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The robustness of quantum edge transport in InAs/GaSb quantum wells in the presence of magnetic fields
raises an issue on the fate of topological phases of matter under time-reversal symmetry breaking. A peculiar
band structure evolution in InAs/GaSb quantum wells is revealed: the electron subbands cross the heavy hole
subbands but anticross the light hole subbands. The topologically protected band crossing point (Dirac point) of
the helical edge states is pulled to be close to and even buried in the bulk valence bands when the system is in a
deeply inverted regime, which is attributed to the existence of the light hole subbands. A sizable Zeeman energy
gap verified by the effective g factors of edge states opens at the Dirac point by an in-plane or perpendicular
magnetic field; however, it can also be hidden in the bulk valance bands. This provides a plausible explanation
for the recent observation on the robustness of quantum edge transport in InAs/GaSb quantum wells subjected to
strong magnetic fields.
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I. INTRODUCTION

The quantum spin Hall (QSH) insulator is a quantum state
of matter with topologically protected helical edge states in
the bulk insulating gap [1–3]. The helical edge states will
give rise to the QSH effect which is featured by a quantized
conductance (i.e., 2e2/h) in the two-terminal measurement
at low temperatures [4]. Theoretically the band crossing
point (Dirac point) of the helical edge states is topologically
protected by time-reversal symmetry, and it opens a minigap
once the symmetry is broken (if there is no other extra
symmetry protection). The QSH insulator has been predicted
theoretically [5] and confirmed experimentally in HgTe/CdTe
quantum wells [6,7]. Another promising candidate for QSH
insulator is the InAs/GaSb double quantum well [8,9]. The
InAs/GaSb quantum wells possess a particular electronic phase
with inverted band structure, in which the hybridization of
electrons and holes opens a minigap at finite k vectors, leading
to the QSH phase. Due to the mature technology of material
fabrications and potential device applications, there have been
growing efforts to explore the QSH phase in InAs/GaSb
quantum wells [9–17]. Recently, it was observed that the
conductance in InAs/GaSb quantum wells can keep quantized
in an in-plane magnetic field up to 12 T and is insensitive to
temperatures ranging from 250 mK to several Kelvins [18]. A
similar feature was also observed in HgTe/CdTe quantum wells
[19]. This raises a question about the fate of the QSH effect
under time-reversal symmetry breaking, which has become
a fundamental issue to understand the physics of topological
matter. A number of theoretical efforts have been simulated on
this puzzle [20–22]. However the robustness of the quantized
conductance remains poorly understood.

*sshen@hku.hk

In InAs/GaSb quantum wells, the lowest conduction bands
of InAs are about 150 meV lower than the highest valence
bands of GaSb [23,24], which forms a broken-gap band align-
ment and leads to the coexistence of electrons and holes near
the charge neutrality point. The application of gate voltages can
shift the band alignment and drive the system to different elec-
tronic phases [8,14,25]. When the (lowest) electron subbands
of InAs lie above the (highest) heavy hole (HH) subbands of
GaSb, the system is in a normal insulator phase. When the
electron subbands lie below the HH subbands, the system is
in an inverted phase and the QSH effect is expected in the
hybridization gap opened by coupling between electron and
hole states. Around the topological phase transition point, the
system can be well described by the Bernevig-Hughes-Zhang
(BHZ) model which considers four bands in the lowest energy
[5,8]. The BHZ model, however, fails to explain the robust
quantum edge transport in InAs/GaSb quantum wells in the
presence of in-plane magnetic fields, in which the Dirac point
of the helical edge states opens a minigap, leading to the
breakdown of quantized conductance. InAs/GaSb quantum
wells could possibly be in a deeply inverted regime where the
lower energy subbands, e.g., the light hole (LH) subbands, will
reside above the electron subbands and may have important
influence on the system. The consideration of the LH subbands
may be a solution to the puzzle. To this end, reexamination of
the band structure of InAs/GaSb quantum wells and a more
comprehensive effective model are needed.

In the present work, a peculiar band structure evolution in
InAs/GaSb quantum wells is revealed when varying the gate
voltages. The electron subbands of InAs can cross the HH
subbands of GaSb, and correspondingly the system transits
between a trivial insulator phase and a topological insulator
phase as described by the BHZ model. In contrast, the electron
subbands cannot touch but anticross the LH subbands of GaSb.
This anticrossing behavior does not alter the topology of the
system as no gap closing occurs, however, it may modify the
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properties of the system near the hybridization gap signifi-
cantly. We present a six-band effective model to capture the
essential low-energy properties of InAs/GaSb quantum wells,
including the topological phase transition and anticrossing
behavior. One of the key features is that the Dirac point of
the edge states will be pulled to be close to the bulk valence
bands when the electron subbands are lowered to anticross
the LH subbands. The application of a magnetic field, in-
plane or perpendicular, opens a sizable Zeeman energy gap at
the Dirac point of the helical edge states, which indicates the
breakdown of the QSH effect. Nevertheless, the energy gap
of edge states could also be hidden in the bulk valence bands
up to a large magnetic field, which may account for recent
experimental observations on the robustness of quantum edge
transport under in-plane magnetic fields [18]. We anticipate our
results can shed some light on experimental observations on
the InAs/GaSb quantum wells and explore novel topological
phases of matter in the future.

The rest of this paper is organized as follows. In Sec. II
the band structure evolution of InAs/GaSb quantum wells is
studied, and in Sec. III a six-band effective model is derived
for low-energy physics of the quantum wells. With the effective
model, the properties of edge states are investigated in Sec. IV.

To characterize the response of the helical edge states to
magnetic fields, the effective g factors of edge states are
calculated in Sec. V. In Sec. VI the robustness of quantum
edge transport under in-plane magnetic fields is addressed by
the numerical calculation of conductance and the evolution
of edge state wave functions. Finally, Sec. VII contains the
discussion and conclusions.

II. BAND STRUCTURE EVOLUTION
OF InAs/GaSb QUANTUM WELLS

Both InAs and GaSb have a zinc-blende crystal structure
and direct gaps near the � point, and their low-energy physics
can be well described by the Kane model [26,27]. We consider
the broken-gap band alignment in InAs/GaSb quantum wells
and focus on the case where the �6 bands of InAs and the
�8 bands of GaSb are very close while the �7 bands are
far away in energy and thus can be neglected here. In the
basis {|�6,1/2〉,|�6,−1/2〉,|�8,3/2〉,|�8,1/2〉,|�8,−1/2〉,
|�8,−3/2〉} (here we use the standard notation that
|�6, ± 1/2〉, |�8, ± 1/2〉, and |�8, ± 3/2〉 represent the
s-like conduction bands, the p-like LH bands, and the p-like
HH bands, respectively), the Kane Hamiltonian for the [001]
growth direction is given by [27,28]

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T 0 − 1√
2
Pk+

√
2
3Pkz

1√
6
Pk− 0

0 T 0 − 1√
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Pk+

√
2
3Pkz

1√
2
Pk−

− 1√
2
k−P 0 U + V −S̄− R 0√

2
3kzP − 1√

6
k−P −S̄

†
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6
k+P

√
2
3kzP R† C† U − V S̄

†
+

0 1√
2
k+P 0 R† S̄+ U + V

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

where

T = Ec + h′(γ0k
2
|| + kzγ0kz),

U = Ev − h′(γ1k
2
|| + kzγ1kz),

V = −h′(γ2k
2
|| − 2kzγ2kz),

R =
√

3h′γ2
(
k2
x − k2

y

) − 2
√

3ih′γ3kxky,

S̄± = −
√

3h′k±({γ3,kz} + [κ,kz]),

C = 2h′k−[κ,kz], (2)

in which k‖ = (kx,ky), k2
|| = k2

x + k2
y , k± = kx ± iky , and h′ =

h̄2/(2m0). m0 is the free electron mass, and P is the Kane
momentum matrix element. Ec and Ev are the conduction
and valence band edges, respectively. γ0,1,2,3 and κ are the
band parameters in the Kane model. The parameters for InAs,
GaSb, and AlSb are given in Table I. We consider the quantum
well configuration with InAs and GaSb layers sandwiched
by two AlSb layers on each side along the growth direction
(the z direction). Hence the parameters of the Kane model
are spatially dependent, corresponding to different layers of
the quantum wells. To simulate the experimental setup and
for illustration, we take 12.5 nm InAs/10 nm GaSb with

barriers made of 50 nm AlSb on each side in the quantum well
system [18].

We assume the confinement effect in the z direction and
replace kz with −i∂z in the Hamiltonian. The full Hamiltonian
of the quantum wells takes the form

Hfull = HK (kx,ky,−i∂z) + V (z). (3)

Here V (z) is the confinement potential and it is also spatially
dependent. The subband dispersions and corresponding eigen-
states are obtained by solving the Schrödinger equation

Hfull|�ξ (kx,ky,z)〉 = Eξ |�ξ (kx,ky,z)〉, (4)

where ξ is the subband index and |�ξ (kx,ky,z)〉 = exp(ikxx +
ikyy)F ξ (z), with F ξ (z) being an envelope function. The
envelope function approximation can be employed to solve
the eigen problem of the quantum wells [31]. F ξ (z) can be
expanded in terms of plane waves:

F ξ (z) =
6∑

λ=1

N∑
n=−N

1√
L

a
ξ
n,λe

iknz|λ〉, (5)
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TABLE I. Parameters in the Kane model for InAs, GaSb, and AlSb [17,29,30].

Eg (eV) P (eV · Å ) γ1 γ2 γ3 γ0 κ Ec (eV) Ev (eV)

InAs 0.41 9.19 19.67 8.37 9.29 1/0.03 7.68 −0.15 −0.56
GaSb 0.8128 9.23 11.8 4.03 5.26 1/0.042 3.18 0.8128 0
AlSb 2.32 8.43 4.15 1.01 1.75 1/0.18 0.31 1.94 −0.38

where kn = 2πn/L, with n = 0,±1,±2, . . . ,±N (N is a
positive integer), and L = LInAs + LGaSb + 2LAlSb is the total
width of InAs/GaSb quantum wells. aξ

n,λ are the corresponding
expansion coefficients. Here we use |λ〉 (λ = 1,2, . . . ,6) to
denote the basis set of wave functions where |1〉 and |2〉 are
for |�6,±1/2〉, |3〉 and |6〉 are for |�8,±3/2〉, and |4〉 and |5〉
are for |�8,±1/2〉. For the numerical calculations, we take
N = 30, which is accurate enough for the low-energy physics.

Different electronic phases can be realized by varying the
broken gap V0, the energy difference of band edges between
the �6 bands of InAs and the �8 bands of GaSb, which is
tunable by gate voltages [8,14]. Figure 1(a) shows the energies
of the lowest energy subbands at the � point as functions of V0.
One can see that when decreasing V0, the lowest electron (E1)
subbands cross the highest HH (HH1) subbands, showing a
topological phase transition. For a large V0 (>−80 meV), the
system is a trivial insulator as shown in Fig. 1(b) and should
not possess robust edge states, which is labeled as case (i). For
a smaller V0 (<−80 meV), the system transfers from the trivial
insulating phase to a shallowly inverted phase labeled by case
(ii). A hybridization gap will open at the crossing point, as
shown in Fig. 1(c), and the QSH effect is expected [8]. The
low-energy properties of the system near the phase transition
point V0 (∼−80 meV) can be well described by the BHZ model
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FIG. 1. The energy spectrum of InAs/GaSb quantum wells in
different phases. (a) The energies of the lowest-energy subbands
at the � point as functions of the broken gap V0. The band struc-
tures at ky = 0 with (b) V0 = −70 meV, (c) V0 = −90 meV, and
(d) V0 = −120 meV.

[5]. Decreasing V0 further, the E1 subbands do not touch but
anticross the highest LH (LH1) subbands. We label the deeply
inverted phase after the anticrossing as case (iii). The transition
from cases (ii) to (iii) is topologically trivial since there is
no gap closing; however, some important properties (e.g., the
property of edge states) near the system gap are changed, as
will be shown below. The corresponding band structure for case
(iii) is presented in Fig. 1(d), which exhibits giant spin-orbit
splitting close to the hybridization gap. The spin-orbit splitting
due to the structure inversion asymmetry may lead to fully
spin-polarized states [17].

III. SIX-BAND EFFECTIVE MODEL

The topologically nontrivial band structure indicates the
existence of helical edge states across the bulk insulating
gap with the open boundaries according to the bulk-edge
correspondence [32–34]. To find the helical edge states and
investigate the low-energy properties of InAs/GaSb quantum
wells, it is helpful to derive an effective model, such as the BHZ
model [5]. Noting that without gate voltage the InAs/GaSb
quantum wells tend to stay in the deeply inverted phase of case
(iii), the LH1 subbands may have significant influence on the
system and thus should also be considered. A six-band effective
model which involves the E1, HH1, and LH1 subbands can
be constructed, following a similar procedure of Refs. [5,35].

Generally the full bulk Hamiltonian can be split into two
parts:

Hfull = H0(k‖ = 0,−i∂z,z) + H ′(k‖,−i∂z,z), (6)

where H0 describes the system at the � point (i.e., k‖ = 0) and
H ′ can be treated as a perturbation around the � point. First,
we can numerically solve the Schrödinger equation H0|�ξ

0 〉 =
E

ξ
0 |�ξ

0 〉 and obtain the eigenenergies E
ξ
0 and the corresponding

eigenstates |�ξ
0 〉. The Hamiltonian H0 is effectively decoupled

from four blocks: the electron subbands couple only with the
LH subbands, while the HH subbands decouple from them. We
can treat these decoupled blocks separately. Three eigen wave
functions with components of the E1 and HH1 subbands, or
of the LH1 subbands, can be written as

〈z|E1,+〉 = [ψe1(z),0,0,ψe4(z),0,0]T , (7)

〈z|HH1,+〉 = [0,0,ψh3(z),0,0,0]T , (8)

〈z|LH1,+〉 = [ψl1(z),0,0,ψl4(z),0,0]T , (9)

where T means transpose. The envelope function components
ψe(h,l)(z) can be found by expanding the eigenstates in terms of
plane waves, as introduced previously. Carrying out the time-
reversal operation on the above wave functions, we have three
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TABLE II. Parameters in the six-band effective model for V0 = −100 meV, LInAs = 12.5 nm, LGaSb = 10 nm, and LAlSb = 50 nm.

Parameters Be (eV · Å2) Bh (eV · Å2) Bl (eV · Å2) Del (eV · Å2) Peh (eV · Å) Pel (eV · Å) Plh (eV · Å) Pe (eV · Å) Pl (eV · Å)

Value 81.3 −31.2 −60 40 0.45 0.11 0.61 0.13 0.29

Parameters γ2eh γ3eh γ2lh γ3lh Qe (eV) Ql (eV) Qel (eV) Ee (eV) Eh (eV) El (eV)

Value 1.88 2.45 −3.3 −4.3 0.76 0.21 0.38 −0.0283 −0.0115 −0.0529

other eigen wave functions:

〈z|E1,−〉 = [0,ψ∗
e1(z),0,0,−ψ∗

e4(z),0]T , (10)

〈z|HH1,−〉 = [0,0,0,0,0,ψ∗
h3(z)]T , (11)

〈z|LH1,−〉 = [0,−ψ∗
l1(z),0,0,ψ∗

l4(z),0]T . (12)

With the six lowest energy states at the � point as a basis set, we can next project the Hamiltonian (6) and obtain a two-
dimensional six-band effective model. In the ordered basis {|E1,+〉,|E1,−〉,|HH1,+〉, |LH1,+〉,|LH1,−〉,|HH1,−〉}, the
effective Hamiltonian is given by

H (k‖) = H0(k‖) + δH, (13)

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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6
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6

Te −R
†
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2

−Pehk−√
2

−Reh Th −Plhk−√
2

Rlh 0

Dk2 −Pelk−√
6

−Plhk+√
2

Tl
Plk−√

6
Rlh

Pelk+√
6

−Dk2 R
†
lh

Plk+√
6

Tl −Plhk−√
2

R
†
eh

Pehk+√
2

0 R
†
lh −Plhk+√

2
Th

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

δH = �V

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qe 0 0 Qel 0 0

0 Qe 0 0 −Qel 0

0 0 0 0 0 0

Qel 0 0 Ql 0 0

0 −Qel 0 0 Ql 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

where k± = kx ± iky , Te(l,h) = Ee(l,h) + Be(l,h)k
2
‖ , and Re(l)h =√

3h′γ2e(l)h(k2
x − k2

y) − i2
√

3h′γ 3e(l)hkxky . Here and after, we
choose a fixed broken gap V0 as reference and take �V as
a variation from V0 to tune the band structure evolution for
convenience. H0(k‖) describes the system with the broken gap
V0. δH is the modification by �V , and it shows clearly how
the whole band structure varies as tuning gate voltages. The
diagonal terms Qe and Ql in �H will shift the position of E1
and LH1 subbands, as shown in Fig. 1(a). There is no diagonal
term for the HH1 subbands in �H , which is consistent with
Fig. 1(a) in which the HH1 subbands nearly do not shift. The
off-diagonal term Qel is crucial for the anticrossing behavior. It
couples the E1 and LH1 subbands even at the �(kx = ky = 0)
point, preventing them from touching with each other. In this
way, the effective model not only covers the physics of the
BHZ model but also captures the anticrossing behavior of the
energy bands. The parameters in this effective Hamiltonian can
be found straightforwardly in the projection, and they depend
on the details of the quantum wells (i.e., the thickness of the
quantum wells and the broken gap reference V0, etc.). For the
considered quantum well configuration (i.e., the thickness of

50/12.5/10/50 nm for AlSb/InAs/GaSb/AlSb), the parame-
ters in the effect model are provided in Table II.

IV. HIDDEN DIRAC POINT OF THE HELICAL
EDGE STATES

With the six-band effective model, we are in a position
to investigate the energy dispersions of the edge states for
the topologically nontrivial cases (ii) and (iii). This can be
accomplished numerically by means of the tight-binding
method. The tight-binding model can be obtained by
discretizing the effective Hamiltonian Eq. (13) on a square
lattice. In the long wavelength limit, we use the approximation
ki ≈ sin(kia)/a and k2

i ≈ 2[1 − cos(kia)]/a2, with i = x and
y, and a being the lattice constant. We take a = 20 Å, which is a
good approximation to the continuum limit. Note that the result
does not change sensibly if a smaller lattice constant is used.
To find the edge state solution, we apply an open boundary
condition along the y direction while a periodic boundary
condition is applied along the x direction. Thus kx remains a
good quantum number and the system is diagonal in kx .
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FIG. 2. Energy spectrum of bulk and edge states of the system
with periodic and open boundaries in the x and y directions, re-
spectively. (a) For �V = 30 meV. (b) For �V = 10 meV. (c) For
�V = −20 meV. (d) The energy position of the Dirac point (ED)
and the maximum point of valence bands (EM ) as functions of �V .
V0 = −100 meV is taken for all figures.

Figures 2(a)–2(c) plot the energy spectrum of the effective
model in the absence of external fields, corresponding to the
cases (i)-(iii) as mentioned above. For the trivial insulator case
(i), there is a direct system gap and no edge dispersion as shown
in Fig. 2(a). In both cases (ii) and (iii) as shown in Figs. 2(b)
and 2(c), there are two pairs of gapless and doubly degenerate
helical edge bands across the bulk insulating gap, as expected
for the QSH effect. Nevertheless, for case (iii) the Dirac point
of the helical edge states is close to and even “buried” by the
bulk valence states, which is in contrast to case (ii) where the
Dirac point is well exposed in the middle of the bulk gap
[see Fig. 2(b)]. As �V reduces further, the Dirac point ED

approaches the maximum point of the bulk valence bands EM ,
and eventually it is hidden by the bulk valence bands, as shown
in Fig. 2(d).

The hidden Dirac point of the edge states in case (iii) can
be attributed to the anticrossing between the E1 and LH1
subbands by comparing with Fig. 1(a). We find that the Dirac
point can be hidden only around the value of �V where the
anticrossing behavior occurs. The Dirac point will not be buried
in the bulk states but will be well exposed in the bulk gap if the
LH1 subbands are not taken into account. The hidden Dirac
point is also related to the strong anisotropy in the system,
which inherits from the bulk Kane model. The finding that the
Dirac point of edge states can be hidden in the bulk bands
serves as the basis for the robust quantum edge transport in
InAs/GaSb quantum wells under time-reversal breaking as is
discussed in the following, and it is one of our main results.

V. EFFECTIVE g FACTORS OF EDGE STATES

A magnetic field B breaks time-reversal symmetry, and
consequently the Dirac point of the edge states will no longer

be topologically protected if there is no other hidden symmetry.
The time-reversal symmetry breaking can be evidenced by
a gap opening in the helical edge states, which originates
from the Zeeman and the orbital coupling effects of the bulk
electrons in an external magnetic field. In the six-band effective
model, the Zeeman term can be written as

HZ = HZ
c ⊕ HZ

v , (16)

with

HZ
c = (1/2)geμBs · B, (17)

for electrons in the s-like E1 bands, and

HZ
v = ghμBJ · B, (18)

for the p-like HH1 and LH1 bands [27,36]. Here s =
{sx,sy,sz} are the Pauli matrices for spin-1/2, J are the 4×4
angular momentum matrices for j = 3/2, and μB is the Bohr
magneton. ge and gh are the g factors for bulk electrons
and holes, respectively, and are taken to be ge = −10.0 and
gh = 0.3 [37,38] in the following.

The response of the helical edge states to the magnetic fields
can be examined by projecting the Zeeman term in the space
spanned by the two helical edge states |ψ0+〉 and |ψ0−〉 at the �

point. Note that |ψ0+〉 and |ψ0−〉 are time reversal counterparts
of each other. The corresponding effective Zeeman coupling
can be summarized as

HZ
edge = μB

2

∑
i,j=x,y,z

gij σiBj , (19)

where gij is the effective g factor tensor and σx,y,z are the Pauli
matrices for the edge state space. Note that the effective model
for the helical edge states takes the form H0

edge = h̄vF kxσz,
where vF is the effective velocity.

The g factor tensor is attributed to the fact that the two
helical edge states at the � point are not the eigenstates of
electron spin. Figures 3(a)–3(c) plot the values of the g-factor
elements gij for different �V , from which several points are
worth addressing. For a perpendicular magnetic field Bz, con-
sidering the contribution from the orbital angular momentum
coupling to Bz, a large value of gzz is obtained. This large gzz

just shifts the position of the degeneracy (Dirac) point of the
helical edge states in the kx direction, whereas it does not open
an energy gap (so we do not show it here). However, a nonzero
gxz does open an energy gap. Here the Peierls substitution is
performed as t ij → t ij exp[ie

∫ j

i
d� · A/h̄], where t ij is the

hopping integral between sites i and j . For an in-plane field,
the orbital contribution to g factors is ignorable as electrons
are confined in the quantum wells. gxx and gyy always take
nonzero values, which indicates that an in-plane magnetic field
also opens a gap in the edge states. These values of the Zeeman
gap calculated from the effective g-factor tensor of edge states
match well with those obtained directly from the spectrum [see
Fig. 3(d)]. Therefore the nonzero g factors indicate an opened
gap at the Dirac point of helical edge states under time-reversal
symmetry breaking [39], and the QSH effect is broken down.
It is also interesting to find that the effective g factors of edge
states show an evident anisotropy. Especially for the in-plane
magnetic fields, both edge Zeeman gaps �

x,y

Z decay as �V

decreases, but �x
Z decays much faster, which indicates that the
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FIG. 3. Effective g factors of edge states and Zeeman energy gaps
for edge state spectra. The effective g-factor tensor elements of the
edge states as a function of �V for the magnetic field along (a) x,
(b) y, and (c) z directions, respectively. (d) The energy gaps �

x,y,z

Z of
the edge states opened by three principal magnetic fields of 0.5 T as
functions of �V . V0 = −100 meV is taken for all figures.

anisotropy is enhanced for a small �V . Finally, we note that
�

x,y

Z can reach the order of 1 meV for a magnetic field of 10
T, which is experimentally measurable at low temperatures.
However, these Zeeman gaps �

x,y

Z could be hidden since the
Dirac point would be hidden by the bulk valence bands after
the anticrossing behavior at a small �V .

VI. ROBUSTNESS OF THE QUANTUM EDGE TRANSPORT

Now let us address the robustness of the edge transport
in the InAs/GaSb quantum wells in the inverted regime. It is
known that the quantized two-terminal conductance 2e2/h of a
QSH insulator is a consequence of the helical edge states [40],
which has been measured experimentally in the InAs/GaSb
quantum wells [9]. Unexpectedly, under in-plane magnetic
fields either along or normal to the boundary, the quantized
conductance value remains quantized for mesoscopic samples
and persists up to 12 T [18]. To understand the robustness
of the quantized conductance plateau, the evolution of the
band structure subjected to an in-plane external magnetic field
has been explored. The in-plane magnetic field effect can be
included by considering that the InAs and GaSb layers are
spatially separated [24]. An in-plane magnetic field applied
along the open boundary By will not only open an energy gap
at the Dirac point of the edge states but will also tilt the bulk
energy spectra and reduce the bulk gap [14,22], as shown in
Fig. 4(c). Henceforth, there is no direct gap between the edge
states and the valence bands if the Dirac point is buried in the
bulk. A similar effect happens for the in-plane magnetic field
Bx normal to the open boundary.

Consider a ribbon geometry of the InAs/GaSb quantum
wells. One can see the robustness of edge transport from

FIG. 4. Spatial distribution of wave functions of edge states.
(a) The wave functions of edge states for different energies corre-
sponding to Fig. 2(c). (b) The wave functions of edge states for
different broken gap values at fixed kx = 0 Å−1 with V0 = −100 meV.
(c) Energy spectrum similar to Fig. 2(c) but for the magnetic field
By = 4 T. (d) The wave functions of edge states for different
energies corresponding to panel (c). Here �V = −20 meV and
V0 = −100 meV are taken in panels (a), (c), and (d). Periodic and open
boundary conditions are taken for the x and y directions, respectively.

the wave functions of edge states under magnetic fields.
Figures 4(a) and 4(b) are for the cases without a magnetic
field. Figure 4(a) shows that the wave functions of edge states
clearly distribute near the edge when the energies of edge states
are inside the bulk gap and will gradually evolve to bulk when
the energies are close to bulk bands. The wave functions of
edge states tend to distribute closer to the edge with smaller
�V (smaller �V means a deeper inverted regime), as shown in
Fig. 4(b). In the presence of an in-plane magnetic field, there is
a small gap opened at the Dirac point, whereas there is no direct
gap in the bulk gap range, as shown in Fig. 4(c) for the magnetic
field By = 4 T. However, the corresponding wave functions of
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FIG. 5. The two-terminal conductance G of InAs/GaSb quantum
wells in magnetic fields. (a) G as a function of the Fermi energy EF

for various magnetic fields Bx along the x direction. (b) The same
as panel (a) but for magnetic fields By applied along the y direction.
�V = −20 meV and V0 = −100 meV are taken for all curves.
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FIG. 6. The two-terminal conductance G of InAs/GaSb quantum
wells in the presence of a magnetic field and disorder. (a) G as a
function of the Fermi energy EF for various magnetic fields Bx .
(b) The same as panel (a) but for magnetic fields By applied along the
y direction. �V = −20 meV, V0 = −100 meV, W = 10 meV, and
50 disorder configurations are considered for all curves.

edge states [see Fig. 4(d)] are nearly unaffected by the magnetic
field By , as compared with Fig. 4(a). Similar results can be
reached for magnetic fields Bx along the boundary. This indi-
cates the robustness of edge states even though time-reversal
symmetry is violated and a gap opens at the Dirac point.

The two-terminal conductance is calculated as a function
of the Fermi energy EF under different in-plane magnetic
fields by means of the Landauer-Büttiker formalism. The
sample geometry considered consists of a rectangular central
region (size Lx × Ly = 200a × 150a) and two semi-infinite
leads are connected to it as source and drain leads. With
the help of the recursive Green’s function technique [41,42],
the conductance from the left terminal to the right terminal can
be evaluated as

G = e2

h
Tr[�LGr�RGa], (20)

where �L,R are the linewidth functions coupling to the left lead
and the right lead, respectively, and Gr (Ga) is the retarded
(advanced) Green’s function of the central region [43].

In the absence of a magnetic field, the value of two-terminal
conductance is exactly quantized at G = 2e2/h as predicted
theoretically for the QSH effect. The conductance plateau
2e2/h remains for different magnetic fields either along the
boundary as shown in Fig. 5(a) or normal to the boundary as
shown in Fig. 5(b), which can be attributed to the fact that the
energy gap of edge states is buried in the bulk valence bands
and no direct gap opens in the bulk gap energy range. We note
that a much stronger magnetic field makes the width of the
conductance plateau narrower, which indicates that the system
will be a semimetal under strong magnetic fields.

To illustrate the disorder effect on edge state transport, the
Anderson-type disorder is introduced through random on-site
potential with a uniform distribution within [−W/2,W/2],
where W denotes the disorder strength. Figures 6(a) and 6(b)
show the conductance under magnetic fields in a disordered
system corresponding to Figs. 5(a) and 5(b), respectively. The
conductance remains nearly quantized at G = 2e2/h in an
energy range even in the presence of disorder with strength
W = 10 meV for different magnetic fields Bx as shown in
Fig. 6(a) or By as shown in Fig. 6(b). This further indicates the
robustness of edge states against weak disorder and magnetic
field. Of course the edge transport could be finally destroyed
by a stronger disorder. Therefore the picture of a hidden Dirac
point may account for the experimental observations on robust
quantum edge transport in InAs/GaSb quantum wells [18].

VII. DISCUSSION AND CONCLUSIONS

The gap opened in the edge states under an in-plane
magnetic field can be measured explicitly by means of a
reciprocal spin Hall effect in a multiterminal measurement
[44,45]. The edge state transport could survive even if the edge
states and the bulk electrons of valence bands coexist, and it
can be checked in the nonlocal measurement. This provides a
possible way to verify the existence of the edge states buried by
the HH bands. However, the nonlocal transport will disappear
if the Fermi level sweeps over the energy gap of the edge states
in the presence of the magnetic field if the bulk electrons in the
HH bands are presented.

In summary, we reexamine the band structure and construct
a six-band effective model for InAs/GaSb quantum wells from
the bulk Kane model. An energy gap for helical edge states
opens under a magnetic field, which is well described by the
effective g factors of edge states. The edge transport remains
robust even though the magnetic field has already broken
time-reversal symmetry and opened an energy gap for the
helical edge states. This robustness is attributed to the peculiar
topological band structure in which the Dirac point of the
helical edge states is buried in the bulk valence band after the
anticrossing behavior.
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