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Abstract 

Legumes form root nodules to house beneficial nitrogen-fixing rhizobia bacteria. However, 

nodulation is resource demanding; hence, legumes evolved a systemic signalling mechanism, 

called Autoregulation of Nodulation (AON), to control nodule numbers. AON begins with the 

production of CLE peptides in the root, which are predicted to be glycosylated, transported to 

the shoot, and perceived. We synthesised variants of nodulation-suppressing CLE peptides to 

test their activity using petiole feeding to introduce CLE peptides into the shoot. Hydroxylated, 

monoarabinosylated and triarabinosylated variants of soybean GmRIC1a and GmRIC2a were 

chemically synthesised and fed into recipient Pisum sativum (pea) plants, which were used 

due to the availability of key AON pathway mutants unavailable in soybean. Triarabinosylated 

GmRIC1a and GmRIC2a suppressed nodulation of wild-type pea, whereas no other peptide 

variant tested had this ability. Suppression also occurred in the supernodulating 

hydroxyproline O-arabinosyltransferase mutant, Psnod3, but not in the supernodulating 

receptor mutants, Pssym29, and to some extent, Pssym28. During our study, bioinformatic 

resources for pea became available and our analyses identified 40 CLE peptide-encoding 

genes, including orthologues of nodulation-suppressive CLE peptides. Collectively, we 

demonstrated that soybean nodulation-suppressive CLE peptides can function 

interspecifically in the AON pathway of pea and require arabinosylation for their activity. 

 

Brief Summary 

Autoregulation of Nodulation (AON) is the systemic signalling mechanism used by legumes to regulate 

the number of root nodules they form in symbiosis with compatible rhizobia bacteria. Several 

components of the pathway are now known, including rhizobia-induced CLE peptides that are 

produced in the root and transported to the shoot; however, further characterisation of these 

peptides is required to better understand their mode of action. Delivering synthetic glycosylated CLE 

peptides into the shoot via petiole feeding supressed nodulation in wild-type pea plants, whereas 

partially-modified peptides failed to suppress. The activity of the CLE peptides was also examined in 

key AON mutants of pea, with findings demonstrating that arabinosylation was required for their 

activity. 
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Introduction 

Legumes are important in agriculture systems as a means to alleviate nitrogen fertiliser inputs, thus 

reducing fossil fuel use, fertiliser run-off and toxic gas emissions (Gresshoff et al., 2015; Foyer et al., 

2016).  They also promote soil health by increasing nitrogen levels through a mutualistic symbiotic 

relationship with bacteria (collectively known as rhizobia) that can convert atmospheric nitrogen gas 

(N2) into a form of nitrogen the plant can use (NH4
+). Agricultural practices take advantage of this, with 

legumes often used as rotation or cover crops (Jensen et al., 2012). Although the symbiosis is 

beneficial, the host plant regulates the number of nodules it forms as a means of balancing its need 

for nitrogen with its ability to expend resources forming and maintaining nodule structures. Thus, 

legumes have complex molecular signalling cascades to control nodulation (Ferguson et al., 2010; Reid 

et al., 2011b; Ferguson et al., 2018).  

A systemic negative feedback signalling pathway that provides legumes with control over their nodule 

numbers is known as Autoregulation of Nodulation (AON; Kosslak and Bohlool 1984; Delves et al., 

1986; Reid et al., 2011b). The AON pathway begins in response to initial rhizobia infection events, with 

the production of CLAVATA3/Endosperm Surrounding Region (ESR) related (CLE) peptides. In soybean, 

these peptides are GmRIC1 and GmRIC2 (Reid et al., 2011a), with orthologues in other legumes having 

also been identified (Okamoto et al., 2009; Mortier et al., 2010 Reid et al., 2011a; Ferguson et al., 

2014; Nishida et al., 2016). While there is no clear distinction between the biological role of GmRIC1 

and GmRIC2, there is some temporal separation in their expression patterns (Reid et al., 2011a). The 

AON CLE peptides are produced in the root, post-translationally modified (Okamoto et al., 2013; 

Kassaw et al., 2017), then transported to the shoot where they are perceived by a leucine-rich repeat 

receptor kinase, called GmNARK in soybean (known orthologues include PvNARK, LjHAR1, MtSUNN, 

PsSYM29, and GsNARK; Krusell et al., 2002; Nishimura et al., 2002; Searle et al, 2003; Schnabel et al., 

2005; Ferguson et al., 2014). CLV2/SYM29 and KLAVIER are proposed to form a heterodimeric complex 

with NARK (which might also form a homodimer complex) to perceive the CLE peptides, with 

mutations in either NARK or its dimerisation partners resulting in supernodulation (Miyazawa et al., 
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2010; Ferguson et al., 2010; Krusell et al., 2011).  Interestingly, the homeologous duplicate of 

GmNARK, called GmCLV1A, has no role in nodulation control, but instead functions in regulating shoot 

architecture, indicating that one of the genes has undergone the process of neofunctionalisation 

(Mirzaei et al., 2017). Following ligand binding by GmNARK, a shoot-derived signal that is proposed to 

be transported to the root to inhibit further nodulation events is differentially regulated (Lin et al., 

2010; Ferguson et al., 2010; Sasaki et al., 2014; Ferguson et al., 2018). This signal might act through 

the Kelch-Repeat F-box factor Too Much Love (TML), to regulate nodulation, as mutations in its gene 

also lead to a lack of nodulation control (Magori et al., 2009). 

CLE peptides are 12-13 amino acids long, with the few that have been structurally confirmed having a 

central proline residue that is post-translationally hydroxylated and further modified with a 

triarabinose moiety containing β1,2 linkages (Shinohara and Matsubayashi 2013, Okamoto et al., 

2013; Ferguson and Mathesius 2014; Hastwell et al., 2015b; Okamoto et al. 2015; Xu et al., 2015). 

When synthetic CLE peptides possess this glycan, binding efficiency is increased (AtCLV3; Shinohara 

and Matsubayashi, 2013) and they exhibit increased biological activity (LjCLE-RS2, Okamoto et al., 

2013; GmCLE40a, Corcilius et al., 2017). This modification is likely facilitated by an 

arabinosyltransferase related to AtHPAT3 (Ogawa-Ohnishi et al. 2013; Xu et al. 2015), called 

MtRDN1/PsNOD3 in the case of the AON CLE peptides (Schnabel et al., 2011). Interestingly, only one 

rhizobia-induced CLE peptide of M. truncatula, MtCLE12, appears to require arabinosylation by 

MtRDN1, whereas MtCLE13 does not (Kassaw et al., 2017).  

A similar mechanism to AON, called the nitrate-regulation of nodulation pathway, acts locally and is 

induced by soil nitrate to enable the plant to inhibit nodulation when ample nitrogen is available (Reid 

et al., 2011a). This nitrate-regulation of nodulation pathway begins with the production of nitrate-

induced CLE peptides (called GmNIC1a and its duplicate GmNIC1b in soybean) which are perceived by 

the GmNARK receptor located in the root (Reid et al., 2011a; Lim et al., 2014). CLE peptides induced 

by nitrate to regulate nodulation have not been reported in most other legumes, with the exception 
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of L. japonicus where the rhizobia-induced CLE peptides LjCLE-RS2, LjCLE-RS3 and LjCLE40 are reported 

to exhibit increased expression with nitrate application (Okamoto et al., 2009; Nishida et al., 2016). 

Here, we report that novel triarabinosylated peptides, GmRIC1a and GmRIC2a, of soybean suppress 

nodulation in pea. This was demonstrated using petiole feeding of peptides that were synthesised by 

solid-phase peptide synthesis (SPPS) using a synthetic β1,2 triarabinosylated hydroxyproline 

glycosylamino acid building block (Corcilius et al., 2017) to site selectively incorporate the glycan at 

position seven of the CLE domain. Using AON mutant plants, defective in controlling nodule numbers, 

we showed that the suppressive activity required the PsSYM28 and PsSYM29 receptors, but acted 

downstream of the PsNOD3 arabinosyltransferase that post-translationally glycosylates the 

endogenous peptides. Chemically synthesised variants of GmRIC1a and GmRIC2a that were either 

hydroxylated-only or partially glycosylated were unable to suppress nodulation, demonstrating that 

triarabinosylation is required for these peptides to function in AON. Subsequently, pea orthologues of 

the nodulation-suppressive CLE peptides were determined from 40 CLE peptide-encoding gene family 

members identified in this study. The CLE peptide domains of these pea orthologues were almost 

identical to those of the soybean peptides fed in this study. Taken together, our findings demonstrate 

a clear requirement for GmRIC1a and GmRIC2a to be post-translationally modified with a 

triarabinosylated hydroxyproline moiety to exert their nodulation-suppressive activity. 

 

Materials and Methods 

Plant and bacterial growth 

Wild-type and mutant Pisum sativum (pea) cv Frisson seeds (Postma et al., 1988; Duc and Messager 

et al., 1989; Sagan and Duc 1996; Li et al., 2009) were sterilised with 70% w/v ethanol before being 

imbibed with autoclaved Milli-Q® water. Imbibed seeds were germinated in 4 L euro pots with sterile 

Grade 3 vermiculite topped with approximately 3 cm of autoclaved UQ23 Mix (Central Glasshouse 

Services, University of Queensland, Australia) to assist germination. All plants were grown in either a 

E-75L1 or PGC-9/2 growth chamber (Percival Scientific, Perry, IA, USA) under 25°C:23°C, 12 hour 
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day:night conditions. The short-day length condition induced longer internodes to assist with petiole 

feeding. Plants were watered as required (approximately twice per week) with B & D nutrient solution 

(Broughton and Dilworth, 1971), supplemented with 1 mM KNO3, which promotes plant growth but 

does not inhibit nodulation (Carroll et al. 1985). 

Rhizobium leguminosarum RLV248 was grown in liquid yeast mannitol broth (Somerville and Kahn, 

1983) at 28°C for 36 hours and diluted to OD=0.1 with either ddH2O or B & D nutrient solution. 

Approximately 250 mL of inoculum was applied to each pot 48 hours after petiole feeding commenced 

(three weeks following germination) and nodule number was counted 14 days after inoculation.  

Petiole feeding 

Petiole feeding was carried out as per Lin et al., (2010; 2011) with the following modifications. The 

second petiole of three-week old pea plants was used in the first instance to attach the petiole feeding 

apparatus. The apparatus consisted of a 3 mL syringe barrel attached to 20 mm of clear silicone tubing 

having a 2.6 mm internal diameter. This was subsequently connected to 4 cm of silicone tubing having 

a 1.6 mm internal diameter, which was an appropriate size for attaching to the petiole of the pea 

plants. The petiole was severed behind the first leaflet, and the basal stipules were left intact and used 

to help seal the petiole-tubing junction. After one week of feeding, the petioles became chlorotic and 

the feeding solution (control or peptide) ceased to be taken up by the plant. Thus, a fresh feeding 

apparatus was attached to a new petiole (usually two higher than the originally-fed petiole). To 

prevent any loss of peptide solution due to leakage, approximately 500 µL of autoclaved Milli-Q® 

water was injected into the silicone tubing of the newly attached feeding apparatus and left for 30 

minutes prior to adding peptide solutions. Blue food colouring was used in preliminary studies to 

visualise uptake and ensure solutions were distributed throughout the plant.  

Chemical synthesis of GmRIC1a and GmRIC2a (glyco)peptides 

GmRIC1a and GmRIC2a peptides were synthesized via solid-phase peptide synthesis (SPPS) according 

to a previously reported procedure (Corcilius et al., 2017). Six synthetic peptides were prepared in 
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total, each containing hydroxyproline at position 4, and either hydroxyproline, O-(β-L-

arabinofuranosyl) hydroxyproline (monoarabinosylated hydroxyproline) or O-[β-(β1,2-tri-L-

arabinofuranosyl)] hydroxyproline (triarabinosylated hydroxyproline) at position 7 of the CLE domain. 

Synthetic peptides were purified by reversed phase HPLC and characterized by analytical HPLC and 

both low and high resolution ESI-MS (+ve ion) (see Supporting Information for synthetic peptide 

characterization data).  

Sequence identification and bioinformatic analysis 

CLE peptide encoding genes in Pisum sativum were identified using BLAST searches of known legume 

genes identified in Hastwell et al., (2015a and 2017) as well as those from Arabidopsis thaliana (Cock 

and McCormick 2001) with E value = 1 (Altschul et al., 1997 and 2005). The searches were conducted 

in The Pea RNA-Seq gene atlas (http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi; Alves-Carvalho et al., 

2015). Multiple Sequence Alignments, logo diagrams, signal peptide and phylogenetic analyses were 

performed as per Hastwell et al., (2015a and 2017). 

Statistical analyses 

Student’s t-tests were used to determine statistical differences between treatments and were 

calculated in GraphPad Prism 7.01 (La Jolla California, USA; *P<0.5, **P<0.01, ***P<0.001). Data are 

expressed as a mean ±SEM, with n = 6 to 8 plants per treatment, except for untreated plants where n 

= 14.  

 

Results 

Establishment of petiole feeding as a method to introduce solutions into pea plants 

During AON, root-derived CLE peptides travel in the xylem to the shoot, where they are perceived by 

an LRR receptor kinase (Searle et al., 2003; Reid et al., 2011a; Okamoto et al., 2013). However, feeding 

CLE peptides to the root can have unwanted false-positive effects, with many inhibiting root growth 

due to functional redundancy and interacting with other receptors (Whitford et al., 2008; Shinohara 

and Matsubayashi 2015). Thus, a direct-feeding method to introduce the peptide closer to its correct 

http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi
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receptor was desired. Petiole feeding achieves this (Lin et al., 2010, 2011), and pea was selected as 

the recipient species due to the availability of multiple pea mutants in the AON pathway. When this 

study commenced, CLE peptide sequences of pea were not available. We therefore focused on 

GmRIC1a and GmRIC2a of soybean as they have been shown to act interspecifically in other legume 

species using overexpression studies (Ferguson et al., 2014). 

Preliminary experiments feeding water or dye revealed no observable differences in shoot or root 

weight, shoot height or node number between intact and petiole-fed pea plants (Figure 1A, 

Supplementary Figure 1). This confirmed that petiole feeding could be used to introduce and 

translocate solutions throughout the plant, and did not induce unwanted effects, which is consistent 

with previous reports using other plant species (Lin et al., 2010, 2011).   

Chemical synthesis of GmRIC1a and GmRIC2a glycopeptide variants  

Methods to extract and purify sufficient quantities of endogenous CLE glycopeptides have not been 

established and therefore chemical synthesis is the only tool available to access CLE glycopeptides for 

feeding studies. However, this is a considerable undertaking when post-translational modifications 

are taken into account because of the synthetically-challenging nature of the glycan (Kaeothip and 

Boons 2013). Despite this challenge, three successful syntheses of an SPPS-compatible 

triarabinosylated hydroxyproline ‘building block’ have been reported (Shinohara and Matsubayashi 

2013; Kaeothip et al., 2013; Corcilius et al. 2017) along with examples of its incorporation into native 

CLE peptides (Shinohara and Matsubayashi 2013, Okamoto et al., 2013; Xu et al., 2015; Corcilius et al. 

2017). The most advanced protocol for the synthesis of this triarabinosylated hydroxyproline building 

block (Figure 2, in box) was recently reported (Corcilius et al., 2017), and used in this study to access 

multi-milligram quantities of homogeneous hydroxyproline-7 triarabinosylated GmRIC1a and 

GmRIC2a glycopeptides. Briefly, the building block was incorporated into conventional Fmoc-SPPS 

protocols to obtain the resin-bound and side chain-protected glycopeptides, which were subsequently 

liberated from the resin and deprotected through treatment with an acidic cleavage cocktail 

containing trifluoroacetic acid (TFA), triisopropylsilane and water. After deacetylation of the glycan 
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with sodium methoxide in methanol, the residues were purified by preparative reversed phase HPLC 

affording GmRIC1a and GmRIC2a glycopeptides as their corresponding trifluoroacetate salts in 17% 

and 28% overall yield, respectively (yield based on initial resin loading of the C-terminal amino acid). 

The corresponding hydroxyproline-7 monoarabinosylated and unglycosylated variants were also 

synthesised in order to probe the functional importance of the triarabinosylation modification (Figure 

2). All variants were prepared with hydroxyproline at position 4 in analogy with the structures of 

known CLE peptides. 

GmRIC1a and GmRIC2a glycopeptides suppress nodulation in pea 

Petiole feeding was used to determine whether GmRIC1a and GmRIC2a peptide variants could inhibit 

nodulation in pea. Soybean CLE peptides were used, rather than those of pea, as the transcriptome 

database enabling identification of pea CLE peptide-encoding gene sequences was not available when 

this study commenced. The GmRIC1a variants tested had the proline residues at positions four and 

seven hydroxylated, with or without triarabinosylation at position seven (Figure 2), and were fed at 

concentrations from 1 pM to 10 µM. CLE peptides with no modifications have previously been 

reported to have no nodulation-suppressive activity and were not used in this study (Okamoto et al., 

2009; Mortier et al., 2010). 

Nodule inhibition was observed in plants fed with 1 µM or higher of the triarabinosylated variant of 

GmRIC1a (Figure 1, Supplementary Figure 2). In contrast, no significant difference in nodule number 

was observed with any concentration of the hydroxylated-only variant (Figure 1, Supplementary 

Figures 2 and 3). Triarabinosylated GmRIC1a and GmRIC2a both inhibited nodule number at 1 µM and 

peptides at this concentration were used in subsequent experiments. Together, this indicates that 

triarabinosylation is required for the peptides to exert their activity.  

The extent of glycosylation can affect the efficacy of CLE peptide activity 

All CLE peptides identified to date have been modified with three linked arabinose sugars at their 

central proline residue. To determine whether these three arabinose sugars are required to suppress 
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nodulation, wild-type pea plants were fed with either the triarabinosylated or monoarabinosylated 

variant of GmRIC1a. While the triarabinosylated variant significantly suppressed nodulation (Figure 

1D), the monoarabinosylated variant was unable to do so (P>0.5). This further demonstrates that post-

translational triarabinosylation is essential for activity. 

Nodulation suppressing CLE peptides act downstream of PsNOD3 but require PsSYM28 and PsSYM29 

to exert their activity 

PsNOD3 encodes a hydroxyproline O-arabinosyltransferase (Schnabel et al., 2011) that might be 

required to post-translationally glycosylate mature, nodulation-suppressing CLE peptides in the root. 

PsSYM28 and PsSYM29 encode for receptors that likely form a complex to perceive nodulation-

suppressing CLE peptide ligands in the shoot (Krusell et al., 2002, 2011). Overexpression of rhizobia-

induced CLE peptide-encoding genes results in complete suppression of nodulation in wild-type plants 

of several legumes (Okamoto et al., 2009; Mortier et al., 2010; Reid et al., 2011a), but does not alter 

nodule numbers in supernodulating receptor mutants (Okamoto et al., 2009; Reid et al., 2011a; 

Osipova et al., 2012; Ferguson et al., 2014). Interestingly, MtCLE13 overexpression suppresses 

nodulation in Mtrdn1-2 (Kassaw et al., 2017), the orthologue of PsNOD3, but not when interspecifically 

overexpressed in Psnod3 (Osipova et al., 2012). To establish whether triarabinosylated GmRIC1a or 

GmRIC2a can suppress nodulation in supernodulating pea mutants, plants were fed via petiole feeding 

and nodule numbers determined. Soybean was not utilised as there are currently no lines containing 

mutations in SYM28 and NOD3 orthologues. 

Nodule numbers were not affected in Pssym29 plants fed with GmRIC1a (Figure 3A) and only a slight 

but significant reduction in nodulation was observed in Pssym28 plants (Figure 3A). In contrast, 

nodulation was significantly reduced when feeding GmRIC2a into Psnod3 plants (Figure 3B). Together, 

this indicates that SYM29, and to a lower extent SYM28, are required for perception of the nodulation 

CLE peptides, and that NOD3 is indeed likely responsible for arabinosylation of the peptides, which is 

required for their function.  
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Functional redundancy enables other CLE peptide family members to function as nodulation-

suppressing CLE peptides 

To determine whether other CLE glycopeptides could mimic the activity of the nodulation suppressing 

CLE peptides, petiole feeding was used to introduce hydroxylated-only or triarabinosylated GmCLE40a 

variants into wild-type pea plants. GmCLE40a acts to regulate the stem cell population of the root 

apical meristem (Corcilius et al., 2017) and would not normally be expected to come into contact with 

receptors of the nodulation suppressing CLE peptides. The CLE domain of GmCLE40a contains six 

amino acid residues that differ from the GmRIC1a or GmRIC2a CLE domain. Only two of these residues 

(positions three and twelve) affected GmRIC1a activity when modified via site-directed mutagenesis 

(Reid et al., 2013).  This reduction in activity was only minor at position three of GmRIC1a, and the 

residue at position 12 of GmCLE40a would only be considered a conservative change from that of 

GmRIC1a (Asp>His), and thus not likely to have a large impact on activity.  

The hydroxylated GmCLE40a variant was not able to suppress nodulation (Figure 4), similar to what 

was observed with hydroxylated GmRIC1a. However, triarabinosylated GmCLE40a did suppress 

nodulation. In fact, it suppressed nodulation to nearly the same extent as triarabinosylated GmRIC1a 

(Figure 1). These findings demonstrate functional redundancy can occur amongst CLE peptides, and 

further support the conclusion that triarabinosylation of the nodulation suppressing CLE peptides is 

required to suppress nodulation in pea. 

Identification of CLE peptide-encoding genes of Pisum sativum 

The complete genome of pea is not yet available and so we used the nodulation suppressing CLE 

peptides of soybean in this study. However, since commencing our work, several transcriptome 

analyses have become available that could be used to identify CLE peptide encoding genes of pea 

(Alves-Carvalho et al., 2015; Tayeh et al., 2015). To identify CLE peptide orthologues of pea, BLAST 

searches of the UniGene set in The Pea RNA-Seq gene atlas were conducted using CLE peptide-

encoding gene sequences of Medicago truncatula, Lotus japonicus, Phaseolus vulgaris and Arabidopsis 

thaliana (Cock and McCormick 2001; Alves-Carvalho et al., 2015; Hastwell et al., 2015a and 2017). The 
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search yielded 40 unique CLE peptide-encoding gene candidates of pea (Figure 5, Supplementary Table 

1) and a further eight sequences with unclear gene structures and/or analogous CLE peptide domains 

(Supplementary Table 2). Three of the identified sequences contain multiple CLE domains 

(Supplementary Table 1, Supplementary Figure 4). It is important to note that without the genome, 

the entire CLE peptide encoding gene family of pea remains incomplete as only genes that were 

expressed in the available transcriptome datasets can be identified; hence, there are likely to be more 

than 40 CLE peptide members in pea.  

An initial phylogenetic tree was constructed using the 40 newly identified CLE prepropeptide 

sequences of pea, along with those previously identified in M. truncatula, L. japonicus, P. vulgaris and 

A. thaliana (Supplementary Figure 5) (Cock and McCormick 2001; Hastwell et al., 2015a and 2017). 

This enabled homologous sequences of pea to be identified. PsCam040153 and PsCam040702 

grouped closely with rhizobia-induced CLE peptides, and PsCAM041632 grouped with nitrate-induced 

CLE peptides (Supplementary Figure 5). An additional phylogenetic tree focusing on nodulation-

suppressing CLE peptides was then generated, which included both rhizobia- and nitrate- induced CLE 

peptides of G. max and other legumes (Figure 6A) (Reid et al., 2011a; Okamoto et al., 2015). 

Unsurprisingly, PsCam040153 and PsCam040702 formed a distinct branch with the rhizobia-induced 

CLE peptide orthologues as in previous phylogenetic analyses (Hastwell et al., 2015a and 2017), 

whereas no clear branch was observed with the nitrate-induced CLE peptides, despite it grouping in 

the phylogenetic tree designed using with the complete family of pea CLE prepropeptides (Figure 6A). 

Based on the sequence and phylogenetic analyses, PsCam040153 and PsCam040702 are the likely 

orthologues of the rhizobia-induced CLE peptides (GmRIC1, GmRIC2, PvRIC1, PvRIC2, MtCLE12, 

MtCLE13, LjCLE-RS1, LjCLE-RS2 and LjCLE-RS3). Given that the CLE domain within the prepropeptide 

represents the functional ligand, the amino acid sequences within that domain were compared to 

those of previously identified orthologues (Figure 6B). PsCam040153 and PsCam040702 have CLE 

domains that are conserved at six and seven of the eight residues, respectively, that were identified 
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by Reid et al., (2013) as being critical to the activity of nodulation-suppressive CLE peptides 

(Supplementary Figure 6). However, the two non-conserved residue changes at positions three and 

eight of the CLE domain are conservative, Ala3>Ser3 in both sequences and Asn8>Asp8 in only 

PsCam040702 (Supplementary Figure 6). The former is an amino acid found at position three of the 

majority of CLE domains from the nodulation-suppressive CLE peptides of M. truncatula and L. 

japonicus. Hence, these differences seem very unlikely to impact function. 

 

Discussion 

The fundamental mechanisms that provide legumes with control over nodulation requires a better 

understanding to enable agricultural advances. Using synthetic variants of the nodulation-suppressing 

CLE peptides, GmRIC1a and GmRIC2a, we show that post-translational modification with a 

triarabinose moiety is required for activity. These findings are consistent with reports showing that 

glycosylation is essential for the activity of nodulation-suppressive CLE peptides in L. japonicus, CLV3 

orthologues in A. thaliana and tomato (Shinohara and Matsubayashi 2013, Okamoto et al., 2013; Xu 

et al., 2015), and CLE40 in soybean (Corcilius et al., 2017). 

Activity of the triarabinosylated GmRIC2a peptide is dependent on PsSYM29, and to some extent 

PsSYM28, which are the proposed receptors of the nodulation suppressing CLE peptides. This is 

consistent with over-expression studies, where the peptides acts through these receptors to inhibit 

nodule numbers (Krusell et al., 2011; Osipova et al 2012; Reid et al 2011a; Ferguson et al., 2014).  

These findings agree with the proposed AON pathway, where the CLE peptides are perceived by a 

receptor complex consisting of NARK/CLV2/KLV, which triggers regulation of a downstream signal that 

induces nodule number regulation. 

In addition to suppressing nodulation in wild-type pea, the glycosylated GmRIC1a peptide also 

inhibited nodulation in Psnod3 mutants. NOD3 orthologues are hydroxyproline O-

arbinosyltransferases proposed to be responsible for catalysing the glycosylation of some CLE peptides 
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in AON (Kassaw et al., 2017). Our study supports the requirement for arabinosylation by NOD3; 

however, the precise role of the modification remains unknown and may be required for structure, 

perception and/or stability of the peptide (Shinohara and Matsubayashi 2013). It is also possible that 

another mechanism for modification is required for other CLE peptides in nodulation (Kassaw et al., 

2017). The strong structural redundancy of the synthetic nodulation-suppressive CLE peptides, 

together with our findings of nodule inhibition using wild-type pea, indicate that GmRIC1a can likely 

function in sym28 and sym29; and GmRIC2a could function in nod3. However, these were not 

examined due to the complex nature of the chemical synthesis resulting in limited quantities of 

available peptide. 

The CLE peptide-encoding genes identified here considerably enhance our knowledge of the CLE 

peptide family of pea. The 40 genes identified include orthologues of the well-characterised CLE 

peptides RIC1, RIC2, NIC1, TDIF and multiple CLE domain containing prepropeptides of other species. 

Official gene nomenclature was not assigned to the newly identified pea genes as it is highly likely that 

new CLE peptide-encoding genes will be identified once the pea genome is released. When this occurs, 

a much more comprehensive study will be required, similar to Hastwell et al. (2015a, 2017), as current 

gene-identifying resources are limited to tissues and treatments that were used to generate the Pea 

RNA-Seq gene atlas. 

Within a species, different CLE peptide-encoding genes can encode for the same mature peptide 

sequence, with functional specificity arising from temporal and spatial separation of gene expression 

in conjunction with divergent receptors. Our findings indicate that synthetic triarabinosylated 

GmCLE40a, which has high sequence similarity to GmRIC1a and GmRIC2a, can function in AON to 

suppress nodulation; however, endogenous GmCLE40a is highly unlikely come into contact with AON 

receptors as it is a component of root apical meristem development (Yamaguchi et al., 2016; Corcilius 

et al., 2017). This finding highlights the need to plan feeding studies and interpret their results with 
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great care, similar to what has been reported for receptor binding studies that can generate false-

positive outcomes (Shinohara and Matsubayashi 2015).  

The available germplasm in pea made this study possible as there are multiple mutants available in 

the AON pathway. In contrast, the duplicated genome of soybean results in functional redundancy 

that makes selecting mutant lines a challenge. Typically, mutations in soybean are only isolated for 

duplicate genes that have undergone neofunctionalisation, such as GmNARK and GmCLV1a (Mirzaei 

et al., 2017). Difficulty in creating stable mutant lines also restricts mutant availability. At the beginning 

of this study the CLE peptide-encoding genes of pea had not been identified and the pea genome was 

not available to identify them. However, interspecific studies had shown that the AON mechanism is 

highly conserved across legumes (Osipova et al., 2012; Ferguson et al., 2014) and so the nodulation 

suppressing CLE peptides of soybean were used with the AON mutants of pea. Our findings reiterate 

the conservation of the AON pathway, even between legumes with different nodule development; 

soybean having determinate nodules and pea having indeterminate nodules. Subsequently, we were 

able to identify the likely othologues of the nodulation suppressing CLE peptides of pea, and 

established that their mature peptide sequences are highly similar to those of soybean.    

CLE peptides are important plant hormones that may provide targets for agricultural advances in 

nodulation as well as other aspects of plant growth and development. It is important to better 

understand their patterns of expression, post-translational modifications, and function in molecular 

signalling pathways. Using recently advanced chemical methods (Corcilius et al., 2017), we 

demonstrate that this can be achieved using homogeneously modified CLE peptides coupled with 

precise delivery techniques to reduce off-target effects. Specifically, we chemically synthesised 

systemically-acting nodulation-suppressive CLE peptides and used a targeted delivery method to 

demonstrate that they require a specific arabinosyl moiety to function. Further understanding CLE 

peptides and how they are post-translationally modified by NOD3 is pertinent to expand our 

knowledge of AON and associated pathways. 
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Figure 1. Peptide petiole feeding and subsequent nodule number 14 days after inoculation of wild-

type pea plants A Image of pea plants with petiole feeding apparatus attached (arrow). B 1 µM 

triarabinosylated GmRIC1a, GmRIC2a and water control. C 1 pM to 10 µM of hydroxylated (Hyd) or 

triarabinosylated (Tri) GmRIC1a. D 1 µM triarabinosylated (Tri), monoarabinosylated (Mono) or 

hydroxylated (Hyd) GmRIC2a, and water control. Statistical differences determined using Student’s t-

test. n = 7 to 10 plants per treatment and error bars represent standard error of the mean.  
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Figure 2. Structures of synthetic GmRIC1a and GmRIC2a peptides, and triarabinosylated 

hydroxyproline building block (in box). Proline 4 is hydroxylated in all variants. Proline 7 is either 

hydroxylated only (R = H), or further modified by arabinosylation (R = monoarabinose or triarabinose).  
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Figure 3. Nodule number 14 days after inoculation of wild-type and nodulation-mutant pea plants fed 

via petiole feeding with either 1 µM triarabinosylated GmRIC1a, triarabinosylated GmRIC2a, or water 

control. A Wild type, sym28 and sym29 plants fed with GmRIC2a. B Wild type and nod3 plants fed with 

GmRIC1a. Statistical differences determined using Student’s t-test. n = 5-8 plants per treatment and 

error bars represent standard error of the mean.   
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Figure 4. Nodule number 14 days after inoculation of wild-type pea plants fed via petiole feeding with 

1 µM hydroxylated (Hyd) or triarabin osylated (Tri) GmRIC1a or GmCLE40a, or water control. Statistical 

differences determined using Student’s t-test. n = 7 to 8 plants per treatment and error bars represent 

standard error of the mean.  
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Figure 5. Multiple Sequence Alignment of the CLE prepropeptides of P. sativum. Shaded nucleotides 

indicate conservation. Not shown are the multi CLE domain containing prepropeptides.  



 

 
This article is protected by copyright. All rights reserved. 

 

Figure 6. Nodulation-suppressive CLE prepropeptides of P. sativum and their orthologues in G. max, 

P. vulgaris, L. japonicus, and M. truncatula. A Multiple Sequence Alignment where shaded residues 

indicate conserved residues. B Phylogenetic tree, with Bootstrap confidence values expressed as a 

percentage of 1,000 bootstrap replications, using AtCLV3 as an outgroup. 

 


