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ARTICLE OPEN

Phonon-assisted oscillatory exciton dynamics in monolayer
MoSe2
Colin M. Chow1, Hongyi Yu2, Aaron M. Jones1, John R. Schaibley3, Michael Koehler4, David G. Mandrus4,5, R. Merlin6, Wang Yao2 and
Xiaodong Xu1,7

In monolayer semiconductor transition metal dichalcogenides, the exciton–phonon interaction strongly affects the photocarrier
dynamics. Here, we report on an unusual oscillatory enhancement of the neutral exciton photoluminescence with the excitation
laser frequency in monolayer MoSe2. The frequency of oscillation matches that of the M-point longitudinal acoustic phonon, LA(M),
suggesting the significance of zone-edge acoustic phonons and hence the deformation potential in exciton-phonon coupling in
MoSe2. Moreover, oscillatory behavior is observed in the steady-state emission linewidth and in time-resolved PLE data, which
reveals variation with excitation energy in the exciton lifetime. These results clearly expose the key role played by phonons in the
exciton formation and relaxation dynamics of two-dimensional van der Waals semiconductors.
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INTRODUCTION
The electron–phonon interaction in solid state systems plays a
major role in carrier dynamics,1 particularly in the relaxation of
photoexcited carriers in semiconductor nanostructures, such as
quantum wells,2 quantum wires,3 and quantum dots.4 Monolayer
semiconducting transition metal dichalcogenides (TMDs) have
attracted much interest lately due to intriguing two-dimensional
(2D) exciton physics, especially relating to their valley degrees of
freedom.5, 6 In addition, reduced Coulomb screening in the 2D
limit leads to nonhydrogenic exciton series7–9 and strong many-
body exciton physics.10, 11 Recently, signatures of a strong
exciton–phonon interaction have been observed,12, 13 such as
the preservation of valley coherence in double-resonant Raman
scattering,14 trion to exciton luminescence upconversion in
monolayer WSe2 assisted by A′

1 phonons,
15 and exciton enhanced

anti-Stokes shifts in few layer MoTe2.
16 Despite a few theoretical

proposals on the role of optical phonons in exciton dynamics,17–19

and several experimental studies on phonon-limited exciton
relaxation,20–22 the details behind how and which phonons
impact metrics such as the formation and relaxation of excitons
remains largely unexplored. This knowledge is important for
interpreting a wide range of 2D exciton phenomena and for
exploring the potential of exciton-based 2D optoelectronics.
In this work, we investigate the role of exciton–phonon

interaction in exciton dynamics using the model system of
monolayer MoSe2 (Fig. 1a). Performing photoluminescence
excitation (PLE) spectroscopy, we observe that the neutral exciton
PL intensity, as well as its linewidth, oscillates as a function of
excitation energy with a period matching that of the longitudinal
acoustic phonon at the M point, LA(M). Nested within the

oscillations are fine structures, with linewidths one order of
magnitude smaller than that of ordinary PL, originating from
resonant Raman scattering. Analysis of the emission lineshape of
the neutral exciton reveals that the oscillatory behavior also
presents in the homogeneous linewidth. Moreover, time-resolved
PLE shows that exciton dynamics varies with respect to excitation
energy, where shorter emission lifetime is measured for off-
phonon-resonance excitation. This might due to the elevated
lattice temperature arising from long-wavelength (small k-vector)
acoustic phonons, which enhances radiative exciton recombina-
tion. Our results show that acoustic LA(M) phonons play an
important role in electron-phonon coupling and hot-carrier
cooling in monolayer MoSe2, and also suggest the involvement
of intermediate indirect excitonic states (with Q-valley electrons)
in the formation of K-valley excitons.

RESULTS AND DISCUSSIONS
In our steady-state measurement, we detect PL at 5 K while
scanning the excitation energy of a continuous wave (CW) laser,
i.e., PLE spectroscopy (see Method Section for experimental
details). The PLE intensity plot of Fig. 1b shows excitonic emission
energies as a function of laser excitation. Two luminescence peaks
are identified23: the neutral A exciton (X0), centered at 1.650 eV,
and the negative trion (X−), centered at 1.624 eV. Evidently, the
intensity of X0 emission oscillates as a function of excitation laser
frequency, while the behavior of X− is monotonic. Figure 1c shows
PL spectra taken at the excitation energies 1.699 eV (red) and
1.686 eV (green), which exemplify the contrasting excitation
energy dependencies of X0 and X− PL. Within our laser scan
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range, which has a high-energy limit of 1.77 eV (700 nm), five
equally spaced regions of luminescence enhancement, indicated
by the white arrows, can be seen in X0, with an average energy
separation of 18.5 meV. Such oscillations of X0 emission intensity
in PLE, first reported in CdS24 for longitudinal optical phonons, is
the hallmark of resonant excitation of phonon modes.
A closer look at Fig. 1b shows that each PLE resonance region

contains several narrow peaks. Figure 2a offers an expanded view
of the spectral regime highlighted by the white square in Fig. 1b.
Three narrow lines shift in parallel with the excitation laser
detuning, implying a Raman scattering origin of these lines. Their
sub-meV linewidths are consistent with “conventional” Raman
spectra measured on a different monolayer MoSe2 sample
(Supplementary Discussion), as well as with those reported in
the literature.25–27 The combined spectral features of PL emission
and Raman scattering give rise to the overall emission spectrum,
as shown in the example of Fig. 2b. As with earlier studies in
monolayer WSe2,

14 on top of the spectrally broad features
(conventional X0 PL) sits a narrow peak arising from resonant
Raman scattering. The intensity of broad X0 PL changes gradually
with excitation energy, resulting in a rising PLE background on
both ends of the scan range, as apparent in Fig. 2c. This
observation has been reported28 and is most probably due to
increased absorption near excitonic resonances, e.g., 1 s excitonic
state (1.650 eV) on the low energy side and 2 s (1.830 eV) on the
high energy side.
Now we turn to the assignment of the observed phonon

modes. The dominant feature in the X0 PLE is the average
oscillation period of 18.5 meV. From recent studies of Raman
scattering on monolayer MoSe2,

25, 27 this period matches that of
the M-point longitudinal acoustic phonon, LA(M). Figure 3a shows
the locations of M points in the Brillouin zone. According to ab
initio calculations reported on monolayer MoS2 and WS2,

29, 30 the
electron–phonon interaction strength is largest for LA phonons in
the vicinity of the M points. Since monolayer MoSe2 is structurally
similar to MoS2 and WS2, we expect mode specific characteristics
of electron-phonon coupling to qualitatively resemble those of
these compounds.30 Therefore, we assign the oscillation in PLE as
overtones (harmonic series) of the LA(M). This assignment is
corroborated by plotting the PL intensity at the neutral exciton
resonance as a function of excess energy (Fig. 2c), defined as the

Fig. 1 Oscillatory enhancements of neutral exciton PL intensity in monolayer MoSe2. a Optical micrograph of an MoSe2 monolayer on 285-
nm-thick SiO2 on silicon. Scale bar: 10 μm. b PLE intensity map of the monolayer shown in a, indicating neutral exciton (X0) and trion (X−)
emission centered at 1.650 and 1.624 eV, respectively. Arrows indicate regions of PL enhancement. Color bar: counts per second. c PL spectra
at two distinct excitation energies showing the variation of X0 (but not X−) PL with excitation energy

Fig. 2 Phonon peaks in monolayer MoSe2 PLE spectra. a Magnified
view of the region enclosed by the white square in Fig. 1b, showing
narrow resonance peaks with corresponding phonon modes
indicated. b PL spectrum for 1.678 eV excitation, showing a narrow
resonance associated with the A′1 phonon superimposed on the
broader X0 emission. c Vertical line cut of the PLE map at the X0

resonance, plotted in terms of excess energy, defined as the
excitation energy subtracted by the X0 resonance. Selected
phonon enhanced peaks are labeled with excesses energy in
parenthesis (in meV, with 1meV uncertainty), along with possible
assignments
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photon energy difference between the excitation laser and the X0

resonance (1.650 eV). Compared to the phonon assignment in ref.
27 we identify the 38-meV peak as the resonant Raman scattering
of the 2LA(M) mode. The other higher overtones from 3LA(M) to
6LA(M) are also identified and indicated in Fig. 2c with their
respective excess energies. Likewise, we assign the 30 and 35-meV
peaks to A′

1 Γð Þ and E′ Γð Þ, respectively. Additional higher-order
phonon mode assignments can be found in the Supplementary
Discussion. Similar PLE features with identical phonon modes are
also observed in a second sample (Supplementary Discussion).
Results in Figs. 1 and 2 suggest that the LA(M) mode plays a
dominant role in hot exciton relaxation in monolayer MoSe2,
giving rise to periodical modulation of PL intensity of the A
exciton as a function of excitation photon energy. The importance
of LA(M) phonons in exciton dynamics is perhaps ubiquitous in
TMDs based on recent studies in few-layer MoS2

31 and WS2.
32

As required by momentum conservation during the Raman
process, the total phonon wavevector of each phonon enhanced
PLE peak indicated in Fig. 2c must be zero. This requirement is
easily fulfilled by A′

1 Γð Þ and E′ Γð Þ modes, but not the fundamental
LA(M) mode. However, for the LA(M) overtones, the requirement
can be satisfied through the following scenarios. In the case of 2LA
(M), a combination of M and M wavevectors conserves momen-
tum. In 3LA(M), this requirement is met following the scheme
shown in Fig. 3b, where an equilateral triangle is formed by three
M-vectors, also resulting in a zero vector sum. In monolayer
MoSe2, in addition to the K and K valleys (band edges), the
conduction band also has Q and Q valleys located close to halfway
between Γ and K/K points. The momentum carried by an LA(M)
phonon, therefore, matches the momentum separation between
the K=K and Q/Q valleys (Fig. 3a, b). Thus, following the
involvement of M-point phonons, conservation of momentum
stipulates that the electron be scattered between K- and Q-valleys;

see Fig. 3c. In other words, phonon-assisted scattering occurs
between the optically bright exciton X0 with both the electron and
hole in K valley, and the optically dark indirect exciton X0(M) with
an electron in Q and a hole in K valley (Fig. 3c). Here, X0(M) can be
a virtual intermediate state such that its energy is not required to
match that of X0 + LA(M). Besides, despite the estimated 0.2-eV
(ref. 33) electron band energy difference between K and Q valleys,
the larger effective mass of the Q-valley34 might result in a larger
exciton binding energy of X0(M) than that of X0. This binding
energy difference can partially cancel the electron band energy
difference between Q and K valleys, leading to a smaller energy
separation between X0(M) and X0, which enhances the role of
X0(M) as an intermediate state. A seemingly related intervalley
exciton-phonon scattering is proposed to explain the strong 2LA
(M) peak in excitation-dependent Raman spectroscopy of WS2,

32

although the excitation therein is well above band edge and
involves higher lying conduction bands.
We note that while oscillations due to phonon resonance

feature prominently in the X0 transition, the X− emission intensity
is relatively constant, except for excitation below 1.68 eV, close to
the X0 resonance of 1.65 eV. The lack of oscillatory enhancement
in X− is possibly due to its distinct radiative properties compared
to X0, together with the availability of multiple formation
pathways35 (e.g., via the exciton–electron interaction following
exciton relaxation36). For X0, only those inside the light cone
(k � ωX0=c) can radiate. In contrast, X− with a much larger range of
momentum can radiate due to the electron recoil effect.23 As a
result, X0 PL intensity depends strongly on its momentum
distribution, as determined by the resonance condition of the
excitation energy, while such dependency is weak for X−.
Moreover, the X− formation process is largely independent of
the excitation energy, because even for excitation away from the
phonon resonances, optically dark excitons can still be generated
at large momentum (outside the light cone), which can interact
with electrons to form trions. The lack of sensitivity to the
excitation energy in both trion formation and relaxation processes
diminishes any oscillatory features in the X− emission. A more
detailed discussion can be found in the Supplementary
Discussion.
Aside from spectral information, the PLE map also offers

insights into the exciton dynamics. From the fit to the spectrum
taken at each excitation energy, we found that both X− and X0

lineshapes are well-described by Voigt profiles, from which one
can infer the homogeneous linewidths of the excitonic transitions,
as well as the widths of the Gaussian-broadened spectral
distributions of their resonances (Supplementary Discussion).
The latter is associated with the inhomogeneous broadening of
the excitonic transitions. Oscillatory behavior is found in the
homogeneous linewidth, γ0, of X

0, which is smaller for excitation
resonant with phonon harmonics (Fig. 4a). Its inhomogeneous
(Gaussian) width remains relatively constant, consistent with the
expectation that inhomogeneous broadening should depend only
weakly on excitation energy. γ0 is associated with the coherence
lifetime of the exciton, and is given by γ0 = γ/2 + Γ, where γ is the
inverse of exciton population lifetime and Γ the pure dephasing
rate. Since Γ is proportional to the rate of dephasing processes
such as exciton-phonon scattering,22 it is reasonable to assume
that the oscillations in γ0 is largely due to the creation of long-
wavelength phonons during the relaxation of excited (hot)
excitons. Our analysis on time-resolved PLE data (more details
discussed below and in the Supplementary Discussion) seems to
support this interpretation.
To explore the phonon-assisted dynamics directly, we measure

time-resolved emission of X0 and X− with a streak camera. Figure
4b presents an example of the measured spectra with the pulsed
excitation centered at 1.732 eV. The time evolution of the emission
is characterized by a rapid onset within a few picoseconds,
followed by an exponential decay. This is shown by extracting

Fig. 3 Scattering between K-valley electrons and LA(M) phonons. a
Wavevectors of M-point phonons in a hexagonal Brillouin zone. b
Phonon-mediated transitions of an electron between K and Q
valleys within the Brillouin zone. Here, three M-phonons are
involved, with zero net change of electron k-vector. Blue- and red-
shaded regions correspond to Q and Q valleys, respectively. c
Lowest conduction band and top valence band of monolayer
MoSe2, with the Q valley indicated. Upon the LA(M) phonon-
mediated intervalley scattering of an electron between Q and K
valleys, the optically dark indirect exciton X0(M) can be inter-
converted with the optically bright exciton X0. Red and blue curves
correspond to different spins
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time traces along P−P' and Q−Q' from Fig. 4b for X− and X0 and
plotted in Fig. 4c, d, respectively. Here, a 2D Gaussian filter is
applied to the raw data, followed by deconvolution with Tikhonov
regularization (see Supplementary Discussion), resulting in smooth
temporal profiles from which the 10–90% rise time and lifetime (τ)
can be estimated. By stepping the center frequency of the pulses,
excitation energy dependent rise times and lifetimes are obtained
and the latter is plotted in Fig. 4e, where shaded regions indicate
energies of phonon-enhanced PL seen in the PLE map in Fig. 1b.
Although fluctuation with the excitation energy is apparent in

the rise times of X0 and X− emission (Supplementary Discussion),
due to the measurement noise and the resolution of the streak
camera, we are unable to observe an unambiguous systematic
variation with the excitation energy. A further study with
improved experimental method and cleaner data is needed to
determine whether the rise times oscillate in accordance to the
phonon modes seen in Fig. 1b. Nonetheless, in Fig. 4e showing
the emission lifetimes, despite the noise caused by excitation
pulse leak-through at energies below 1.73 eV, the remaining data
shows clear oscillations of the X0 emission lifetime, i. e., the exciton
relaxation dynamics is affected by resonant excitation of the
LA(M) phonon mode. To understand this effect, we propose a
framework using rate equations to model phonon-assisted
interconversions between excitons inside and outside the light

cone (Supplementary Discussion). In brief, a thermalized popula-
tion of excitons both inside and outside the light cone is formed
shortly after excitation. The bright (inside the light cone) excitons
quickly recombine,37, 38 leaving behind the dark excitons, which
are then scattered into the light cone by phonons (Fig. 5a) and
recombine at a later time, producing the observed exponential
decay. When the excitation is off-resonant, excitonic relaxation
results in the emission of many long-wavelength phonons (Fig.
5b), forming a phonon bath that increases the scattering rate. On
the other hand, on-resonance excitation (Fig. 5c) produces only a
small number of LA(M) phonons which are ineffective in the
aforementioned scattering process due to momentum mismatch.
This picture is consistent with the oscillations of γ0 shown in Fig.
4a, i.e., the creation of long-wavelength phonon bath during off-
resonance excitation increases exciton-phonon scattering and
manifests as a broadening of the X0 homogeneous linewidth.
To summarize, we observed excitation energy-dependent

oscillatory behavior of X0 luminescence and dynamics, which
largely stems from resonant excitation of LA(M) phonon modes in
monolayer MoSe2. Remarkably, it is the phonon at the Brillouin
zone edge (M-point) that dominates the multiple-phonon
scattering during hot exciton relaxation. This suggests the
involvement of an intermediate X0(M) state and may present an
opportunity to investigate the dynamics of intervalley excitonic

Fig. 4 LA(M) phonon-induced modulation of exciton dynamics in monolayer MoSe2. a Oscillations in the best-fit homogeneous linewidth, γ0,
of the X0 resonance with the excess energy as defined in Fig. 2c. Error bars represent 99% confidence intervals of the fits. Inset: Width of
inhomogeneous (Gaussian) broadening, σ. b An example of raw streak camera data for excitation centered at 1.732 eV. The trion (X−) and
neutral exciton (X0) resonances are marked by dashed lines P–P' and Q−Q', respectively. Color bar: signal intensity in log-scale, arbitrary unit. c,
d Time-traces of the X− and X0 resonances, respectively, after a 2D Gaussian filter and deconvolution (Supplementary Discussion), in log-scale.
The 10–90% rise-times are indicated, along with the best-fit exponential decay lifetimes, τ. Circles and red solid lines represent data points and
linear fits to the exponential decay, respectively. e Lifetimes, τ, of X− (crosses) and X0 (circles) extracted from a series of streak camera
measurements with varying excitation energy. In the x-axis, similar to how the excess energy is defined, a constant X0 energy (1.650 eV) is
subtracted from the excitation center frequency. Error bars represent standard deviations, while the dashed line serves as guide to the eye.
Shaded regions indicate phonon resonances as obtained from Fig. 1b
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transitions in 2D semiconductors. The prevailing involvement of
acoustic phonons, rather than of optical phonons, is in agreement
with density functional theory calculations.29, 30 This implies that
the deformation potential coupling dominates over Fröhlich
coupling in our samples, although the converse is normally
expected, as reported in CdS.24 Further studies are needed to fully
elucidate the process of carrier-phonon interactions in semicon-
ducting TMDs, especially with regard to material- and phonon-
mode-specific details. Nonetheless, our results can potentially be
exploited to understand exciton related physics and design
optoelectronics applications based on 2D semiconductors.

METHODS
Bulk MoSe2 crystals are synthesized using chemical vapor transport
technique with iodine as transport agent. To obtain monolayer MoSe2
samples, thin MoSe2 flakes are mechanically exfoliated from bulk crystals
onto 285-nm-thick SiO2 thermally grown on Si wafers. Monolayers are first
identified visually by their optical contrast under a microscope and then
confirmed by measuring their thickness (~ 0.7 nm) using atomic force
microscopy. Throughout the experiments, the samples are maintained at a
temperature of 5 K in a cold finger cryostat.
All optical studies are made in reflection geometry, where the incident

beam and fluorescence traverse the same microscope objective mounted
on a micrometer stage assembly. The use of a high-power microscope
objective with cover-slip correction results in a focal spot size of less than
1 μm in diameter. For PLE measurements, a Ti-Sapphire tunable CW laser
(Solstis from M-Squared Lasers, LTD) is used to produce the excitation
beam. The incident power is held at 20 μW, below the PL saturation
threshold of about 100 μW. The excitation frequency is scanned at a rate of
5 s per step and with a step size of 1 meV (~ 0.42 nm at 721 nm). Rejection
of the reflected excitation laser is accomplished first by an analyzer and
then by spectral filtering. The spectral filter consists of a pair of achromatic
doublets forming a 1:1 telescope, and a pair of gratings positioned at the
outward conjugate focal planes. At the central focal plane, the spectral
distribution of the fluorescence is mapped into spatial separation, and a
graphite rod mounted on a translational stage is used to block the
frequency component belonging to the excitation laser. Finally, fluores-
cence spectra are measured with a liquid-nitrogen-cooled charge-coupled
device (CCD) camera attached to the output port of a spectrometer
(Princeton Acton SP2500). The final spectral resolution is 0.027 nm (~ 0.06
meV at 755 nm), limited by the pixel size of the CCD camera. Each
spectrum is taken with an accumulation time of 5 s.
In time-resolved PLE measurements, the excitation beam is produced by

a wavelength-tunable, mode-locked Ti-Sapphire laser with a pulse
repetition rate of 80 MHz, and a pulse duration of 150 fs. The bandwidth
of the output pulses, of about 17meV, is unsuitable for resolving the

oscillatory behavior, which is expected to have a period of about 18.5 meV.
The pulse bandwidth is therefore reduced to about 5 meV with the aid of
the spectral filter described above, only with the graphite rod now
replaced by a slit. This introduces a chirp to the pulses, which is then
compensated by passing the beam through a single mode fiber with a
predetermined length. The fiber serves a secondary purpose of producing
a clean Gaussian beam profile to help achieving the best beam spot on the
sample. The central wavelength of the pulses is tuned with 1-nm steps (~
2.4 meV at 721 nm), and the average power is held constant at 50 μW. This
corresponds roughly to a photogenerated exciton density on the order of
1011–1012 cm−2. A streak camera (Hamamatsu C10910-05) with a nominal
resolution of 1 ps is used to register the time-resolved fluorescence
spectra. The streak camera is operated at a moderate gain, optimized for
the best signal-to-noise ratio, with a 100-s integration time for each
spectrum.
Procedures for PL lineshape fitting, data post-processing and analysis,

and further discussions can be found in the Supplementary Discussion
accompanying the paper.

Data availability
Data that supports the findings of this study is available from the
corresponding authors upon reasonable request.
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