AEM Accepted Manuscript Posted Online 4 May 2018 Appl. Environ. Microbiol. doi:10.1128/AEM.00181-18 © Crown copyright 2018. The government of Australia, Canada, or the UK ("the Crown") owns the copyright interests of authors

who are government employees. The Crown Copyright is not transferable.

Crown-of-thorns sea star, Acanthaster cf. solaris, have tissue-characteristic microbiomes with 1 2 potential roles in health and reproduction 3 Lone Høj,^{a#,b} Natalie Levy,^{a,b,c*} Brett K. Baillie,^a Peta L. Clode,^{d,e,f} Raphael C. Strohmaier,^a 4 Nachshon Siboni,^{a,**} Nicole S. Webster,^{a,b,g} Sven Uthicke,^{a,b} David G. Bourne^{a,b,c} 5 6 7 ^aAustralian Institute of Marine Science, Townsville, Queensland, Australia. ^bAIMS@JCU, Division of Research & Innovation, James Cook University, Townsville, 8 9 Queensland, Australia 10 ^cCollege of Science and Engineering, James Cook University, Townsville, Queensland, 11 Australia. ^dCentre for Microscopy, Characterisation and Analysis, The University of Western Australia, 12 13 Perth, Western Australia, Australia ^eSchool of Biological Sciences, The University of Western Australia, Perth, Western 14 15 Australia, Australia 16 ^tThe Oceans Institute, The University of Western Australia, Perth, Western Australia, 17 Australia 18 ^gAustralian Centre for Ecogenomics, University of Queensland, Brisbane, Queensland, 19 Australia 20 21 Running head: Microbiome of crown-of-thorns sea stars 22 [#]Address correspondence to Lone Høj, 1.hoj@aims.gov.au. 23 ^{*}Present address: Natalie Levy, School of Zoology, Tel Aviv University, Tel Aviv, Israel. 24

Downloaded from http://aem.asm.org/ on May 10, 2018 by UQ Library

**Present address: Nachshon Siboni, Climate Change Cluster, University of Technology
Sydney, Sydney, New South Wales, Australia.

27

28 **ABSTRACT** Outbreaks of coral-eating crown-of-thorns sea stars (CoTS; *Acanthaster* spp. 29 complex) cause substantial coral loss, hence there is considerable interest in developing 30 prevention and control strategies. We characterised the microbiome of captive CoTS and 31 assessed whether dysbiosis was evident in sea stars during a disease event. Most tissue types 32 had a distinct microbiome. The exception was female gonads, which were highly variable 33 amongst individuals. Male gonads were dominated (>97% of reads) by a single Mollicutes-34 related OTU. Detailed phylogenetic and microscopy analysis demonstrated the presence of a 35 novel Spiroplasma-related bacterium in the spermatogenic layer. Body wall samples had high relative abundance (43-64% of reads) of spirochetes, likely corresponding to subcuticular 36 37 symbionts reported from many echinoderms. Tube feet were characterised by 38 Hyphomonadaceae (24-55% of reads). Pyloric caeca microbiomes had high alpha diversity, 39 comprising many taxa commonly found in gastro-intestinal systems. The order 40 Oceanospirillales (genera Endozoicomonas and Kistimonas) was detected in all tissues. A 41 microbiome shift occurred in diseased individuals, although differences between tissue types 42 were retained. The relative abundance of spirochetes was significantly reduced in diseased 43 individuals. Kistimonas was present in all diseased individuals and significantly associated 44 with diseased tube feet, but its role in disease causation is unknown. While Arcobacter was 45 significantly associated with diseased tissues and Vibrionaceae increased in diversity, no 46 single OTUs were detected in all diseased individuals suggesting opportunistic proliferation 47 of these taxa in this case. This study shows that CoTS have tissue-characteristic bacterial 48 communities and identifies taxa that could play a role in reproduction and host health.

49

Downloaded from http://aem.asm.org/ on May 10, 2018 by UQ Library

50 **IMPORTANCE**

51 Coral-eating crown of thorns sea stars (CoTS; Acanthaster spp. complex) are native to 52 the Indo-Pacific, but during periodic population outbreaks they can reach extreme densities 53 (>1000 starfish per hectare) and function like a pest species. On the Great Barrier Reef, 54 Australia, CoTS have long been considered one of the major contributors to coral loss. There 55 has been significant investment in a targeted control program using lethal injection, and there 56 is interest in developing additional and complementary technologies that can increase culling efficiencies. The biology of CoTS has been studied extensively but little is known about their 57 58 associated microbiome. This cultivation-independent analysis of the CoTS microbiome 59 provides a baseline for future analyses targeting the functional role of symbionts, the 60 identification of pathogens, or the development of reproduction manipulators. 61

62 INTRODUCTION

63 Crown-of thorns sea stars (CoTS; Acanthaster spp., excluding Acanthaster brevispinus) 64 are corallivorous carnivores that display long-term boom-bust population cycles with 65 densities reaching plague proportions. CoTS were previously thought to belong to a single 66 species, Acanthaster planci. It is now recognised that there are at least four species in the 67 Indo-Pacific, and the name Acanthaster solaris is proposed for the Pacific species that is 68 native to the Great Barrier Reef (GBR) in Australia (1). Here, this species will be referred to 69 as Acanthaster cf. solaris or crown-of-thorns starfish (CoTS). Four population outbreaks of CoTS have been documented on the GBR since the 1960's (2, 3) and it was estimated that 70 71 CoTS contributed to approximately 42% of the decline in coral cover on the GBR in the 72 period from 1985 to 2012 (4). As a consequence, local management options for CoTS have 73 received considerable attention (5-7).

Applied and Environmental

Microbiology

vironmental	odV
Env	oldo
dane	Micr
Applied	

74	Marine invertebrates have associated microbiomes that play major roles in their biology,
75	including settlement induction, development, metamorphosis, reproduction, digestion, and
76	nutrition (8). Despite their critical importance to host health, studies of echinoderm
77	microbiology are scarce, and most have been triggered by disease outbreaks in the wild (9,
78	10) or in aquaculture facilities (11, 12). Recently however, molecular surveys of bacteria
79	associated with healthy sea urchins (13-15), holothurians (16), and the coelomic fluid of the
80	sea star species Patiria pectinifera and Asterias amurensis (17) were reported. Many
81	echinoderms, including many sea stars, have subcuticular bacteria (SCBs) localised in the
82	lumen between epidermal cells and the outer cuticle (18-22). The presence of SCBs appears
83	to be related to host classification, in most cases at family level (20). Although SCBs have
84	not previously been investigated for the family Acanthasteridae, they have been detected in
85	other members of the order Valvatida (20, 22). While the functional role of SCBs is not clear,
86	it has been hypothesised that they can provide nutrition and antimicrobial protection (22).
87	To date, all studies of bacteria in CoTS have been cultivation-based (23-28), biasing our
88	understanding of their microbiome and precluding assessment of total microbial diversity in
89	this ecologically important sea star. Sutton and Trott (1987) found that seasonal factors had
90	no effect on microbial composition in apparently healthy individuals and suggested that the
91	most dominant bacterial type could be a specific symbiont. Vibrio, Photobacterium, and
92	Pseudoalteromonas species have been isolated from healthy CoTS (25-28). Several potential
93	pathogens have also been isolated from CoTS displaying disease symptoms (lesions, tissue
94	degeneration, loss of turgor and collapsed spines) including Vibrio spp., Pseudomonas, and
95	Moraxella (24, 26, 27). Vibrio has been a focus of CoTS microbiology research to date, but
96	without a culture-independent assessment of the total microbial community it is difficult to
97	ascertain their relative importance to host health state.

98 There is increasing appreciation that many diseases in humans, and most likely also in marine 99 systems, are linked to microbial imbalance (dysbiosis) or polymicrobial infections (29). This challenges the traditional approach of attempting to isolate single pathogenic agents by 100 101 standard methods in order to understand and describe marine diseases, and emphasises the 102 need to investigate the total microbiome in healthy as well as diseased individuals. The aim 103 of the current study was to provide a microbial baseline for different A. cf. solaris tissues and 104 determine how these change during the onset of disease. Healthy and diseased individuals 105 were sampled from COTS held in outdoor tanks and the microbiomes associated with body 106 wall, tube feet, pyloric caeca and gonads (Fig. 1) were analysed by amplicon sequencing of 107 16S rRNA genes, histology and electron microscopy. The taxonomic position of one 108 dominant phylotype was analysed in more detail by cloning and Sanger sequencing of the 109 corresponding 16S rRNA genes.

110

119

111 **RESULTS**

112 The microbiome of healthy A. cf. solaris tissues. Healthy CoTS displayed significant

113 tissue-differences in their microbiome based on weighted Unifrac distances (PERMANOVA:

114 Pseudo F 10.38, p = 0.0001; ANOSIM: R 0.7854, p = 0.0001) and individual OTUs

115 (PERMANOVA: Pseudo F 5.30, p=0.0001; ANOSIM: R 0.7037, p=0.0001). More

specifically, the male gonad microbiome differed from all other tissues based on individual

117 OTUs (PERMANOVA and ANOSIM: p<0.05).

118 The male gonad microbiome was dominated by a single OTU, classified by QIIME to

120 S1). This dominance of a single OTU resulted in a tight cluster in PCoA plots for male gonad

the order Anaeroplasmatales (Anaeroplasmataceae OTU1; 96.0-99.6% of reads) (Fig. 2, Fig.

- 120 S1). This dominance of a single OTU resulted in a tight cluster in PCoA plots for male gonad
- tissue samples (Fig. 3, Fig. S2), a high Dominance value (Fig. S3), and low values for
- 122 evenness (Shannon), species richness (observed species), Fisher's alpha, and overall

Downloaded from http://aem.asm.org/ on May 10, 2018 by UQ Library

123

- D L	124	tissue samples, albeit at lower relative abundances (pyloric caeca: 2.7.7.7%; female gonads;
JSC	127	assue samples, aben a tower relative abandances (pytone cacea. 2.7 7.7%, remain gonads.
ant	125	0.2-79.8%; tube feet: $\leq 0.1\%$; body wall: $< 0.1\% - 3.4\%$) (Fig. S1, Fig. S4). This single OTU
Ž	126	was significantly associated with male gonads and explained 9.0% of the dissimilarity
oted	127	between healthy tissues overall (Table S1). In particular, it explained large proportions of the
cep	128	dissimilarity between male gonads and tube feet (22.1%) or body wall (19.1%), but also
Ă	129	between male gonads and female gonads (11.8%) or pyloric caeca (8.3%) (Table S1). The
	130	only other order detected in male gonads at an average relative abundance >1% was
	131	Oceanospirillales (0.0-3.5%) (Fig. 2).
	132	The phylogenetic position of the dominant OTU in male gonads was analysed in greater
	133	detail. Nine 16S rRNA gene clones derived from male gonads were Sanger sequenced and
,	134	found to have 99.7-100% sequence identity across the analysed 1495 bases. A representative
znviroi siology	135	clone had 99.6% identity, including two single base deletions present in all clones, to a 16S
and I Microk	136	rRNA gene sequence recovered from a scaffold previously generated for male gonads from a
\pplied	137	CoTS collected near Okinawa, Japan (5). The closest sequence matches in the nr/nt database
4	138	were two uncultured Mollicutes clones from the chiton Leptochiton boucheti (HE663394;
	139	85% sequence identity) (30), and from the jellyfish Cotylorhiza tuberculata (LT599040; 83%
	140	sequence identity) (31). The closest matches in the 16S ribosomal RNA database were
	141	Spiroplasma platyhelix (GU993266; 80% sequence identity) (32) and Spiroplasma ixodetis
٤	142	(GU585671; 81% sequence identity) (33). These results were supported by the generated
₹ 	143	phylogenetic tree (Fig. 4). The sequences derived from CoTS male gonads (GBR and

144 Okinawa) clustered closely together, with the chiton-derived sequence as the closest relative.

phylogenetic distance (PD whole tree) (Fig. S3). The same OTU was detected in all healthy

- 145 The cluster formed a deep branch with the Spiroplasma-derived lineages, which include the
- 146 Spiroplasma clades (Citri-Chrysopicola-Mirum, Apis, and Ixodetis) and the Mycoides-
- 147 Entomoplasmataceae clade (34) (Fig. 4). Transmission electron microscopy of male gonads

148	detected cells compatible with both helical and pleiomorphic or intermediate forms of
149	Spiroplasma in the spermatogenic layer (Fig. 5A), linking the dominant retrieved bacterial
150	sequences to the characteristic morphologies of this taxon (35).
151	Female gonads displayed large variation in their microbiome with the relative abundance
152	of Oceanospirillales and Anaeroplasmatales-related sequences in particular different
153	amongst individuals (Fig. 2). One sample was dominated by order Oceanospirillales (85.5%)
154	(Fig. 2), of which nearly all reads (>99.9%) were classified as belonging to
155	Endozoicomonaceae (genus Endozoicomonas, family Hahellaceae) (Fig. 6). Another sample
156	had high relative abundance of the Anaeroplasmatales-related sequences (79.9%) (Fig. 2,
157	Fig. S1), driving this sample towards the male gonad samples in PCoA plots (Fig. 3, Fig. S2).
158	One OTU related to Caulobacterales was significantly associated with female gonads despite
159	explaining <2% of the dissimilarity between female gonads and other individual tissues
160	(Table S1).
161	Body wall samples from healthy individuals had a high relative abundance (45.1-65.8%)
162	of unassigned reads; largely belonging to two OTUs (Unassigned_OTU1: 38.6-61.7%;
163	Unassigned_OTU2: 1.5-12.5%) (Fig. S1). BLAST searches for representative sequences
164	showed that these two OTUs are related to spirochetes previously detected in marine
165	invertebrates (Table S2). Hence, they were grouped and labelled 'Marine spirochetes,
166	BLAST id' to discriminate them from other unassigned OTUs in Fig. 2. Unassigned_OTU1
167	was significantly associated with body wall samples (Table S1). It explained relatively large
168	proportions of the dissimilarity between body wall and female and male gonads (8.5%, and
169	14.4% of the dissimilarity, respectively) (Table S1). Both of the marine spirochete-related
170	OTUs were detected in all healthy and diseased somatic tissue samples, except that
171	Unassigned_OTU2 was absent from one diseased tube feet sample. Hence, our results
172	suggest that marine spirochetes are part of a core COTS microbiome (Table S3).

AEM

173

174	(Fig. 2, Fig. 6), and of those 44.0-99.7% were Endozoicomonas (Fig. 6). Three
175	Endozoicomonas-related OTUs (Endozoicomonaceae_OTUs 1, 2 and 3) together explained
176	relatively large proportions of the dissimilarity between body wall and other individual
177	tissues, however no individual Endozoicomonas-related OTU was significantly associated to
178	the body wall (Table S1). Endozoicomonaceae_OTU1 was detected in all healthy and
179	diseased somatic tissues, and Endozoicomonaceae_OTU2 and 3 were detected in all healthy
180	and diseased body wall and pyloric caeca samples, hence they are likely members of a core
181	COTS microbiome (Table S3). Furthermore, three additional Endozoicomonas-related OTUs
182	were present in all healthy and all diseased body wall samples at low relative abundances
183	(Table S3; Endozoicomonaceaea_OTU5, 6 and 7; up to 0.2% each). Only three other taxa
184	were detected in healthy body wall samples at an average relative abundance >1% in at least
185	one individual, namely <i>Flavobacteriales</i> (0.1-9.2%), <i>Anaeroplasmatales</i> (<0.1-3.9%), and the
186	betaproteobacterial order EC94 (<0.1-1.0%) (Fig. 2).
187	Tube feet samples from healthy individuals had high relative abundance of the order
188	Rhodobacterales (24.2-55.3%) (Fig. 3), with nearly all (99.9%) classified to family level as
189	Hyphomonadaceae. The Hyphomonadaceae-related OTU was significantly associated with
190	tube feet and explained 13.5%, 6.3%, 8.1% and 15.1% of the dissimilarity between tube feet
191	and body wall, pyloric caeca, female gonads, and male gonads, respectively (Table S1). This
192	OTU was present in all healthy and all diseased tube feet samples (Fig S1, Table S3). A large
193	proportion (up to 52.2%) of reads from healthy tube feet were unassigned with the majority
194	(86.5-94.1%) belonging to Unassigned_OTU1, tentatively identified as a marine spirochete
195	as described above. Interestingly, a spirochete-shaped cell was evident in the coelomic
196	epithelium of the tube foot wall (Fig. 5B). Two additional Unassigned OTUs
197	(Unassigned_OTUs 4 and 5) were present in all healthy and diseased tube feet samples

The order Oceanospirillales accounted for 17.9-51.3% of reads from body wall samples

198	(Table S3) and significantly associated with tube feet, despite having low relative abundance
199	(up to 0.7% each) and explaining $< 2\%$ of the overall dissimilarity between tissue groups
200	(Table S1). BLAST searches for representative sequences indicated that Unassigned_OTU4
201	was related to Hyphomonadaceae, while Unassigned_OTU5 had very low sequence identity
202	(<90%) with sequences in public databases with the closest cultured relatives belonging to
203	the phylum Firmicutes (Table S2). Another three unassigned OTUs (Unassigned_OTUs 7, 8
204	and 9) were detected in all tube feet samples irrespective of health status (Table S3), albeit at
205	low relative abundances (up to 0.4%). Only three additional orders were present in healthy
206	tube feet at an average relative abundance >1% in at least one individual: <i>Flavobacteriales</i>
207	(0.1-21.3%), Oceanospirillales (2.0-6.6%) and Anaeroplasmatales (<0.1-1.0%) (Fig. 2). An
208	OTU related to <i>Flavobacterium</i> explained between 2.5% and 6.7% of the dissimilarity
209	between tube feet and other tissues, however the association was not significant due to large
210	variability between individuals (Fig. S1). The proportion of Oceanospirillales reads identified
211	as belonging to the <i>Endozoicomonas</i> was low in all healthy tube feet samples (1.7-9.3%)
212	(Fig. 6). Of the six Oceanospirillales-related OTUs that were detected in all healthy and
213	diseased tube feet, only two were classified as <i>Endozoicomonas</i> (Table S3).
214	Pyloric caeca of healthy individuals had microbiomes with relatively high alpha
215	diversity (Fig S3). This was reflected in a high number of orders with average read
216	abundance above 1% (Fig. 2), and the highest proportion (3.3-4.7%) of reads assigned to
217	orders with relative abundance < 1% each ('Other' in Fig. 2). Unassigned reads constituted
218	up to 41.8%, with 25.0-82.8% of these belonging to the OTUs tentatively identified by
219	BLAST as spirochetes (Unassigned_OTU1 and Unassigned_OTU2) (Fig. 2). A third
220	unassigned OTU (Unassigned_OTU3) also present in all healthy and diseased pyloric caeca
221	(Table S3), was tentatively identified by BLAST as an epsilonproteobacterium (Table S2)
222	and significantly associated with pyloric caeca (Table S1). The relative read abundance of

9

Downloaded from http://aem.asm.org/ on May 10, 2018 by UQ Library

223	Oceanospirillales and proportion of Endozoicomonas was in the range 7.0-36.7% and 23.2-
224	99.0%, respectively (Fig. 2, Fig. 6), with individuals following the same trend as for the
225	corresponding body wall samples (Fig. 6). All three Oceanospirillales-related OTUs that
226	were detected in all healthy and diseased pyloric caeca belonged to Endozoicomonas (Table
227	S3). Another Endozoicomonas-related OTU (Endozoicmonaceae_OTU4) was significantly
228	associated with pyloric caeca but explained < 2% of the dissimilarity with other tissues
229	(Table S1). Other orders with relative abundances above 1% in pyloric caeca were
230	Anaeroplasmatales (6.0-10.3%), Flavobacteriales (1.3-9.4%), Lactobacillales (1.8-7.6%),
231	Actinomycetales (2.9-5.6%), Rhizobiales (1.3-3.9%), Bacillales (1.1-3.1%), Burkholderiales
232	(0.7-3.0%), Clostridiales (1.7-2.6%), Enterobacterales (0.5-2.2%), Pseudomonadales (0.6-
233	1.6%), Neisseriales (<0.1-1.6%), Vibrionales (0.3-1.5%), Caulobacterales (1.0-1.5%),
234	Bacteroidales (0.7-1.3%) and Xanthomonadales (0.5-1.2%). (Fig. 2). Individual OTUs
235	related to Anaeroplasmatales, Bacillales, Caulobacterales and Vibrionales were detected in
236	all pyloric caeca samples (Table S3), and OTUs related to Actinomycetales, Bacillales,
237	Lactobacillales, Rhizobiales, Burkholderiales, Enterobacterales, and Vibrionales were
238	significantly associated with pyloric caeca despite each explaining <2% of the overall
239	dissimilarity between healthy tissue samples (Table S1).
240	Comparative analyses of healthy and diseased tissues. Histological analysis revealed
241	tissue disintegration in diseased individuals. Transverse sections of body wall showed
242	reduced tissue integrity, with papulae frequently replaced by voids (Fig. 7). The structural
243	integrity of tube feet was largely retained in diseased individuals, however in some cases the
244	integument was loosening and the non-adhesive epidermis was disrupted. The structural
245	integrity of pyloric caeca was clearly affected. The extent of damage ranged from near-intact
246	areas with few changes, via loosening of the tunica serosa and the underlying nervous layer
247	and muscle fibres, to more severe disintegration.

Downloaded from http://aem.asm.org/ on May 10, 2018 by UQ Library

248

2	49	that both 'Tissue' and 'Health Status' explained significant parts of the variation based on
2	50	phylogenetic distance (Two-way PERMANOVA; p=0.0001 and p=0.0002) and individual
2	51	OTUs (Two-way PERMANOVA; p=0.0001 and p=0.0126). There was no significant
2	52	interaction between the two explanatory variables (Two-way PERMANOVA; p>0.05). There
2	53	was a significant increase in Dominance for diseased relative to healthy pyloric caeca and
2	54	whilst not significant, there was a general trend of a decrease in all other diversity measures
2	55	for this tissue type (Fig. S3). In contrast, the opposite trends were seen for diseased relative to
2	56	healthy body walls (Fig. S3). For tube feet, there were minimal changes in diversity measures
2	57	between healthy and diseased individuals (Fig. S3).
2	58	Increased relative abundance of Oceanospirillales- and Endozoicimonas-related OTUs
2	59	together explained more than 12.5% of the dissimilarity between healthy and diseased
2	60	individuals (Table S4). In particular, there was a clear increase in the relative abundance of
2	61	Oceanospirillales in diseased tube feet (Fig. 2, Fig. 6), mostly due to two OTUs
2	62	(Oceanospirillales_OTU1 and Oceanospirillales_OTU3) closely related to the type strain of
2	63	Kistimonas asteriae (Fig S1, Table S2). While these OTUs were present in all healthy and all
2	64	diseased tube feet (Fig S1, Table S3), Oceanospirillales_OTU1 was significantly associated
2	65	with diseased individuals and explained 3.9% and 12.8% of the dissimilarity between healthy
2	66	and diseased tissues overall and between healthy and diseased tube feet, respectively (Table
2	67	S4). Oceanospirillales_OTU3 was also significantly associated with diseased tube feet and
2	68	explained a further 2.9% of the dissimilarity of healthy and diseased tube feet (Table S4).
2	69	An OTU related to the genus Arcobacterium (class Epsilonproteobacteria, order
2	70	Campylobacterales) was significantly associated with diseased individuals (Table S4) but
2	71	explained $< 2\%$ of the overall dissimilarity between healthy and diseased individuals (Table
2	72	S4). This OTU was exclusively detected in diseased CoTS, however it was not present in all

Microbiome 16S rRNA gene profiling of healthy and diseased somatic tissues showed

SC		
ot Po	273	diseased individuals (Fig. S1). Due to the well-recognised role of Vibrio spp. as primary and
crip	274	opportunistic pathogens in marine systems, OTUs classified as Vibrionaceae were analysed
nus	275	separately (Fig. S5). While the true diversity of this family is underestimated by the low
Ma	276	resolution of the amplified 16S rRNA gene fragment, we did observe statistically significant
ted	277	trends in some diversity indices. The species richness (observed species) and phylogenetic
Cep	278	distance (PD wholetree) of Vibrionaceae-related OTUs were significantly higher in diseased
Ac	279	as compared to healthy individuals. More specifically, species richness and fisher-alpha
	280	diversity of Vibrionaceae were significantly higher in diseased compared to healthy pyloric
	281	caeca (Van der Waerden's <i>post hoc</i> test, $p < 0.05$).
	282	Three OTUs were significantly associated with healthy tissues overall.
	283	Unassigned_OTU1, tentatively identified as a marine spirochete, was significantly associated
menta	284	with healthy individuals, and specifically with healthy body wall and healthy pyloric caeca
nviron iology	285	(Table S4). A Flavobacterium-related OTU explained 2.9% of the overall dissimilarity
and E Nicrobi	286	(Table S4) between healthy and diseased tissues, although its presence varied between
pplied N	287	individuals (Fig. S1). Unassigned_OTU6, which was tentatively identified by BLAST
A	288	searches as belonging to the phylum <i>Bacteroidetes</i> (Table S2), was significantly associated

289 with healthy tissues despite explaining <2% of the overall dissimilarity (Table S4). Several

290 additional OTUs were found to be significantly associated with healthy pyloric caeca:

291 Unassigned OTU2 and OTUs related to Streptococcus, Rhizobium, and Enterobacteriaceae 292 (Table S4).

293

294 DISCUSSION

295 Microbiomes of healthy A. cf. solaris tissues. Microbiome analysis of the ecologically 296 important crown-of-thorns sea star revealed tissue-specific microbial consortia that were 297 largely conserved amongst individuals, with the exception of a variable microbial community 298

299 novel species, if not a new genus or family, within the Spiroplasma-derived lineages (34, 36). 300 Closely related sequences have been recovered from male gonads of CoTS from both the 301 GBR and Okinawa, Japan, suggesting the possibility of a host-specific association. The 302 sequence evidence was further supported by the presence of bacterial morphologies 303 consistent with exponentially growing and pleomorphic or intermediate forms of Spiroplasma 304 (35) in the spermatogenic layer of male gonads. 305 Mollicutes have been detected in several marine and freshwater invertebrates including 306 bryozoans (37), ascidians (38, 39), chitons (30), shrimp (40-42), crayfish (43), and jellyfish 307 (31, 44). Recently, mollicutes were found to be the dominant bacteria in the coelomic fluid of 308 a low number of the analysed individuals of A. amurensis and P. pectinifera (17). The role of 309 mollicutes in marine invertebrates is not yet well understood; but Spiroplasma penaei and 310 Spiroplasma eriocheiris have been implicated in disease of aquaculture produced prawns (41, 311 45) and crabs (46, 47), respectively. A recently proposed new candidate *Spiroplasma* genus 312 and species, Candidatus 'Medusoplasma mediterranei' gen. nov., sp. nov., (31) was described 313 as an intracellular commensal of the jellyfish Cotylorhiza tuberculata with a predicted 314 anaerobic metabolism. Interestingly, Spiroplasma infection of male gonads in the crayfish 315 Pacifastacus leniusculus appeared to reduce sperm production (43). The occurrence and role 316 of mollicutes in a wide range of insects is better documented, where they have been found to 317 occur both intracellularly and extracellularly, and in some cases are implicated in male 318 killings during late embryogenesis and protection of their host against parasites (48). The role 319 of the Spiroplasma-related bacterium in CoTS gonads is unknown but worthy of further 320 exploration especially in relation to potential biological control. 321 The observed variation between female gonad samples may be related to differences in 322 the developmental stage of the gonads, which has been shown to strongly influence the

in female gonads. Male gonads were primarily colonised by bacteria that likely represent a

323	microbiome of other invertebrates such as the sea anemone Nematostella vectensis (49).
324	Ovarian transmission has been demonstrated for many symbiotic bacteria including
325	spiroplasmas (50) and oceanospirillales (51) and the detection of high relative abundances of
326	these known symbiotic taxa suggests this possibility for CoTS.
327	Healthy somatic tissue samples, and in particular body wall tube feet samples, returned a high
328	relative abundance of two OTUs identified via BLAST searches as belonging to the phylum
329	Spirochaeta. Spiral-shaped microorganisms are commonly observed by electron microscopy
330	in the subcuticular region of many echinoderms, and are referred to as Type 2 SCB (19, 21).
331	Type 2 SCB have been previously detected in body wall and tube feet of sea stars and while
332	they are usually spirals, they can vary in morphology from straight rods through spirals with
333	long wave-lengths to tightly kinked spirals with short wave lengths (19). In the present study,
334	a likely spirochete cell was detected by TEM in the coelomic epithelium of the tube foot wall.
335	Spirochetes were not reported in previous molecular analyses of echinoderm subcuticular
336	bacteria (18, 22), but it is important to note that Lawrence and co-workers used
337	Proteobacteria-specific primers that would miss the phylum Spirochaeta. Spirochaetes are
338	dominant members of the core microbiome of several octocorals including the red coral
339	Corallium rubrum (52) and the soft coral Lobophytum pauciflorum (53). They are suggested
340	to play a role in host nutrition and possibly microbial community structuring via production
341	of antimicrobials (52, 53). A low representation of Alphaproteobacteria in the A. cf. solaris
342	body wall contrasts with previous studies of echinoderm subcuticular bacteria, which have
343	suggested that Alphaproteobcateria are relatively abundant and may play important functional
344	roles in sea stars (22), brittle stars (18), and holothurians (22). Oceanospirillales were
345	detected in all healthy and diseased somatic tissue samples and in all female gonad samples.
346	The genus Endozoicomonas spp. are commonly found in a wide range of marine invertebrates
347	including corals (scleractinian and octocorals), sea anemones, sponges, tunicates, jellyfish,

348	bivalves, snails, tubeworms, as well as fish (54), although they have not previously been
349	reported from echinoderms. Recovered Endozoicomonas sequences had high sequence
350	identity (up to 100%) to sequences retrieved from other marine invertebrates (Table S2).
351	Microscopy-based studies have shown Endozoicomonas to occur as aggregations in host
352	tissues (54). However, recent whole-genome sequencing of several Endozoicomonas strains
353	showed relatively large genomes and the absence of genome reduction, suggesting the
354	existence of a free-living stage (54, 55). In the present study, we were not able to confirm the
355	presence of bacterial aggregates in CoTS body wall and fluorescence in situ hybridisation
356	would be required to spatially localise these cells and confirm their identity. Endozoicomonas
357	have been suggested to have important functional roles in their host related to nutrient
358	acquisition and provision, structuring of the host microbiome, maintaining health or causing
359	disease (54). Other Oceanospirillales-related OTUs showed high sequence identity (up to
360	100%) to sequences previously recovered from corals and sponges, and Kistimonas isolated
361	from a wide range of marine invertebrates (Table S2). Interestingly, the genus Kistimonas
362	and the species Kistimonas asteriae were initially described from isolates retrieved from body
363	wall of Asterias amurensis (56), suggesting that Kistimonas may be commonly associated
364	with sea stars.
365	The order Flavobacteriales (phylum Bacteroidetes) was detected primarily in body

wall, tube feet and pyloric caeca of two out of the three healthy individuals, with low
abundance in the third. The best BLAST match for the representative sequence had low
sequence identity (88%) with the *Flavobacteriaceae* genera *Actibacter* and *Namhaeicola*(Table S2). *Flavobacteraceae* genera have previously been isolated from echinoderms,
including *Aquimarina* from body wall of *Asterias amurensis* (56), and *Bizionia* and *Olleya*

371 from coelomic fluid of the sea urchin *Strongylocentrotus pallidus* (57). This suggests that

Downloaded from http://aem.asm.org/ on May 10, 2018 by UQ Library

372 Bacteroidetes, and more specifically Flavobacteriaceae, are common in echinoderms 373 although there may be high variability between individuals and in the genera present. 374 The tube feet microbiome was dominated by a *Hypomonadaceae*-related OTU, which 375 was present in all tube feet samples irrespective of health status and detected at very low 376 abundance in other tissues. The family Hyphomonadaceae (class Alphaproteobacteria, order 377 Rhodobacterales) includes strict aerobic stalked and non-stalked (one genus only) species 378 that divide by binary fission or budding and are capable of living in low nutrient 379 environments (36). The presence of stalked bacteria in tube feet could not be confirmed by 380 histology or TEM. Related sequences were previously detected in body wall of the temperate 381 sea star Patiriella sp. (Table S2) (22). Tube feet are part of the water vascular system and 382 trace amounts of fluid could have been trapped inside the lumen of sampled feet. The fluid of 383 the water vascular system is similar to sea water but includes coelomocytes, which mediate 384 cellular immunity in sea stars (58, 59), a little protein, and an elevated potassium ion content 385 (60). It is unknown to what extent fluid in the water vascular system includes bacteria from 386 the surrounding seawater, and future studies should investigate this possibility. 387 Pyloric caeca had the most diverse microbiome of all A.cf. solaris tissues, likely 388 reflecting the presence of bacteria capable of enzymatic degradation of a variety of feed 389 items, as well as microenvironments with varying conditions. A high number of taxa 390 commonly associated with gastrointestinal tracts of animals were detected including 391 Actinomycetales, Bacillales, Bacteroidales, Burkholderiales, Clostridiales, Enterobacterales, 392 Flavobacteriales, Lactobacillales, Neisseriales, Pseudomonadales, Rhizobiales, Vibrionales, 393 and Xanthomonadales (61-64). 394 Microbiome shifts in diseased individuals. A microbial dysbiosis (29) was detected in 395 conjunction with declining host health, involving significant shifts in microbial diversity in

396 body wall and pyloric caeca and significant changes in the relative abundance of some OTUs

in all tissues. The most abundant marine spirochete (Unassigned_OTU1) and two OTUs
related to *Bacteroidetes* were significantly associated with healthy individuals, emphasising
that these groups are characteristic members of healthy *A*. cf. *solaris* microbiomes. In
contrast, one OTU related to *Oceanospirillales* (Oceanospirillales_OTU1) and one OTU
related to *Arcobacter* (order *Campylobacterales*) were significantly associated with diseased
individuals.

Body wall samples from diseased individuals had decreased dominance (increased evenness) and a significant loss of marine spirochetes. This loss could be a direct result of habitat disintegration, however even minor necrosis can attract bacteria capable of colonising and exploiting available nutrients for rapid proliferation, thereby outcompeting symbionts normally present in healthy individuals (65).

408 Two OTUs (Oceanospirillales_OTU1 and Oceanospirillales_OTU3) related to the genus 409 Kistimonas (family Hahellaceae) were significantly associated with diseased individuals, and 410 in particular with diseased tube feet. Related bacteria have been identified as pathogens 411 including Hahella chejuensis, which was identified as the etiological agent of red egg disease 412 in tilapia hatcheries (66), and Endozoicomonas elysicola, which is responsible for 413 epitheliocystis in cobia hatcheries (67). Kistimonas has so far been reported as living in close 414 association with invertebrate hosts (56, 68, 69) and their mode of transmission is largely 415 unknown. In this study, we cannot exclude the possibility that the detected *Kistimonas* were 416 present in trace amounts of fluid from the water vascular system trapped in the sampled tube 417 feet. Without more detailed information on the localisation and physiology of Kistimonas-418 related bacteria, it is difficult to speculate on their possible role in CoTS health and disease. 419 Arcobacter was found only in diseased CoTS but did not occur in all diseased 420 individuals, suggesting that the proliferation of Arcobacter may be opportunistic. The order

421 Campylobacterales (Epsilonproteobacteria), and specifically the genus Arcobacter, was

Downloaded from http://aem.asm.org/ on May 10, 2018 by UQ Library

4	122	previously found to dominate the gut microbiome of captive raised sea urchins Lytechinus
4	423	variegatus (14, 15). It has also been detected in diseased coral (70, 71) and necrotic and
4	424	diseased sponges (65, 72). While Arcobacter is linked to gastrointestinal disease and
4	125	bacteraemia in humans and additionally causes disease in rainbow trout (Oncorhynchus
4	126	mykiss), their pathogenicity and virulence mechanisms are still poorly characterised (73).
4	127	Importantly, not all species and strains are pathogenic with some Arcobacter being
4	128	opportunistic pathogens or commensals (74).
4	129	No single Vibrio-related OTU was associated with diseased tissues in this study, but the
4	430	diversity of Vibrionaceae increased in pyloric caeca of diseased individuals suggesting
4	431	opportunistic proliferation of Vibrio spp. Although there was no evidence that Vibrio spp.
4	432	caused the disease event described in the present study, it is possible that members of this
4	133	genus can cause disease symptoms in CoTS under other circumstances.
4	134	We note that the dominant taxa Mollicutes and Endozoicomonas in diseased CoTS
4	135	include many intracellular bacteria or microorganisms known to occur as dense aggregates in
4	136	host tissues. It is possible that bacterial cells with an intimate association with host cells or
4	137	protected by a tightly enveloping membrane (67, 75) can be protected against host immune
4	138	responses (54) or simply be detectable for a longer period of time after the onset of tissue
4	139	degradation.
4	140	Diseased CoTS individuals are rarely encountered in the wild (76), hence the sampled
4	141	disease event in captive CoTS represented an opportunity to investigate possible dysbiosis in
4	142	CoTS tissues. The comparison to 'healthy' CoTS was done using individuals from a separate,
4	143	healthy batch of COTS that were acclimatised in the same aquarium system to minimise any
4	144	bias introduced by transportation and captivity. While it is expected that a severe disease
4	145	event would be the strongest driver of the observed differences between 'healthy' and
4	146	'diseased' tissues, it cannot be excluded that some differences were introduced by using

447 CoTS from a different reef collected six weeks later. Several bacterial taxa were present in all 448 analysed individuals in this study, some of which were tissue characteristic and others were 449 present in multiple tissues, and therefore part of the core microbiome of CoTS. The spatial 450 and temporal stability of bacterial communities in wild CoTS should be targeted in future 451 studies, including analysis of the different species in the *Acanthaster* species complex.

This study revealed the presence of tissue-specific microbial communities inhabiting gonads, body wall, tube feet, and pyloric caeca of *A*. cf *solaris* and demonstrated that dysbiosis occurs in conjunction with declining host health. The functional role that symbionts play in maintaining or disturbing CoTS health and controlling CoTS reproduction should now be investigated to ascertain whether these microorganisms represent an "Achilles' heel" that could be exploited in future CoTS control efforts.

458

459 MATERIALS AND METHODS

460 Collection and sampling of sea stars. Sea stars were collected from the northern 461 section of the Great Barrier Reef between Cairns and Port Douglas, Queensland, Australia, by 462 the Crown-of-Thorns Starfish Control Program Project (Table S5). After collection by scuba 463 divers, A. cf. solaris were transferred immediately to purpose-built 1000 L holding tanks with 464 trays separating individuals and continuous flow of seawater via a spray tower as previously 465 described (77). Trays were transferred to a transporter tank (1000 L) with static seawater and 466 constant aeration and transported by car for 5 hours to the Australian Institute of Marine 467 Science, Townsville, Australia (77). Upon arrival, CoTS were transferred to outdoor tanks 468 (1000 L) with flow-through unfiltered seawater and aeration.

469 CoTS collected in late March 2014, developed symptoms of disease upon transfer to
470 outdoor tanks, including drooping spines and inability to adhere to the tank wall (Fig. 7).
471 Three diseased individuals were sampled for microbiome analysis within a week (D2, D6,

472	D7) and a further two diseased individuals were sampled in the two following weeks (D8,
473	D9). No lesions were visible at the time of sampling nor did any develop in sea stars
474	remaining in the tank. Four individuals (D2, D6, D7, D8) were at an advanced stage of
475	disease progression and possessed little coelomic fluid at the time of sampling, while D9 had
476	more coelomic fluid and appeared to be at an earlier stage of disease progression. CoTS
477	collected in May 2014 were used to obtain baseline information on microbiomes present in
478	tissues of apparently healthy CoTS (individuals H1, H2, H3). These individuals were
479	acclimated in the outdoor tanks for 4-6 days before sampling to confirm their health status
480	after transportation and minimise any tank effects relative to the previous batch. From both
481	healthy and diseased animals, body wall, tube feet and pyloric caeca (digestive gland)
482	samples were obtained (Fig. 1). The selection of tissues was based on the following
483	considerations: 1) Body wall: many echinoderms harbour subcuticular symbionts and lesions
484	and lesions are a commonly reported disease symptom; 2) Pyloric caeca: many invertebrate
485	diseases are initiated in the digestive system before going systemic; 3) Tube feet: in close
486	contact with coelomocytes, relatively easy to sample and produce good quality DNA. In
487	addition, gonads were included in the study due to their role in animal reproduction. Outside
488	of the spawning season, the gonads of Acanthaster cf. solaris are completely regressed.
489	Hence gonad tissue samples were obtained from apparently healthy animals collected in
490	November 2013 (MG1, MG2) and November 2014 (MG3, MG4, FG1, FG2, FG3). All
491	tissues were dissected using sterile scalpels and stored according to their respective
492	downstream analysis.
493	DNA extraction, PCR amplification, NGS sequencing. Samples for DNA extraction
494	were preserved in ethanol (AJA214, Ajax Finechem, now ThermoFisher Scientific, USA)
495	with the exception of gonads, which were preserved in RNA later (ThermoFisher Scientific).

496 Samples in ethanol were left at 4°C for 16 h, then ethanol was exchanged and the sample

transferred to -20°C for storage. Samples in RNA later were left at 4°C for 16 h before being
transferred to -20°C for storage. DNA was extracted using the ZR Tissue & Insect DNA
MiniPrep kit (Zymo Research, USA), as per the Manufacturer's recommendation. The
quantity and quality of extracted DNA was assessed by agarose gel electrophoreses and by
spectrophotometry using the Nanodrop 2000 (ThermoScientific).

Bacterial 16S rRNA genes were amplified and sequenced at the Australian Centre for
Ecogenomics (University of Queensland, Australia). Amplification was performed using the
primer set 803F (TTAGANACCCNNGTAGTC) and 1392wR (ACGGGCGGTGWGTRC).
The primers amplify the V5-V8 region of *Bacteria* and *Archaea* and were selected based on
their high coverage. DNA libraries were prepared with the Illumina TruSeq DNA library
preparation protocol, followed by Illumina MiSeq 2 x300 bp sequencing.

508 Bioinformatic/Statistical analysis of amplicon sequences. Due to the length of the 509 amplified fragments, only reverse reads were used for subsequent analysis. Sequences were 510 trimmed using PRINSEQ lite version 0.20.4 (PReprocessing and INformation of SEQuence 511 data) (78) and Mothur version 1.34.0 (79). Trimmed sequences were exactly 250 bp long 512 with no ambiguities, a maximum of 8 homopolymers, and all windows (window size 4) had 513 an average quality score of at least 15. Trimmed sequences were analysed using the QIIME 514 pipeline (version 1.9.0) (80) with the Greengenes database (81) version 13_8 (97% similarity) 515 as reference.

516 Chimeric sequences were identified using USEARCH v. 6.1. (82) and filtered from the 517 dataset (approximately 1% of reads were removed). Open-reference OTU picking was 518 performed in four steps using UCLUST (82), with a prefilter cutoff of 60%. Singletons and 519 OTUs whose representative sequence could not be aligned with PyNAST were removed. 520 OTUs that were present in the negative extraction control at a relative abundance of more 521 than 0.05% were removed from all samples. Taxonomy was assigned to OTUs by UCLUST.

522 In addition, BLAST searches were performed for the representative sequence of selected 523 OTUs (see below).

524 Before diversity analyses, sequences were evenly subsampled to 7824 reads per sample 525 (the lowest read number, Table S6) to remove the effect of sampling effort. The subsampled 526 dataset was also used for Similarity percentage (SIMPER) analysis (83) and to identify OTUs 527 that were significantly associated with a group (see below). The OTU table was filtered to 528 retain only selected taxonomic groups using the QIIME script filter taxa from otu table.py, 529 and to retain only OTUs detected in all samples in a defined group using the QIIME script 530 compute_core_microbiome.py, as required. Venn diagrams were generated using the R 531 package VennDiagram v. 1.6.19 (84).

532 Calculated alpha diversity metrics included Dominance, Shannon index, observed 533 species, and PD wholetree. Data were tested for normality using the Kolmogorov-Smirnov 534 and Shapiro-Wilk tests, and homogeneity of variances was tested using Levene's test, using 535 PAST version 3.04 (85). Variances were generally not homogenous and the number of 536 samples in each group differed, hence differences between means were analysed by the non-537 parametric Van der Waerden's normal scores test followed by van der Waerden's post hoc 538 test (86) with p-values adjusted for multiple comparisons (87), using the R package PMCMR 539 v. 4.1 (88).

540 Weighted and unweighted Unifrac distance matrixes were generated by QIIME.

541 Principal Coordinates Analysis (PCoA), ANOSIM, two-way PERMANOVA (9999

542 permutations), and SIMPER analysis were performed using PAST version 3.04 (85).

543 SIMPER analysis was performed on square-root transformed data with the Bray-Curtis

544 similarity measure. The association of each OTU to a particular group of samples was

545 analysed using the function signassoc in the R package indicspecies (89). The p-value was

546 corrected for multiple testing using the Sidak method.

22

Downloaded from http://aem.asm.org/ on May 10, 2018 by UQ Library

OTUS were selected for further analysis if they explained more than 2% of the
dissimilarity between groups (SIMPER) and/or fulfilled the following criteria: 1) were
identified by the function signassoc to be significantly associated with a group (p<0.05); and
2) had an arithmetic average difference in relative abundance between groups of $>0.05\%$
(90). Representative sequences for selected OTUs were used to search public sequence
databases (nr/nt, 16S ribosomal RNA sequences (Bacteria and Archaea)) for closely related
matches using BLASTn. The significance level was set at 0.05 in all cases.
Phylogenetic analysis of 16S rRNA gene sequences. Near full length bacterial 16S
rRNA gene sequences corresponding to the dominant OTU in male gonads
(Anaeroplasmataceae_OTU1) were obtained from male gonads by cloning and Sanger
sequencing. Briefly, bacterial 16S rRNA gene sequences were amplified from DNA extracted
as described above using the primers 27F/1492R (91). The amplification product was purified
using the QIAquick PCR Purification Kit (Qiagen, Germany), and cloned using the TOPO
TA Cloning Kit with Competent One Shot TOP10 cells (Invitrogen, USA). Plasmid DNA
was purified with the QIAprep Spin Miniprep Kit (Qiagen) and Sanger sequenced
(Macrogen, Korea) using M13 primers (M13F/M13R-pUC).
The CoTS (submitted as A. planci) genome sequencing project (5) used male gonads as
their starting material. Screening of early scaffolds (not filtered for bacterial sequences)
identified one scaffold generated from a specimen collected near Okinawa, Japan, that
included the representative sequence of Anaeroplasmataceae_OTU1. WebMGA (92) was
used to extract the full length 16S rRNA gene sequence from this scaffold

Downloaded from http://aem.asm.org/ on May 10, 2018 by UQ Library

551 (90). Representative sequences for selected OTUs were used to search public sequence

552 databases (nr/nt, 16S ribosomal RNA sequences (Bacteria and Archaea)) for closely

OTUs were selected for further analysis if they explained more than 2% of the

553 matches using BLASTn. The significance level was set at 0.05 in all cases.

554 Phylogenetic analysis of 16S rRNA gene sequences. Near full length bacterial

555 rRNA gene sequences corresponding to the dominant OTU in male gonads

556 (Anaeroplasmataceae OTU1) were obtained from male gonads by cloning and Sange

557 sequencing. Briefly, bacterial 16S rRNA gene sequences were amplified from DNA e

558 as described above using the primers 27F/1492R (91). The amplification product was

559 using the QIAquick PCR Purification Kit (Qiagen, Germany), and cloned using the T

560 TA Cloning Kit with Competent One Shot TOP10 cells (Invitrogen, USA). Plasmid I

561 was purified with the QIAprep Spin Miniprep Kit (Qiagen) and Sanger sequenced

562 (Macrogen, Korea) using M13 primers (M13F/M13R-pUC).

563 The CoTS (submitted as A. planci) genome sequencing project (5) used male go

564 their starting material. Screening of early scaffolds (not filtered for bacterial sequence

565 identified one scaffold generated from a specimen collected near Okinawa, Japan, tha

566 included the representative sequence of Anaeroplasmataceae_OTU1. WebMGA (92)

567 used to extract the full length 16S rRNA gene sequence from this scaffold

568 (oki scaffold215 size448669).

569 Related sequences in public databases (nr/nt,16S ribosomal RNA (Bacteria and

- 570 Archaea)) were identified by Nucleotide BLAST. Identified sequences and 16S rRNA gene
- 571 sequences from related type strains were downloaded and used to create a maximum

547

548

549

572 likelihood-based phylogenetic tree (93). CLC Genomics Workbench v. 9.5.3 (Qiagen) was 573 used for sequence alignment, trimming (about 1400 bp), model testing, and tree construction 574 using the neighbor joining algorithm for the starting tree, the GTR substitution model (94), 575 and 1,000 bootstrap replicates. The resulting tree was exported and edited for clarity using 576 Dendroscope (95) and Adobe Illustrator.

577 Histology and transmission electron microscopy. Samples for histology were fixed in 578 Bouin's fixative for 16 h at 4°C followed by 3 rinses in 3x phosphate buffer saline (1 x PBS: 10 mM PO₄³⁻, 137 mM NaCl, and 2.7 mM KCl, pH 7.4) and storage in 70% ethanol at 4°C 579 until processing. Body wall samples were decalcified in 10% formic acid. All samples were 580 581 embedded in paraffin and sections (5 μ m) were stained either by hematoxylin and eosin. 582 Mounted slides were inspected by an AxioImager.M2 compound microscope (Carl Zeiss Pty. 583 Ltd., Oberkochen, Germany) and micrographs captured by an Axiocam 503 (Carl Zeiss) 584 microscope camera. The microscope software Zen Blue 2.3 Pro (Carl Zeiss) was used for 585 automated tiling and stitching of images.

586 Samples for transmission electron microscopy (TEM) were fixed in 2.5% glutaraldehyde 587 +2% paraformaldehyde in 100 mM cacodylate for about 16 hours at 4° C, followed by 2 588 rinses in 3x PBS, 1 rinse in 1x PBS and storage in 1x PBS at 4°C until processing at the 589 Centre for Microscopy, Characterisation and Analysis at the University of Western Australia. 590 Samples were post-fixed in 1% OsO_4 in PBS and dehydrated in a graded series of ethanol and 591 acetone using a microwave (Biowave, PELCO), before being infiltrated and embedded in 592 Procure-Araldite resin. Sections from healthy male gonads and tube feet were subsequently 593 cut at a thickness of 100 nm on a diamond knife, before being stained with 1% aqueous 594 uranyl acetate and Sato's modified lead citrate for 5 min each. All sections were imaged at 120 kV in a TEM (JEOL 2100) fitted with a digital camera (Orius, Gatan). 595

Accession numbers. The raw amplicon data were submitted to NCBI under BioProject
SSRP128607, SRA accession SRP128607, and BioSample accession numbers SRX3542029SRX3542037. Sequences of 16S rRNA gene clones were submitted to NCBI's GenBank with
accession numbers MG776016-MG776024.

600

601 ACKNOWLEDGEMENTS

602 We thank The Association of Marine Park Tourism Operators Pty Ltd (AMPTO), which 603 is the peak industry body for marine tourism within the Great Barrier Reef Marine Park, and 604 the Crown-of-Thorns Starfish Control Program Project Manager Steve Moon for access to 605 crown-of-thorns sea stars. We thank Mike Hall (Australian Institute of Marine Science) for 606 developing the holding and transportation technologies for CoTS, for discussions, and 607 logistical support. We thank Sue Reilly (College of Marine and Environmental Sciences, 608 James Cook University) for histological services and Patricia Menendez (Australian Institute 609 of Marine Science) for advice on statistical analyses. We also thank Hillary Smith (James 610 Cook University) for creating the CoTS schematic. The authors acknowledge the facilities of 611 the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, 612 Characterisation & Analysis, The University of Western Australia, a facility funded by the 613 University, State and Commonwealth Governments. Kenneth Baughman, Eiichi Shoguchi 614 and Norivuki Satoh, Okinawa Institute of Science and Technology (OIST), are thanked for 615 kindly screening the genome sequencing project scaffolds and providing 616 oki_scaffold215_size448669. NL received a Pilot Research Grant from the AIMS@JCU Joint 617 venture. NSW was funded through an Australian Research Council Future Fellowship 618 FT120100480. 619

Applied and Environmental

Microbiology

620

FIGURE LEGENDS

25

Downloaded from http://aem.asm.org/ on May 10, 2018 by UQ Library

Applied and Environ<u>mental</u>

Microbiology

621

622

623

624 FIG 2 Taxonomic composition of amplicon sequences from healthy Acanthaster cf. solaris 625 tissue samples. Labels reflect the phylum (abbreviated), class, and order. OTUs that could not 626 be assigned to a taxonomic group by the QIIME pipeline are categorized as 'Unassigned', 627 with the exception of two OTUs (Unassigned OTU1 and OTU2) categorized as 'marine 628 spirochetes' based on their best BLAST matches as discussed in the text. Orders with relative 629 abundance > 1% in at least one sample are shown, with remaining taxa included in the 630 category 'Other'. Abbreviations: A: Actinobacteria; B: Bacteroidetes; C: Cyanobacteria; F: 631 Firmicutes: G: Gemmatimonadetes; P: Proteobacteria; T: Tenericutes; MG: male gonads; 632 FG: female gonads; HBW: healthy body wall; HTF: healthy tube feet; HPC: healthy pyloric 633 caeca. The associated number identifies the sampled individual as described in Table S5. 634 635 FIG 3 Principal coordinates analysis (PCoA) plot based on Bray-Curtis similarities of 636 Hellinger (square-root) transformed OTU abundance data evenly subsampled to 7824 reads. 637 Abbreviations: HBW: healthy body wall; HTF: healthy tube feet; HPC: healthy pyloric caeca; 638 FG: female gonads; MG: male gonads. The number in the sample label identifies the sampled 639 individual as described in Table S5. 640 641 FIG 4 Maximum Likelihood tree showing the phylogenetic position within the *Mollicutes* of 642 the dominant bacterium in Acanthaster cf. solaris male gonads. The sequence MG clone14 643 was cloned from male gonads of A. cf. solaris collected from the Great Barrier Reef. The

FIG 1 Schematic drawing of Acanthaster cf. solaris showing the location of sampled somatic

tissues (body wall, tube feet, pyloric caeca) and gonads.

644 sequence MG_ oki_scaffold215 was extracted from an existing scaffold produced from male

645	gonads of A. cf. solaris collected near Okinawa (5). Bootstrap values are based on 1000
646	bootstrap replications. The scale bar represents the number of substitutions per site.
647	
648	FIG 5 Transmission electron micrographs from healthy Acanthaster cf. solaris tissues. A)
649	The spermatogenic layer of a male gonad showing bacterial morphologies (arrowheads)
650	similar to Spiroplasma in exponential growth and its pleiomorphic or intermediate forms.
651	Scale bar corresponds to 1 μ m. B) A spirochete-shaped bacterium (arrowhead) detected in the
652	coelomic epithelium of tube feet. Scale bar corresponds to 500 nm.
653	
654	FIG 6 Proportion of reads classified as Oceanospirillales and Endozoicomonaceae by QIIME
655	for healthy and diseased Acanthaster cf. solaris tissue samples. Abbreviations: H: healthy; D:
656	diseased; BW: body wall; TF: tube feet; PC: pyloric caeca. The number in the sample label
657	identifies the sampled individual as described in Table S5.
658	
659	FIG 7 Photos and micrographs showing representative healthy and diseased Acanthaster cf.
660	solaris. The micrographs were produced by automated tiling and stitching as indicated. a and
661	b: Arms of healthy (a) and diseased (b) individuals. c and d: Hematoxylin and eosin stained
662	sections of body wall from healthy (c) and diseased (d) individuals (5x5 tiles, 10x objective;
663	scale bar corresponds to 500 μm). e and f: Hematoxylin and eosin stained sections of tube
664	feet from healthy (e) and diseased (f) individuals (5x5 tiles, 20x objective; scale bar
665	corresponds to 200 μ m). g and h: Hematoxylin and eosin stained sections of pyloric caeca
666	from healthy (g) and diseased (h) individuals (4x4 tiles, 20x objective; scale bar corresponds
667	to 200 μm).
668	
669	REFERENCES

27

670

671

1.

672		planci species complex. Diversity 9:22.
673	2.	Pratchett MS, Caballes CF, Rivera-Posada JA, Sweatman HPA. 2014. Limits to
674		understanding and managing outbreaks of crown-of-thorns starfish (Acanthaster spp.)
675		Oceanogr Mar Biol Ann Rev 52:133-200.
676	3.	Pratchett M, Caballes C, Wilmes J, Matthews S, Mellin C, Sweatman H, Nadler L,
677		Brodie J, Thompson C, Hoey J, Bos A, Byrne M, Messmer V, Fortunato S, Chen C,
678		Buck A, Babcock R, Uthicke S. 2017. Thirty years of research on crown-of-thorns
679		starfish (1986–2016): Scientific advances and emerging opportunities. Diversity 9:41.
680	4.	De'ath G, Fabricius KE, Sweatman H, Puotinen M. 2012. The 27-year decline of
681		coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci U S A
682		109:17995-17999.
683	5.	Hall MR, Kocot KM, Baughman KW, Fernandez-Valverde SL, Gauthier MEA,
684		Hatleberg WL, Krishnan A, McDougall C, Motti CA, Shoguchi E, Wang T, Xiang X,
685		Zhao M, Bose U, Shinzato C, Hisata K, Fujie M, Kanda M, Cummins SF, Satoh N,
686		Degnan SM, Degnan BM. 2017. The crown-of-thorns starfish genome as a guide for
687		biocontrol of this coral reef pest. Nature 544:231-234.
688	6.	Westcott DA, Fletcher CS, Babcock R, Plaganyi-Lloyd E. 2016. A strategy to link
689		research and management of crown-of-thorns starfish on the Great Barrier Reef: An
690		integrated pest management approach. Australian Government's National
691		Environmental Science Programme (NESP) Tropical Water Quality (TWQ) Hub,
692		Limited RaRRC, Cairns.

Haszprunar G, Vogler C, Wörheide G. 2017. Persistent gaps of knowledge for naming

and distinguishing multiple species of crown-of-thorns-seastar in the Acanthaster

Applied and Environmental Microbiology

693	7.	Hoey J, Campbell ML, Hewitt CL, Gould B, Bird R. 2016. Acanthaster planci
694		invasions: applying biosecurity practices to manage a native boom and bust coral pest
695		in Australia. Manag Biol Invasion 7:213-220.
696	8.	McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas
697		AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S,
698		Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF,
699		Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ. 2013. Animals
700		in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A
701		110:3229-3236.
702	9.	Clemente S, Lorenzo-Morales J, Mendoza JC, Lopez C, Sangil C, Alves F, Kaufmann
703		M, Hernandez JC. 2014. Sea urchin Diadema africanum mass mortality in the
704		subtropical eastern Atlantic: role of waterborne bacteria in a warming ocean. Mar
705		Ecol Prog Ser 506:1-14.
706	10.	Sweet M, Bulling M, Williamson JE. 2016. New disease outbreak affects two
707		dominant sea urchin species associated with Australian temperate reefs. Mar Ecol
708		Prog Ser 551:171-183.
709	11.	Becker P, Gillan D, Lanterbecq D, Jangoux M, Rasolofonirina R, Rakotovao J,
710		Eeckhaut I. 2004. The skin ulceration disease in cultivated juveniles of Holothuria
711		scabra (Holothuroidea, Echinodermata). Aquaculture 242:13-30.
712	12.	Wang Y, Feng N, Li Q, Ding J, Zhan Y, Chang Y. 2013. Isolation and
713		characterization of bacteria associated with a syndrome disease of sea urchin
714		Strongylocentrotus intermedius in North China. Aquaculture Res 44:691-700.
715	13.	Webster NS, Negri AP, Botté ES, Laffy PW, Flores F, Noonan S, Schmidt C, Uthicke
716		S. 2016. Host-associated coral reef microbes respond to the cumulative pressures of
717		ocean warming and ocean acidification. Sci Rep 6:19324.

AEM

718	14.	Nelson L, Blair B, Murdock C, Meade M, Watts S, Lawrence AL. 2010. Molecular
719		analysis of gut microflora in captive-raised sea urchins (Lytechinus variegatus). J
720		World Aquac Soc 41:807-815.
721	15.	Hakim JA, Koo H, Dennis LN, Kumar R, Ptacek T, Morrow CD, Lefkowitz EJ,
722		Powell ML, Bej AK, Watts SA. 2015. An abundance of Epsilonproteobacteria
723		revealed in the gut microbiome of the laboratory cultured sea urchin, Lytechinus
724		variegatus. Front Microbiol 6:1047.
725	16.	Enomoto M, Nakagawa S, Sawabe T. 2012. Microbial communities associated with
726		holothurians: Presence of unique bacteria in the coelomic fluid. Microbes Environ
727		27:300-305.
728	17.	Nakagawa S, Saito H, Tame A, Hirai M, Yamaguchi H, Sunata T, Aida M, Muto H,
729		Sawayama S, Takaki Y. 2017. Microbiota in the coelomic fluid of two common
730		coastal starfish species and characterization of an abundant Helicobacter-related
731		taxon. Sci Rep 7:8764.
732	18.	Burnett WJ, McKenzie JD. 1997. Subcuticular bacteria from the brittle star Ophiactis
733		balli (Echinodermata: Ophiuroidea) represent a new lineage of extracellular marine
734		symbionts in the alpha subdivision of the class Proteobacteria. Appl Environ
735		Microbiol 63:1721-1724.
736	19.	Kelly MS, Barker MF, McKenzie JD, Powell J. 1995. The incidence and morphology
737		of subcuticular bacteria in the echinoderm fauna of New Zealand. Biol Bull 189:91-
738		105.
739	20.	McKenzie JD, Burnett WJ, Kelly MS. 1998. Systematic distribution of subcuticular
740		bacteria in echinoderms, p 53-59. In Mooi R, Telford M (ed), Echinoderms: San
741		Francisco. A.A.Balkema, Rotterdam, The Netherlands.

AEM

7	42	21.	McKenzie JD, Kelly MS. 1994. Comparative study of sub-cuticular bacteria in
7	43		brittlestars (Echinodermata: Ophiuroidea). Mar Biol 120:65-80.
7	44	22.	Lawrence SA, O'Toole R, Taylor MW, Davy SK. 2010. Subcuticular bacteria
7	45		associated with two common New Zealand echinoderms: Characterization using 16S
7	46		rRNA sequence analysis and fluorescence in situ hybridization. Biol Bull 218:95-104.
7	47	23.	Sutton DC, Trott L. 1987. Bacteria associated with crown-of-thorns starfish (A.
7	48		planci), p 62. In Marsh H, Heron ML (ed), Abstracts Australian Marine Sciences
7	49		Association and Australian Physical Ocenaography Joint Conference. Australian
7	50		Marine Sciences Association, Townsville, Australia.
7	51	24.	Sutton DC, Trott L, Reichelt JL, Lucas JS. 1989. Assessment of bacterial
7	52		pathogenesis in Crown-of-Thorns starfish, Acanthaster planci (L), p 171-176. In
7	53		Choat JH, Barnes D, A. BM, Coll JC, Davies PJ, Flood P, Hatcher BG, Hopley D,
7	54		Hutchings PA, Kinsey D, Orme GR, Pichon M, Sale PF, Sammarco P, Wallace CC,
7	55		Wilkinson C, Wolanski E, Bellwood O (ed), Proceedings Of The Sixth International
7	56		Coral Reef Symposium, 1988. 6th International Coral Reef Symposium Executive
7	57		Committee, Townsville, Australia.
7	58	25.	Reed KC, Crowell MC, Castro MD, Sloan ML. 1999. Skin and soft-tissue infections
7	59		after injury in the ocean: culture methods and antibiotic therapy for marine bacteria.
7	60		Mil Med 164:198.
7	61	26.	Rivera-Posada J, Pratchett M, Cano-Gomez A, Arango-Gomez J, Owens L. 2011.
7	62		Refined identification of Vibrio bacterial flora from Acanthasther planci based on
7	63		biochemical profiling and analysis of housekeeping genes. Dis Aquat Organ 96:113-
7	64		123.

AEM

765	27.	Rivera-Posada J, Pratchett M, Cano-Gómez A, Arango-Gómez J, Owens L. 2011.
766		Injection of Acanthaster planci with thiosulfate-citrate-bile-sucrose agar (TCBS). I.
767		Disease induction. Dis Aquat Organ 97:85-94.
768	28.	Luo P, Wang W, Wang Y, Hu C, He X. 2013. Pseudoalteromonas xishaensis sp. nov.,
769		isolated from Acanthaster planci in the Xisha islands. Antonie Van Leeuwenhoek
770		104:779-785.
771	29.	Egan S, Gardiner M. 2016. Microbial Dysbiosis: Rethinking Disease in Marine
772		Ecosystems. Front Microbiol 7:991.
773	30.	Duperron S, Pottier MA, Leger N, Gaudron SM, Puillandre N, Le Prieur S, Sigwart
774		JD, Ravaux J, Zbinden M. 2013. A tale of two chitons: is habitat specialisation linked
775		to distinct associated bacterial communities? FEMS Microbiol Ecol 83:552-567.
776	31.	Viver T, Orellana LH, Hatt JK, Urdiain M, Díaz S, Richter M, Antón J, Avian M,
777		Amann R, Konstantinidis KT, Rosselló-Móra R. 2017. The low diverse gastric
778		microbiome of the jellyfish Cotylorhiza tuberculata is dominated by four novel taxa.
779		Environ Microbiol 19:3039-3058.
780	32.	Williamson DL, Adams JR, Whitcomb RF, Tully JG, Carle P, Konai M, Bove JM,
781		Henegar RB. 1997. Spiroplasma platyhelix sp. nov., a new mollicute with unusual
782		morphology and genome size from the dragonfly Pachydiplax longipennis. Int J Syst
783		Evol Microbiol 47:763-766.
784	33.	Tully JG, Rose DL, Yunker CE, Carle P, Bové JM, Williamson DL, Whitcomb RF.
785		1995. Spiroplasma ixodetis sp. nov., a new species from Ixodes pacificus ticks
786		collected in Oregon. Int J Syst Evol Microbiol 45:23-28.
787	34.	Lo W-S, Huang Y-Y, Kuo C-H. 2016. Winding paths to simplicity: genome evolution
788		in facultative insect symbionts. FEMS Microbiol Rev 40:855-874.

AEM

789	35.	Phillips RN, Humphery-Smith I. 1995. The histopathology of experimentally induced
790		infections of Spiroplasma taiwanense (class: Mollicutes) in Anopheles stephensi
791		mosquitoes. J Invertebr Pathol 66:185-195.
792	36.	Abraham W-R, Rohde M. 2014. The Family Hyphomonadaceae, p 283-299. In
793		Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (ed), The
794		Prokaryotes: Alphaproteobacteria and Betaproteobacteria doi:10.1007/978-3-642-
795		30197-1_260. Springer Berlin Heidelberg, Berlin, Heidelberg.
796	37.	Boyle PJ, Maki JS, Mitchell R. 1987. Mollicute identified in novel association with
797		aquatic invertebrate. Curr Microbiol 15:85-89.
798	38.	Moss C, Green DH, Perez B, Velasco A, Henriquez R, McKenzie JD. 2003.
799		Intracellular bacteria associated with the ascidian Ecteinascidia turbinata:
800		phylogenetic and in situ hybridisation analysis. Mar Biol 143:99-110.
801	39.	Tait E, Carman M, Sievert SM. 2007. Phylogenetic diversity of bacteria associated
802		with ascidians in Eel Pond (Woods Hole, Massachusetts, USA). J Exp Mar Bio Ecol
803		342:138-146.
804	40.	Zbinden M, Cambon-Bonavita MA. 2003. Occurrence of Deferribacterales and
805		Entomoplasmatales in the deep-sea Alvinocarid shrimp Rimicaris exoculata gut.
806		FEMS Microbiol Ecol 46:23-30.
807	41.	Nunan LM, Pantoja CR, Salazar M, Aranguren F, Lightner DV. 2004.
808		Characterization and molecular methods for detection of a novel spiroplasma
809		pathogenic to Penaeus vannamei. Dis Aquat Organ 62:255-264.
810	42.	Durand L, Zbinden M, Cueff-Gauchard V, Duperron S, Roussel EG, Shillito B,
811		Cambon-Bonavita M-A. 2010. Microbial diversity associated with the hydrothermal
010		

812 shrimp *Rimicaris exoculata* gut and occurrence of a resident microbial community.

813 FEMS Microbiol Ecol 71:291-303.

814 43. Longshaw M, Bateman KS, Stebbing P, Stentiford GD, Hockley FA. 2012. Disease 815 risks associated with the importation and release of non-native crayfish species into 816 mainland Britain. Aquat Biol 16:1-15. 817 44. Cortés-Lara S, Urdiain M, Mora-Ruiz M, Prieto L, Rosselló-Móra R. 2015. 818 Prokaryotic microbiota in the digestive cavity of the jellyfish Cotylorhiza tuberculata. 819 Syst Appl Microbiol 38:494-500. 820 45. Nunan LM, Lightner DV, Oduori MA, Gasparich GE. 2005. Spiroplasma penaei sp. 821 nov., associated with mortalities in Penaeus vannamei, Pacific white shrimp. Int J 822 Syst Evol Microbiol 55:2317-2322. 823 Wang W, Wen B, Gasparich GE, Zhu N, Rong L, Chen J, Xu Z. 2004. A spiroplasma 46. 824 associated with tremor disease in the Chinese mitten crab (Eriocheir sinensis). 825 Microbiology 150:3035-3040. 826 47. Wang W, Gu W, Gasparich GE, Bi K, Ou J, Meng Q, Liang T, Feng Q, Zhang J, 827 Zhang Y. 2011. Spiroplasma eriocheiris sp. nov., associated with mortality in the 828 Chinese mitten crab, Eriocheir sinensis. Int J Syst Evol Microbiol 61:703-708. 829 48. Anbutsu H, Fukatsu T. 2011. Spiroplasma as a model insect endosymbiont. Environ 830 Microbiol Rep 3:144-153. 831 49. Mortzfeld BM, Urbanski S, Reitzel AM, Künzel S, Technau U, Fraune S. 2016. 832 Response of bacterial colonization in Nematostella vectensis to development, 833 environment and biogeography. Environ Microbiol 18:1764-1781. 834 50. Clark TB, Whitcomb RF. 1984. Pathogenicity of mollicutes for insects: Possible use 835 in biological control. Ann Inst Pasteur Microbiol (1985) 135:141-150. 836 51. Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F, Fleury F, Zchori-Fein E. 837 2008. Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in 838 whiteflies. FASEB J 22:2591-2599.

839	52.	van de Water JAJM, Melkonian R, Junca H, Voolstra CR, Reynaud S, Allemand D,
840		Ferrier-Pagès C. 2016. Spirochaetes dominate the microbial community associated
841		with the red coral Corallium rubrum on a broad geographic scale. Sci Rep 6:27277.
842	53.	Wessels W, Sprungala S, Watson S-A, Miller DJ, Bourne DG. 2017. The microbiome
843		of the octocoral Lobophytum pauciflorum: minor differences between sexes and
844		resilience to short-term stress. FEMS Microbiol Ecol 93:fix013-fix013.
845	54.	Neave MJ, Apprill A, Ferrier-Pages C, Voolstra CR. 2016. Diversity and function of
846		prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl Microbiol
847		Biotechnol 100:8315-8324.
848	55.	Neave MJ, Michell CT, Apprill A, Voolstra CR. 2017. Endozoicomonas genomes
849		reveal functional adaptation and plasticity in bacterial strains symbiotically associated
850		with diverse marine hosts. Sci Rep 7.
851	56.	Choi EJ, Kwon HC, Sohn YC, Yang HO. 2010. Kistimonas asteriae gen. nov., sp
852		nov., a gammaproteobacterium isolated from Asterias amurensis. Int J Syst Evol
853		Microbiol 60:938-943.
854	57.	Kiselev KV, Ageenko NV, Kurilenko VV. 2013. Involvement of the cell-specific
855		pigment genes pks and sult in bacterial defense response of sea urchins
856		Strongylocentrotus intermedius. Dis Aquat Organ 103:121-132.
857	58.	Smith LC, Ghosh J, Buckley KM, Clow LA, Dheilly NM, Haug T, Henson JH, Li C,
858		Lun CM, Majeske AJ, Matranga V, Nair SV, Rast JP, Raftos DA, Roth M, Sacchi S,
859		Schrankel CS, Stensvag K. 2010. Echinoderm immunity. Adv Exp Med Biol 708:260-
860		301.
861	59.	Ramírez-Gómez F, García-Arrarás J. 2010. Echinoderm immunity. Invertebrate
862		Surviv J 7.
863	60.	Barnes RD. 1994. Invertebrate Zoology, 6th ed. Brooks/Cole.

864	61.	Rajilic-Stojanovic M, Smidt H, de Vos WM. 2007. Diversity of the human
865		gastrointestinal tract microbiota revisited. Environ Microbiol 9:2125-2136.
866	62.	Ringø E, Strøm E. 1994. Microflora of Arctic charr, Salvelinus alpinus (L.):
867		gastrointestinal microflora of free-living fish and effect of diet and salinity on
868		intestinal microflora. Aquaculture Res 25:623-629.
869	63.	LeaMaster BR, Walsh WA, Brock JA, Fujioka RS. 1997. Cold stress-induced changes
870		in the aerobic heterotrophic gastrointestinal tract bacterial flora of red hybrid tilapia. J
871		Fish Biol 50:770-780.
872	64.	Austin B. 2006. The bacterial microflora of fish, revised. Sci World J 6:931-945.
873	65.	Fan L, Liu M, Simister R, Webster NS, Thomas T. 2013. Marine microbial symbiosis
874		heats up: the phylogenetic and functional response of a sponge holobiont to thermal
875		stress. ISME J 7:991-1002.
876	66.	Senapin S, Dong HT, Meemetta W, Siriphongphaew A, Charoensapsri W,
877		Santimanawong W, Turner WA, Rodkhum C, Withyachumnarnkul B, Vanichviriyakit
878		R. 2016. Hahella chejuensis is the etiological agent of a novel red egg disease in
879		tilapia (Oreochromis spp.) hatcheries in Thailand. Aquaculture 454:1-7.
880	67.	Mendoza M, Guiza L, Martinez X, Caraballo X, Rojas J, Aranguren LF, Salazar M.
881		2013. A novel agent (Endozoicomonas elysicola) responsible for epitheliocystis in
882		cobia Rachycentrum canadum larvae. Dis Aquat Organ 106:31-37.
883	68.	Lee J, Shin N-R, Lee H-W, Roh SW, Kim M-S, Kim Y-O, Bae J-W. 2012.
884		Kistimonas scapharcae sp. nov., isolated from a dead ark clam (Scapharca
885		broughtonii), and emended description of the genus Kistimonas. Int J Syst Evol
886		Microbiol 62:2865-2869.

887	69.	Slaby BM, Hackl T, Horn H, Bayer K, Hentschel U. 2017. Metagenomic binning of a
888		marine sponge microbiome reveals unity in defense but metabolic specialization.
889		ISME J 11:2465-2478.
890	70.	Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL, DeSalvo MK, Voolstra CR, Weil
891		E, Andersen GL, Medina M. 2009. Bacterial diversity and White Plague Disease-
892		associated community changes in the Caribbean coral Montastraea faveolata. ISME J
893		3:512.
894	71.	Frias-Lopez J, Zerkle AL, Bonheyo GT, Fouke BW. 2002. Partitioning of bacterial
895		communities between seawater and healthy, black band diseased, and dead coral
896		surfaces. Appl Environ Microbiol 68:2214-2228.
897	72.	Luter HM, Bannister RJ, Whalan S, Kutti T, Pineda M-C, Webster NS. 2017.
898		Microbiome analysis of a disease affecting the deep-sea sponge Geodia barretti.
899		FEMS Microbiol Ecol 93:fix074-fix074.
900	73.	Collado L, Figueras MJ. 2011. Taxonomy, epidemiology, and clinical relevance of the
901		genus Arcobacter. Clin Microbiol Rev 24:174-192.
902	74.	Ho HTK, Lipman LJA, Gaastra W. 2006. Arcobacter, what is known and unknown
903		about a potential foodborne zoonotic agent! Vet Microbiol 115:1-13.
904	75.	Katharios P, Seth-Smith HMB, Fehr A, Mateos JM, Qi W, Richter D, Nufer L,
905		Ruetten M, Guevara Soto M, Ziegler U, Thomson NR, Schlapbach R, Vaughan L.
906		2015. Environmental marine pathogen isolation using mesocosm culture of
907		sharpsnout seabream: striking genomic and morphological features of novel
908		Endozoicomonas sp. Sci Rep 5:17609.
909	76.	Pratchett M. 1999. An infectious disease in crown-of-thorns starfish on the Great
910		Barrier Reef. Coral Reefs 18:272.

AEM

911	77.	Hall MR, Bose U, Cummins SF, Motti C, Wang T, Zhao M, Roberts R, Smith M,
912		Rotgans BA, Wyeth RC, Hall P-T, The COTS Genome Consortium. 2016. The
913		Crown-of-thorns secretome: Towards a control technology. Department of the
914		Environment AG, Australian Institute of Marine Science, Townsville.
915	78.	Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic
916		datasets. Bioinformatics 27:863-864.
917	79.	Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski
918		RA, Oakley BB, Parks DH, Robinson CJ. 2009. Introducing mothur: open-source,
919		platform-independent, community-supported software for describing and comparing
920		microbial communities. Appl Environ Microbiol 75:7537-7541.
921	80.	Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK,
922		Fierer N, Peña AG, Goodrich JK, Gordon JI. 2010. QIIME allows analysis of high-
923		throughput community sequencing data. Nat Methods 7:335-336.
924	81.	McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen
925		GL, Knight R, Hugenholtz P. 2012. An improved Greengenes taxonomy with explicit
926		ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610-
927		618.
928	82.	Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST.
929		Bioinformatics 26:2460-2461.
930	83.	Clarke KR. 1993. Non-parametric multivariate analyses of changes in community
931		structure. Austr J Ecol 18:117-143.
932	84.	Chen H. 2018. Generate High-Resolution Venn and Euler Plot (Venn Diagram v.
933		1.6.19), https://CRAN.R-project.org/package=VennDiagram.
934	85.	Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software
935		package for education and data analysis. Palaeontol Electronica 4:9 pp.

936	86.	Conover WJ, Iman RL. 1979. On multiple-comparisons procedures, Tech. Rep. LA-
937		7677-MS. Los Alamos Scientific Laboratory, Laboratory LAS, Los Alamos, New
938		Mexico, USA.
939	87.	Hommel G. 1988. A stagewise rejective multiple test procedure based on a modified
940		Bonferroni test. Biometrika 75:383-386.
941	88.	Pohlert T. 2016. The Pairwise Multiple Comparison of Mean Ranks Package
942		(PMCMR version 4.1). https://CRAN.R-project.org/package=PMCMR.
943	89.	De Caceres M, Jansen F. 2009. Relationship Between Species and Groups of Sites
944		(indicspecies version 1.7.5). https://CRAN.R-project.org/package=indicspecies.
945	90.	Berry D, Schwab C, Milinovich G, Reichert J, Ben Mahfoudh K, Decker T, Engel M,
946		Hai B, Hainzl E, Heider S, Kenner L, Müller M, Rauch I, Strobl B, Wagner M,
947		Schleper C, Urich T, Loy A. 2012. Phylotype-level 16S rRNA analysis reveals new
948		bacterial indicators of health state in acute murine colitis. ISME J 6:2091-2106.
949	91.	Lane DJ. 1991. 16S/23S rRNA sequencing, p 115-175. In Stackebrandt E,
950		Goodfellow M (ed), Nucleic Acid Techniques in Bacterial Systematics. John Wiley
951		and Sons, New York.
952	92.	Wu S, Zhu Z, Fu L, Niu B, Li W. 2011. WebMGA: a customizable web server for fast
953		metagenomic sequence analysis. BMC Genomics 12:444.
954	93.	Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood
955		approach. J Mol Evol 17:368-376.
956	94.	Yang Z. 1994. Estimating the pattern of nucleotide substitution. J Mol Evol 39:105-
957		111.
958	95.	Huson DH, Scornavacca C. 2012. Dendroscope 3: an interactive tool for rooted
959		phylogenetic trees and networks. Systematic biology 61:1061-1067.
960		

AEM

Applied and Environmental

Microbiology

----- 0.1

