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Abstract: The objective of this study was to investigate the effect of hydrofluoric acid etching
treatment on the surface characteristics of zirconia and Streptococcus sanguinis (S. sanguinis) and
Porphyromonas gingivalis (P. gingivalis) biofilm formation on zirconia. Zirconia specimens were
prepared with different treatments, including being polished with 1000-grit SiC abrasive paper as
the control group (Group C), grit-blasted with 110 µm silica-coated alumina particles (Group GB),
etched with 40% hydrofluoric acid for 25 min at 100 ◦C (Group HF), and grit-blasted with 110 µm
silica-coated alumina particles and then etched with 40% hydrofluoric acid for 25 min at 100 ◦C
(Group GBHF). The highest surface roughness values and hydrophilicity were shown in Group
HF and Group GBHF. Scanning electron microscopy (SEM) showed that hydrofluoric acid can
create a crater-like appearance on the zirconia surface. An energy-dispersive X-ray (EDX) analysis
demonstrated similar element concentration (wt %) in Group C, Group HF, and Group GBHF, but not
for Group GB with higher concentrations of Al and Si element. Colony forming unit (CFU) counts
showed that a similar amount of S. sanguinis biofilm and significantly lower P. gingivalis biofilm were
formed on zirconia surfaces in Group HF and Group GBHF compared to that in Group C after three
days of bacteria culture (p < 0.05). These results indicate that hydrofluoric acid etching on zirconia
may not increase S. sanguinis and P. gingivalis mature biofilm formation on zirconia.

Keywords: zirconia; hydrofluoric acid; surface topography; biofilm

1. Introduction

Dental implants and abutments are usually made of titanium due to its biocompatibility and
mechanical properties. However, esthetic demand is more critical, especially in the anterior regions
of the mouth. As a way to achieve optimal esthetics, zirconia (ZrO2) ceramic restorations [1],
abutments [2], and implants [3] have been attractive in dentistry due to their high biocompatibility,
esthetic properties of white color, and outstanding mechanical properties [4].

Various works have been conducted on the development of zirconia surface characteristics to
improve its properties [5]. Surface characteristics can influence bond strength of resin cements [6–12]
and glazing ceramic [13] to zirconia prosthetics, osteointegration ability [14], bacteria [15,16], and
candida [17] adhesion to zirconia abutment and implant surface. Although zirconia ceramic has an
acid-resistant polycrystalline structure, it has been found that zirconia can be etched by hydrofluoric
acid, such that the micro-morphological surface could be created by varying the concentration and
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etching time of hydrofluoric acid [11,18]. On the other hand, temperature also plays an important role in
molecular motion and affects the chemical kinetics. Hot etchant is a promising approach for increasing
the surface roughness of zirconia [19,20]. Liu et al. previously demonstrated using a 48% hydrofluoric
acid solution at 100 ◦C for 25 min could create excellent three-dimensional networks at a nanometric
scale that can increase resin to zirconia bond strength without phase transformation [11]. Therefore, it
appears that the method of etching ZrO2 in hot hydrofluoric acid is deemed to be promising.

Dental plaque induces an inflammatory reaction, with possible progressive bone loss around
implants. It is associated with periodontal disease and peri-implant disease [21,22]. Early colonization
of bacteria is the initial step in the formation of biofilm, leading to the pathological process of
infection [11]. Plaque accumulation depends on the properties of the implant abutment and screw
surface [23]. The type of material and surface characteristics can help increase or reduce the bacterial
attachment and biofilm formation [16,24]. Thus, materials used to manufacture implant abutments,
e.g., zirconia and titanium, should inhibit bacteria colonization on their surface [25]. Although there
was investigation shown promising results that the surface topographies of zirconia ceramic treated
by hydrofluoric acid can improve resin bonding strength to zirconia ceramics [20] and promoting
osseointegration [26], the response of biofilm formation on hydrofluoric acid-etched zirconia surfaces
has not been investigated.

We want to investigate whether hydrofluoric acid-etched zirconia surface have a biological
effect on zirconia surfaces, which may accelerate or inhibit biofilm formation on those surfaces.
We should consider these effects before the application of hydrofluoric acid etching on zirconia
surfaces. The objective of this study was to observe the effect of hydrofluoric acid etching treatment on
zirconia surface topography and to detect the bacteria adhesion and biofilm formation on the zirconia
surface after hydrofluoric acid etching treatment.

2. Materials and Methods

2.1. Sample Preparation

Commercially-available cylindrical zirconia blocks (Cercon base, Degu-Dent GmbH, Hanau,
Germany) were used in this study. The zirconia blocks were cut into quarter circle specimens (12.5 mm
in radius and 1 mm in thickness) using a high-speed precision saw (IsoMet™ 5000, BUEHLER,
Lake Bluff, IL, USA) with a diamond blade under running water. After being polished with 1000-grit
SiC abrasive paper, the samples were then finally sintered according to the manufacturer’s instruction.
All the fully-sintered zirconia samples were ultrasonically cleansed in 70% ethanol solution for 15 min,
rinsed with de-ionized water, and air dried. They were randomly divided into four groups and treated
with one of the following surface modification protocols:

(a) Group C (control group): No further modification treatment;
(b) Group GB: The zirconia samples were grit-blasting with 110 µm silica-coated alumina particles

(Rocatecs, 3M ESPE, Seefeld, Germany) at a constant pressure of 3.0 bar for 15 s;
(c) Group HF: The zirconia samples were then treated with 40% hydrofluoric acid (FARCO, Hong Kong,

China) for 25 min at 100 ◦C, and then rinsed with deionized water for 60 s and air dried; and
(d) Group GBHF: Zirconia surface were treated with grit-blasting with 110 µm silica-coated alumina

particles (Rocatecs) at a constant pressure of 3.0 bar for 15 s, then treated with 40% hydrofluoric
acid for 25 min at 100 ◦C, and rinsed with deionized water for 60 s and air dried.

2.2. Surface Roughness

Surface roughness (Ra) values of zirconia samples in each group were measured with a
profilometer (Surtronic 3+, Taylor-Hobson, Leicester, UK). Ra value was chosen as the test parameter.
The profilometer was set to measure at every 0.8 mm cut-off value. Three zirconia samples were tested
for each group. Each zirconia sample was tested three times at different area of the sample and the
average value of each group was calculated.
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2.3. Contact Angle

The contact angle values of the zirconia samples were assessed. The sessile drop method
(DSA100Drop Shape Analyzer, KRÜSS, Germany) was used to determine the contact angle. Ultrapure
type 1 water was used as probe-liquids. The distance between the tip of the burette and the zirconia
surface was kept constant at 10 mm. Photographs were taken after droplets impacted on the zirconia
surface and would be in the most stable and measurable state [27]. The volume of each water drop
was 1 µL. All specimens were read under normal laboratory atmospheric environment. Then, for each
specimen, the contact angles were measured and calculated from three drops of the liquid droplets.

2.4. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDX)

A scanning electron microscope (SU1510, HITACHI, Tokyo, Japan) was applied to observe
the surface morphology of zirconia surfaces in different groups. The samples were gold sputtered.
Five images were taken at random locations for each sample at the magnifications of 1000× and 2000×.
Energy dispersive X-ray spectroscopy (EDX) (IXRF 550i Systems, Austin, TX, USA) was used to analyze
the elemental composition of zirconia surfaces with an operational voltage of 15 kV. Each specimen
was measured at three different places.

2.5. Bacterial Strains and Biofilm Formation

The bacteria strains used in this study were S. sanguinis ATCC10566 and P. gingivalis ATCC33277.
All biofilms were grown in 24-well microtitre plates (Corning, NY, USA) containing a zirconia sample
in each well. The zirconia samples were placed at the bottom of the well with the tested surfaces
upwards to allow biofilm grown on. The growth medium was dispensed as 1 mL per well in the
24-well microtitre plates.

To grow S. sanguinis biofilm, a final growth medium with 107 bacteria/ml in BHI was adjusted.
The growth medium was refreshed every 24 h for S. sanguinis. To grow P. gingivalis biofilm,
108 bacteria/mL in P. gingivalis broth (composed of 30 g Trypticase Soy Broth (TSB), 5 g yeast extract,
1 L distilled water, and 10 mL hemin/vitamin K stock solution) was adjusted. The biofilms were
grown under anaerobic condition (85% N2, 10% H2, 5% CO2) at 37 ◦C. The S. sanguinis and P. gingivalis
biofilms formation was evaluated after 1 day and 3 days incubation.

2.6. Quantification of Biofilm Formation

Biofilm collection was conducted at time points of day 1 and day 3, the zirconia discs with
biofilms were rinsed once in phosphate-buffered saline solution (PBS, composed of 8.0 g NaCl, 0.2 g
KCl, 1.0 g Na2HPO4, and 0.2 g KH2PO4 per litre, adjusted to pH 7.4) and transferred into a sterilized
tube containing 1 mL of growing broth. The biofilms were removed from the discs and dispersed
by vortexing for 30 s. Serially-diluted samples were plated on blood agar plates. The plates were
incubated anaerobically at 37 ◦C for two days for S. sanguinis and seven days for P. gingivalis. Then the
colonies of bacteria were counted. Total numbers of bacteria were determined by serial dilutions on
blood agar plates. The plates were incubated at 37 ◦C for two days for S. sanguinis and seven days
for P. gingivalis. The number of colony forming units (CFU) at each dilution rate was counted after
incubation and the average CFU/mL was determined. The total numbers of bacteria were calculated
based on dilution.

2.7. Statistical Analysis

Data were analyzed with the Statistical Package for Social Science (SPSS®, Version 23, IBM,
Armonk, NY, USA). The CFU counts were log-transformed before the statistical tests. The data after
log transformation was verified to be a normal distribution. One-way analysis of variance (ANOVA)
using Tukey’s post hoc test was applied to compare between different groups at the significance of 0.05.
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3. Results

3.1. Surface Roughness

The Ra values obtained within each group are shown in Table 1. Twenty specimens were
used for surface roughness test (five for each group). The lowest mean surface roughness value
(Ra = 0.17 ± 0.03 µm) was found in the control group and it was significantly lower than all of the
other three groups. The surface roughness value of group GB (Ra = 0.56 ± 0.05 µm) was at the medium
level in all of the four groups and it was significantly higher than the control group. Group HF
(Ra = 1.47 ± 0.04 µm) and Group GBHF (Ra = 1.49 ± 0.05 µm) exhibited statistically higher values of
surface roughness than the other two group (p < 0.05) but there was no significant difference between
these two groups (p > 0.05).

3.2. Contact Angle

The changes in contact angles of water on zirconia surfaces in different groups after different
treatments are shown in Table 1. Twenty specimens were used for contact angle testing (five for each
group). The contact angle of zirconia surfaces in Group HF and Group GBHF decreased after treatment
(p < 0.05), while increasing slightly in Group GB, but the difference was not significant (p > 0.05).

Table 1. Surface roughness (Ra) (n = 20) and water contact angle (θ) (n = 20) of different groups
(mean ± standard deviation).

Group Surface Treatment Surface Roughness (µm) Water Contact Angle (θ)

Group C Control 0.17 ± 0.03 a 100.24 ± 2.49 d

Group GB Grit-blasting 0.56 ± 0.05 b 109.87 ± 8.22 d

Group HF Etching with hydrofluoric acid 1.47 ± 0.04 c 79.13 ± 5.20 e

Group GBHF Grit-blasting and then etching
with hydrofluoric acid 1.48 ± 0.05 c 81.35 ± 1.15 e

Note: Different superscripts a, b, c, d, e, denote significant differences between groups (α = 0.05).

3.3. Scanning Electron Microscopy (SEM)

SEM images (Figure 1) showed the morphological appearance of zirconia surfaces after different
treatments from each group. In Group C, the zirconia surface appeared to be smooth and flat with
some small pits and shallow grooves produced by the polishing procedure. In Group GB, the method
generated some small flaws and granules on the surface. The treatment of hydrofluoric acid etching in
Group HF tended to produce porous structures and made the zirconia surface form with many craters
with various dimensions. The treatment of grit-blasting first and then etching with hydrofluoric acid
in Group GBHF made the zirconia surface appearance similar with that in the Group HF. The close-up
images for Group HF and Group GBHF are shown in Figure 2, showing that there were some sharp
spiky edges created by the hydrofluoric acid etching.
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3.4. Energy-Dispersive X-ray Spectroscopy (EDX)

Table 2 shows the EDX analysis of the zirconia surfaces after different surface treatments. The EDX
showed high concentration (wt %) of Zr and O in all the four groups. High concentration (wt %) of Al
and Si are also obviously shown in Group GB. There was no peak for the fluorine in all the spectra
of zirconia samples, which clearly indicated the absence of fluorine in all the groups, particularly
Group HF and Group GBHF. It was demonstrated in the elemental concentration analysis that the
concentration (wt %) of element composition seemed to be similar in Group C, Group HF, and Group
GBHF. However, there was an increase in the concentration (wt %) of Al (3.768%), Si (4.674%), and O
(16.363%) in Group GB.
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Table 2. Elemental composition of zirconia surfaces after different surface treatments by EDX.

Element Conc (wt %) Group C Group GB Group HF Group GBHF

O 10.606 16.363 10.098 10.675
Al 1.591 3.768 1.603 1.605
Si 0.199 4.674 0.057 0.236
Y 8.686 6.014 8.955 8.297
Zr 78.918 69.182 79.287 79.189

Total 100.000 100.000 100.000 100.000

3.5. Biofilm Formation

The CFU method was used to calculate the number of bacterial cells adhered to the zirconia
surfaces after incubation. Figure 3 shows the log transformed CFU counts of S. sanguinis and P. gingivalis
biofilms between different groups of zirconia surfaces on day 1 and day 3. For both bacterial species,
the speed of the biofilm formation was the highest during the first day. The average increases of
CFU counts from the first day were significantly higher than those from 1 day to 3 days, irrespective
of the properties of zirconia surfaces and the bacterial species. For S. sanguinis biofilm in Group
GB and Group GBHF, there were no increases in biofilm formation from day 1 to day 3 (p > 0.05).
For P. gingivalis biofilm in Group HF and Group GBHF, no significant increase was found in biofilm
formation from day 1 to day 3 (p > 0.05).
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Figure 3. Changes of total viable CFU counts at the time point of day 1 and day 3 in biofilms:
(a) S. sanguinis and (b) P. gingivalis. * denotes no statistically significant (p > 0.05) difference between
different groups among the same time point; # denotes no statistical significant difference (p > 0.05)
between the same groups among different time points.
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For S. sanguinis biofilm on day 1 (Figure 3a), the CFU counts of Group GB, Group HF, and
Group GBHF were significantly higher than that of Group C (p < 0.05), while there was no significant
difference between these three groups (p > 0.05). However, when the time went on to day 3, significant
lower CFU counts were found in Group HF and Group GBHF compared to Group C and Group GB,
while no significant difference was found between Group HF and Group GBHF (p > 0.05). On the other
hand, for P. gingivalis biofilm (Figure 3b), when the total CFU counts were relatively low on day 1, the
number of P. gingivalis bacterial found on zirconia surfaces in Group HF and Group GBHF was highest
while that in Group C was lowest (p < 0.05). On day 3, no significant differences in CFU counts were
observed between Group C, Group HF, and Group GBHF (p > 0.05), and the CFU counts of these three
groups were significantly lower than that in Group GB.

4. Discussion

In the present study, we modified zirconia surfaces with grit blasting and hot hydrofluoric acid
etching treatment. S. sanguinis and P. gingivalis were used to evaluate their biological response to
zirconia surfaces. Statistically significant increases of surface roughness were found after various
surface treatments, such that a greater increase of surface roughness of zirconia surfaces in Group
HF and Group GBHF compared to Group C and Group GB. This finding is consistent with the
previous studies which revealed that grit blasting and hydrofluoric acid etching can increase the
surface roughness of zirconia [18,26]. In addition, the water contact angle of zirconia surfaces was
measured in our study, which can reflect the changes in hydrophilicity and hydrophobicity. It was
observed that the water contact angle increased slightly in Group GB and decreased significantly
in Group HF and Group GBHF, i.e., zirconia surfaces in Group HF and Group GBHF were more
hydrophilic compared to that in the control group, whilst zirconia surfaces in Group GB were more
hydrophobic compared to that in the control group.

SEM figures presented different topography after different treatments compared to the control
group. On the surface of zirconia in Group GB, a typical grit-blasted surface was observed. In EDX
analysis, the high peaks of Al and Si in Group GB may be attributed to the silica-coated alumina
particles. Hydrofluoric acid etching groups (Group HF and Group GBHF) produced porous structures
that craters and spiky clusters were observed on the etched zirconia surfaces. However, no F element
was detected in Group HF and Group GBHF by EDX. This finding was inconsistent with a previous
study by Xie et al. [28], which claimed some F-containing compounds were found by X-ray diffraction
(XRD) and EDX. Indeed, in their analysis, they have not tested directly from the HF-etched zirconia
surface, but the surface of the sediments in the HF solutions. These sediments were produced during
the etching process and they were the reaction products with HF, which did not mean they carry the
same chemical entities as the zirconia surface. The XRD matching from their graph is also primitive,
such that not all peaks could be properly identified. Thus, their study is not comparable to us.

The adhesion of bacteria is generally influenced by the material surface characteristics, including
surface roughness, surface free energy, surface chemistry, and surface topography [29,30]. S. sanguinis
was recognized as a pioneer colonizer bacteria and its colonization can prepare favorable environment
for later colonizers [15]. P. gingivalis, featuring predominantly anaerobic Gram-negative bacteria,
was confirmed to have a high positive relationship with peri-implantitis [31]. Therefore, these two
representative bacteria were chosen in our study.

In the current study, at early stage of day 1, biofilm formation of both species on zirconia surfaces
in Group HF and Group GBHF were highest among all four groups, this may be attributed to the
high surface roughness of these two groups. In fact, various studies have indicated a higher Ra value
(Ra > 0.2 µm) could be associated with increased bacteria accumulation at the initial bacteria adhesion
stage [11,22]. However, when the time went on to day 3, CFU counts of both species of biofilms
appeared the lowest in Group HF and Group GBHF. Thus, when the biofilm become mature, the
surface roughness seemed to be not the predominate factor that influenced bacteria initial adhesion.
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This is consistent with previous studies which emphasized that the influence of surface roughness was
diminished when the biofilm becomes mature [22,32] on different materials.

The biofilms formation of S. sanguinis and P. gingivalis on day 3 in our study may be explained by
the contact angle results and surface topography since both of them are important factors for bacterial
adhesion [15]. Das et al. investigated that the maturation adhesion of Streptococcus and Actinomyces
strains were in positive relationship with an increase in surface hydrophobicity [33]. The underlying
reason may be the fact that increased proteins accumulate on hydrophobic surfaces, which serving as
specific binding sites for bacteria, subsequently accelerating and facilitating bacterial adhesion [32].
As observed in our study, the hydrophobicity of zirconia surface was lowest in Group HF and Group
GBHF. This may be one of the reasons which can be responsible for the lowest biofilms formation for
both bacteria on day 3 in Group HF and Group GBHF.

Interestingly, we observed that CFU of S. sanguinis in Group HF decreased at day 3. Since the
formation of a biofilm is a dynamic complex process, it usually occurs in four main stages: (1) bacterial
attachment to a surface, (2) microcolony formation, (3) biofilm maturation, and (4) detachment of
bacteria which may then colonize new areas [22]. In our study, it was assumed that S. sanguinis grow
in a very high speed during the first day and log10 CFU/disk has been almost 7.6 in one-day biofilm.
This high growth speed might lead to the full coverage of biofilm on the zirconia surface, and as
time went on, there was no extra space for new bacteria attachment, while dead bacteria started to
accumulate in the biofilm on the zirconia surface. Therefore, we observed CFU counts of S. sanguinis
in Group HF decreased at day 3, since the method of CFU counts can only detect live bacteria.

Surface texture and topography also play important roles in microbial adhesion [22,32]. Many
micrometer- and nanometer-scale topographic patterns with varying shape and size have been shown
to inhibit biofilm formation compared to flat surfaces of the same material [29,34]. It was concluded
by Perera et al. that microtopographic surface patterns represent a promising approach to inhibit
bacterial adhesion and biofilm formation, since they found protruding and receding squares, circles,
and parallel channels on their material provoked a significant reduction in bacterial adhesion relative
to the smooth control samples [35]. Previous study has shown the grit-blasting and hydrofluoric acid
etching could create nano-scale topography on zirconia surfaces [26]. Another study [11] used a hot
HF solution to 100 ◦C could remove zirconia surface grains unevenly instead of a uniform disposal
of the surface layer, such that a surface with holes and pits of various sizes, exposed with sharp and
spiky surface (Figure 2) as revealed in this study, could be formed. This type of uneven surface may
inhibit bacteria attachment, since bacteria ranged in size from 0.2 to 5 µm and these various sizes of
holes and pits may not allow a favorable environment for bacteria attachment [36], needless to say
the sharp spiky surfaces could shred the bacteria, which would have a certain physical anti-bacteria
effect [34]. Therefore, the special surface topography of the zirconia surfaces in Group HF and Group
GBHF may have a negative effect on bacteria attachment and inhibit biofilm formation.

A previous study found that biofilms formation on titanium surfaces depend on not only the
surface topography, but also the bacteria species involved [37]. In this study, different situations of
S. sanguinis and P. gingivalis bacteria adhesion were demonstrated on zirconia surfaces. In addition,
we did not find any difference between zirconia surfaces in Group HF and Group GBHF in our
study, no matter in the aspect of physicochemical properties of the surface or the biofilm formation.
The underlying reason may be due to the strong etching ability of hydrofluoric acid and it eroded all
the effects of grit-blasting treatment on zirconia surfaces.

A further study is required to evaluate mixed-species bacterial biofilm adhesion on hydrofluoric
acid-etched zirconia surfaces to show exactly what happens when a complex and natural microbiota
combines with zirconia material to simulate the oral environment.
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5. Conclusions

In conclusion, hydrofluoric acid etching changed the surface topography of zirconia surfaces.
The application of 40% hydrofluoric acid for 25 min at 100 ◦C increased the surface roughness and
wettability of zirconia surface used in our study, and inhibited S. sanguinis and P. gingivalis bacteria
adhesion and biofilm formation on zirconia. Further study is necessary to determine whether this
was due to topographical changes of zirconia induced by hydrofluoric acid etching. The creation of
crater-like topographies on the surface of zirconia by hydrofluoric acid offers a promising method for
inhibiting the bacteria adhesion and biofilm formation on zirconia.
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