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Abstract

For a natural numberm, generalizedm-gonal numbers are those numbers of the form
pm(x) = (m−2)x2−(m−4)x

2 with x ∈ Z. In this paper we establish conditions onm for
which the ternary sum pm(x) + pm(y) + pm(z) is almost universal.
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1 Introduction
For a natural number m, the x-th generalized m-gonal number is given by pm(x) =
(m−2)x2−(m−4)x

2 where x ∈ Z. In 1638, Fermat claimed that every natural number may
be written as the sum of at most 3 triangular numbers, 4 squares, 5 pentagonal numbers,
and in generalmm-gonal numbers. Lagrange proved the four squares theorem (them = 4
case) in 1770, Gauss proved the the triangular number theorem (them = 3 case) in 1796,
and Cauchy proved the full claim in 1813 [1,2]. Guy [9] later investigated the minimal
number rm ∈ N chosen such that every natural number may be written as the sum of rm
generalizedm-gonal numbers. Form ≥ 8, Guy noted that an elementary argument shows
that one needsm−4 generalizedm-gonal numbers to representm−4, som−4 ≤ rm ≤ m.
However, he pointed out that for large enough n ∈ N, one could likely represent n with
significantly fewer generalized m-gonal numbers. In this paper, we investigate for which
m every sufficiently large n ∈ N is the sum of three m-gonal numbers. That is to say, we
study representations of natural numbers by the ternary sum

Pm(x, y, z) := pm(x) + pm(y) + pm(z),

and we ask for whichm the form Pm is almost universal; a form is called almost universal
if it represents all but finitely many natural numbers. In other words, we would like to
determine the set ofm for which the set

Sm :={
n ∈ N : �(x, y, z) ∈ Z

3 with Pm(x, y, z) = n
}

is finite. The set Sm is those positive integers which are not represented by Pm, and we
call Pm almost universal if Sm is finite.

Theorem 1.1 If m �≡ 2 (mod 3) and 4 � m, then Pm is almost universal.
© SpringerNature 2018.
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Remarks (1) Theorem 1.1 states that for m �≡ 2 (mod 3) and 4 � m, every sufficiently
large natural number may be written as the sum of at most three generalized m-
gonal numbers. However, its proof relies on Siegel’s ineffective bound [24] for the
class numbers of imaginary quadratic orders, so the result does not give an explicit
bound nm such that every n > nm may be written as the sum of three generalized
m-gonal numbers.

(2) Questions of almost universality have recently been studied by a number of authors,
but in a slightly different way. In most cases, (m1, m2, m3) ∈ N

3≥3 has been fixed and
authors investigated representations by weighted sums of the type

apm1 (x) + bpm2 (y) + cpm3 (z).

In particular, authors worked on the classification of a, b, c for which the above form
is almost universal; on the contrary, in Theorem 1.1 we fix a, b, and c and vary m.
In [13], for example, a classification of such a, b, c was given for m1 = m2 = 4 and
m3 = 3. In the case of a weighted sum of triangular numbers, a partial answer was
given in [13], and the characterization of such almost universal sums was completed
by Chan and Oh in [3]. The most general result to date appears in [10], where a
characterization of almost universal weighted sums ofm-gonal numbers is given for
m− 2 = 2p with p an odd prime. In this last case, the results in [10] imply that Pm is
not almost universal (note that m ≡ 0 (mod 4), so this is partially complementary
to the result in Theorem 1.1).

It turns out that the restrictions m �≡ 2 (mod 3) and 4 � m are both necessary in
Theorem 1.1, but are of a very different nature. If 4 | m, then there is a local obstruction to
Pm being almost universal, i.e., there is an entire congruence class AN0 +B ⊆ Sm because
it is not even represented modulo A. Details of these local obstructions may be found in
Lemma 3.1.
The restriction m �≡ 2 (mod 3) (with 4 � m) is much more delicate, and a seemingly

deep connection between the analytic and algebraic theory lies beneath this case. In this
case, there are no local obstructions, but Sm is not necessarily finite. To get a better
understanding of the set Sm, form even we define

Se
m,3 :=

{

n ∈ Sm : ∃r ∈ Z with 2(m − 2)n + 3
(
m − 4

2

)2
= 3r2

}

and form odd we define

So
m,3 :=

{
n ∈ Sm : ∃r ∈ Z with 8(m − 2)n + 3(m − 4)2 = 3r2

}
.

We next see that if m ≡ 2 (mod 3), then most of the exceptional set Sm is contained in
Se
m,3 ifm ≡ 2 (mod 4) and contained in So

m,3 ifm is odd.

Theorem 1.2 (1) If m ≡ 2 (mod 12), then Sm \ Se
m,3 is finite.

(2) If m ≡ 2 (mod 3) and m is odd, then Sm \ So
m,3 is finite.

The proof of Theorem 1.1 mainly uses the analytic approach and relies on ineffective
bounds of class numbers. However, this approach fails to gain any control in determining
the sets Se

m,3 and So
m,3. One is hence motivated to blend the two approaches together in

order to investigate these sets. From the algebraic point of view, representations of an
integer n by Pm is equivalent to representations of a related integer by a lattice coset L+ν,
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where L = L(m) and ν = ν(m) are completely determined bym (for the precise formulation
of L and ν see Sect. 2). To explain why combining the algebraic and analytic theories may
be beneficial, we recall an important interplay between the analytic and algebraic theories
which occurs when Pm is replaced with the quadratic form Q on the positive-definite
ternary lattice L, called the norm on L, which we later emulate. To understand the link,
for such a lattice L, letL denote the primitive elements of L (those which are not non-zero
integral multiples of other elements of L) and set

SL := {n ∈ N : �α ∈ L with Q(α) = n}.
Since L is a positive-definite lattice, there will always be local obstructions at an odd
number of finite primes, but our main consideration is those n ∈ SL which are locally
represented, which we refer to as locally admissible. Moreover, there are finitely many
primes p (known as anisotropic primes) for which every ν ∈ LwithQ(ν) highly divisible by
p is necessarily imprimitive (i.e., ν = pν′ for some ν′ ∈ L). Therefore, if ordp(n) is large, we
immediately conclude that n ∈ SL, so we restrict ordp(n). Using the analytic theory, one
can show that for the special case where L is a lattice, the subset of n ∈ SL which are both
locally admissible and have bounded p-adic order (by a specific constant depending on p)
at all anisotropic primes p is finite outside of finitely many square classes t1Z2, . . . , t�Z2.
This follows from a result of Duke and Schulze-Pillot in [7]. The behavior inside these
square classes is explained via the spinor norm map in the algebraic theory; this occurs
by realizing tjZ2 as a spinor exceptional square class; the primitive spinor exceptions for
the genus of L are those integers which are primitively represented by some but not all of
the spinor genera in the genus of L. These primitive spinor exceptions are determined by
Earnest et al. in [8]. With additional investigation one can use these results to determine
the existence of infinite subsets of admissible elements of SL; from this one can determine
that if the subset of admissible elements of SL with bounded divisibility at the anisotropic
primes is infinite, then there is at least one spinor exceptional square class.
Returning to our casePm, onewould expect a similar theory of spinor exceptional square

classes to emerge if one could link the algebraic and analytic approaches. It is revealing
that for 4 � m the only possibly infinite part of n ∈ Sm occurs when An + B is within
the square class 3Z

2, hinting at a synthesis between the approaches yet to be investigated.
In order to state a conjectural link in our case, we next recall the link between the two
approaches in a little more detail.
Themain synthesis between the analytic and algebraic theories goes through the Siegel–

Weil (mass) formula. For a lattice L0 in a positive-definite space, let G(L0) be a set of
representatives of the classes in the genus gen(L0) of L0. One version of the Siegel–Weil
formula states that

Egen(L0) :=
1

∑
L∈G(L0) ω

−1
L

∑

L∈G(L0)

�L
ωL

,

is a certain Eisenstein series. Here �L is the theta function associated to L [i.e., the gener-
ating function for the elements of L of a given norm; see (2.10)] and ωL is the number of
automorphs of L (i.e., the number of linear isometries from L to itself; these are invertible
linear maps on the vector space QL which fix L and preserve the associated quadratic
form Q). If L0 has rank 3, then if one instead takes the associated sum over a set S(L0) of
representatives of the classes of lattices in the spinor genus spn(L0), one obtains
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1
∑

L∈S(L0) ω
−1
L

∑

L∈S(L0)

�L
ωL

= Egen(L0) + Uspn(L0), (1.1)

where Uspn(L0) is a linear combination of unary theta functions [20,21]. The Fourier coef-
ficients of Uspn(L0) count the excess or deficiency of the weighted average of the number
of representations by the spinor genus of L0 when compared with the weighted average
of the number of representations by the genus, giving a direct connection back to the
algebraic theory, the spinor normmap, and spinor exceptions. The key observation which
makes (1.1) useful is that the left-hand side is a weighted average of modular forms all
of whose coefficients are non-negative. Hence if the n-th coefficient of this sum is zero,
then the n-th coefficient of each summandmust also be zero, and these coefficients count
the number of representations of n. On the other hand, the functions appearing on the
right-hand side of (1.1) are special types of modular forms whose Fourier coefficients may
be explicitly computed.
After rewriting the question about representations by Pm as a question about represen-

tations by a particular lattice coset L(m)+ν(m) (defined in (2.1) and (2.2)), onewould expect
such a theory to hold in our case as well. Indeed, the Siegel–Weil formula for the genus
of every lattice coset L + ν was proven by van der Blij [26] and then later independently
by Shimura [23], who showed that

�gen(L+ν) = Egen(L+ν) := 1
∑

M+ν′∈G(L+ν) ω
−1
M+ν′

∑

M+ν′∈G(L+ν)

�M+ν′

ωM+ν′
,

is an Eisenstein series, where ωM+ν′ is the number of automorphs of the lattice coset and
G(L + ν) denotes a complete set of representatives of the classes in the genus of L + ν.
Kneser further showed in [15] how this formula for the genus of lattice cosets follows
by investigating the Haar measure on the orthogonal group, but we do not take that
perspective in this paper. We conjecture that the expected link holds in the same way for
spinor genera of lattice cosets.

Conjecture 1.3 We have

�spn(L+ν) := 1
∑

M+ν′∈S(L+ν) ω
−1
M+ν′

∑

M+ν′∈S(L+ν)

�M+ν′

ωM+ν′
= Egen(L+ν) + Uspn(L+ν),

where Uspn(L+ν) is a linear combination of unary theta functions and S(L+ ν) denotes a set
of representatives of the classes in the spinor genus of L + ν.

Conjecture 1.3 is useful in two different ways. Firstly, it shows that the number of
representations by the spinor genus is usually the same as the number of representations
by the genus, and secondly it is useful for showing that certain integers in the support of
the unary theta functions are not represented by a given lattice coset. To better understand
the utility of Conjecture 1.3 and to motivate why we believe it to be true, we return to Pm.
In particular, form = 14, a finite calculation yields the following.

Proposition 1.4 The theta function �spn(L(14)+ν(14)) satisfies Conjecture 1.3.

As stated above, one of the main advantages of Proposition 1.4 is that one can use it to
show that the Fourier coefficients of �spn(L14+ν14) usually agree with those of

Em := Egen(L(m)+ν(m)).
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However, we specifically use Proposition 1.4 to investigate the coefficients supported by
the unary theta functions to prove that infinitely many coefficients of �14 in these square
classes vanish, where

�m := �L(m)+ν(m) .

We then build off of this to use Proposition 1.4 to prove that Pm is not almost universal
for everym ≡ 2 (mod 12).

Theorem 1.5 For every m ≡ 2 (mod 12), the form Pm is not almost universal.

Remarks (1) For any given lattice coset L + ν, one can check Conjecture 1.3 with a
(possibly long) finite calculation. To show that Conjecture 1.3 is true for all lattice
cosets, one would need to develop the algebraic theory further to determine spinor
exceptions (resp. primitive spinor exceptions) for lattice cosets, proving a theorem
analogous to Schulze-Pillot’s results in [19] (resp. Earnest, Hsia, and Hung’s results
in [8]).

(2) It is natural to ask whether one expects the forms Pm to be almost universal in
the case that m ≡ 2 (mod 3) is odd. Guy showed in [9] that P5 is not only almost
universal, but indeeduniversal. Computer calculations indicate thatP11 is also almost
universal. In order to prove that any given Pm in this family is almost universal,
it suffices to decompose the associated theta function into an Eisenstein series, a
linear combination of unary theta functions, and a cusp form which is orthogonal to
unary theta functions. If the contribution from unary theta functions is trivial, then
form will be almost universal. Following Conjecture 1.3, one expects the unary theta
function contribution to directly appear from the theta function associated to the
spinor genus.

The paper is organized as follows.We first give some preliminary definitions and known
results in Sect. 2. In Sect. 3, we use algebraic methods to establish the local behavior of Pm.
In Sect. 4, we give a proof Theorem 1.1 using analytic methods. We then finally blend the
two approaches together in Sect. 5 in order to prove Proposition 1.4 and Theorem 1.5.

2 Preliminaries
In this section, we introduce the necessary objects used in the algebraic proofs.

2.1 Setup for the algebraic approach: lattice theory

For the algebraic approach, we adopt the language of quadratic spaces and lattices as set
forth in [17]. If L is a lattice and A is the Gram matrix for L with respect to some basis,
we write L ∼= A. When A is a diagonal matrix with entries a1, ..., an on the diagonal, then
A is written as 〈a1, ..., an〉. For a lattice L, we let V denote the underlying quadratic space;
that is, V = QL. In this case, we say that L is a lattice on the quadratic space V . For a
lattice L we define the localization of L by Lp = L ⊗Z Zp, where now Lp is a Zp-lattice on
Vp := V ⊗Q Qp.
Given a lattice L and a vector ν ∈ V , we have the lattice coset L + ν. If we define a

latticeM = L + Zν, then L + ν can be regarded as coset inside the lattice quotientM/L.
Elements in L + ν are simply vectors of the form ν + x, where x ∈ L.
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We are considering representations of an integer n by the sum Pm, which upon com-
pleting the square, is seen to be equivalent to the condition that

�n :=
⎧
⎨

⎩
3

(
(m−4)

2

)2 + 2(m − 2)n form even

3 (m − 4)2 + 8(m − 2)n form odd,

is represented by the lattice coset L + ν, where L = L(m) is defined as the Z-lattice
⎧
⎨

⎩
〈(m − 2)2, (m − 2)2, (m − 2)2〉 form even

〈4(m − 2)2, 4(m − 2)2, 4(m − 2)2〉 form odd,
(2.1)

in the orthogonal basis {e1, e2, e3}, and

ν = ν(m) := (m − 4)
2(m − 2)

(e1 + e2 + e3) . (2.2)

To prove Theorem 1.1, we need to show that all but finitely many �n are represented by
the lattice coset L + ν.
In order to approach this problem from the algebraic side, we need to develop some

algebraic notion of the class, spinor genus, and genus of a lattice coset. Following the
definitions that originally appear in [4] the class of L + ν is defined as

cls(L + ν) := the orbit of L + ν under the action of SO(V ), (2.3)

the spinor genus of L + ν as

spn(L + ν) := the orbit of L + ν under the action of SO(V )O′
A
(V ), (2.4)

and the genus of the lattice coset L + ν by

gen(L + ν) := the orbit of L + ν under the action of SOA(V ), (2.5)

and where O′
A
(V ) denotes the adeles of the kernel of the spinor norm map, θ : SO(V ) →

Q
×/Q

×2 as defined in [17, §55]. Note that what we refer to as the genus (resp. spinor
genus or class) above is often called the proper genus (resp. proper spinor genus or proper
class), and is commonly denoted with a superscript +; e.g., the proper genus is written
gen+(L + ν), while the (non-proper) genus (resp. spinor genus and class) are usually
defined with the corresponding special orthogonal groups (e.g., SOA(V )) replaced by the
orthogonal groups (e.g.OA(V )). Although the genus and proper genus are always equal in
the cases of lattices (see [17, §102 A]) this is not always true for lattice cosets. In particular,
if O(Lp + ν) does not contain an improper isometry (an element of the orthogonal group
with determinant − 1) at some finite prime p, then gen+(L + ν) � gen(L + ν). For an
example of this phenomenon, we direct the reader to [4, Example 4.5]. In our case we
are guaranteed that O(Lp + ν) contains a symmetry at every prime p. This is obvious at
primes p not dividing 2(m − 2) since in this case Lp + ν = Lp is just a diagonal lattice.
At other primes we can take the symmetry τe1−e2 , which switches the basis elements e1
and e2 while fixing e3. Therefore the gen(L + ν) = gen+(L + ν). Since it will not make
a difference in this setting, we choose to define the class, genus, and spinor genus above
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in terms of the special orthogonal group so that our notation matches that given in [27],
which will be helpful to us in what follows. We let G(L+ ν) (resp. S(L+ ν)) denote a set of
representatives of the classes in gen(L+ ν) (resp. spn(L+ ν)). For any further unexplained
notation, the reader is directed to [17].
The general strategy will be to show first that there are no local obstructions, i.e. that

Q(ν) + 2(m − 2)n is represented by the gen(L + ν). Next we will determine conditions
under which the spinor genus and genus coincide. An essential ingredient here will be to
count the number of spinor genera in the genus of a lattice coset. For this we turn to a
formula given by Xu in [27], counting the number of spinor genera in gen(L + ν)

⎡

⎣JQ : Q
× ∏

p∈	

θ (SO(Lp + ν))

⎤

⎦ , (2.6)

where JQ is the set of ideles of Q and 	 is the set of primes in Q and SO(Lp + ν) is the
stabilizer of Lp + ν in SO(Vp). One easily checks that (cf. [4])

SO(Lp + ν) = {σ ∈ SO(Vp) : σ (Lp) = Lp and σ (ν) ≡ ν mod Lp}. (2.7)

In Theorem 3.4 we will explicitly compute the image of SO(Lp+ν) under the spinor norm
map and count the number of spinor genera.

2.2 Setup for the analytic approach: modular forms theory

We require some results about (classical holomorphic) modular forms.

2.2.1 Basic definitions

Let H denote the upper half-plane, i.e., those τ = u + iv ∈ C with u ∈ R and v > 0. The
matrices γ = ( a b

c d
) ∈ SL2(Z) (the space of two-by-two integralmatriceswith determinant

1) act on H via fractional linear transformations γ τ := aτ+b
cτ+d . For

j(γ , τ ) := cτ + d,

a multiplier system for a subgroup � ⊆ SL2(Z) and weight r ∈ R is a function ν : � �→ C

such that for all γ ,M ∈ � (cf. [18, (2a.4)])

ν(Mγ )j(Mγ , τ )r = ν(M)j(M, γ τ )rν(γ )j(γ , τ )r .

The slash operator |r,ν of weight r and multiplier system ν is then

f |r,νγ (τ ) := ν(γ )−1j(γ , τ )−r f (γ τ ).

A (holomorphic) modular form of weight r ∈ R andmultiplier system ν for � is a function
f : H → C satisfying the following criteria:

(1) The function f is holomorphic on H.
(2) For every γ ∈ �, we have

f |r,νγ = f. (2.8)

(3) The function f is bounded towards every cusp (i.e., those elements of �\(Q∪{i∞})).
This means that at each cusp 
 of �\H, the function f
(τ ) := f |r,νγ
(τ ) is bounded
as v → ∞, where γ
 ∈ SL2(Z) sends i∞ to 
.

Furthermore, if f vanishes at every cusp (i.e., limτ→i∞ f
(τ ) = 0), then we call f a cusp
form.
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2.2.2 Half-integral weight forms

We are particularly interested in the case where r = k + 1/2 with k ∈ N0 and

� = �1(M) :=
{(

a b
c d

)

∈ SL2(Z) : M | c, a ≡ d ≡ 1 (mod M)
}

,

for some M ∈ N divisible by 4. The multiplier system we are particularly interested in is
given in [22, Proposition 2.1], although we do not need the explicit form of the multiplier
for this paper.
If TN ∈ � with T := ( 1 1

0 1
)
, then by (2.8) we have f (τ + N ) = f (τ ), and hence f has a

Fourier expansion (af (n) ∈ C)

f (τ ) =
∑

n≥0
af (n)e

2π inτ
N . (2.9)

The restriction n ≥ 0 follows from the fact that f is bounded as τ → i∞. One commonly
sets q := e2π iτ and associates the above expansion with the corresponding formal power
series, using them interchangeably unless explicit analytic properties of the function f are
required.

2.2.3 Theta functions for quadratic polynomials

In [22, (2.0)], Shimura defined theta functions associated to lattice cosets L + ν (for a
lattice L of rank n) and polynomials P on lattice points. Namely, he defined

�L+ν,P(τ ) :=
∑

x∈L+ν

P(x)qQ(x),

where Q is the quadratic map on the associated quadratic space. We omit P when it is
trivial. In this case, we may write rL+ν(�) for the number of elements in L + ν of norm �

and we get

�L+ν(τ ) =
∑

�≥0
rL+ν(�)q�. (2.10)

Shimura then showed (see [22, Proposition 2.1]) that �L+ν is a modular form of weight
n/2 for �1(4N 2) (for someN which depends on L and ν) and a particular multiplier. Note
that we have taken τ �→ 2Nτ in Shimura’s definition. To show the modularity properties,
for γ = ( a b

c d
) ∈ �1(4N 2), we compute

2Nγ (τ ) = 2N
aτ + b
cτ + d

= a(2Nτ ) + 2Nb
c
2N (2Nτ ) + d

=
(

a 2Nb
c
2N d

)

(2Nτ ).

Since γ ∈ �1(4N 2), we have
(

a 2Nb
c
2N d

)

∈ �(2N ) :=
{

γ =
(
a b
c d

)

∈ SL2(Z) : γ ≡ I2 (mod N )
}

⊂ �1(2N ),

so wemay then use [22, Proposition 2.1]. Specifically, the multiplier is the samemultiplier
as �3, where �(τ ) := ∑

n∈Z qn2 is the classical Jacobi theta function.
We only require the associated polynomial in one case. Namely, for n = 1 and P(x) = x,

we require the unary theta functions (see [22, (2.0)] with N �→ 2N 2/t, P(m) = m, A =
(2N 2/t), and h �→ 2Nh, multiplied by (2N )−1)

ϑh,t (τ ) = ϑh,t,N (τ ) :=
∑

r∈Z
r≡h (mod N

t )

rqtr
2
, (2.11)
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where h may be chosen modulo N/t and t is a squarefree divisor of N . These are weight
3/2 modular forms on �1(4N 2) the same multliplier system as �L+ν .

3 Algebraic approach
As seen in Sect. 2.1, a natural number n is represented by Pm(x, y, z) if and only if �n is
represented by the lattice coset L+ ν. In this section, we check for local obstructions; i.e.,
we check whether �n may be represented by Lp + ν for every prime p.

Lemma 3.1 If m ≡ 0 (mod 4) then Pm is not almost universal.

Proof When m = 2p + 2 for an odd prime p, then the claim follows immediately from
[10, Theorem 7]. Otherwise it can be easily verified that ifm ≡ 0 (mod 4) then Pm(x, y, z)
always fails to represent an entire square class modulo 8, and is therefore not almost
universal. Specifically, if m ≡ 4 (mod 8), then Pm(x, y, z) does not represent any integer
congruent to −1 modulo 8, while if m ≡ 0 (mod 8), then Pm(x, y, z) does not represent
any integer congruent to 4 modulo 8. ��

In order for Pm to be almost universal, a necessary condition is that every integer �n is
represented by gen(L + ν). Since it will be helpful in much of what follows, we define the
ternary lattice M := L + Zν and note that this lattice has a basis {ν, e1, e2}. We will also
define T := {p prime : p | (m − 2)}.

Lemma 3.2 For any odd prime p /∈ T, we have Mp = Lp = Lp + ν.

Proof This follows immediately from the fact that ν ∈ Lp. ��

Lemma 3.3 If m �≡ 0 (mod 4), then �n is represented by Lp + ν for every prime p.

Proof For odd p /∈ T , Lemma 3.2 implies that Lp + ν = Lp and since Lp is unimodular, it
represents every integer in Zp (cf. [17, 92:1b]).
For odd p ∈ T and p �= 3, �n is a unit in Zp, since

Q(ν) =
⎧
⎨

⎩
3

(m−4
2

)2 whenm − 2 is even

3(m − 4)2 whenm − 2 is odd

is never divisible by p. Therefore, since Q(ν) is represented by Mp, it follows from the
local square theorem that �n is represented by Mp for every choice of n. Suppose that �n
is represented by an arbitrary coset Lp + tν of Lp inMp, where t ∈ {0, .., pk − 1}. Then

Q(ν) ≡ Q(ω + tν) ≡ t2Q(ν) (mod pk )

for ω ∈ Lp. Consequently, t = ±1, since the multiplicative group (Z/pkZ)× contains at
most one subgroup of order 2. Therefore �n is represented by the coset Lp + ν.
Finally, when p = 2, we will proceed by showing that in fact every integer in Z2 can be

written as anm-gonal number whenm− 2 ≡ 0 mod 4. We may suppose that ord2(m−
2) = k + 1 where k > 0. Therefore, (m− 2) = 2k+1ε and (m− 4) = 2γ where ε, γ ∈ Z

×
2 .

Then an integer n can be written as anm-gonal number precisely when there exists x ∈ Z2
such that

n = (m − 2)x2 − (m − 4)x
2

= 2kεx2 − γ x. (3.1)
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The x in (3.1) (in the algebraic closure of Z2) is given by

x = γ ± √
γ 2 − 4(2kε)(−n)
2k+1ε

= 1 ±
√
1 + 2k+2αn
2k+1β

(3.2)

where α = ε/γ 2 and β = ε/γ . By the local square theorem, we know that 1 + 2k+2αn is
the square of a unit in Z2. Therefore,

1 + 2k+2αn = (1 + 2sδ)2 = 1 + 2s+1δ + 22sδ2 = 1 + 2s+1(δ + 2s−1δ),

where s > 0 and δ ∈ Z
×
2 , and

x = 1 ±
√
1 + 2k+2αn
2k+1β

= 1 ± √
(1 + 2sδ)2

2k+1β
= 1 ± (1 + 2sδ)

2k+1β
.

When s > 1, since
∣∣2k+2αn

∣∣
2 = ∣∣2s+1(δ + 2s−1δ)

∣∣
2, it follows that k +2+ r = s+1 where

r = ord2(n). Therefore,

x = 1 − (1 + 2sδ)
2k+1β

= 2sδ
2k+1β

= 2rδ
β

∈ Z2,

since s = k + 1 + r. On the other hand, when s = 1, then k + 2 + r = 2 + ord2(1 + δ),
and therefore,

x = 1 + √
(1 + 2δ)2

2k+1β
= 1 + (1 + 2δ)

2k+1β
= 2 + 2δ

2k+1β
= 1 + δ

2kβ
= 2rδ

β
∈ Z2,

since k + r = ord2(1 + δ). Therefore, since every 2-adic integer can be expressed as an
m-gonal number, it follows that every �n is represented by the coset L2 + ν.
Whenm− 2 is odd a similar argument follows, by letting (m− 2) = ε and (m− 4) = γ

where ε, γ ∈ Z
×
2 and then simply replacing Eq. (3.1) with

2n = (m − 2)x2 − (m − 4)x = εx2 − γ x.

Hence Eq. (3.2) becomes

x = γ ± √
γ 2 − 4(ε)(−2n)

2ε
= γ ± √

γ 2 + 8αn
2β

where α = ε/γ 2 and β = ε/γ , and the result follows as above. ��

Having established the local conditions, we next calculate the number of spinor genera
for L+ ν. Recall from (2.6), the number of spinor genera in the genus of the coset is given
by

⎡

⎣JQ : Q
× ∏

p∈	

θ (SO(Lp + ν))

⎤

⎦

where JQ is the set of ideles of Q and	 is the set of primes in Q. From this formula, we see
that much like in the case of lattices, Z×

p ⊆ θ (SO(Lp + ν)) for every prime p is sufficient,
though certainly not necessary to guarantee that gen(L + ν) and spn(L + ν) coincide.

Proposition 3.4 (1) Ifm≡2 (mod 4) andm �≡2 (mod 12), then spn(L+ν)=gen(L+ν).
(2) For m ≡ 2 mod 12, there are two spinor genera in the genus of L + ν.
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Proof (1) For primes p /∈ T , it is immediate that Z
×
p ⊆ θ (SO(Lp + ν)) since Lp + ν =

Lp ∼= 〈1, 1, 1〉. For primes p ∈ T , we have (m − 2) = pkε and m−4
2 = γ where k ≥ 1 and

ε, γ ∈ Z
×
p . Then, in the basis {ν, e1, e2} we have

Mp ∼=

⎡

⎢
⎣

3γ 2 pkεγ pkεγ
pkεγ p2kε2 0
pkεγ 0 p2kε2

⎤

⎥
⎦ ,

and by a change of basis to {ν, pkεν − 3γ e1, pkεν − 3γ e2} we obtain

Mp ∼= 〈3γ 2〉 ⊥ 3p2kε2γ 2
[

6 −3
−3 6

]

.

From this we clearly see that Zp[ν] splitsMp as an orthogonal summand; in other words,
Mp is the orthogonal sumMp = Zp[ν] ⊥ Kp, where

Kp ∼= 9p2kε2γ 2
[

2 −1
−1 2

]

is a binary modular lattice. From here it follows immediately from [14, Satz 3] that Z
×
p ⊆

θ (SO(Kp)) for odd prime p. When p = 2 the result follows from [11, Lemma 1]. On the
other hand, setting

ω := pkε
γ

ν = e1 + e2 + e3

the set of vectors {ω,ω − 3e1,ω − 3e2} form a basis for Lp, and in this basis we obtain

Lp = Zp[ω] ⊥ Kp.

Any isometry SO(Kp) can be extended to an isometry σ ∈ SO(Mp) which simultaneously
satisfies σ (ν) = ν and σ (Lp) = Lp, and therefore σ (Lp + ν) = Lp + ν. Hence σ ∈
SO(Lp + ν), from which we may conclude that θ (SO(Kp)) ⊆ θ (SO(Lp + ν)) and hence
Z

×
p ⊆ θ (SO(Lp + ν)).
Now for any �x = (xp) ∈ JQ we know that xp is a unit at almost every prime. Therefore,

multiplying by a suitable element of a ∈ Q
× we can assume a�x = (axp) is a unit at every

prime. Moreover, since for the infinite prime θ (L∞ + ν) = θ (SO(V∞)) = R
×2 , we only

need to chose a to have the same sign as x∞. Chosen in this way, a�x is an element in the
restricted product.
(2)Whenm ≡ 2 mod 12, then L ∼= 〈(m−2)2, (m−2)2, (m−2)2〉 in the basis {e1, e2, e3}

and ν = m−4
2(m−2) [e1 + e2 + e3]. For primes away from T , we once again know that Lp +

ν = Lp ∼= 〈1, 1, 1〉, and hence Z
×
p ⊆ θ (SO(Lp + ν)). Moreover, for primes p �= 3 in

T , the argument from above is still sufficient to show that Z
×
p ⊆ θ (SO(Lp + ν)). When

p = 2 we make one further observation, namely that in this case Z
×
2 = θ (SO(L2 + ν)). If

σ ∈ SO(L2 + ν) then we know σ (ν) = ν + x for x ∈ L2, hence

Q(ν) = Q(σ (ν)) = Q(ν + x) = Q(ν) + Q(x) + 2B(ν, x),

by a simple congruence argument we see that no nontrivial x can satisfy this equal-
ity. Therefore the only isometries of L2 + ν are those fixing ν, and hence are precisely
the isometries of K2 described above. In particular, it follows from [11, Lemma 1] that
Z

×
2 Q

×
2
2 = θ (SO(K2)) = θ (SO(L2 + ν)).
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When p = 3, then we consider the generalized lattice M/L, as defined in [25], which
has the orthogonal group

O(M3/L3) = {σ ∈ O(V3) : σ (x) ∈ x + L3 for all x ∈ M3},
also defined in [25]. An isometry σ is in O(M3/L3) precisely when σ (L3) = L3 and
σ (ν) ≡ ν mod L3. Therefore, from (2.7), we see that O(M3/L3) = O(L3 + ν) and hence
SO(M3/L3) = SO(L3 + ν). However, from [25, Theorem 2] we know that θ (SO(M3/L3)),
and hence θ (SO(L3 + ν)) is generated by pairs of symmetries coming fromO(M3/L3). If τ
is a symmetry in O(M3/L3), then there is some ω = e1x1 + e2x2 + e3x3 ∈ L3 such that

τ (y) = τω(y) = y − 2B(ω, y)
Q(ω)

ω

for every y ∈ L3. We may assume that x1, x2, x3 ∈ Z3, and without loss of generality, that
x1 ∈ Z

×
3 . But now

τω(e1) = e1 − 2B(ω, e1)
Q(ω)

ω = e1 − 2 · (m − 2)2

(m − 2)2(x21 + x22 + x23)
ω

= e1 − 2
(x21 + x22 + x23)

ω ∈ L3

and hence x2 + y2 + z2 �≡ 0 mod 3. This means that at least one of x2 and x3 is not a unit,
without loss of generality, say x3 /∈ Z

×
3 . On the other hand,

τω(ν) = ν − 2B(ω, ν)
Q(ω)

ω = ν − (m − 4)(m − 2)(x1 + x2 + x3)
(m − 2)2(x21 + x22 + x23)

ω

= ν − (m − 4)(x1 + x2 + x3)
(m − 2)(x21 + x22 + x23)

ω

and since τω(ν) ≡ ν mod L3 it must follow that x1 + x2 + x3 ≡ 0 mod 3. Therefore
the only possibility is that x2 ∈ Z

×
3 and x1 �≡ x2 mod 3. Therefore, (m − 2)−2Q(ω) ≡ 2

mod 3, and consequently θ (SO(M3/L3)), and hence θ (SO(L3 + ν)), contains no nontrivial
elements. That is, 2 /∈ θ (SO(L3 + ν)). Finally, we will show that the number of spinor
genera in the genus of L + ν, in this case, is equal to 2. In order to show that

⎡

⎣JQ : Q
× ∏

p∈	

θ (SO(Lp + ν))

⎤

⎦ = 2,

we prove that the principal idele 1 and the idele ι, given by

ιp :=
⎧
⎨

⎩
1 if p �= 3,

2 if p = 3,

are inequivalent and the cosets [1] and [ι] are a full set of representatives of the quotient
space.
For any �x = (xp) ∈ JQ, we know that xp is a unit for almost every p. Multiplying by a

suitable element a in Q
× (where a has the same sign as x∞) if necessary, we may assume

that axp is a unit at every prime p (including the infinite prime). SinceZ
×
p ⊆ θ (SO(Lp+ν))

forp �= 3, the coset of �x is completely determined by the congruence class ofax3. Ifax3 ≡ 1
mod 3 then �x ∈ [1] and if ax3 ≡ 2 mod 3 then �x ∈ [ι]. ��
Although Proposition 3.4 (1) doesn’t directly lead to a proof of Theorem 1.1, it gives a

strong expectation for the results given in Theorem 1.1. Namely, there is a result of Duke



Haensch and Kane Res. Number Theory (2018) 4:4 Page 13 of 22

and Schulze-Pillot [7] which used the analytic theory to obtain the conclusion in the case
of lattices that every sufficiently large integer primitively represented by the spinor genus
is also represented by the lattice. Since the lattice and genus coincide by Proposition 3.4
(1), one may expect a result similar to Duke and Schulze-Pillot’s to imply Theorem 1.1.
Since no analogous theorem has yet been developed, we turn to a trick in the analytic
theory to prove Theorem 1.1.

4 Analytic approach
In this section, we use the analytic proof to show Theorem 1.1, Theorem 1.2 (2), and the
first statement of Theorem 1.2 (1). These are rewritten in the following theorem.

Theorem 4.1 Suppose that m �≡ 0 (mod 4). Then we have the following.

(1) If m �≡ 2 (mod 3), then every sufficiently large n may be represented in the form

n = pm(x) + pm(y) + pm(z)

for some x, y, z ∈ Z. That is to say, Pm is almost universal.
(2) If m ≡ 2 (mod 12), then every sufficiently large n /∈ Se

m,3 may be represented in the
form

n = pm(x) + pm(y) + pm(z)

for some x, y, z ∈ Z.
(3) If m ≡ 2 (mod 3) is odd, then every sufficiently large n /∈ So

m,3 may be represented in
the form

n = pm(x) + pm(y) + pm(z)

for some x, y, z ∈ Z.

Proof We split the proof into four pieces. First we assume thatm ≡ 2 (mod 4) and then
split depending on the congruence class of m modulo 3, and we will later assume that m
is odd.
By completing the square, a solution to the given representation is equivalent to a

solution to

2(m − 2)n + 3
(
m − 4

2

)2
=

(
(m − 2)x − m − 4

2

)2
+

(
(m − 2)y − m − 4

2

)2

+
(
(m − 2)z − m − 4

2

)2
.

We setN := (m− 2) and � = �n := 2(m− 2)n+ 3
(m−4

2
)2. Denoting by rm(�) the number

of such solutions (with rm(�) := 0 if � is not in the correct congruence class), we hence
consider the generating function

�m(τ ) :=
∑

n≥0
rm(�n) q�n , (4.1)

where q := e2π iτ . The function �m is a theta series for a lattice coset. Since the gram
matrix A = N 2 · I3 associated to the lattice is diagonal with even entries, [22, Proposition
2.1] (with P(m) = 1, τ �→ 2Nτ , and h = ((m − 4)/2, (m − 4)/2, (m − 4)/2)T ) implies



Haensch and Kane Res. Number Theory (2018) 4:4 Page 14 of 22

that �m is a weight 3/2 modular form on �1(4N 2) with some multiplier. As usual, we
decompose

�m(τ ) = Em(τ ) + Um(τ ) + fm(τ ), (4.2)

where Em is in the space spanned by Eisenstein series, Um is in the space spanned by unary
theta functions, and fm is a cusp form which is orthogonal to unary theta functions. Of
course, each term in the decomposition is modular of weight 3/2 on �1(4N 2) with the
same multiplier.
We now follow an argument of Duke and Schulze-Pillot [7], who proved that sufficiently

large integers are primitively represented by quadratic forms if and only if they are prim-
itively represented by the spinor genus of the quadratic form (i.e., they investigated the
coefficients of theta series with �m replaced with the theta series for a lattice). By work
of Duke [6], the Fourier coefficients of fm grow at most like �3/7+ε , while the coefficients
of Em are certain class numbers and by Siegel’s (ineffective) bound [24] for class numbers,
they grow like� �1/2−ε for any � supported on the coefficients of Em and which are prim-
itively represented by the genus. The requirement that the representations are primitive
comes from the fact that there are certain primes p for which the pr�-th coefficients of
Eisenstein series do not grow as a function of r; this phenomenon is explained on the alge-
braic side in the case of lattices by realizing p as an anisotropic prime. When the power
of such primes is bounded, the coefficients of Em grow faster than the coefficients of fm.
We may hence disregard fm completely whenever the �-th coefficient is not supported in
Um and the power of bad primes p dividing � is bounded. However, Shimura [23] used the
Siegel–Weil formula for inhomogeneous quadratic forms (i.e., quadratic polynomials) to
show that Em is the weighted average of representations by members of the genus of the
lattice coset and simultaneously the product of the local densities. For p | m − 2 with
p �= 3, the power of p dividing � for p | m − 2 is bounded from above by the congruence
conditions. Similarly, if ord3(m − 2) > 1, then ord3(�) is bounded. In the special case
that ord3(m − 2) = 1, we note that X2 + Y 2 + Z2 ≡ 0 (mod 3) implies that either 3
divides each of X , Y , and Z or none of them. Hence, in this case, the local density at 3
for representations of � by the lattice coset equals the local density at 3 corresponding
to the number of primitive representations by the lattice. Since 3 is not an anisotropic
prime for the lattice 〈1, 1, 1〉, we conclude that the local densities grow as expected. Since
Lp + ν = Lp for p � m − 2 by Lemma 3.2, the coefficients of Em grow � �

1
2−ε when-

ever they are represented (due to the fact that � is primitively represented by the lattice).
Hence the congruence conditions for Em are equivalent to checking that the integer is
represented locally, or in other words that the genus represents the given integer, which
follows immediately from Lemma 3.3.
We claim furthermore that Um is identically zero, from which the claim will follow. We

may decompose Um(τ ) into a linear combination of finitely many unary theta functions
(defined in (2.11)). The goal now is to determine the possible ϑh,t in the decomposition
withnon-zero coefficient.Wedo soby restricting thepossible choices of t with congruence
conditions on tr2 implied by the definition of �m. The � upon which the coefficients of
q� in ϑh,t are supported must satisfy

� = tr2 ≡ 0 (mod t).
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However, the coefficients of the unary theta function are supported on the same integers
as the original theta series �m, since the Eisenstein series are also supported on these
coefficients and there would hence otherwise be integers � upon which the coefficient of
�m is negative, contradicting the fact that it is a generating function for the non-negative
integers rm(�). Therefore, we conclude that

2(m − 2)n + 3
(
m − 4

2

)2
= � ≡ 0 (mod t).

Since 2(m − 2) is even and 3 ((m − 4)/2)2 is odd, we conclude that t must be odd. The
congruence then becomes

3
(
m − 4

2

)2
≡ 0 (mod t),

where t is some divisor of (the odd part of)m − 2. Rewritten, this implies that

t
∣∣∣

(

m − 2, 3
(
m − 4

2

)2
)

.

Now note that if p | m − 2 and p | m − 4, then

p | m − 2 − (m − 4) = 2 =⇒ p = 2.

Thus, since (m − 4)/2 is odd,
(

m − 2, 3
(
m − 4

2

)2
)

= (m − 2, 3).

We now split the proof into two cases to prove (1) and (2).
To prove (1) form even, we assume thatm �≡ 2 (mod 3), so

t | (m − 2, 3) = 1.

We conclude that t = 1. However, sincem− 2 is even and (m− 4)/2 is odd, we also have

� =
(
(m − 2)x + m − 4

2

)2
+

(
(m − 2)y + m − 4

2

)2

+
(
(m − 2)z + m − 4

2

)2
≡ 3 (mod 8).

In particular, � = tr2 ≡ 3 (mod 8) implies that t = 1 is impossible. Since there are no
possible choices of t, we conclude that Um = 0. This gives the first claim in the casem ≡ 2
(mod 4).
To prove (2), we assume thatm ≡ 2 (mod 3) (i.e.,m ≡ 2 (mod 12)), so that

t | (m − 2, 3) = 3

implies that t = 1 or t = 3. The case t = 1 is again impossible by the congruence condition
modulo 8 considered in part (1). It follows that Um is a linear combination of forms all of
which have t = 3. Hence every n sufficiently large for which the corresponding � is not of
the form 3r2 must be represented as the sum of threem-gonal numbers.
We now consider the casem odd. In this case,

n = pm(x) + pm(y) + pm(z)
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is equivalent to

8n(m − 2) + 3(m − 4)2 = (2(m − 2)x + (m − 4))2 + (2(m − 2)y + (m − 4))2

+ (2(m − 2)z + (m − 4))2 . (4.3)

Letting Rm(�) be the number of solutions to (4.3) with � = �n := 8n(m−2)+3(m−4)2,
by [22, Proposition 2.1] we see that

�′
m(τ ) :=

∑

n≥0
Rm(�n) q

�n
4N

is a weight 3/2 modular form on �1(4N 2) with some multiplier. Here N = (m − 2), as in
them ≡ 2 (mod 4) case above. Firstly, Lemma 3.3 implies that �n is represented locally, or
equivalently, by the genus of the lattice coset. We conclude that the relevant coefficients
of the Eisenstein series E ′

m in the decomposition (4.2) are positive and it remains to again
determine the unary theta functions ϑh,t,2N which may occur in the decomposition (4.2).
Arguing as before, we have � ≡ 0 (mod t) and t | 2N . However, sincem is odd,m − 4 is
also odd, so � ≡ 3 (mod 8). It follows that t is odd, and hence t | N . We conclude that

t | (
m − 2, 3(m − 4)2

)
.

Since (m − 2, m − 4) = 1, we conclude that t | (m − 2, 3).
Now we complete the proof of (1) when m is odd. If m �≡ 2 (mod 3), then necessarily

t = 1. However, � ≡ 3 (mod 8) implies that � is not a square, and hence t = 1 is
impossible.
To prove (3), we assume m is odd and m ≡ 2 mod 3. Then, since t is a divisor of

1 or 3, we conclude that t = 1 or t = 3. However, t = 1 is again impossible because
�n ≡ 3 (mod 8) (as defined before the definitions of �m and �′

m above) for every n ∈ N0.
Therefore we have t = 3 and the only possible exceptions are in the square class 3Z

2. ��

5 Linking the analytic and algebraic theories and forms which are not almost
universal
In this section, we prove Proposition 1.4 and Theorem 1.5, establishing that Pm is not
almost universal for all m ≡ 2 (mod 12). We draw on intuition from Proposition 3.4 to
both motivate the proof of Theorem 1.5 and explain the statement. For m ≡ 2 (mod 4)
but m �≡ 2 (mod 12), Proposition 3.4 (1) implies that there is only one spinor genus in
the genus, and we proved in Theorem 1.1 that Pm is indeed almost universal in this case.
On the other hand, for m ≡ 2 (mod 12), Proposition 3.4 (2) implies that there are two
spinor genera. It is hence natural to search for “primitive spinor exceptions” for the lattice
coset by studying whether there are families of exceptions in certain square classes; from
the point of view of modular forms, we are searching for the component of the cuspidal
part coming from unary theta functions, and Proposition 1.4 gives us a way to discover a
unary theta function.
In order to prove Proposition 1.4, we explicitly determine the genus and spinor genus

of a lattice coset. Let L + ν be the lattice coset associated to P14 as in Sect. 3. That is to
say, L := 〈122, 122, 122〉 and ν := 5

12 (e1 + e2 + e3).

Lemma 5.1 (1) Defining

μ := 1
12

(5e1 + e2 + e3) ,
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the classes in the genus of L + ν are then represented by L + ν, L + 5ν, L + μ, and
L + 5μ.

(2) The cosets L + ν and L + μ form one spinor genus and the cosets L + 5ν and L + 5μ
form the other spinor genus.

Proof (1) Suppose that M + μ′ ∈ G(L + ν). The conductor, c, as defined in [10], is the
smallest positive integer for which cν ∈ L, or equivalently,

c =
∏

p
[Lp + Zp[ν] : Lp] = 12.

Since any local isometry from Lp + ν toMp + μ′ must sendMp to Lp, the conductor is an
invariant of the genus and hence c is also the minimal positive integer for which cμ′ ∈ M.
Moreover, since Mp ∼= Lp at every prime p it must follow that M ∼= L since L has class
number 1. Therefore each class in the genus ofL+ν contains a coset of the formL+μ′, and
it just remains to determine the possible values ofμ′. From here, given that the conductor
of the genus is c = 12, enumerating the possibilities yields a finite set of possibilities for
the class representatives in the genus. Many of these classes are immediately seen not to
be in the same genus as L + ν simply by comparing the numbers locally represented by
these classes. We further restrict the set by explicitly finding elements of SO(V ) between
different cosets. From this, one concludes that the representatives for the classes are a
subset of the four claimed lattice cosets. Furthermore, one easily checks that the theta
functions of the four cosets are different (i.e., they each represent integers a different
number of times), from which one concludes that they cannot be equivalent under the
action of SO(V ). Finally, we construct σ ∈ SOA(V ) mapping each of the cosets to each
other.
For p �= 2, 3, we have ν,μ ∈ Lp and hence

Lp + 5ν = Lp = Lp + ν,

Lp + 5μ = Lp = Lp + μ,

so the identitymap suffices in this case.Whenp = 2,we observe that 4ν = 5
3 (e1+e2+e3) ∈

L2 and 4μ = 1
3 (5e1 + e2 + e3) ∈ L2, so that

ν = − 4ν + 5ν ∈ L2 + 5ν,

μ = − 4μ + 5μ ∈ L2 + 5μ,

and 5
3e1 ∈ L2 implies that

ν = 5
12

(e1 + e2 + e3) = 5μ − 5
3
(e1) ∈ L2 + 5μ,

implying L2 + 5μ = L2 + μ = L2 + ν = L2 + 5ν. When p = 3, then we consider the
symmetries τei of L3 which negate the vector ei, and the symmetry τe2−e3 which switch e2
and e3 and fix everything else. Then

τe2 ◦ τe3 (ν) = 5
12

(e1 − e2 − e3) = μ − 1
2
(e2 + e3)

so L3 + ν ∼= L3 + μ and the same isometry can be used to show that L3 + 5ν ∼= L3 + 5μ.
Similarly,

τe1 ◦ τe2−e3 (μ) = τe1 (μ) = 1
12

(−5e1 + e2 + e3) = 5ν − 5
2
e1 − 2e2 − 2e3,
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and hence L3 +μ is isometric to L3 + 5ν. From here we conclude that L+ ν, L+ 5ν, L+μ

and L + 5μ are in the same genus.
(2) By Proposition 3.4 (2), there are precisely 2 spinor genera in the genus of L + ν. Now
it only remains to find representatives for the classes in the two spinor genera. To do this,
we need only find a map σ = (σ2, σ3, ..., σp, ...) ∈ O′

A
(V ) for which σp(Lp + ν) = Lp + μ at

every prime p. For primes away from 2 and 3 we have

Lp + μ = Lp = Lp + ν,

and so we can let σp be the identity map for p �= 2, 3. Moreover, when p = 2, then

ν = μ + 1
3
e2 + 1

3
e3

so in fact L2 + ν = L2 + μ, and hence σ2 can also be taken to be the identity map. When
p = 3 we consider the symmetries τe2 and τe3 , then

τe2 ◦ τe3 (ν) = 5
12

(e1 − e2 − e3) = μ − 1
2
e2 − 1

2
e3,

and therefore we let σ3 = τe2 ◦ τe3 . Then clearly σ is in the kernel of the adelic spinor
norm map, since Q(e2) = Q(e3), and this map sends L + ν to L + μ. A similar argument
can be used to show that L + 5ν and L + 5μ are representatives for the two classes in the
spinor genus of L + 5ν. ��
Proof of Proposition 1.4 The number of automorphs of either L + ν or L + 5ν is 6, while
the number of automorphs of either L + μ or L + 5μ is 2. Thus we conclude by Lemma
5.1 that

�spn(L+ν) = 3
2

(
�L+ν

6
+ �L+μ

2

)

and

E(L+ν) = �gen(L+ν) = 3
4

(
�L+5ν

6
+ �L+5μ

2
+ �L+ν

6
+ �L+μ

2

)
. (5.1)

We claim that

�spn(L+ν)(τ ) = �gen(L+ν)(τ ) − 1
8
ϑ1,3,12(τ ), (5.2)

which would imply the claim. Both sides are modular forms of weight 3/2 on �1(4 · 122)
with the usual �3-multiplier.
Recall now that by the valence formula, a modular form of weight k for� ⊆ SL2(Z) with

some multiplier is uniquely determined by the first
k
12

[SL2(Z) : �]

Fourier coefficients, where [SL2(Z) : �] is the index of � in SL2(Z). Since (cf. [16, p. 2])

[SL2(Z) : �1(N )] = N 2
∏

p|N

(
1 − 1

p2

)
,

we have
[
SL2(Z) : �1(242)

] = 244
(
1 − 1

4

)(
1 − 1

9

)
= 221184.

Hence we only need to check 3
24 · 221184 = 27648 Fourier coefficients to verify (5.2).

This is easily verified with a computer by computing the relevant theta series. ��
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In order to prove Theorem 1.5, we use the m = 14 case as a springboard from which
the other cases follow. In particular, we show the following theorem.

Theorem 5.2 (1) If � ≡ 1 (mod 12) is an odd prime, then

X2 + Y 2 + Z2 = 3�2

has no solutions in X, Y, Z ∈ Z with X ≡ Y ≡ Z ≡ 5 (mod 12).
(2) If � ≡ 7 (mod 12) is an odd prime, then

X2 + Y 2 + Z2 = 3�2

has no solutions in X, Y, Z ∈ Z with X ≡ Y ≡ Z ≡ 1 (mod 12).

Proof (1) As in the proof of Proposition 1.4 (and as in Sect. 3), we let L + ν be the lattice
coset associated to P14. The claim is equivalent to the statement that L + ν does not
represent 3�2 for all � ≡ 1 (mod 12). Since Conjecture 1.3 is true for the spinor genus of
L+ ν by Proposition 1.4 and the Fourier coefficients of each �M+ν′ are non-negative, the
3�2-th coefficient of the theta function�spn(L+ν) is zero if and only if the 3�2-th coefficient
of �M+ν′ is zero for all M + ν′ ∈ S(L + ν). In particular, this implies that if the 3�2-th
coefficient of �spn(L+ν) always vanishes, then the claim is true.
We next show that these coefficients of �spn(L+ν) do indeed vanish. In order to show

this, we explicitly compute the Eisenstein series �gen(L+ν) = Egen(L+ν) and the linear
combination of unary theta functions Uspn(L+ν). By (5.2), we have

Uspn(L+ν) = −1
8
ϑ1,3,12.

Wenext use (5.1) to compute the Eisenstein series component Egen(L+ν). To ease notation,
we define the sieve operator SN,�, acting on Fourier expansions f (τ ) = ∑

n≥0 af (n)qn by

f |SN,�(τ ) :=
∑

n≥0
n≡� (mod N )

af (n)qn.

Then a straightforward elementary calculation (by splitting the representations x2 + y2 +
z2 = 24n + 3 via the congruence classes of x, y, and z) yields

�3∣∣S24,3(τ ) = 48
(

�L+5ν(τ )
6

+ �L+5μ(τ )
2

+ �L+ν(τ )
6

+ �L+μ(τ )
2

)
+ 8�3(3τ )

∣∣S24,3.

Hence by (5.1), we have

Egen(L+ν) = 1
64

(
�3∣∣S24,3(τ ) − 1

8
�3(3τ )

∣∣S24,3
)

In particular, the 3�2-th coefficient ofEgen(L+ν) is exactly the number ofways towrite 3�2 as
the sumof 3 squares. By [12, Theorem86], since the quadratic formQ(x, y, z) = x2+y2+z2

has class number 1, this coefficient is given by

24H
(
3�2

)
,

where

H (d) :=
∑

f ∈N
− d

f 2
≡0,1 (mod 4)

h
(
− d

f 2

)

u
(
− d

f 2

)
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denotes the Hurwitz class number, with h(D) denoting the usual class number and u(D)
being half the size of the automorphism group of the order of discriminant D in Q(

√
D).

However, for d = 3�2, the class number formula [5, Corollary 7.28, page 148] and
h(−3) = 1 (as well as the fact that u(−3) = 3 and u(−3r2) = 1 for r > 1) imply that (for
� prime)

H
(
3�2

) = h(−3)
3

+ h
(−3�2

) = 1
3

+ 1
3

(
� −

(−3
�

))
= 1

3

(
� + 1 −

(−3
�

))
. (5.3)

Here (−3/�) is the Kronecker–Jacobi–Legendre symbol, which for � ≡ 1 (mod 3) is 1 in
particular. Thus for prime � ≡ 1 (mod 3), the coefficient of 3�2 in Egen(L+ν) is

1
64

· 24 · �

3
= �

8
. (5.4)

At the same time,

ϑ1,3,12(τ ) =
∑

n∈Z
n≡1 (mod 4)

nq3n
2 =

∑

n≥0

(−4
n

)
nq3n

2
. (5.5)

Thus the 3n2-th coefficient of ϑ1,3,12(τ )/8 is
(−4

n
)
n/8. For n = � ≡ 1 (mod 4), we specifi-

cally have �/8, which cancels with the coefficient from Egen(L+ν). Hence by Proposition 1.4
(in particular, see (5.2)), the 3�2-th coefficient of �spn(L+ν) is zero. This yields the claim.
(2) We argue similarly to part (1), except this time we use the lattice coset L + 5ν instead
of L + ν (the statement is a rewording of the claim that L + 5ν does not represent any
integer of the form 3�2 with � ≡ 7 (mod 12) prime). The classes in the spinor genus of
L + 5ν are given by L + 5ν and L + 5μ. Moreover, by (5.1) we have

�gen(L+5ν) = �gen(L+ν) = 1
2

(
�spn(L+ν) + �spn(L+5ν)

)
.

Rearranging and plugging in (5.2), we have

�spn(L+5ν) = 2�gen(L+ν) − �spn(L+ν)
(5.2)= �gen(L+ν) + 1

8
ϑ1,3,12(τ ).

We then use (5.3) and (5.5) to compute the 3�2-th coefficient of each side. For � ≡ 7
(mod 12) prime, we have (− 3/�) = 1 so that (5.4) yields that the 3�2-th coefficient of the
Eisenstein series �gen(L+ν) is precisely �/8. Since (− 4/�) = − 1 for � ≡ 7 (mod 12), the
coefficient of ϑ1,3,12(τ )/8 is − �/8, giving cancellation. We conclude that the spinor genus
of L + 5ν does not represent 3�2 by Proposition 1.4. ��
We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5 For m ≡ 2 (mod 12), we write m = 12r + 2. We claim that, in
particular, Pm does not represent n whenever

2(m − 2)n + 3
(
m − 4

2

)2
= 3�2,

where � is any prime satisfying
⎧
⎨

⎩
� ≡ 1 (mod 12) if r is odd,

� ≡ 7 (mod 12) if r is even.
(5.6)
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Note first that Pm represents n if and only if there exist x, y, z ∈ Z such that

24rn + 3(6r − 1)2 = 2(m − 2)n + 3
(
m − 4

2

)2
=

(
(m − 2)x + m − 4

2

)2

+
(
(m − 2)y + m − 4

2

)2
+

(
(m − 2)z + m − 4

2

)2

= (12rx + 6r − 1)2 + (12ry + 6r − 1)2 + (12rz + 6r − 1)2 . (5.7)

Notice that since (6r − 1)2 ≡ 1 (mod 24), the left hand side of (5.7) is congruent to 3
modulo 24, sowemaywrite it in the shape 24n′+3 for some n′.WritingX := 12rx+6r−1,
Y := 12ry+6r−1, andZ := 12rz+6r−1, if (5.7) holds, then there hence existX, Y, Z ∈ Z

with X ≡ Y ≡ Z ≡ 6r − 1 (mod 12) for which X2 +Y 2 +Z2 = 24n′ + 3. In particular, if
24n′ + 3 = 3�2 with � a prime satisfying (5.6), then Theorem 5.2 implies that (5.7) is not
solvable.
Therefore Pm is not almost universal if there are infinitely many primes � satisfying (5.6)

for which 3�2 is in the set

S :=
{

2(m − 2)n + 3
(
m − 4

2

)2
: n ∈ N0

}

= {
24rn + 3(6r − 1)2 : n ∈ N0

}
.

Hence,weneed tofind infinitelymany � satisfying (5.6) and3�2 ≡ 3 (mod 24r), or in other
words, wewant �2 ≡ 1 (mod 8r) and � ≡ 1 (mod 12) if r is odd and � ≡ 7 (mod 12) if r is
even. For r odd, we take � ≡ 1 (mod 12r) sufficiently large. For r = 2a3br′ with a > 0, we
require � ≡ 7 (mod 12) and �2 ≡ 1 (mod 8r). By the Chinese Remainder Theorem and
Hensel’s Lemma, there are infinitely many � ≡ 1 (mod r′), � ≡ 1 (mod 3b+1), and � ≡
−1 (mod 4) such that �2 ≡ 1 (mod 23+a), and these � satisfy the desired congruences.
Therefore, there are infinitely many � satisfying (5.6) for which 3�2 ∈ S by the existence
of infinitely many primes in arithmetic progressions. Each such � corresponds to some n
which is not represented by Pm, yielding the claim. ��
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