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Abstract

Ultra-compact pulsar binaries are both ideal sources of gravitational radiation for gravitational wave detectors and
laboratories for fundamental physics. However, the shortest orbital period of all radio pulsar binaries is currently
1.6 hr. The absence of pulsar binaries with a shorter orbital period is most likely due to technique limit. This paper
points out that a tidal effect occurring on pulsar binaries with a short orbital period can perturb the orbital elements
and result in a significant change in orbital modulation, which dramatically reduces the sensitivity of the
acceleration searching that is widely used. Here a new search is proposed. The abnormal timing residual exhibited
in a single pulse observation is simulated by a tidal effect occurring on an ultra-compact binary. The reproduction
of the main features represented by the sharp peaks displayed in the abnormal timing behavior suggests that pulsars
like PSR B0919+06 could be a candidate for an ultra-compact binary of an orbital period of ∼10 minutes and a
companion star of a white dwarf star. The binary nature of such a candidate is further tested by (1) comparing the
predicted long-term binary effect with decades of timing noise observed and (2) observing the optical counterpart
of the expected companion star. Test (1) likely supports our model, while more observations are needed in test (2).
Some interesting ultra-compact binaries could be found in the near future by applying such a new approach to other
binary candidates.

Key words: binaries: general – gravitational waves – pulsars: individual (PSR B0919+06)

1. Introduction

As the orbital period of a pulsar binary reaches ∼10 minutes,
the orbital velocity of the pulsar becomes greater than that of a
normal pulsar binary with an orbital period measured in hours.
To search such ultra-compact binaries, the orbital modulation
has to be examined at a shorter time interval (phase bin) with
signals severely blurred by the orbital motion of the pulsar.

This reduces the signal-to-noise ratio of the pulse profile at
each phase bin of orbit, which results in a drastic reduction in
the sensitivity of pulsar searches. Various so-called acceleration
searches have been developed to mitigate the loss of sensitivity
caused by the orbital motion of the pulsar (Johnston &
Kulkarni 1991; Camilo et al. 2000; Ransom et al. 2003).
However, no pulsar binary with an orbital period of less than
95.3 minutes (Camilo et al. 2000) has ever been observed (to
date, the total number of binary pulsars is 274 according to the
ATNF pulsar catalog.10)

For a binary with an orbital period of 10 minutes and masses
of the pulsar and its companion star of ~ M M1p and

~ M M0.1c , respectively, the semimajor axis is =a
+ ~[ ( ) ]G M M n 10p c

2 1 3 10 cm. And with an orbital inclina-
tion of ~isin 0.1 (refer to Table 1), the projected semimajor
axis x is typically –10 101 2 ms. Such an amplitude of orbital
modulation should have been noticed even in a single pulse
observation. However, no such pulse binary has ever been
found.

Are there any other reasons for the reduction of sensitivity in
the acceleration searching besides the Doppler effect? In fact,
many acceleration searches are based on the assumption that
the orbital modulation of a pulsar binary is periodic and
smooth. If these searches are not periodic and smooth, which
corresponds to the tidal effect we consider in this paper, we
may lose some binary candidates under such search methods.
The Roemer delay, corresponding to a different propagation

time than the observer as the pulsar moves at a different orbit
position, is given by

w wD = - + -[( ) ( ) ] ( )x U e e Ucos sin 1 sin cos , 1R
2 1 2

where U is the eccentric anomaly, ω is the angle of the
periastron, º +( ) ( )x M a i M M csinc c p is the projected semi-
major axis of the pulsar in which a is the semimajor axis of the
orbit, i is the orbital inclination, and c is the speed of light.
In this paper we point out that for an ultra-compact system of

an orbital period of∼10minutes, the separation between the two
bodies, represented by the semimajor axis a, is about five to ten
times the radius of the white dwarf (WD) star companion. In
such a case, the tidal effect analogous to the planet-satellite
system becomes considerable, which results in a perturbation to
the orbital elements, such as i, a, e.... These variabilities in turn
lead to an additional perturbation to the Roemer delay.
Thus the arrival time of a tidal-affected binary can differ

significantly from that of a normal binary pulsar approximated
by two point masses neglecting the tidal effect. In other words,
a normal binary pulsar with a negligible tidal effect has
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constant orbital elements and therefore a periodic and smooth
orbital modulation, but an ultra-compact binary contaminated
by the tidal effect corresponds to perturbed orbital elements and
hence has a quasi-periodic and sharp orbital modulation. Such
ultra-compact pulsar binaries may have been identified as
singular pulsars plus abnormal timing behaviors.

A strange fluctuation of arrival time at an amplitude of
∼10ms with a time interval of ∼10minutes was first found on
the singular pulsar PSR B0919+06 (Rankin et al. 2006). The
pulsation of a pulsar can be displayed as a pulse profile, with a
horizontal axis of rotational phase or longitude (in degrees) and a
vertical axis of flux density. Rankin et al. first noticed a strange
shift in the timing residual: the pulse profile moves leftward for a
few degrees (with the peak at a negative rotational longitude) in
the time interval of several rotational periods of the pulsar. The
pulse profile stays in this temporary position for several tens of
pulses and returns to its normal state of zero rotational longitude
over the span of a few pulses. The next cycle of shifts may
happen in a period of a few minutes to tens of minutes.

This gradual and episodic shift of profile is sometimes
described as a flare state (Perera et al. 2015), which differs from
the mode-change of a pulsar in which the change of the pulse
profile occurs mostly within a single pulse. It also differs from
the drifting of subpulses, in which the peak usually advances in
an orderly manner with longitude and then returns quickly to its
original position. It cannot be caused by a sudden increase of
emission altitude due to the lack of a dramatic change of
position angle in the polarization pattern and/or an abrupt
widening in the total emission cone (Rankin et al. 2006).

If the occasional drift events correspond to the abnormal
orbital modulation of an ultra-compact binary, then a long-term
observation will expect more such drifts. Therefore a
continuous timing observation covering multiple orbital
periods is needed. We thus observed PSR B0919+06 with
the Arecibo telescope on 2014 December 26. The observation
(project code P2931) lasted 114 minutes on the Puppi pulsar
backend in a single-pulse mode with a sampling time of 64 μs.
The pulse shift exhibited in such a single pulse observation can
be transferred to the arrival time as shown in Figure 1(a).
Though similar in individual shift to two other observations,
Rankin et al. (2006) and Perera et al. (2015), this data sets show
clearer and more prominent quasi-periodic features, which
allows us to better investigate the underlying physics.

The observed spikes displayed in Figure 1(a) deviate from
the standard Roemer delay in three aspects. First, the time
interval between the two neighboring peaks (shifts) is not a
constant. Second, the shifts are asymmetric about the vertical
zero as shown in Figure 1(a), which corresponds to an earlier
arrival time relative to that in normal cases. Third, the peak of
each shift is much sharper than that of the normal orbital
modulation. Whether a tidal effect occurring in an ultra-
compact binary can reproduce such an unexpected orbital
modulation is discussed in Section 2. Section 3 tests the
consistency of such an ultra-compact scenario with the long-
term timing noise of this pulsar. X-ray, optical, and radio
counterparts of PSR B0919+06 are also discussed. Finally,
some extended discussion is made in Section 4.

2. The Tidal Effect on an Ultra-compact Binary

In the main-sequence star binary pulsars (with an orbital
period of years), the spin-induced quadrupole momentum of
the companion gives rise to the perturbation of six orbital
elements of the binary system, which resemble sharp spikes at
the periastron (Wex 1998). In substituting those perturbed
orbital elements into the Roemer delay, the resultant timing
residual at the short term also displays sharp peaks at the
periastron (Wex 1998).
The spin-induced quadrupole momentum is treated as stationary

in the calculation of such main-sequence star binary pulsars (Wex
1998). In contrast, for an ultra-compact binary pulsar with an
orbital period of tens minutes and with a companion star of the
WD, the shape of the WD varies under the tidal force exerted by
the pulsar, which cannot be treated as a constant.
By a simple transformation, the perturbation of the six

orbital elements obtained under a constant quadrupole
momentum can be applied to the calculation of the variabilities

Figure 1. The time of arrival corresponds to the 2 hr single pulse observation
of PSR B0919+06. The upper panel is the observed time of arrival and the
middle panel is the arrival time that corresponds to the Roemer delay perturbed
by the tidal effect. The bottom panel shows a typical shift with dotted points
(observed) and a continued curve (simulated), obtained by moving a simulated
peak to a nearby observed one.

Figure 2. The geometry and parameters of the binary system under the tidal
effect. Top left: the pulsar at periastron causes the most significant shape
change in the WD. The orientation of the bulge is defined by the angle, λBG,
which is the misalignment angle between the spin axis of the WD and the line
connecting the top of the bulge and the center of the WD. Top right: the
misalignment angles used in the practical simulation while the orbital path is
set on the x–y plane. Bottom: the geometry in the coordinate frame centered on
and rotating with the WD while the path of the pulsar is in the equatorial plane
of the WD. Notice that point P is the top of the bulge on the surface of the WD.
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of the six orbital elements with a time-varying quadrupole
momentum.

For a binary pulsar system with an orbital period of tens of
minutes and a companion mass of~ M0.1 (see the best-fitting
parameters in Table 1), the separation between the two bodies
is only about five to ten times the radius of the WD companion.
In such a circumstance, the tidal force on the WD is significant
enough to give rise to a tidal bulge on the WD, which can be
described by the parameter 2,

b b= +( ) [ ( )] ( )R R P1 cos , 2c 2 2

where b b= +( ) ( )( )P cos 1 4 3 cos 2 12 is the Legendre poly-
nomial of degree 2, Rc is the WD radius, and β is the misalignment
angle between the axis of symmetry of the bulge and a reference
axis. Apparently, such a bulge varies with orbital phase, which
corresponds to a time-varying quadrupole momentum.

As estimated in Appendix A, the additional potential
corresponds to an additional force on the WD, which
corresponds to the torque Γ. Finally, the torque can change
the shape of the bulge described by Equation (2), which
corresponds to a time-varying quadrupole momentum of the
WD, as discussed in detail in Appendix A.

The numerical result of such a time-varying quadrupole
momentum on the arrival time of an ultra-compact binary can
be obtained by a constant quadrupole momentum (Wex 1998),
which is represented by a constant dimensionless parameter,
Q (say =Q Q1). The parameter Q is defined by the ratio of the
tidal potential and the gravitational potential from the pulsar,
which is read as = »Q V V R aq PSR

3

2
2 2, where R is given by

Equation (2) and VPSR and Vq are given in Appendix A.
Such a Q gives rise to an additional potential of gravity in

the dynamics of the two-body system, which results in the
perturbation of the six orbital elements. And in turn the
variation of these orbital elements causes additional variabil-
ities in the Roemer delay that can appear as sharp peaks at the
periastron (Wex 1998).

In the case of a constant Q, the perturbation of an orbital
element, e.g., semimajor axis are Δa1(t1) and Δa1(t2) at two
neighboring times, t1 and t2, respectively.

In contrast, as Q varies with time, e.g., at times t1 and t2 , the
value of Q is Q1 and Q2, respectively. Then the perturbation of
an orbital element, e.g., the semimajor axis, at time t1 and t2
must be calculated under two different Qs: (1) at time t1 with
Q=Q1, resulting in Δa1(t1), and (2) at time t2 with Q=Q2,

resulting in Δa2(t2).
In other words, at times t1 and t2, a constant Q gives an

element perturbation of Δa1(t1) and Δa1(t2), respectively; in
comparison, a variable Q predicts Δa1(t1) and Δa2(t2). By
substituting these perturbations of the six orbital elements
under a variable Q into the Roemer delay of Equation (1), the
tidal effect–induced timing residual of PSR B0919+06 can be
obtained numerically.

From the point of view of the perturbation theory of the
dynamics of a two-body system, no matter whether the
quadrupole momentum is fixed or time varying, the corresp-
onding additional potential cannot influence the dynamics of
the two-body system of two point masses. This condition is
well satisfied because » » ´ -V V R a 1 10q PSR

3

2 c
2 2 2 by the

parameter as shown in Table 1, which corresponds to a
variation in the Roemer delay of an amplitude of ∼10 ms.
The best numerical fit reproducing the three observational

characters with the smallest deviation is as shown in Figure 1(b),
which corresponds to the fitting parameters of Table 1. The
superposition of such a predicted orbital modulation of a 10 ms
amplitude with dense data points at a 5 ms level originating from
another source of noise explains the observation of Figure 1(a).
The Monte Carlo method is applied in the simulation of the

observed single pulse observation as shown in Figure 1(a).
With the initial values of the binary parameters given by fitting
the long-term timing noise as shown in Table 2, each fitting
parameter is searched in a wide space in order to find the best
combination of parameters so that the differences between the
observed and simulated spikes, both the feature of an individual
spike and the relative positions among them, can be minimized.
Comparing the observations of Figure 1(a) and the best

simulation of Figure 1(b), the features of asymmetry and
sharpness exhibited in the spikes can be well fitted by the tidal
effect. However the quasi-periodicity display in the observation
cannot be well reproduced by the model. In other words, the
positions of the observed and simulated shift peaks have
considerable differences—the average discrepancy between the
observed and the simulated peaks is 100 s (equivalent to 12%
of the orbital period), as shown in Figure 1. In the simulation,
the dominant deviation between the observed and the simulated
data is contributed by the position difference.
In the simulation of Figure 1, the deformation of the WD

(denoted by the quadrupole momentum as shown in
Appendix B) is assumed to be proportional to the external
torque, Q(t)∝Γ(t). In practice, the response of Q(t) to Γ(t) is
more complicated, depending on the internal density distribu-
tion, elasticity, viscosity, tidal heat, etc., which can deviate
from a linear relationship. Further improvement in the fitting
depends on the progress in the field of the internal properties of
the WD, which will be investigated in separate works.
Nevertheless, the main features displayed in the single pulse

observations of PSR B0919+06 are reproduced for the first
time with reasonable consistency. It is interesting that the tidal
effect results in sharp spikes in the timing residual in both a
wide binary with an orbital period of years (Wex 1998) and an
ultra-compact binary of an orbital period of ∼10 minutes. No
wonder it appears so puzzling—it can be attributed to neither
the mode change nor the drifting of the subpulse.
As shown by the red arrows in Figure 1(b), a relatively small

shift in the middle of each period is expected, which

Table 1
Parameters Obtained by Fitting of Single Pulse Observation

Pb (s) e ( )M Mp ( )M Mc wn c ( )R cmc ( )M rad0 l ( )rad2 h ( )rad2 f ( )rad l ( )radBG

855.5 0.152 1.15 0.16 1.37 3.2×109 5.5 2.0 4.54 0.85 1.56

Note.Pb and e denote respectively the orbital period and the eccentricity of the orbit, n/ωc is the ratio of angular speed of the orbit and the white dwarf (WD) star, and
M0 is the initial mean anomaly. The definitions of the angles λ2 and η2 are as shown in Figure 2. f and λBG determine the orientation of the bulge on the WD as shown
in Figure 2.
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corresponds to a variation frequency of 2/Pb. This predicted
tidal shift is analogous to the fortnightly tide in the Earth–
Moon system. The signature of such small shifts between two
main shifts (corresponds to Pb) is noticeable as shown by the
red arrows in Figure 1(a). Further observation is still needed to
confirm such a subtle effect. At any rate, Figure 1(a) provides
the first possible evidence of the existence of such subtle shifts
of this pulsar although major shifts have been observed
extensively (Han et al. 2016; Wahl et al. 2016).

Consequently, with the binary parameters of Table 1 the
orbital modulation with a tidal effect can reproduce asymmetric
and sharp peaks displayed in a single pulse observation. The
quasi-periodicity and the signature of a fortnightly tide still
need further theoretical and observational investigation for
confirmation.

3. Long-term Timing Noise, X-Ray,
and Optical Observations

The scenario of the ultra-compact binary of PSR B0919+06
should have a long-term effect that can be compared with the long-
term timing noise of this pulsar. By the orbital parameters
predicted by Table 1, such a candidate of a pulsar binary with an
orbital period of 14minutes corresponds to a geodetic precession
of periods of years and 10 years for the WD and the pulsar,
respectively. Indeed, the long-term timing noise of a timescale
of 30 years displays a quasi-periodic modulation of a timescale
of 600 days and 10 years, respectively (Shabanova 2010;
Perera et al. 2015).

Such a quasi-periodic feature of timing noise may originate in
the geodetic precession of the pulsar spin axis under the
gravitational field of its companion. The precession is equivalent
to a “spinning up” and “spinning down” of the pulsar spin,
which leads to an additional delay in the arrival of pulses.

Fitting the observed timing noise (Lyne et al. 2010;
Shabanova 2010) by the precession-induced timing delay
(Gong & Li 2013; see also Appendix B for details), we can
obtain the orbital parameters from the Markov Chain Monte
Carlo (MCMC) method with their best-fit values and 1σ
uncertainties listed in Table 2.

From Table 2, the misalignment angle between the spin
axis of the pulsar and the orbital plane is λ1=3.10, which
means the precession cone of the pulsar spin axis has an
opening angle of only 2°.6. Therefore, the precession of the
pulsar spin will cause a very limited change in the spin axis
with respect to the line of sight, so that the pulsar has been
observed for decades.

By the binary parameters of Table 1, the Roche lobe radius
of the WD (Frank et al. 2002) is given as

=
+

= ´
⎛
⎝⎜

⎞
⎠⎟ ( )R a

m

m m
0.462 3.4 10 cm, 3L

c

p c

1 3

9

which is a little larger than the WD radius of Rc≈3.2×109 cm
as shown in Table 1, obtained by the simulation of Figure 1(a).
As analyzed in Section 2, such an Rc given by Table 1 is
calculated by assuming the WD as a sphere plus two bulges
changing linearly with the tidal force. In practice the shape of the
WD may be more complicated and the response of the WD
shape to tidal force is most likely nonlinear.
A WD with a mass of 0.16Me will have a radius of at least

∼1.5×109 cm, depending on the exact composition and
entropy based on the zero-temperature equation (Verbunt &
Rappaport 1998; Marsh & Nelemens 2004), which could be
enlarged further by tidal heating or irradiation. Regardless, the
Rc shown in Table 1 can be treated as a simplification to a more
complicated configuration.
Although on average the radius of the WD is less than its

Roche lobe radius, Rc<RL, according to Equation (3) at the
periastron the Roche lobe radius of the WD can be reduced up
to RL≈2.8×109 cm, which is 10% less than the WD radius.
In the orbital phase neighboring the passage of the periastron,
Rc>RL can be satisfied so that the WD can fill the Roche lobe
and hence mass transfer occurs.
However, such a possibility is restricted by three factors.

First, if the WD expands less rapidly or shrinks faster than its
Roche lobe, then the mass transfer near the periastron will be
limited. As discussed in Section 2, the response of the WD
shape to tidal force is most likely nonlinear, which may prevent
the condition of Rc>RL near the periastron from happening.
Second, the situation when the radius of the secondary

follows the evolution of the secondary Roche lobe radius,
=˙ ˙R R R RL Lc c , has been addressed in the evolution of a

binary pulsar system (Di Salvo et al. 2008). If this is the case
for the change in the WD radius and Roche lobe radius of PSR
B0919+06, then Rc<RL can be satisfied in all orbital phases.
Third, even if a certain mass transfer occurs on the WD, such

matter cannot fall onto the surface of the pulsar due to the
propeller effect as, in the following discussion.
The X-ray luminosity of PSR B0919+06 observed by the

XMM-Newton telescope is only (3–5)×1030ergs−1, as shown
in Appendix C. In comparison, the accreting millisecond pulsar
SAX J1808.4–3658 has an X-ray luminosity as high as
(4.7–6.4)×1035ergs−1 during an outburst (e.g., Hartman et al.
2008), in which accreted matter is thought to be transferred onto
the surface of the pulsar (Di Salvo et al. 2008). The deviation of

Table 2
Parameters Obtained by Fitting the Long-term Timing Noisea

Pb
* (hr) Mc/Mp I (rad) cc η10 (rad) η20 (rad) λ1 (rad) λ2 (rad) f0 (rad)

0.262±0.002a 0.130±0.001 3.110±0.002 -
+0.0047 0.0014

0.0018 −0.46±0.13 -
+2.58 1.09

1.11
-
+3.095 0.007

0.002
-
+0.86 0.33

0.41 −0.009±0.01

Note. Pb
* is defined in Equation (8). I is the misalignment angle between our line of sight and the total angular momentum vector (orbtial angular momentum).

cp=Sp/L and cc=Sc/L are the dimensionless spin angular momentum for the pulsar and the companion. η10, η20, λ1 and λ2 describe the geometric configuration for
two spin vectors. f0 is the initial phase for Θ(t). For details of the model, we refer the readers to Gong & Li (2013). cp is not included in the sampling since our model
is weakly dependent on it (cp0.01).
a The errors are all for a 1σ confidence limit.

4

The Astrophysical Journal, 855:35 (12pp), 2018 March 1 Gong et al.



luminosity between PSR B0919+06 and SAX J1808.4–3658
suggests that the accretion process is likely suppressed in PSR
B0919+06.

For a binary with parameters listed in Table 1 (assuming
a mass–radius index of −1/3), the predicted mass loss
rate from the companion star, driven by the angular momen-
tum loss due to gravitational radiation, could be ´ ~-3 10 8

´ - -
M1 10 yr7 1 depending on whether the mass transfer is

conservative (all mass loss is accreted by the pulsar) or
nonconservative (e.g., almost all mass loss is transferred to the
wind) (Di Salvo et al. 2008).

The corotation radius of PSR B0919+06 is given by

p
= = ´

⎛
⎝⎜

⎞
⎠⎟ ( )r

GM P

4
9 10 cm. 4co

p
2

2

1 3
7

The corresponding accretion rate is ~ ´ - -
Ṁ M6 10 yr14 1,

estimated from = ˙ ( )L GmM r2x co , with » ´ -L 4 10 erg sx
30 1.

This value is significantly lower than the inferred values from the
mass transfer rate driven by the gravitational radiation losses
noted above. This could be due to the suppression of the
accretion process, apart from the mass loss carried away by
the wind.

With a pulsar radius of 10 km and a spindown magnetic field
of a 2.5×1012 G (given by P and Ṗ) strength, the magneto-
sphere radius of the pulsar is given by a balance of an average
magnetic pressure with the ram pressure of a spherical
accretion flow (Lamb & Pethick 1973; Cui 1997):

= ´

´

= ´

-

-



⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

R
L M

M

B R

2.7 10
10 erg s 1.4

10 G 10 cm
cm

3 10 cm. 5

m
8 x

37 1

2 7
p

1 7

12

4 7

6

10 7

10

By the estimations of Equations (5) and (4), the magnetosphere
radius of PSR B0919+06 is much larger than its corotation radius.

The magnetosphere of a pulsar is normally a dipole field
configuration, where the maximum strength is along the magnetic
axis. For PSR B0919+06, as shown above Equation (3), the
misalignment angle between the spin axis of the pulsar and the
orbital plane is only 2°.6. Considering a magnetic inclination angle
of a few degrees, the misalignment angle between the magnetic
axis and the orbital plane is also of a few degrees. In other words,
the magnetic axis of PSR B0919+06 is close to the line of sight
and its orbital plane is nearly face on. Therefore, the strength of the
magnetic field of PSR B0919+06 is strongest near the line of sight
and weakest near the orbital plane. Correspondingly the practical
magnetosphere radius is largest (∼1010 cm) near the line of sight
and shortest (∼109 cm) near the orbital plane, which is still much
larger than the corotation radius.

With such a dipole field configuration, the relationship
among the corotation radius, the magnetosphere radius, and the
light cylinder radius can satisfy rco<Rm′<rL (where
rL=2.1×109 cm is the light cylinder radius).

In this case, the centrifugal force prevents the accreting
material from reaching the magnetic pole and the pulsar is in
the so-called propeller phase, in which material is presumably
ejected away from the pulsar corresponding to a slowing down
of the pulsar spin frequency (Illarionov & Sunyaev 1975).

Observational evidence of the propeller phase has been
found on X-ray pulsars. The total X-ray flux of these pulsars
dropped significantly, which indicated a decrease in the
accretion rate and increase in the magnetosphere radius
(Cui 1997; Zhang 1998).
Interestingly, the spindown luminosity of PSR B0919+06 is

Lrot≈7×1033 erg s−1 , which is three orders of magnitude
higher than its X-ray luminosity. Such a luminosity deviation
may originate in anisotropy of radiation, additional heating,
uncertainty in distance, and instrument limitations (Shibata
et al. 2016).
Apparently the discrepancy between Lrot and Lx can be

explained by the scenario of suppressed accretion as the pulsar
in the propeller phase, which is indicated by the small
corotation radius of Equation (4) compared with the magneto-
sphere radius of Equation (5) (even taking into account the
dipole field configuration).
This scenario of the propeller phase for B0919+06 is

supported by the model for the distribution of free electrons in
the Galaxy, the Magellanic Clouds, and the intergalactic
medium, which can be used to estimate distances for real or
simulated pulsars based on their dispersion measure (Yao
et al. 2017). This model can show a distance of 1.9 kpc from
PSR B0919+06 while parallax measurement by the long
baseline observations shows a distance of between 1.0 and
1.3 kpc.
Taking the 1.2 kpc distance of the long baseline observation

of Chatterjee et al. (2001), the distance discrepancy between
the approach of parallax (Chatterjee et al. 2001) and the
distribution of free electrons (Yao et al. 2017) isΔL=0.7 kpc.
Assuming the scale of plasma distribution of PSR B0919+06 is
ΔL′∼1010 cm, then the plasma density surrounding PSR
B0919+06 can be estimated by d¢ = D ¢ ~n n L L n10e e

9
e,

where ne denotes the average electron density in the direction
of PSR B0919+06. Such a high density of plasma may result
in the propeller effect occurring in PSR B0919+06.
To test the expected WD counterpart of PSR B0919+06, we

observed PSR B0919+06 with the 4.2 m William Hershel
telescope (WHT) in 2016 by the Sloan Digital Sky Survey
(SDSS) ugr band.
Assuming that the cooling time of the WD equals the

characteristic age of PSR B0919+06, 0.5 Myr (Shabanova
et al. 2013), the luminosity of the WD can be derived from the
WD cooling model (Althaus & Benvenuto 1997). Knowing
that the distance of the pulsar is 1.21 kpc (Chatterjee
et al. 2001), the apparent magnitude of the WD is estimated
as ∼25 mag.
A possible optical counterpart (hereafter WHT1) was detected

with magnitudes of u=25.68 (0.30), g=25.25 (0.22), and
r=25.10 (0.13). The dereddened colors (u−g)0 and (g− r)0 of
WHT1 are consistent with hot WDs in the u−g versus g−r
color diagram as shown in Figure 3.
However, the position observation of PSR B0919+06 is

complicated. The position and proper motion of PSR B0919
+06 have been measured by very long baseline array
(Chatterjee et al. 2001) and by very large array (Brisken
et al. 2003). Pulsar timing also gives a position in radio (Hobbs
et al. 2004). The X-ray position was observed by an XMM-
Newton proposal (ID 05029201) in 2007, and the source is
compiled in the XMM-Newton Serendipitous Source Catalog
(Rosen et al. 2016).
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To compare the various positions given by different
observations, we used the proper motion of Chatterjee et al.
(2001) to convert positions at different epochs to the same
epoch when our latest optical observation was carried out.

As shown in Figure 4, the converted positions are presented as
triangles in different colors. The 1σ error eclipses of positions
are plotted in solid line and the 2σ error eclipses are in dashed
line. The error eclipses of the radio positions obtained from three
measurements (Chatterjee et al. 2001; Brisken et al. 2003; Hobbs
et al. 2004) are much smaller than those of the X-ray and optical
counterparts, so they are shown with a zoom-in in the inset. The
error eclipse of the Chatterjee et al. (2001) position is so small
that it cannot be shown even zoomed in.

Apparently, the positions given by long baseline observa-
tion, pulsar timing, X-ray observation, and optical observation
are not consistent with each other, as shown in Figure 4.

The position offsets between different radio observations can
be as large as ∼1″, although they have a very high accuracy.
Considering the large proper motion of the pulsar, a small error
in it can result in deviations between the positions measured at
different epochs after the correction of such a proper motion.
Since the radio observations were performed more than 15
years ago, the radio-optical offset of 2″−3″ cannot rule out that
WHT1 is the optical counterpart of PSR B0919+06. Multi-
wavelength observations of the counterpart of PSR B0919
+06 are expected to confirm the position in the future.

4. Discussion

Consequently, with the binary parameters of Table 1, the
orbital modulation features with the tidal effect are consistent
with asymmetric and sharp peaks displayed in a single
pulse observation. In addition, the long-term timing noise can
be explained by the geodetic precession effect in an ultra-
compact binary system with similar orbital parameters. The
quasi-periodicity, the signature of a fortnightly tide, and
optical, X-ray, and gamma-ray counterparts require future

confirmation. A direct observation of the expected WD
spectrum by large optical telescopes may provide strong
support to the scenario of an ultra-compact binary to PSR
B0919+06.
The long-term timing noise is better fitted than that of the

single pulse observation, because the physics determining the
long-term behavior is relatively simpler than that of the
short-term.
In the simulation of the tidal effect, one can ignore the effect

of general relativity for the following reasons. The short-term
effect of general relativity (at the timescale of an orbital period)
is the Einstein delay (which is of the order of 1/c2) and the
Shapiro delay (which is of the order of 1/c3). By the fitted
orbital parameters of Table 1, the amplitude of the Einstein
delay of the ultra-compact binary is only 37 μs, which is 2–3
orders of magnitude less than that of the 10 ms amplitude of
shift discussed in our paper, so the effect of general relativity in
the short term can be safely disregarded.
As shown in Appendix B, the torque of the pulsar exerted on

the WD companion is G µ µR a R Pc
2 3

c
2

b
2. For the double

pulsar, PSR J0737–3039A/B of a 2.4 hr orbital period and a
pulsar companion with a 15 km radius , the difference between
the torque on PSR B0919+06 and on PSR J0737–3039A/B is
Γ09019/Γ0737≈2×1011. Therefore the tidal effect on an
ultra-compact binary of the WD companion is much stronger
than on a normal pulsar binary, such that the orbital
modulations of the former deviate significantly from those of
the latter.
The formation of such a binary is extremely difficult (or

impossible) through standard channels, so there must be some
alternative methods to form this binary. For example, it could
originate from the merger of double WDs. While a lower-mass
WD is tidally disrupted, part of it merges with a more massive
WD to be a neutron star, and the other part is ejected but still
bound to the newborn neutron star, forming a close binary.

Figure 3. The (u−g)0 vs. (g−r)0 diagram of a sample of SDSS point
sources as well as the colors of WHT1. The dereddened colors are calculated
using extinctions of nearby quasi-stellar objects (QSOs) in the sky. The blue
dots are WDs. The small black dots are nondegenerate stars and QSOs. The
bulk of black dots to the right are nondegenerate stars, and those clustered near
the WDs are QSOs, which can be distinguished from the WDs by radio
observations. The large red cross denotes WHT1 and the errors of its colors.
WHT1 is located directly in the area of the WDs.

Figure 4. Radio, optical and X-ray measurements of the position of PSR
B0919+06. To compare the positions of various observations, the proper
motion of Chatterjee et al. (2001) was utilized to convert positions at different
epochs to the same epoch when the latest optical observation was carried out.
The converted positions are presented as triangles in different colors. The 1σ
error eclipses of positions are plotted in solid line and the 2σ error eclipses are
in dashed line. The error eclipses of the radio positions obtained from these
three measurements are much smaller than those of the X-ray and optical
counterparts, so they are shown with a zoom-in in the inset. The error eclipse of
the Chatterjee et al. (2001) position is so small that it cannot be shown even by
zooming in.
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With the orbital parameters as shown in Table 1, the
coalescing time of the ultra-compact binary can be estimated by

m
= -

˙
( ) ( )P

P

G

c

M

a
f e

96

5
, 6b

b

3

5

2

4

where = + + - -( ) ( )( )f e e e e1 173

24
2 37

96
4 2 7 2 and μ is the

reduced mass. According to Equation (6), the lifetime of the
binary via gravitational radiation is estimated at »˙P Pb b

2.9 million years, which provides a new source of gravitational
waves other than neutron star–neutron star and WD–WD binaries.
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Appendix A
The Precession Velocity of the Binary System

How does the precession of the spin axis result in quasi-
periodic change in the timing noise and pulse profile variability?
In the gravitational two-body system, due to the curvature of
spacetime produced by the companion star, the rotation axis of a
freely falling object suffers a precession with respect to a distant
observer; this effect is known as geodetic precession.

The spin angular momentum vector of one body precesses
around the orbital angular momentum vector with velocity,
given by the two-body equation (Barker & O’Connell 1975):

*
p

W =
+

= ´
+

+

⎛
⎝⎜

⎞
⎠⎟

˙ ( ) ˆ

( )
( )

ˆ ( )

L

L

L m m

r

T
P

M M

M

4 3

2

2 4 3

2 1
, 7

p
c p

3

2 3

b

5 3
r r

r
4 3

where L and L̂ are the magnitude and unit vector of the orbital
angular momentum, mp and mc are the masses of the pulsar and
its companion respectively, and r is the separation between
them. The rest parameters in Equation (7) are defined by

ºM m mr c p, mº = T GM c 4.925490947 s3 , and

* *º -( ) ( ) ( )P P e m1 , 8b b
2

p
3
5

2
5

where * º m m Mp p , Pb and e are the orbital period and
eccentricity, respectively. Notice that the precession velocity of
the WD, Ẇc, can be obtained by replacing Mr of Equation (7)
with 1/Mr.

The geodetic precession can change the orientation of the
spin axis and thus affects the azimuth and the latitude at which
the observer’s line of sight crosses the beam. This in turn leads
to an additional time delay of the arrival of the pulsar and the
pulse profile, respectively. This model explains not only
the quasi-periodic feature as shown Figure 1, but also the
correlation between the timing behavior and the variation of the
averaged pulse shape (Lyne et al. 2010; Gong & Li 2013).

The oscillation timescale of 600 days and 10 years
corresponds to the precession period of the WD and the
pulsar, respectively. The precession of these two stars
determines the sum of the spin angular momenta of the binary,

which couples with the orbital angular momentum by the
conservation of the total angular momentum (sum of spin and
orbit). Therefore, the precession of the two stars of the binary
system affects the precession of the orbital angular momentum,
which in turn affects the arrival time of the pulsar in orbital
motion via the change in the orbital inclination angle. A
detailed formula of such a precession-induced time delay can
be found in Gong & Li (2013).
An MCMC method is adopted to fit the long-term

timing residual data collected from Lyne et al. (2010) and
Shabanova (2010) based on the precession model (Gong &
Li 2013). We assume a uniform prior for all model parameters
and conduct sampling with a classical Metropolis–Hastings
algorithm based on the posterior probability distributions
calculated by Bayesian inference. The one- and two-dimen-
sional (1D and 2D) probability distributions of the parameters
are shown in Figure 5. The mean values, indicated as the blue
lines in Figure 5, and the 1σ uncertainties of the parameters, are
listed in Table 2. Note that the parameter cp is removed because
of its rather weak model dependence.
We quantify the goodness of fit from χ2

ν=χ
2/

(N−m)=1.3 with N=221 and m=9 being the data point and
number of model parameters and assuming that the error bar for all
data points is σi=10ms.

11 This large χ2
ν is mainly contributed by

the discrepancy in the left sharp decline of several data points. It is
shown that most parameters can be converged reliably and be
constrained very well, except for λ2, which displays an extended
tail in the 1D probability distribution in Figure 5. More important,
the main orbital parameters (e.g., P*b, Mr) obtained here are
roughly consistent with those constrained from the tidal effect as
shown in Table 1.
Based on the parameters in Table 1, the long-term timing

noise can be modeled as shown in Figure 6. We can see that
there is still a discrepancy between the observed and the
calculated timing residual (see the lower panel of Figure 6); this
most likely originates in the negligence of the quadrupole
moment–induced precession of the WD. How to consider the
long-term effect of a variable quadrupole moment needs further
investigation.

Appendix B
The Tide Potential, Torque, and Evolution Scenario

The tide potential, force, and torque can be calculated in the
coordinate system analogous to the tidal force in the planet-
satellite system (Murray & Dermott 1999).
The gravitational potential exerted on the WD (with bulge)

by the pulsar is given by

= -
D

( )V G
M

, 9PSR
p

where Δ is the distance from an arbitrary point on the surface
of the WD with a position vector, P, to the pulsar center as
shown in the bottom of Figure 2.
As also shown in the bottom of Figure 2, the coordinate

frame is centered on and rotating with the WD (the pulsar
moves in the equatorial plane of the WD), in which the
trajectory of the pulsar is an ellipse about its guiding center.

11 The adoption of the error bar, although relatively large compared to the
timing analysis, is to mimic the model uncertainty arising from the tidal effect,
which is not considered in our long-term timing noise modeling. This
assumption could influence the error estimation of model parameters but should
not significantly influence their best-fit values.
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Also shown in the bottom of Figure 2, ψ is the misalignment
angle between the projection of the position vector P onto the
X–Y plane and the WD–neutron star line, which is given by
ψ=f−j=f−2e sin nt, with f denoting the longitude of
P. As shown in the bottom of Figure 2, the angles α, θ, and ψ

are related by (Murray & Dermott 1999)

a q y q f= » -( ) ( )e ntcos sin cos sin cos 2 sin . 10

Rewriting the Δ of Equation (9) of the main text by the
angles as shown by the geometry of Figure 2, the tidal potential

of the WD becomes (Murray & Dermott 1999)

b b= - + +[ ( ) ( )V G
M

a

R

a
P eP ntcos 3 cos cosq

p c
2

2 2 2

q f ] ( )e nt3 sin cos 2 sin , 112

where β is the misalignment angle between the position vector
P and the line joining the center of the WD and the guiding
center of the pulsar’s orbit, which is related with the other two
angles by cosβ=cosθ cosf, where θ and f are defined in
Figure 2.

Figure 5. 1D and 2D probability distributions of the fitting parameters from our precession model. The contours in the 2D plots are for confidence levelsof 68%, 95%,
and 99.7% from inside to outside, respectively. The blue lines represent the adopted best-fit values for each parameters.
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When the spin velocity of the WD, ωc, differs from the
angular velocity of the orbit n, the angle f of Equations (10)
and (11) is given by f=(ωc−n)t instead of a constant angle.
Notice that f=(ωc−n)t is satisfied only in the case that the
equatorial plane of the WD and the pulsar orbit are coplanar.
However, in general the misalignment between these two
planes (the equatorial plane of the WD and the orbital plane of
the pulsar) needs to be considered, as shown in the top right of
Figure 2. This will only complicate the expression of f by
projecting ωc t onto the orbital plane, which is done in a
practical simulation.

The first term in Equation (11) is equivalent to the tidal
potential in the circular orbit case. This term gives rise to a tidal
bulge with its axis of symmetry pointing toward the guiding
center of the pulsar’s orbit. The rest terms of Equation (11) are
results of the orbital eccentricity. The second term is the so-
called radial tide and the third is the librational tide, in which
the former varies with cos nt and the latter with sin nt,
respectively. These three different terms exert tidal force on the
WD, which alters its shape and produces perturbations to the
orbital motion of the pulsar.

The potential Vq of Equation (11) is actually the tidal
potential on the surface of the WD exerted by the pulsar. The
WD itself also has potential on the point P, which is denoted by
VWD. It contains two parts: one part is due to the spherical
body, and the other noncentral part stems from the matter
distribution between the surface of the deformed body and the
mean sphere. Apparently the former is independent of the angle
β of Equation (2) in the main text. In contrast, the latter,
denoted by Vnc, depends on the angle β. The gradient on the
former and latter potentials produces zero and nonzero forces,
respectively. The latter corresponds to the noncentral part of the
external potential of the deformed WD at the same point P on
the surface of the WD. It can be obtained by the same

technique of a planet-satellite system (Murray & Dermott
1999):

b= -
⎛
⎝⎜

⎞
⎠⎟ ( ) ( )V k GM

R

a

R

a
P cos , 12nc 2 p

c
2

3
c
3

3 2

where k2 is the so-called Love number, given by k2=
(Rcò2/ξ)−1 (with x = m

m

R

a
p

c

c
4

3 ). Substituting such a k2 into

Equation (12) and comparing with,V′
c, the first term on the

right-hand side of Equation (11), we have


¢
= ( )V

V

M

M
. 13nc

c
2

c

p

With ò2∼10−1, and by the mass ratio of Mc/Mp≈10−1 as
shown in Tables 1 and 2, the contribution of the Vnc of
Equation (12) to the potential at point P is much less than that
of the Vq of Equation (11), and is thus ignored.
Now we discuss the amplitude of peaks as shown in Figure 1

(a). The potential of Equation (11) corresponds to a force,
determined by the gradient of the pulsar’s external potential on
the WD. And such a force in turn corresponds to a torque Γ
on the WD, Γ= r× F. Hence, the magnitude of the torque
on the WD due to, e.g., the radial tide, as shown in the second
term on the right-hand side of Equation (11), is given by
G = -

b
¶
¶

m V
c

r , where

b b
b

¶
¶

= -
¶
¶

=

( )

V
eG nt

M

a

R

a

P
eG

M

a

R

a
nt3 cos

9

2
cos sin 2 .

14

r p c
2

2
2 p c

2

2

By using Equation (14), the torque on WD can be obtained:

bG = ( )eG
M M

a

R

a
nt

9

2
cos sin 2 . 15

p c c
2

2

We have Γ≈1×1046 g cm2 s−2 with the parameters found in
Equation (1) in the main text.
Thus, in the study of short-term effects, the torque originated

in the radial tide of Equation (14) varies with ∝cos nt sin 2β.
Comparatively, the torque induced by the librational tide varies
with a different function of time, which can be given by the
third term on the righthand side of Equation (11). They both
contribute to the modulation at the timescale of the orbital
period.
In the study of the secular effects induced by tide, the angle

β in Equation (16) is replaced by the angle of the phase shift in
the long term. This angle determines whether the tide bulge is
carried ahead of (or lags behind) the tide-raising pulsar, which
is related with the energy dissipation over one orbit.
The torque Γ given by Equation (15) can vary the spin

angular momentum of the WD by

w wG = = »˙ ( ) ˙ ( )S d I dt I , 16c c c c c

where the spin of the WD is assumed to be unchanged. In other
words, the torque-induced change of the angular momentum of
the WD can be attributed to the change of the moment of WD
inertia alone, because the shape change from one state to
another at two different times is equivalent to either a change of
the moment of inertia with a constant spin velocity or a change
of spin velocity with a constant moment of inertia.

Figure 6. The timing residual for PSR B0919+06. Upper panel: the dotted
curve and solid curve correspond to the observed and fitted timing residual of
PSR B0919+06, respectively. Lower panel: the time residual after the
subtraction of our fitted time noise (red curve in the upper panel) in units of
σi=10 ms.
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As we study the behavior of the pulsar-WD binary at a
timescale of hours, which is a few or tens of its orbital period,
the damping of the oscillation amplitude of the hydrostatic
equilibrium and the phase lag between the oscillation of the
WD and external force are negligible. In such a case, it is a
good approximation to treat the change of the moment of
inertia as being proportional to the external torque, which is
analogous to that of the forced oscillation of a spring system
at a timescale that is much shorter than the lifetime of its
oscillation.

Hence, at a short timescale, e.g., δ t=Pb/4, the change of
the moment of inertia of the WD in one orbit can be estimated
via Equation (16):

d d w» G ( )I t . 17c c

Such a tide-induced variation of δIc reflects a shape change
of the WD, which can be compared with the moment of inertia
of the WD (with a spin velocity given by Table 1):

d
= ~ - ( )q

I

M R
10 . 18c

c c
2

1

With different timescales in Equation (17), e.g., δ t=Pb/4
or δ t=Pb, the value of q in Equation (18) can be 0.12 and
0.48, respectively, which corresponds to an amplitude of a tidal
bulge of ò2≈(30%−70%)Rc.

The perturbing corresponding to the potential of Equation (3)
modifies the orbit in a way that is described by the classical
celestial dynamics. Consequently, the short-term time delay is
affected. The dominant time delay of a pulsar in orbit motion is
the Roemer delay, corresponding to a different propagation
time to observers as the pulsar moves at different positions of
the orbit.

Apparently, if the tidal effect can create additional variability
in the orbital elements such as a, i, U, and e, the Roemer delay
of Equation (1) in the main text will vary accordingly.

The effect of the spin-induced quadrupole momentum of the
companion star (a main-sequence star) on pulsar timing has
been calculated by standard celestial dynamics (Wex 1998), in
which the orbital inclination, θ, was defined with respect to the
equatorial plane of the companion star. In fact, θ can be
transferred to the usual orbital inclination angle, i, defined with
respect to the line of sight by

 l q f l q= + ( )icos sin sin cos cos cos , 19

where λå is the angle between the line of sight and the spin of
the companion, and f is the longitude of the orbital plane in the
equatorial coordinate system (Wex 1998). By putting the tide-
induced Q into the six orbital elements, the Roemer delay
coupling with the tidal effect can be obtained.

More concretely, substituting the potential of the radial tide
in Equation (14) and the other two potentials in Equation (11)
into G = -

b
¶
¶

m V
c

r , we actually have a time-varying torque.
Furthermore, substituting such a time-varying Γ into
Equation (16)−Equation (18), and using Equation (2) in the
main text, the time-dependent Q(t) can be obtained.

Then by inputting such a varying Q into the perturbation of
Equations (47)–(52) of Wex (1998), the perturbation of the six
orbital elements can be obtained.

Finally, by substituting the six orbital elements into the
Roemer delay of Equation (1) in the main text, ΔR, the time
residual originating in an ultra-compact binary with strong tidal
effect is obtained. When searching the parameter space of such
a theoretical residual by the Monte Carlo method, the best
parameter combination is obtained as shown in Table 1. The
corresponding timing residual is compared with the observa-
tional residual as shown in Figures 1(a) and (b) of the main
text. Although the fitting is far from perfect, the main features
displayed in the observed time residual are well reproduced in
the simulated one.
As shown Figures 1(a) and (b), the horizontal axis

corresponds to eight orbital periods (868 s each). The period
is a little larger than the fitted orbital period of 855.5 s as shown
in Table 1. This is because the tidal effect is determined by the
difference between the orbital frequency and the spin frequency
of the WD. As a result, the apparent orbital frequency is lower
than that of the true one.

Appendix C
X-Ray Observation and Modeling

On the X-ray band, the area of PSRB0919+06 was
observed by XMM-Newton and ROSAT. However, the ROSAT
data, with no counts at the position of the pulsar, are not helpful
because of the shallow exposures.
XMM Newton observation of PSRB0919+06 was per-

formed on 2007 November 09 (obsID: 0502920101, PI:
V. Zavlin) with the European Photon Imaging Camera (EPIC)
in imaging mode. We reprocessed the data using Science
Analysis Software (SAS) version 14.0.0 and the calibration
files updated in 2015 May, following standard steps in the
thread page.12 More than half of the exposure was strongly
contaminated by the high background fluctuation. After
screening using the espfilt tool, the resulting effective exposure
times were 16.3 ks, 19.1 ks, and 10.4 ks, respectively, for
MOS1, MOS2, and PN.
We found an X-ray counterpart at the position of PSR B0919

+06, which is clearly seen in the count images on PN, blurry
on MOS2, and barely seen on MOS1 (Figure 7). The standard
source detection algorithm emldetect has been applied to the
data in the energy range of 0.2–12 keV and as a cross-check in
the restricted energy bands 0.2–0.5 keV, 0.5–1 keV, 1–2 keV,
2–4.5 keV, and 4.5–12 keV. emldetect detected the X-ray
counterpart as a point source on the PN and MOS2 detectors
with no detection on MOS1. The best-fit position with a
maximum likelihood method was determined at
R.A.=9h22s14 12, decl.=6°38′24 7, with an error of 1 0
on PN and at R.A.=9h22s 14 11 , decl.=6°38′24 5, with an
error of 1 3 on MOS2, which is compatible with the radio
coordinates of PSR B0919+06 (at R.A.=09h22m14 01,
decl.=+06°38′22 84, J2000, with the position accuracy of
<1″ (White et al. 1997) and a distance of 2″ between the radio
pulsar in the Faint Images of the Radio Sky at Twenty survey
and the XMM-Newton best-fit position). Therefore, we consider
this X-ray point source to be the counterpart of the PSR B0919
+06 system. Given the low number of counts, a detailed phase
study was not allowed. A deeper observation is needed to
constrain the emission mechanism.
In the spectral analysis, we extracted from all three detectors

the source spectra from a circular region of radius 20″ centered

12 http://xmm.esac.esa.int/sas/current/documentation/threads/
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on the position of the pulsar and the background counts from
nearby source-free regions. The background-subtracted spectra
were then grouped with at least nine counts per bin and
a maximum oversampling of the spectral energy resolution of a
factor of 3 (Figure 8). Using the C-statistic in the XSpec
analysis package (v12.8.2), an absorbed13 power-law model
gave a reasonable fit with a C-statistic of 16.01 over 15 degrees
of freedom, the best-fit absorptionof NH < 7.6×1020 cm−2,
and the power-law index of Γ=1.73 (1.47–2.20), while
a purely blackbody model cannot provide an acceptable fit. All
errors are reported at the 90% confidence level. The unabsorbed
luminosity in 0.3–10 keV was estimated as 2.58×1030 erg s−1,
4.1×1030 erg s−1, and 4.8×1030 erg s−1, respectively, for
MOS1, MOS2, and PN, assuming a distance of 1.2 kpc.

The light-curve of 0.2–10 keV was extracted from the same
regions in the spectra analysis, using standard SAS tools.
Photon arrival times were corrected to the solar system
barycenter. Since the signals were too weak for MOS1 and

MOS2, we only show the light curves of EPIC-PN with time
bins of 1 minute in the right-hand side of Figure 9 highlighting
data points with signal-to-noise ratios larger than 1σ.
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