expected, which can be seen
in Figures 18 and 19. The graph of the throughput
is generated using a different option in wireshark
that shortens the amount of data considering that the
expected behaviour was observed. In the evolution of

Fig. 16: CUBIC throughput in bps for 100Mbps, d=200ms,
j=0ms, optimized

Fig. 17: CUBIC CWND/SSTH evolution for 100Mbps,
d=200ms, j=0ms, optimized

Fig. 18: Reno throughput in bps for 100Mbps, d=200ms,
j=0ms, optimized, extended time

Fig. 19: Reno CWND/SSTH evolution for 100Mbps,
d=200ms, j=0ms, optimized, extended time

the congestion window, time t = 0 is shifted because
the capture began moments before traffic generation.

Vegas, meanwhile, manages to stabilize and work
according to its features, which can be seen in Figures
20 and 21. The graphs are generated in the same way
as for Reno on the same test bench.

Although in some tests the growth was much
slower, which can be seen in Figures 22 and 23, Vegas
ends getting somewhat better results in an environ-
ment with a fixed delay and without competition
with other flows.

Fig. 20: Vegas throughput in bps for 100Mbps, d=200ms,
j=0ms, optimized, extended time
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Fig. 21: Vegas CWND/SSTH evolution for 100Mbps,
d=200ms, j=0ms, optimized, extended time

Fig. 22: Vegas throughput in bps for 100Mbps, d=200ms,
j=0ms, optimized, extended time, another case

4.3.1 TCP Tests: 100Mbps, 200ms delay with jitter
+/-1ms
In these tests the behaviour of the algorithms is simi-
lar to that obtained with 100ms delay and jitter +/-1.
To study the behaviour of the Reno and Vegas the
test should be extended for much longer, of course,
because the growth is slower. Once Vegas reaches the
roof the behaviour is like Reno doing slow cycles of
ups and abrupt downs , giving a bad performance.
We find that for these algorithms that the through-
put in the short term is much worse, reaching the
maximum at approx 1200s. CUBIC, because of its
aggressiveness gets better results in the early, short-
cycles. Vegas, now with jitter behaves like Reno.
Figure 24 is the evolution of Reno and Figure 25 that
of Vegas. Regarding CUBIC in smaller duration tests
can be seen Figure 26. To compare performances, in
Figures 27 and 28 Reno (pulses) is compared with
CUBIC (line), in 300s and the first 100s. You can

Fig. 23: Vegas CWND/SSTH evolution for 100Mbps,
d=200ms, j=0ms, optimized, extended time, another case

Fig. 24: Reno CWND/SSTH evolution for 100Mbps,
d=200ms, j=+/-1ms in 2000s

Fig. 25: Vegas CWND/SSTH evolution for 100Mbps,
d=200ms, j=+/-1ms in 2000s

notice the slow growth of Reno, which according to
tests, is similar to Vegas quite different from CUBIC
on the fast attack . In a long-term test, 2000s, the
results are more even and the two algorithms, Reno
and Vegas, perform not so badly compared to CUBIC.

5 CONCLUSIONS

FOR the tests performed with different WAN pa-
rameters, CUBIC algorithm seems best suited

to the different conditions tested. While sometimes
Vegas was the one that obtained the best performance
for short sessions, it often takes a long time to reach
the maximum and is not efficient. It is also observed
that Vegas sometimes does not behave like it is
expected but works as Reno on GNU / Linux. Reno
and Vegas in a great number of tests gave a low
yield in the short term because they quickly enter the

Fig. 26: CUBIC CWND/SSTH evolution for 100Mbps,
d=200ms, j=+/-1ms in 300s
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Fig. 27: Throughput: CUBIC(line) vs. Reno(Pulses) for
100Mbps, d=200ms, j=+/-1ms in 300s

Fig. 28: Throughput: CUBIC(line) vs. Reno(pulse) for
100Mbps, d=200ms, j=+/-1ms in 100s, initial phase

stage of CA (Congestion Avoidance) having reached
a low SSTH. For links with larger values of BDP in
the case of Reno and Vegas it was necessary to ac-
complish the optimizations and modifications in the
window configuration for them to achieve acceptable
performance. Regarding CUBIC, optimizing kernel
improved the performance although without it the
algorithm even works much better.

6 FUTURE WORK

A S counterpart to WAN test it could be simulated
LAN environments where the features are quite

different and optimize the parameters that come
into play. These tests should obtain a comparison
of the algorithms in stand-alone environments. Also
it would be interesting to set up tests environments
with the algorithms competing between themselves.
Finally, Vegas unexpected performance with jitter in
GNU/Linux platforms should be investigated.
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