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Abstract 

We present a new theory to estimate fluxes and effective transport conductances of binary mixtures 

through a membrane comprising a nonuniform porous medium with both pore size and pore length 

distributions, using the Onsager formulation at the single pore level. The theory defines a conductance 

of each species that is dependent on the concentration gradients of the various species, and on using 

effective medium theory determines the fluxes and concentration profiles self-consistently in the 

porous medium. The transport of CH4/H2 mixtures in a silica membrane having a known pore size 

distribution is examined using this theory, and the results compared with those from rigorous 

simulations, showing good agreement. It is found that an optimal network coordination number exists 

at which species fluxes are a maximum, due to the opposing effects of increasing porosity and mean 

pore length with increase in coordination number. Further, network fluxes decrease with increase in 

pore dispersion, indicating that uniform pore size is optimal. A species and pressure-dependent optimal 

temperature is also predicted, due to the competing effects of increase in diffusivity and decrease in 

adsorption on increasing temperature. It is seen that the CH4 selectivity is very sensitive to temperature, 

and undergoes a cross-over, with the membrane being more selective to CH4 at low temperature and 

to H2 at high temperature.  In general, the selectivity is very sensitive to the distribution of pore 

volume, and for bimodal pore networks, undergoes a sharp transition at the percolation threshold, when 

the smaller pore size is impermeable to the larger species, CH4. The approach offers a convenient 

adaption of effective medium theory to multicomponent systems with nonlinear isotherms, 

overcoming drawbacks of existing theory. 
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1. Introduction 

The understanding of multicomponent transport in porous media is of great interest due to its 

fundamental importance to a variety of applications in industry, for example, adsorptive separations, 

gas-solid reactions, and electrochemical processes. In recent years, interest has been significantly 

enhanced because of emerging novel technologies in industrial separation [1, 2], a wide variety of new 

applications in nanofluidics [3, 4], adsorptive energy storage [5, 6] and lab-on-a-chip technology [7], 

and the associated explosive growth of new nanoporous materials. Such materials include zeolites-

based membranes [8, 9], carbon nanotubes [10, 11], metal organic frameworks [12], MCM-41 silica 

and their analogues [13], all of which are considered promising in the above applications. All the above 

applications involve the infiltration of fluids in highly confined spaces, which has stimulated efforts to 

understand the influence of structural characters and process conditions on the transport behaviour. An 

accurate fluid transport model is essential for the design of new porous materials and processes for 

specific applications, as well as for optimal operation. 

The first step of the modelling processes is to describe the diffusion at the single pore level, for which 

the most common approach dates back to the works of Knudsen [14] and von Smoluchowski [15] 

almost a century ago. They treated the low-density transport of hard sphere molecules travelling in 

micron-sized channels, assuming diffuse wall reflection; nevertheless, this approach has been widely 

used even at the nanoscale without justification. The dusty gas model (DGM) [16-19], popular in 

modelling multicomponent transport in porous media, considers both diffusive and viscous resistances, 

with the former being a superposition of Knudsen and activated surface diffusion resistances, and 

molecular diffusion resistance, and the latter following the classical Poiseuille flow model. However, 

the Knudsen model inherits the weakness of the hard sphere representation, whereby the effects of 

dispersive interactions are overlooked. Moreover, DGM lacks a firm molecular foundation [19], and 
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semi-empirical fitting parameters are often introduced to obtain better agreement with experimental 

results [20, 21]. Recently, however, new theoretical models considering more accurate fluid-solid 

interactions have emerged, such as the oscillator model [22] and the distributed friction model [23, 24], 

as well as the Maxwell-Stefan (M-S) equation based approach [25-27]. Developed from statistical-

mechanical principles, the oscillator model considers the trajectories of particles oscillating in the 

fluid-solid potential field at low density conditions, while undergoing diffuse wall collisions. Both the 

oscillator model and molecular dynamics simulations have shown the Knudsen model to significantly 

overpredict diffusion coefficients in nanoscale pores due to its neglect of the dispersive interactions 

[22, 25-28]. Simple correlations based on the oscillation model in idealised geometries have been 

derived for fast estimation and easy application [28]. The distributed friction model introduces the 

fluid-wall momentum exchange in the repulsive region of the fluid-solid potential through a pure 

component phenomenological friction coefficient, and considers the inhomogeneity of the adsorbate 

density profiles, providing novel insight into multicomponent transport analysis at the nanoscale. The 

M-S equation based approach is based on species concentrations within the accessible pore space, and 

indirectly considers the adsorption field through the pure component transport coefficients, which may 

be obtained by experiment or MD simulation.  

 

With the diffusivity in each pore clearly expressed, a fluid transport model may be obtained by 

combining the information of pore network and connectivity. An established way to do this is effective 

medium theory (EMT) [29-31], by replacing a nonuniform network with distributed conductances by 

an effective network with a uniform transport conductance. However, EMT has the drawback of 

unknown tortuosity in a randomly oriented network, which is usually taken as an empirical fitting 

factor. An alternative method is the correlated random walk theory (CRWT) [32-34], which determines 
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the tortuosity of randomly oriented networks, by considering the correlation between successive pores 

traversed during the meandering of molecules in the pore network of uniform coordination number. A 

hybrid EMT-CWRT approach has subsequently been developed that overcomes the weakness of 

CRWT at the percolation threshold, and provides better agreement with simulation [35]. The hybrid 

approach has been used to explain the experimental variation of apparent tortuosity with temperature 

in mesoporous membranes for single species [36], as well as the influence of the network morphology 

on the diffusion of fluid mixtures in porous media [37].  A simulation-based alternative to describe 

the transport in the porous media involves solving the mass conservation balances in a network with a 

given pore size distribution and coordination number, and has been applied by several researchers [37-

42]. Nevertheless, the computational demand of the simulations is large, and an appropriate numerical 

method is required to ensure global convergence for multicomponent transport.  

 

In this work, a new approach to analyse binary transport of mixtures in porous material or membrane 

is developed, which combines the oscillator model for pure components and the M-S equation based 

approach for the single pore transport with a hybrid EMT-CWRT method for the pore network 

transport, to determine mixture species fluxes in a non-uniform pore network. In this theory, for 

computational advantage we use the correlation based on the oscillator model to account for soft-

sphere transport in the pores [28], while the M-S equation provides an efficient way to determine pore 

level individual species fluxes in multicomponent transport based only on the information of pure 

component diffusivities. To validate this theory, simulations are conducted in which the mass 

conservation equations at each node, based on application of the generalized M-S model [25, 43, 44] 

in the connecting pores in a nonuniform pore network, are numerically solved to provide as the solution 

of the problem of transport in the porous medium. The theoretical and simulation results are shown to 
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be in good agreement. Further, the variation of the structural parameters and operating conditions is 

shown to lead to a rich variety of behaviour of the fluxes, discussed in detail in this article. Although 

the approach is presented in the context of binary mixture transport, it is quite general in concept and 

can be readily extended to mixtures with more than two components.  

 

2. Modelling Binary Mixture Transport in a Porous Network 

2.1 Transport in a single pore 

At the single pore level, we use the M-S equation for binary diffusion in a single pore, following [25] 
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where, T is temperature, Rg is the ideal gas constant, x is flow direction of species in the pore, i , ci 

and ji are chemical potential, adsorbed concentration and flux of species i, respectively, and ct is the 

total adsorbed molar concentration of the two species. ijÐ  is the M-S exchange coefficient for binary 

diffusion, and iÐ  is the M-S diffusivity for molecule-wall interactions. We define a matrix of Onsager 

coefficients, Ω , which satisfies 
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Combining Eq. (1) and (2), after some manipulation, leads to 
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where, i t ij j iÐ ÐR c c  . Assuming ideal gas, Eq. (2) can be rearranged to the Fickian form [26]: 
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where cbi is a pseudo-bulk concentration representing the bulk concentration of species i that would be 

in equilibrium with the local adsorbed mixture having local concentrations c1, c2. We now define the 

species-specific transport conductance, , for a cylindrical pore with radius r and length l: 

 
2r D

l

    (5) 

such that the flow rate of species i through the pore, Fi, is given by 

( )i i biF C           (6) 

This leads to the transport conductance for species i, in the presence of the other species in the mixture, 

in a single pore:  
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The advantage of the above formulation in Eqs. (6) and (7) is that by imbedding the gradient of the 

other species within the conductance, i, for any species i, it provides a system of coupled transport 

equations in single component format, that can be conveniently averaged over a pore network. 

2.2 Transport in pore networks 

The above single pore conductance must be suitably averaged over the pore size and length distribution 

to obtain the local transport parameters of a pore network that may exist in a porous material or 

membrane. To this end, we use EMT, which replaces the network by an equivalent network having 

pores of uniform conductance. Thus, at the network level, the local pore size-dependent conductance 

i of species i in Eq. (7) is replaced by a uniform transport conductance ie, i.e. 
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where 
eff

  represents an effective value, considering the distribution of pore radii and lengths. In a 

porous medium or membrane the concentrations c1, c2 are position-dependent, as a result of which the 
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conductances are also position-dependent. We consider a network of randomly oriented pores having 

a uniform coordination number, N, which represents the number of pore segments meeting at an 

intersection. Following EMT, the flux of species i in the effective medium having pores of uniform 

conductance ie is given by [31, 35] 

2

2

ie bi
i

l dc
J

dzr l

 


          (9) 

where z represents the coordinate along the macroscopic diffusion  direction,   is the porosity of 

the network, and  is a tortuosity given by [34] 
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Equations (8) and (9) lead to the local effective medium transport conductance for species i in a porous 

network as 
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where we have assumed 
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Equation (12) may be expected to hold provided the pore lengths are much smaller than the 

macroscopic dimensions of the porous medium or membrane. The local effective transport 

conductance of species i, ie(z), follows from EMT as the solution to the nonlinear equation [31, 35] 
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where f(r,l) is a joint pore radius and length number probability distribution, and  
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Here we note that at the level of the porous medium the pseudo-bulk concentrations cb1, cb2 are 

position-dependent, as a result of which the conductances are also position-dependent. In principle, 

the EMT result in Eq. (13) is strictly valid only for an infinitely large system. Nevertheless, this 

condition is practically met if the pore lengths are sufficiently small compared to the macroscopic 

system size, so that the species concentrations can be approximated as linearly varying over the pore 

length. The solution to Eq. (13) then provides a position dependent effective medium conductance 

ie(z).  We note that the local individual pore scale conductances in Eq. (14) depend on the 

macroscopic fluxes, Ji, in the medium, and therefore on the local macroscopic concentration gradients, 

dcbi/dz, following Eq. (9). Thus, the local effective medium conductance is correlated with the 

macroscopic transport in the porous material, and both sets of equations must be solved simultaneously 

as a coupled system. In the subsequent section we address the macroscopic transport, to complete the 

model description.  

 

As an alternative to the above approach, henceforth termed T1, we also consider a recent EMT-based 

theory of transport in pore networks [37], in which effective mixture Onsager coefficients are locally 

obtained in place of the effective conductance for each species in T1. In this theory, termed T2, the 

exchange part of the two species is treated separately, leading to a transport conductance matrix λ , 

which satisfies 
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for a pore with pore radius r and pore length l. This can be derived from the flux, expressed in 

Fickian form as  
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For binary mixture transport,  1 2

T
j jj ,  1 2

T

b bc cbc , and D  is the diffusivity matrix 
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In the multicomponent EMT [37] an effective conductance matrix, eλ , is defined such that  
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The local effective transport conductance matrix, eλ , is the solution to the coupled nonlinear system 

of equations [37] 

  
1

0 0
1 ( , )

2

N
f r l drdl


           
  e eλ λ λ λ 0   (19) 

This provides a system of four coupled nonlinear equations for the different components of the 2x2 

matrix eλ . Based on the solution for eλ  the species fluxes can now be determined for the porous 

medium, as elaborated in the next section. 

2.3 Transport at the membrane scale 

As an application of the present approach (T1), and the earlier method (T2), we consider a flat 

membrane exposed to a mixture having concentrations cbi,in and cbi,out at the retentate and permeate 

ends respectively. To obtain the fluxes Ji and the concentration profiles of the species in the membrane, 

in the case of T1 we integrate Eq. (9) to formally write 
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where L is the thickness of the porous network or membrane. Given any pore size and length 

distribution, f(r,l), and expressions for the pore scale Onsager coefficients in terms of local pseudo-
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bulk mixture compositions, Eqs. (9), (10) and (13), (14), (20), (21) may be readily solved to obtain the 

profiles of concentration and effective conductance as well as membrane flux of each species. Equation 

(3) relates the pore scale Onsager coefficients to the mixture composition and the M-S diffusivities, 

models for which are discussed in the next section. 

In applying the earlier approach, T2, described in Eqs. (15)-(17) and (19), the fluxes iJ  and the 

concentration profiles of species in the network are obtained upon integration of Eq. (18) as  
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where,        , , , ,( ) ii e jj e ij e ji eQ z z z z z     . As shown by Bonilla and Bhatia [37] the matrix, eλ , 

is symmetric, so that ij = ji. 

2.4 Single pore isotherms and diffusion coefficients 

Solution of the above model requires specifications of the mixture isotherms relating the adsorbed 

concentrations ci to the pseudo-bulk concentrations, and suitable models for the diffusion coefficients. 

While our approach is more generally applicable, for convenience we assume a Langmuir isotherm for 

each species, following  

,
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with , , (8.5988 0.0156 )i sat j satc c T   , corresponding to the value for several gases on H-Mordenite 

[45]. Here T is in K and ci,sat in mol/m3,  is the porosity, and  is the porous medium density in g/cm3. 

The Langmuir equilibrium constant bi varies with pore size, and is assumed to follow the Van’t Hoff 

form 
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 0 exp ( )i i ib b r RT       (25) 

where b0i is the affinity constant of species i at zero energy level, and i(r) is the adsorption energy, 

defined as the minimum interaction potential between species i and the wall of a cylindrical pore radius 

r [37]. Following Tjatjopoulos et al. [46] the interaction potential is expressed as 
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where, *x  is the dimensionless distance of closest approach between the fluid molecule and the 

cylindrical surface, *R  is the radius of the cylinder scaled with fs , and  , ; ;F z    denotes the 

hypergeometric series with parameters , ,   . * 2
fsn n  and n  is the density of the pore wall 

(atoms per unit volume). fs  and fs  are the solid-fluid collision diameter and the solid-fluid 

Lennard-Jones potential well depth respectively, evaluated using the Lorentz-Berthelot mixing rules. 

 

The M-S diffusivity iÐ  is expressed by a simple correlations based on the oscillator model for 

diffusion in nanopores developed in this laboratory [22, 28] 

*
0

B
p

i
i iÐ

k T
r D

m
   (27) 

where, im  is the mass of species i, Bk  is the Boltzmann constant, pr  is half of the center-to-center 

pore diameter and *
0iD  is the dimensionless diffusivity of species i. The M-S diffusivity iÐ  is taken 

as the diffusivity in a pore of radius rp, following the Oscillator model [22], whose solution is available 

in the form of correlations for *
0iD  [28]. For the binary exchange coefficient, ijÐ , we assume that 

fluid-solid interactions dominate, as occurs in nanoscale pores and, following Krishna and van Baten 

[25], we use the correlation 



12 
 

/ ( ) / ( )

,
i i j j i j

c c c c c c

t ij i sat i jÐ Ðc Ð c
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3. Simulation 

For validation of the above theoretical approach, simulations were done on synthetically generated 

random pore networks having an arbitrary pore size distribution and uniform coordination number, 

spanning the space between the two sides of a membrane. The Maxwell-Stefan model was applied at 

the pore level, and conservation equations at each node were then used to solve for the pore fluxes, 

and ultimately determine the overall flux of each species in the membrane. In the simulation, a pore 

network was generated within a medium formed by c c cn n n   cubic cells with lc=L/nc as the cube 

length. The surface nodes were located on the surface of the surface cells at the retentate side and the 

permeate side and directly connected to the next inner nodes by pores of random size, to provide the 

pathways from the interior pore network to the surface. An inner node was randomly located inside 

each cell and joined to N neighbours by pores of random size, establishing the interior pathways for 

gas transport. More information of how this network is realized is available elsewhere [37]. Thus, with 

membrane thickness L and cube length lc, the number of nodes is the summation of inner nodes 

( c c cn n n  ) and surface nodes ( 2 c cn n  ). The number of pores is the summation of inner pores 

([ / 2c c cn n n N   ]) and surface pores ( c cn n ). 

 

Figure 1(a) depicts a schematic diagram of one-dimensional transport through a porous membrane, 

illustrating the transport at macroscale with total pressures Pin at the retentate side and Pout at the 

permeate side, while Figure 1(b) shows an example of the pore network in the membrane with 5 5 5   

inner nodes and coordination number 6.  
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Figure 1. (a) Schematic of one-dimensional transport through a porous membrane, with total pressure 
Pin at the retentate side and Pout at the permeate side, and (b) an example of random network in the 
membrane with 5 5 5   cubic cells and coordination number 6. The stars represent the location of 
nodes, while colored lines denote the pores and line thickness is proportional to pore radius. 

 

To obtain the fluxes in the network, it is necessary to simultaneously solve the single pore transport 

equations in all pores of the network, with the condition of mass conservation at each node [37].  To 

this end we recast Eq. (1) in Fickian form, leading to 

1 d
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It is assumed that the fraction coverage and transport properties are evaluated at an average partial 

pressure pi (pseudo-bulk partial pressure) in a single pore and thus they are constant at the single pore 

level. The transport conductance matrix for pore i is written as 

2
1i

i
i

r

l

 λ B Γ  (30) 
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Following the mass conservation law, at inner node j where N pores meet, the flow rates satisfy  
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jk k j
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  λ p p 0   (31) 

where, kp  is the partial pressure vector at node k. Repeating Eq. (31) for every inner node in the 

network leads to a set of equations of the form 

Gx b  (32) 
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Upon solution of Eq. (32) to obtain the partial pressure matrix in the network, the flow rates at the 

retentate side and permeate side of the membrane are obtained as: 
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This leads to the flux matrix for the membrane  

2 surfaces
 in outF + F

J    (36) 

where, surfaces  is the surface area of the membrane normal to the flow direction.  
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4. Results and Discussions 

In order to validate the theoretical approach presented in Section 2 against simulations as described 

above, and to investigate the sensitivity to process parameters, we consider the transport of a CH4/H2 

mixture in a silica porous network having an arbitrary pore size distribution. The parameters used in 

the theory and simulation are listed in Table 1. 

Table 1: Parameters used in the calculations 

 silica CH4 H2 

 or ss ff   (nm) 0.28 0.381 0.2915 

 or ss B ff Bk k   (K) 492.7 148.2 38.0 

0ib  (kPa-1) -- 7.485e-5 3.355e-4 

solid density (kg/m3) 2320 -- -- 

  

For the joint number probability density of pore radius and length, we assume that the radius and length 

are uncorrelated and independently distributed.  Both continuous and discrete pore sizes distribution 

are considered in this study. For the continuous case, we use the Rayleigh distribution  

 
 

2

2

/ /1
( ) exp

2 11
a a

c

a

r r s r r s
p r

sr s

          
  (37) 

for the open pore radius (i.e. accessible pore radius), r, where 0 as r r  is the size dispersion 

parameter, and ra and r0 are the modal and minimum pore radius, respectively. Unless otherwise 

indicated, in all calculations to be discussed for a continuous pore size distribution we used the base 

case membrane structural parameter values N = 6, s = 0.16, r0 = 0.4 nm, and membrane thickness L = 

500 nm. Further, the network was generated using a cube length value lc = 20 nm. 

 

For the discrete case, a bimodal distribution with porosity ratio 1 2e    and pore size ratio 1 2u r r  

is considered, leading to the pore size distribution 
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 1 2( ) ( ) (1 ) ( )bp r m r r m r r        (38) 

where m is the normalized frequency of pore size r1, given by 2( )m e e u  , and   is the Dirac 

delta function. These distributions were also used in constructing the network in the simulations, with 

random pore sizes based on these distributions. During the construction, the porosity of the network is 

obtained based on the actual pore network by  

 

2

3

i i
n

r l

L


 


    (39) 

where n is the total number of the pores in the network.  In the theory, the pore length distribution, p(l), 

is taken as the average of the conditional length probabilities of the N neighbours to a reference point 

in a uniform distribution of random points [40]. The pore length is related to the coordination number 

N and the length, lc, of the cube in which a node is randomly located, and 
0

( )l lp l dl


    is the 

mean pore length. Unless otherwise discussed, for discrete pore size distributions we used the 

parameter values N = 6, u = 10 and r1 = 4.0 nm, lc = 20 nm, and membrane thickness L = 500 nm. In 

both the continuous and discrete pore size distributions all pores were part of the same network, and 

there were no independent micropore or macropore networks. 

Figure 2 depicts the variations of the porosity with membrane thickness, average pore length, 

coordination number and size dispersion parameter and the relationship between lc, <l> and N, which 

are useful for the discussion below. From Figures 2(a) and 2(b) it is evident that the porosity is only 

weakly sensitive to membrane thickness, while it is more strongly dependent on cube length, lc, 

coordination number, N, and dispersion in pore size distribution, s. This sensitivity of porosity to 

membrane thickness is largely due to end effects, since the pores connecting surface nodes to the 

interior nodes break the symmetry of the interior structure and can have a slightly different length 

distribution. These end effects disappear with increase in membrane thickness, and are largest at small 
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cube length lc (Figure 2(a)). The average pore length is smaller than the cube length when the 

coordination number is less than 9, as shown in Figure 2(c). 

  

 

Figure 2. (a) Variation of porosity with membrane thickness and cube length, (b) variation of the 
porosity with coordination number and size dispersion parameter, and (c) variation of the average pore 
length <l> with cube length lc, for a network with continuous pore size distribution. 

 

4.1 Continuous pore size distribution 

4.1.1 Comparison between theory and simulation 

We first report our comparisons between theory and simulations, demonstrating the validity of the 

approach developed here. To solve the coupled membrane model equations for a binary mixture it is 

required to specify both inlet and outlet partial pressures of each species. For the inlet we specify the 

inlet total pressure, Pin, and mole fraction of CH4, xin, while the outlet conditions are determined by 

specifying the total pressure drop, P , and defining a variable xΔ such that the outlet partial pressure 
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of CH4 is given by  in inx P Px  , and that of H2 by  1 ) )( (1in inx P x P    . For all calculations 

reported here, unless otherwise specified we use the base case operating parameter values T = 300 K, 

Pin = 200 kPa, xin = 0.5 and x = 0.5, with P taking on various values, as specified in each figure. 

Figure 3(a) depicts the variation of H2, CH4 membrane fluxes with Rayleigh distribution parameter 

s=r0/ra in a network with coordination number N=6, r0=0.4 nm, cube length lc=20.0 nm and thickness 

L=500 nm. The operating conditions of the membrane are: T = 300 K, Pin = 200 kPa with mole fraction 

of CH4 xin= 0.5, total pressure drop P =100 kPa, and xΔ=0.5. The solid lines in the figure represent 

the results from the present theory T1, and the dash lines those from the earlier theory T2. It is clear 

that while both the theories do reasonably well in comparison with the simulation, T1 performs better 

at smaller s, that is, for wider pore size distributions. Figure 3(b) shows the variation of the fluxes with 

coordination number in a network with Rayleigh distribution parameters of s=0.16, r0=0.4 nm, lc=20.0 

nm and L=500 nm at the same operating conditions, showing good agreement among both theories and 

simulation. The theories predict correct trends with the simulation with increase of the coordination 

number. A slight overestimation of the fluxes by the theories occurs when the coordination number is 

larger than 11, due to the fact that, in the simulation, a connection to its ith neighbour will force a more 

distant node to be connected for large coordination numbers. The mathematic form of pore length 

distribution used in the theory is not catching all the behaviours in the simulation. Figure 3(c) shows 

the variation of the fluxes with membrane thickness in a network with Rayleigh distribution of s=0.16, 

r0=0.4 nm, lc=20.0 nm and N=6. The theories display good agreement with the simulation, except when 

the membrane thickness is small, at 50 nm. In that case, EMT is inaccurate because the pore length is 

not negligible in comparison to the membrane thickness, and the assumption of an infinitely large 

network that underlies the EMT is violated. While we have shown here the results for a large pressure 

drop of 100 kPa our calculations for a small pressure drop of 0.02 Pa gave similar quality of agreement 



19 
 

between theory and simulation as Figure 3. It should be mentioned that although the two theories gave 

the same results at most conditions, T1 is computationally more expedient, involving only nonlinear 

equations instead of matrixes and their inverses, and is somewhat faster in execution. For T1, usually 

about 15 iterations are needed to get a result, while for T2, about 35 are needed. The calculation time 

(with i7-2600 CPU @ 3.40GHz) of either theory for a single point is less than five minutes, while that 

for the simulation is several hours depending on the pore number of the network. This clearly 

demonstrates the computational advantage, by more than an order of magnitude, of the present theory 

over simulation, which is attractive given that it is also accurate and matches simulation.  

 

  

 

Figure 3. Comparison of the variation of theoretical and simulation-based fluxes with (a) Rayleigh 
distribution parameter s=r0/ra, (b) coordination number, and (c) membrane thickness. S stands for 
simulation, while T1 is the present theory and T2 is the earlier theory [37]. 
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4.1.2 Effect of the membrane parameters 

In this part, the membrane parameters, such as the size dispersion parameter of Rayleigh distribution 

s, the coordination number N, the membrane thickness L and the cube length lc, were studied to 

investigate their influences on the binary mixture transport. As the fluxes at both small and large 

pressure drop show similar information for different membrane parameters, only the results for small 

pressure drop are listed and discussed. Figure 4 depicts the variation of the fluxes with membrane 

thickness and cubic length at T=300 K, Pin=200 kPa with mol fraction of CH4 xin=0.5, P =0.02 Pa 

and xΔ=0.5 in a network with Rayleigh distribution of s=0.16 and r0=0.4 nm. When the cube length 

increases, the average pore length increases as shown in Figure 2(c). However, the fluxes increase with 

the decrease of the cube length. This is due to the increasing number of pores included in a membrane, 

leading to increase of the porosity, as shown in Figure 2(a). When the porosity increases, the saturation 

concentration in mol per volume of the membrane increases, leading to a higher flux. The decrease of 

the membrane flux is expected when the membrane thickness increases at a total constant pressure 

drop, as the pressure drop per unit length decreases. The slower decrease at large membrane 

thicknesses is due to the effect of the porosity. According to Eq. (21), the flux is proportional to the 

porosity, which decreases slowly at large membrane thicknesses as shown in Figure 2(a). The porosity 

shows a more apparent effect on the membrane flux than the cube length, leading to a higher flux at a 

smaller cube length. Specifically, the fluxes at porosity 0.475 with lc=15 nm and porosity 0.187 with 

lc=25 nm are similar, illustrating the increasing influence of the porosity, as well as the decreasing 

effect of the average pore length, on the membrane fluxes. 
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Figure 4. Variation of the fluxes with membrane thickness and cube length. Solid and dashed lines 
represent CH4 and H2 fluxes from the present theory, while solid and hollow symbols are CH4 and H2 
fluxes from simulation. 

 

Figure 5 depicts the variation of the fluxes with coordination number at 300 K, Pin=200 kPa with mol 

fraction of CH4 xin=0.5, P =0.02 Pa and xΔ=0.5 in a network with lc=20 nm and various Rayleigh 

distributions. An optimal coordination number is shown for every pore size distribution, where the 

membrane fluxes attains a maximum value. From the porosity-coordination number relation in Figure 

2(b) it is estimated that the maxima of the fluxes are located at a porosity 0.72  , which can be 

considered the optimal porosity. When the coordination number increases, the porosity increases, as 

can be seen in Figure 2(b), which leads to increase in flux. However, the average pore length also 

increases with coordination number, as more nodes are linked together at a constant cell length, 

following Figure 4, which has an opposite effect on the flux. A maximum in flux therefore occurs, as 

consequence of these opposing effects, as the coordination number increases. Figure 6 depicts the 

variation of the effective conductance at the retentate side of the membrane at the same parameters in 

Figure 5. As the pressure drop considered here is very small, the effective conductances at different 

positions vary only slightly, and can be represented by the values at the retentate side. The effective 

conductance also has a maximum value with the variation of the coordination number, consistent with 
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a maximum in flux, following Eq. (21). However, the values of the coordination number at which the 

flux and the effective conductance reach the maximum are slightly different. This is due to the decrease 

of the factor 2 2/r l l  with increase in coordination number, leading to a maximum in flux at a 

coordination number larger than that for the maximum in conductance. As seen in Figures 5 and 6 the 

optimum coordination number is rather large for s larger than 0.1, and exceeds the range of 3-6 

commonly observed for porous materials [47]. From a practical viewpoint therefore a coordination 

number of 6 may be a realistic target for pore size distributions corresponding to s > 0.1.  

 
Figure 5. Variation of the fluxes with coordination number for various values of s. Solid and dashed 
lines represent CH4 and H2 fluxes from the present theory, while solid and hollow symbols are CH4 
and H2 fluxes from simulation. 

 
Figure 6. Variation of the effective conductance on the retentate side with coordination number. The 
parameters are the same as for Fig. 5. Solid and dashed lines represent CH4 and H2 effective 
conductances from the present theory. 
 



23 
 

We note here that for the pore size distributions considered, with r0 = 0.4 nm all of the pores are 

accessible to even the larger molecule (CH4). In this case, our advancement of EMT to extend it to 

multicomponent systems is very successful, and shows good agreement with exact simulations. From 

earlier studies with pure component systems [35], for which the EMT is originally developed, it is 

known that EMT is inaccurate when the fraction of accessible pores is close to the threshold, and 

significant deviation between theory and simulation may be therefore expected for sufficiently small 

r0 and large s for which the percolation threshold is approached. However, since the aim of the present 

work is to extend the EMT to multicomponent systems in the region where it is accurate, and not to 

overcome this weakness of EMT, the latter was not investigated here. Clearly, the shortcoming of EMT 

in the neighbourhood of the percolation threshold will also apply to the present approach for 

multicomponent transport, as it does for the pure component case. 

4.1.3 Effect of operating conditions 

In this part, the effects of operation conditions, pressure and temperature, were studied. Figure 7 depicts 

the variation of the fluxes and selectivity (flux of CH4/flux of H2) with temperature, at different inlet 

total pressures with mol fraction of CH4 xin=0.5, constant total pressure drop P =100 kPa and xΔ=0.5. 

The membrane is 500 nm thick with Rayleigh distribution parameters of s=0.16, r0=0.4 nm, lc=20 nm 

and N=6. The total pressure drop is kept very small, so that the pseudo-bulk pressure may be considered 

constant. It should be mentioned that at large total pressure drop, as long as the pressure drop in a 

single pore is small enough to be viewed as a constant, the present theory and simulation work properly. 

It is seen in Figure 7(a) that the theoretical results are in very good agreement with simulation. The 

fluxes decrease with the increase of the total pressure at all temperatures, which is the result of the 

increase of the pseudo-bulk concentration. When the pseudo-bulk concentration increases, the 

adsorbed concentration increases, leading to a slower decrease at higher total pressures. Temperature 
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change shows more complex effects, with a maximum flux at different temperatures for each of the 

two species. An increase of temperature enhances the pure component diffusion coefficient for any 

species, inducing higher flux in the membrane. On the other hand, the equilibrium constant bi for each 

species decreases with increase in temperature, following Eq. (25), leading to reduced concentration 

of the species in the pores, and therefore to lower values of the diagonal terms of the thermodynamic 

factor matrix  based on Eqs. (24) and (29a). This tends to reduce the flux, following Eq. (29), and the 

opposing effects of diffusivity increase and decrease in adsorbed concentration with increase in 

temperature leads to the maximum in flux. However, as shown in Figure 7(b), the CH4/H2 flux 

selectivity shows a continuous decrease with increase in temperature, which is due to the higher 

temperature of the maximum for H2, and stronger increase in its flux compared to CH4 below this 

temperature maximum. It is seen in Figure 7(b) that increase of the total pressure leads to a very slight 

increase of the selectivity, indicating that the temperature has a more noteworthy effect. From Figure 

7(b) it is evident that the membrane is more selective to CH4 at low temperature, and to H2 at high 

temperature, with the selectivity cross-over dependent on the operating pressure. 

   

Figure 7. Variation of the (a) fluxes, and (b) selectivity (flux of CH4/flux of H2) with temperature, for 
P =100 kPa. In (a), solid and dashed lines represent CH4 and H2 fluxes from present theory, solid 

and hollow symbols are CH4 and H2 fluxes from simulation. 

Figure 8 depicts the variation of the flux and CH4/H2 selectivity with mole fraction of CH4 at the 

retentate side at 300 K, Pin=100, 200, 300 and 400 kPa, constant total pressure drop P =20 kPa and 
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xΔ=0.5. The membrane parameters are the same as those in Figure 7. As seen in Figure 8(a) the flux of 

hydrogen decreases dramatically with increase of the bulk mole fraction of methane. As the methane 

molecules are larger and heavier than hydrogen molecules, the pure component methane diffusivity is 

smaller than that of hydrogen, leading to reduction in the MS binary diffusion coefficient on increasing 

methane mole fraction, following Eq. (28). This leads to increased drag on H2 and reduction in H2 flux 

with increase in mole fraction of methane.  On the other hand the drag effect of the faster diffusing 

but much lighter H2 is very small on CH4, and only a weak effect on CH4 flux is seen on increasing 

CH4 mole fraction.  As seen in Figure 8(b) the CH4/H2 therefore selectivity correspondingly increases 

with increase in mole fraction methane. An interesting related feature is the existence of a weak 

maximum in the flux of CH4 with increase in its mole fraction at low total pressure, as seen in Figure 

9, which again arises from the competitive effects of the binary MS diffusivity and the thermodynamic 

factor . Actually, the increasing of the methane diffusion can also be viewed in the methane flux, 

when the methane pressure is not so large, which is clearly shown in Figure 9.  

  

Figure 8. Variation of (a) fluxes, and (b) CH4/H2 selectivity with mole fraction of CH4 at the retentate 
side xin, at constant total pressure drop P =20 kPa. In (a), solid and dashed lines represent CH4 and 
H2 fluxes from present theory, while solid and hollow symbols are CH4 and H2 fluxes from simulation. 
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Figure 9. Variation of methane flux with mole fraction of CH4, xin. The parameters are the same as in 
Figure 8. 

Figure 10 depicts the variation of fluxes and effective conductance at the retentate side with xΔ, for 

various values of xin, , at 300 K, Pin=200 kPa  and constant total pressure drop P =0.02 Pa. The 

membrane is 500 nm thick with pore network a Rayleigh distribution parameters of s=0.16, r0=0.4nm, 

lc=20.0nm and N=6. Very good agreement with simulation is seen at all values of xΔ. Here small 

pressure drop is taken to permit a complete variation of xΔ, and to show the effect of interaction 

between the gases more directly. As seen in Figure 10(a), there is a cross-over of the curves for CH4, 

indicative of the drag effect of H2. At low values of xΔ the partial pressure drop of CH4 is low, and 

therefore the flux of CH4 is also low, while that of H2 is high. On increasing xΔ the flux of CH4 increases, 

however this increase is steeper at low values of xin for which the mole fraction and flux of H2 is high, 

and this leads to a cross-over of the curves of methane flux for different values of xin at a value of xΔ 

of about 0.4. Thus, as is to be expected higher mole fractions of H2 leads to increase of its drag on CH4. 

As is evident in Figure 10(b) this drag of H2 also leads to cross-over in the effective conductance curves 

of CH4 with variation in xΔ. Further, there is a large decrease in effective conductance of CH4 at small 

xΔ and large increase in effective conductance of H2 at large xΔ, as shown in Figure 10(b). The changes 

imply increase in effective conductance of each component with increase in its mole fraction.  
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Figure 10. Variation of (a) fluxes, and (b) effective conductance at the retentate side, with xΔ for 
various values of xin, and constant total pressure drop P =0.02 Pa. In (a), solid and dashed lines 
represent CH4 and H2 fluxes from present theory, while solid and hollow symbols are CH4 and H2 
fluxes from simulation. In (b), solid and dashed lines represent effective conductance of CH4 and H2 
at the retentate side from present theory. 

4.2 Discrete pore size distribution 

To highlight percolation effects and accuracy of the approach when they are important, we next 

investigated a discrete pore size distribution, assuming the pore size distribution to comprise two 

distinct sizes, r1 and r2. If pores with radius r2 are inaccessible to species i, that is 2( ) 0i r  , following 

Eqs. (13) and (38) EMT yields 
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leading to a percolation threshold 2m N  i.e., 22 ( 2)e u N  .  

Figure 11 depicts the variation of the fluxes with porosity ratio e at 300 K, Pin=200 kPa with xin=0.5 

and P =100 kPa with xΔ=0.5 in a network N=6 and with a bimodal distribution of u=10 and r1=4.0 

nm. The solid and dashed lines in the figure represent the present theory and the earlier theory [37], 

while the symbols represent the simulation results, showing good match between the theories and 

simulation. Since the smallest center-to-center pore diameter is larger than the solid-fluid collision 

diameters, all the pores are accessible to the two species. A steep flux drop occurs near the percolation 
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threshold 50pe  , especially for methane, as sufficient small pores are present for 50pe   that there 

can be no pathway in the network that avoids the 0.4 nm radius smaller pore that has the much lower 

diffusion coefficient compared to the larger pore of size r1=4.0 nm. With decrease in e below 50 there 

is a much more gradual drop in the flux of each component, evident from both theory and simulation. 

For pe e , there are paths in the network that contain no small pore and the number of such paths 

gradually increases as e increases, leading to an increase in flux of each species.  

 

 
 
 
 
 
 
 
 
Figure 11. Variation of fluxes with porosity ratio e at 300 K and P =100 kPa, for a network with a 
bimodal pore size distribution. S stands for simulation, while T1 is the present theory and T2 is the 
earlier theory [37]. 

 

Figure 12 depicts the variation of the fluxes and selectivity with porosity ratio e for r1=1.8 nm, r2=0.18 

nm, and N=4, 6, 9.  The other parameters are the same as in Figure 11. In this case pores with radius 

r2 are inaccessible to methane. The flux of methane drops dramatically down to zero at the percolation 

threshold, because there is no path through the network that avoids the smaller pore. The selectivity is 

zero for pe e  and constant for pe e  in Figure 12(b), which is the result of zero flux of methane 

for pe e  and comparable flux of CH4 and H2 for pe e . Simulations were also conducted for the 

parameters used in Figure 12, however convergence was very slow and difficult to achieve when the 

porosity is small and the percolation threshold is approached; nevertheless, the theory shows good 

agreement with the available simulation results away from the threshold, as seen in Figure 12(a). 
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Figure 12. Variation of the fluxes (a) and selectivity (flux of CH4/ flux of H2) (b) with porosity ratio 
e at 300 K and P =100 kPa in a network with a bimodal pore size distribution. In (a), solid lines and 
solid symbols are CH4 fluxes from theory and simulation, while dashed lines and hollow symbols are 
those of H2. The small difference between the gas fluxes on the upper branch is shown more clearly in 
the inset. 

 

Figure 13 depicts the variation of the fluxes and selectivity with porosity ratio e for Pin=200 kPa with 

xin=0.5 and P =100 kPa with xΔ=0.5 in a network with N=6, and a bimodal distribution with u=10 

and r1=1.8 nm (Figures 13(a) and 13(c)) and 4.0 nm (Figures 13(b) and 13(d)). Various temperatures 

have been tested in the theory, showing only a small influence on the fluxes with change in temperature 

when pe e  for the bimodal pore size distributions considered, as shown in Figure 13(a) and (b). The 

limited amount of the small pores is the main reason restricting the increase of the flux as the 

temperature increases.  In the case of r1=1.8 nm and r2 = 0.18 nm, the selectivity increases 

dramatically at the percolation threshold as e increases due to the incorporation of paths avoiding the 

smaller pore that is inaccessible to CH4, as seen in Figure 13(c). The larger pore is non-selective, as is 

evident from its selectivity of close to 1, and this reduces weakly with increase in temperature.  In 

Figure 13(d) both pore sizes are permeable to CH4, but every permeable path contains only the non-

selective pore size of 4.0 nm for pe e , and so the selectivity suffers a sharp drop at the percolation 

threshold of e=50. 
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Figure 13. Variation of (a), (b) fluxes and (c), (d) selectivity (flux of CH4/flux of H2) with porosity 

ratio e at T=200 K, 250 K, 300 K, and 350 K and and P =100 kPa with xΔ=0.5 in a network with a 

bimodal pore size distribution. 

 

Figure 14 depicts the variation of the fluxes and selectivity with porosity ratio at 300 K and different 

mole factions of CH4. The other parameters are the same as those in Figure 13. It is seen in Figure 

14(a) that when the smallest pores are inaccessible to methane, the flux of hydrogen remains nearly 

constant in the region of pe e , indicating that only single gas transport occurs in the pore network. 

The fluxes vary over a wider range in the region of pe e  when all pores are accessible to both species, 

as seen in Figure 14(b), due to the larger size of the smaller pore compared to that in 14(a). In the 

region of pe e , the flux of methane increases only weakly under both situations, as the gas molecules 

tend to follow the path of least resistance, i.e. paths avoiding the smaller pore in both cases. It is seen 

that the selectivity decreases with increase of the methane mole fraction. It is seen that the selectivity 

is constant with the variation of e in the region of pe e  or pe e , which is because the pathways 
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followed by gas molecules in the network from the inlet to the outlet are dominated by one of the two 

pore sizes, so that the porosity ratio has no effect on the selectivity of the membrane.  

  

  

Figure 14. Variation of (a), (b) fluxes, and (c), (d) selectivity (flux of CH4/ flux of H2) with porosity 
ratio e at 300K, with xin=0.2, 0.5 and 0.7, and P =80 kPa, in a network with a bimodal pore size 
distribution for (a), (c) r1=1.8nm, and (b) (d) r1=4.0 nm. 

 

When small pores are accessible to methane, i.e. r2=0.4 nm, a strong nonlinear concentration profile 

for H2 occurs at high H2 partial pressure compared to CH4, as seen in Figure 15, which depicts the 

variation of effective conductance, and of concentration, with the position in the pore network for ratio 

e=1 and 900.9, T=300K, Pin=200 kPa with xin=0.2, 0.3, 0.5 and 0.7, and P =80 kPa with xΔ=0.5, in 

a network of coordination number N=6 and a bimodal distribution of u=10 and r1=4.0 nm. Nonlinear 

conductance and concentration profiles for H2 are seen for xin=0.2 and 0.3, when e=1, while those for 

CH4 show much weaker nonlinearity under all conditions. This effect clearly arises from the small 

pores of radius 0.4 nm, which predominate for e=1, while for the value of e=900.9 it is the large pores 

of radius 4 nm that predominate. This nonlinearity for e=1 is readily seen to be due to the drag of the 
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slower component CH4 on the much more weakly adsorbing H2 in the small pores. To verify this, we 

consider the ratio  

( )
bi ij bi j j bi j j

bj ii bj j bj t ij i j

Ðc c Ð

Ð

C c c

c c R c c c Ð


 

 
     (41) 

For the case when i corresponds to H2, cj>>ci since CH4 is much more strongly adsorbed in the narrow 

pore of radius 0.4 nm, and ,t ij i sa jtc cÐ Ð  following Eq. (28). Further, since ci<<ci,sat due to the weak 

adsorption of H2, Eq. (41) yields  
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which leads to the nonlinearity in the H2 conductance and concentration profile when the pseudo-bulk 

concentration of H2 is sufficiently large, as in the case of xin = 0.2, due to the nonlinearity of the CH4 

isotherm. In this case the drag of CH4 becomes dominant and reduces the conductance of H2 at the 

retentate side, but this effect disappears at the permeate side where the mole fraction of CH4 approaches 

zero for the value of x used in Figure 15 As a result the conductance of H2 increases towards 

the permeate side, leading to the nonlinearity in the concentration profile for H2. By the same 

arguments, it is easily seen that the drag of H2 on CH4 is small, leading to relatively uniform 

conductance and nearly linear concentration profile for CH4 in Figure 15(c). For larger values of xin 

the effect of drag of CH4 on H2 becomes weaker, as the pseudo-bulk concentration of H2, cbi, reduces 

while the adsorbed concentration of CH4 increases only slightly due to the small pores being nearly 

saturated. Consequently the nonlinearity of the hydrogen concentration profile reduced with increase 

in xin. For the case of e=900.9 the large pores of radius 4.0 nm predominate, and both H2 and CH4 are 

now much more weakly adsorbed in comparison to that in 0.4 nm pores, with small Langmuir 

equilibrium constants, at the bulk pressures considered here. Under this condition the ratio in Eq. (42) 
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is significantly smaller than unity and drag of CH4 on H2 is negligible, and vice versa, leading to much 

smaller change in conductances and nearly linear concentration profiles in Figure 15(d).  

  

  

Figure 15. Variation of (a), (b) effective conductance, and (c), (d) concentration with the position in 
the pore network at ratio e=1, 900.9, T=300K, with xin=0.2, 0.5 and 0.7, and P =80 kPa, in a network 
with a bimodal pore size distribution. 

 

Conclusion 

A new theory to investigate the binary mixture diffusion in a membrane comprising a porous network 

with nonuniform pore sizes and pore lengths is presented, in which the local effective conductance is 

correlated with the macroscopic transport in the porous medium. The total flux in the network, the 

species effective conductance and concentration profiles along the network constitute a system of 

nonlinear equations that are solved self-consistently, and the results are compared against rigorous 

simulations of the network transport for a CH4/H2 mixture. The comparisons show very good 

agreement between theory and simulations for membranes having both continuous and discrete pore 
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size distributions. It is found that in finite membranes end effects lead to porosity loss with increase in 

membrane thickness, and this reduction is steeper at small membrane thickness. As a result, the flux 

decrease nonlinearly with increase in membrane thickness, with the effect being stronger at low 

membrane thickness. It is also seen that there is an optimal network coordination number for maximum 

flux or effective conductance of each species, due to the competing effect of increase in porosity and 

increase in mean pore length on increasing coordination number. Further, the flux of each species 

reduces on increasing the dispersion in the pore size distribution, suggesting that narrow pore size 

distributions are advantageous for enhancing permeability.  

 

Investigation of the effect of operating conditions on the fluxes and selectivities of the H2/CH4 mixture 

reveals that the fluxes are a maximum at an optimal temperature that depends on the species, due to 

the competing influences of increase in diffusivities and decrease in amounts adsorbed on increase in 

temperature; however, the CH4/H2 selectivity reduces on increase in temperature, with the membrane 

being more selective for H2 at high temperature while being selective to CH4 at low temperature. The 

temperature at which the cross-over in selectivity from CH4 to H2 occurs depends on the operating 

pressure. Further, for bimodal pore size distributions, the transport is well-predicted when compared 

to simulation, even in the vicinity of the percolation threshold, attesting to the power of the approach. 

When the porosity ratio of the two pore sizes is varied, the selectivity experiences a sharp change when 

one of the two pore sizes crosses its percolation threshold, consistent with expectation. When the pores 

are accessible to both species, concentration and effective conductance profiles along the network 

shows clear evidence of nonlinearity, arising from the differential mobility of the two species, with the 

slower moving CH4 exerting a drag effect on the hydrogen that depends on the operating pressure and 

the gas composition. The method developed offers a convenient formulation to adapt effective medium 

theory to multicomponent transport in systems having nonlinear isotherms. 
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