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Modeling Heterogeneous Parking Choice Behavior in University Campuses 

Abstract 

Studies of campus parking indicate more severe problems and a wider range of 

characteristics than commercial parking because of limited parking spots, special 

conditions, specific policies and enclosed space on university campuses. However, 

heterogeneous characteristics are usually ignored in analyses of campus parking 

behavior. In this paper, a mixed logit model is applied to analyze parking choice 

behavior on campus using data collected from a stated-preference survey on Siping 

Campus of Tongji University, Shanghai, China. The heterogeneity of individuals with 

various socio-demographic characteristics is evaluated by interaction terms and random 

parameters. Comparison between the proposed approach and the conditional logit 

model shows that the results of the mixed logit model are more interpretable because it 

is not limited by the independence from irrelevant alternatives assumption. Several key 

factors, such as gender and mid-term parking, that have considerable effects on campus 

parking choices are identified and analyzed. Important regularities are also concluded 

from elasticity analyses in every possible direction. Finally, the campus is divided into 

two areas according to the walking distance to a new parking lot currently under 

construction, and the modeling result shows that area-specific policies should be 

established because the two areas have quite distinct parking choice features. 

Keywords: parking choice, university campus, heterogeneity, mixed logit model, stated 

preference, elasticity 

1. Introduction 

As the number of car owners grows ever larger, static traffic (parking and queueing at 

signalized intersection and toll station, etc.) and dynamic traffic (all the traffic running in the 

system with a certain speed) combine to form the basic structure of the urban traffic system. 

Because of the interference of static traffic on dynamic traffic, numerous research studies had 

been conducted to unify the major problems of parking management in an urban traffic 

system. For example, Matsoukis (1995) studied the major parking patterns, and then revealed 
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the privatization of parking management in Greece. More quantitative analyses of parking 

systems and transit parking were considered toward the end of the twentieth century (Hwang 

and Lee, 1998, Merriman, 1998). Khattak and Polak (1993) have tested and modeled the 

effect of parking information service which provided real-time parking information of City 

Center parking facilities in Nottingham, England by measuring the travelers’ responses, and 

the parking information delivery service was proved to be effective. Moreover, parking 

policy studies with economic concerns were also performed as one of the major research 

aspects in parking (Verhoef et al., 1995). Young and Taylor (1991) outlined the successful 

applications of microcomputer models to parking policy investigations.  In recent years, 

parking studies have aimed to quantify the relationships between parking charges and other 

traffic or economic factors to set more acceptable and balanced transport policies. The 

influence of parking and road user charges on traffic and revenue was modeled and analyzed, 

with the results showing that a combined measure that partly converts parking charges to 

road user charges worked best as a balanced scheme (Bonsall and Young, 2010). Meanwhile, 

statistical analyses of combinations of static and dynamic traffic have been widely 

performed. For example, a model of curbside parking with stochastic vacancies was 

optimized by considering higher vacancy rates, which were found to be higher during busier 

times and at locations with heavier traffic (Arnott, 2014). Parking price theories have been 

applied to parking choice behavior, models that consider different parking price conditions 

and personal attributes. For example, cruising (searching for parking places) was studied as a 

choice model and conditions under which a driver would either pay for parking or continue 

to cruise were devised (Shoup, 2006). 
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As the diversity of parking research has increased, parking choice has drawn much 

attention from researchers. Arnott and Rowse (1999) used a probit model to investigate 

drivers’ parking choices in a city, considering a linear combination of three major factors: 

driving distance, walking distance and parking fees. Moreover, various modeling methods 

have been tested and proven to be capable of depicting drivers’ parking choice behavior in 

multiple situations (Bonsall and Palmer (2004). Among these modeling methods, discrete 

choice models have been widely applied in parking choice behavior studies with various 

influential factors considered in the models (Fukuda and Morichi, 2007, Mei et al., 2010, 

Nurul Habib et al., 2012). On the other hand, street and garage parking are the two most 

commonly considered alternatives when estimating the effect of prices together with other 

attributes (Kobus et al., 2013). Micro traffic simulation has also been incorporated into truck 

parking choice modeling to assess the potential effect of multiple parking policies 

(Nourinejad et al., 2014). Another recent study has modeled the relationship between parking 

facilities in one’s home and mode choice behavior using a two-stage survey strategy and 

found that guaranteed parking at home heightened the possibility to drive to downtown areas 

(Weinberger, 2012). 

The traffic system in a university campus with distinct parking patterns can be 

resembled with those of small cities which has various land uses (such as for education, 

residences and recreation) and multimodal nature of transportation on a campus (includes 

private cars, shuttle buses, cycling and walking) (Ison and Rye, 2008). In addition, the mini 

traffic system within a campus has more distinct and obvious peak hours and severe conflicts 

between demand and supply due to its limited area, especially for static traffic in an urban 

campus. Moreover, there is usually a dense residential area surrounding the university 
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campus where students, staff and faculty reside, which interacts with the nearby traffic 

system and increases the probabilities of traffic congestion, accidents and parking demand 

(Daggett and Gutkowski, 2003). Hence, to deal with the traffic problems caused by 

university campus commuting, a systematic management scheme will be essential. 

Transportation demand management (TDM) is playing an increasingly important role 

in releasing the traffic and environmental problems caused by university campus commuting, 

of which parking management is one of the most significant parts. Multiple studies have 

focused on introducing and optimizing modal split schemes on campuses to reduce vehicle 

demand and increase public transit services in a university campus, and it was found that 

TDM strategy is an essential factor (Balsas, 2003). Because the essence of transportation 

management in university campuses is more of a business than a municipal issue (Daggett 

and Gutkowski, 2003), the application of TDM to campuses emphasizes economic and 

sustainable management. Shoup (2005) proposed to manage campus parking at the 

University of California, Los Angeles by reforming the pricing of public transport and 

introducing parking fees. Rye and Ison (2005) analyzed the practicalities of charging 

employees parking fees by comparing 11 workplaces in the United Kingdom, five of which 

were university campuses. Comparison of these situations helped to identify the obstacles 

that hindered the pace of charging employees for parking. Focusing on policy-making in 

relation to parking management on campuses, Barata et al. (2011) surveyed parking supply 

and demand flows in the University of Coimbia campus and determined that the supply level 

was so low that lead to vehicle spillover. A logistic regression examined commuters’ 

willingness to pay for parking on campus and the results were used to propose several 

policies. A similar study in Beijing analyzed traffic flow and driver behavior on a university 
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campus (Shang et al., 2007). Riggs (2015) studied the effect of a survey in UC Berkeley 

regarding mode change and lessening parking demand, and concluded that 8% of the sample 

changed modes and adequacy, safety and convenience of the alternatives hindered mode 

selection. 

The analysis of parking choice behavior on campuses is a popular topic for the 

application of TDM because understanding the nature of parking choices can help clarify the 

processes that cause congestion. Various researchers have studied parking choice behavior in 

the campus setting using multinomial logit (MNL) models with respect to the safety level, 

service level, convenience, for example. However, the heterogeneity of decision makers has 

never been considered in campus parking, though parking choices can vary among people 

with different demographic characteristics. As the independence of irrelevant alternatives 

(IIA) property of the traditional MNL model may not be useful in the campus setting, this 

paper proposes a discrete choice modeling method by comparing the conditional logit (CL) 

model and mixed logit (ML) model, both of which adopt interaction terms, and tests the 

heterogeneity of parking choice behavior on a university campus.  

2. Data 

2.1. Parking in Tongji University 

There were 5,870 registered vehicles at Tongji University in 2013, of which nearly 40% were 

commuter vehicles in use on weekdays, and the rest were temporary vehicles from other 

communities, companies and organizations connected with the university. Both students and 

staff can register their vehicles to allow entry to the campus. This systematically burdens the 

parking supply and results in traffic disorder on campus. Therefore, proper parking 
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management policies should be determined for Siping campus to balance parking demand 

and supply and enable the on-campus traffic system to run smoothly and organically. 

In this study, the parking choice behavior in Siping campus of Tongji University was 

examined. The campus consists of two areas, Area A and B. Area A includes mainly working areas, 

classrooms and large recreational places, while Area B contains mainly residential halls and 

dormitories. There are 1,498 parking places on Siping campus, 309 of which are in four underground 

parking lots and 1,189 spaces in open-air areas (including both parking lots and curbside parking 

places). To enhance the parking facilities, a new large underground parking lot with 900 parking 

places will be provided in 2016. The parking spaces arrangement is illustrated in Figure 1. In addition 

to this, four major free parking spaces outside the campus (within 15-minute walking distance) were 

also considered in this study. 

 
 
 

2.2. Stated Preference Survey 

The stated preference (SP) survey is commonly applied to undertake econometric, road 

safety and choice behavior research because of its ability to present choice settings of 

individual (Ahmadi Azari et al., 2013). In this survey, four hypothetical scenarios were 

proposed to estimate the preferences of individuals. As reported previously (Zhang et al., 

2006), the attributes that most influence the use of a parking lot include walking time, 

parking charges, degree of parking convenience, enforcement of laws and parking 

information. For the purpose of quantifying parking choice behavior and determining relative 

parking policies regarding parking fees, unquantifiable attributes were removed in this study.  

The interviewees were given the choice of three alternatives in the hypothetical 

scenarios: 
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 Alternative 1: Open-air parking (OA), in which cars can park in open-air parking lots 

around the buildings with parking places restricted by lines (including curbside 

parking). 

 Alternative 2: Underground parking (UG), in which cars can park in underground 

parking lots. 

 Alternative 3: Off-campus parking (OC), in which cars can park in any parking lot, 

whether underground or open-air, outside Siping campus.  

These three alternatives are characterized by three common attributes: parking 

charges, walking time and number of free hours (Table 1).  

2.3. The Survey 

The survey was conducted online on December 9 and 16, 2013, by inserting the 

questionnaire into the system for vehicle entrance license application. All teachers, staff and 

students have to update their license each year to be able to drive their cars onto the campus. 

The inclusion of the questionnaire was permitted by the Security Department of Tongji 

University, and anyone intending to obtain an entrance license through the application 

system was asked to fill out the questionnaire. The suggested time to complete the survey 

was 10-15 min as written in the questionnaire instructions to provide a better idea of the 

burden of this questionnaire. 

Ultimately, 1,873 valid questionnaires were received, of which 998 were from Area A 

and 875 from Area B. According to the survey data, the explanatory variables were divided 

into two categories: parking lot attribute variables and individual characteristic variables 

(Table 2). 
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3. Methods 

3.1. Conditional logit (CL) model 

McFadden’s CL model is considered to be a variant of the standard MNL model (O’Keefe, 

2004), which is commonly adopted to evaluate the parking choice. The CL model 

theoretically ignores heterogeneity of individual and works as a contrast to the ML model 

because it is restricted to the IIA assumption. 

The framework of CL model is based on random utility theory, which requires 

decision makers to choose the alternative with the largest utility. In this theory, the utility of 

the nth alternative for individual i is described as follows: 

ininin VZ   
(1) 

where inZ  is the proposed utility, inV  is the non-stochastic term and in  is the random 

error term. In the CL approach, the term inV  is always described as a summation of two 

terms, and then the utility function becomes 

inns

S

s
isir

R

r
nrin WXZ   
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where nr  and ns  represent the coefficient vectors of alternative and individual 

characteristics, respectively, R is the number of choice specific variables and S equals the 

number of variables describing individual attributes.  

According to the utility function and random utility theory, the probability of the mth 

parking choice being chosen by individual i is described as follows: 
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where M is the number of available alternatives and m is the one to be chosen. The 

probability of individual i choosing all M alternatives should be 1. 

3.2. Mixed logit (ML) model 

The ML model is also based on random utility theory and the utility maximization 

assumption. ML probabilities can be regarded as an integral of standard logit probabilities 

over a density of parameters, which is a weighted average of the standard logit formula using 

different values of parameter   (Ye and Lord, 2014). The probability function of the ML 

model is 
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where   is the density 
)( f
. Due to the random parameters in the ML model, the 

heterogeneity of individuals can be considered in the model. 

Random parameters 

The random parameters of the ML method are considered to be the key factors. In practice, it 

is always difficult to determine which variable has a random parameter and the distribution it 

follows (Kim et al., 2013). In this study, we tested all of the variables that were significant at 

the 0.1 level or above by assuming that they followed three widely used distributions: 

normal, lognormal and uniform. T-tests and goodness-of-fit approaches were used to 
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determine the significant variables, optimal distributions of random parameters and the 

quality of the models. Parameters with statistically significant means and standard errors 

according to t-tests were regarded as random parameters (Milton et al., 2008).  

In the ML model, the random parameter
*  can be formulated as the follows:  

 mm sb *

 
(5) 

where mb is the mean of 
* and ms is the scale parameter for  , and in this case, 

)1,1(~ U . mb and ms are estimated parameters that identify the random parameter 
* . 

The differences between the preferences of decision makers can also be examined using the 

random parameters by providing a mean and standard deviation in the ML interaction model 

(Ye and Lord, 2014). Therefore, the ML model is easier to interpret and more suitable for 

describing the parking choice process on campuses than the CL model. 

3.3. Interaction model for heterogeneity 

To test the specific influence of each variable on each alternative, we applied the interaction 

terms for each variable and each alternative. Therefore, the original explanatory variables 

were all replaced by interaction terms in the proposed parking choice models. 

The interactions between different variables are also worth exploring in a logit model. 

To avoid negative influences resulting from too many dependent variables in the logit model, 

we set up another series of models using each modeling method, referred to as the interaction 

model, and applied the interaction terms and parking-lot dummy variables to test the 

heterogeneity of various variables. The interaction terms were thus formed by multiplying 

the individual factor variables by the parking-lot attribute variables to determine the 
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relationships between them. The interaction models can provide useful information, e.g., the 

heterogeneity of parking choice taste within a group of individuals, which is helpful when 

determining parking policies for various groups of individuals. 

4. Results and Discussion 

In this study, the entire modeling process was conducted in SAS 9.3 by applying the 

multinomial discrete choice (MDC) procedure. The estimation results are presented with only 

variables that are significant on the 10% level or above (Table 3 and Table 4). In both 

Parking Choice Models and Interaction Models, OC is chosen to be the reference alternative. 

4.1. Parking Choice Models 

The model results demonstrated that all of the significant variables are identical for both 

modeling approaches. But it is observed that the parameter estimates of the ML model are 

generally larger than that of the CL model. Both models are fit well with a McFadden 

likelihood ratio index (LRI) of 0.3892 (>0.3).  

 
In the ML model, all three parking lot attribute variables are significant, with p-values 

less than 0.0001, indicating that these factors significantly influenced parking choice 

behavior. The parameters of price and walking time are negative (Coefficient = -0.0439 and -

0.0486, respectively), whereas the parameter of number of free hours is positive (0.1395), 

whose positive mark is consistent with the principles of parking choice psychology. 

Comparing these parameters, there is a significant difference in the order of magnitudes, in 

which the value for number of free hours is approximately three times of that of the other two 

parking lot attribute variables. 
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The estimations for Mid-income and Middle-age using underground parking (Mid-

income & UG: 0.7730; Middle-age & UG: 0.6525) are slightly higher than using open-air 

parking (Mid-income & OA: 0.7262; Middle-age & OA: 0.4457), indicating that those in the 

mid-income and middle-age group were more likely to choose underground parking than 

open-air parking. Those who favored short-term and mid-term parking showed a highly 

significant tendency toward underground parking (Short-term & UG: -0.6363; Mid-term & 

UG: -0.1657). However, in social parking cases, underground parking always results in 

higher parking fees and longer walking times, while offering a more secure parking 

environment. Underground parking lots tend to provide a discount for long-term parking, 

whereas open-air parking lots do not. Hence, the utility of parking in underground lots is 

usually greater for long-term parking, which is the opposite trend to that for campus. In our 

setting, there was no difference in the walking times from underground and open-air parking 

lots, but the price of underground lots was much lower and the potential security level was 

obviously higher. Therefore, transferring the demand from open-air lots and curb parking to 

underground parking is feasible for campus parking. 

4.2. Interaction models 

The estimation results of the interaction models are shown in Table 4. Considering the LR 

value in the interaction models, the CL measure has an LR of 10,960 with 12 degrees of 

freedom, whereas the LR of the ML approach is larger (LR = 10,972) and has one more 

degree of freedom. In the ML model, two variables were tested as random parameters 

following a uniform distribution. The random parameters increased the goodness-of-fit of the 

model, indicating that heterogeneity must exist in this case. The McFadden LRI of the ML 

interaction model was 0.6665, which represents a better fit than the CL measure, for which 
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the LRI was 0.6658. 

 
The ML interaction model provides 12 parameters that are significant at the 0.1 level, 

seven of which are interaction terms with walking time. This result indicates that walking 

time had a much greater influence on parking choice than the other two parking lot variables, 

particularly when interacting with the respective individual variables. Among the individual 

variables, the estimated parameters of middle-age (Coefficient = -0.0338), teacher (1.3064), 

staff (1.3162) and mid-income (-0.0463) are significant at the 0.001 level, who were more 

sensitive to walking time than the other groups. In terms of occupation, staff and teachers 

were significantly more sensitive to walking time than the students. Middle-age drivers paid 

less attention to walking distance than others. Parking duration (-0.0138) and gender (0.0546) 

are the only two individual attribute variables that show a significant interaction with price. 

As the parking duration increases, a lower price is needed to cut down the total cost, which 

follows the basic principles of consumption psychology. Only the mid-term parking group 

was sensitive to the number of free hours (0.2329), with a significance level of 0.001. In 

commercial parking, drivers who expect to park for more than 3 hours seem to be less 

sensitive to the number of free hours. However, because the proportion of commuter parking 

is much larger than temporary parking on campuses, drivers show higher sensitivity to the 

number of free hours. Therefore, the average number of free hours in campus parking lots 

should be higher than in commercial lots. 

Random parameters 

As shown in Table 4, for the ML interaction model, the probability that the parameter of 

Walking Time & Gender is negative (Coefficient = -0.0584) is 72.4%, which means that in 
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most cases, males are less sensitive to walking time. Similarly, for Walking Time & Mid-

term, the probability that the parameter is less than 0 is 84.8%, with a negative coefficient of 

-0.3991. When interacted with the number of free hours, the parameter of mid-term parking 

is 0.2329, which indicates that the ML measure increased the overall significance level of 

people who parked for less than 8 h and more than 3 h. The younger age group, which is 

likely to be less concerned about walking time, is no longer among the significant variables. 

Nevertheless, walking time is still the most influential parking lot variable of the three. 

Gender and parking duration are still the only two variables that are influential when 

multiplied with price. 

 
The alternative specific constants in these two approaches are all significant at the 

0.001 level and have considerably large parameters (more than 20). This result is reasonable 

because the interaction model comprises only interaction terms and excludes the original 

characteristics. Therefore, the total explanatory ability of this model is much weaker than the 

parking choice model due to its lack of numerous predicative terms. The fundamental goal of 

this model is to determine the relationship between individual characteristics and parking lot 

attributes, and the heterogeneity of various individual groups. 

4.3. Elasticity Analyses 

Elasticity analyses are widely applied to determine the effect of each variable (Washington et 

al., 2012). The elasticity is calculated by partial derivative form as follows: 
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where )(iP is the probability of alternative i  being selected, kix  is the value of 

variable k for alternative i  and ki is the estimated parameter of kix . The elasticity value can 

be interpreted as the percentage change in probability )(iP  when kix  changes by 1%. Note 

that elasticity is a point value when kix  is given a specific value. If the elasticity of the 

indicator variables needs to be calculated, a pseudo-elasticity measure should be applied 

because the elasticity value is not applicable to variables that take values of 0 or 1 (Shaheed 

et al., 2013).  

To compare the two modeling approaches, the elasticity values for the CL and ML 

models were computed and are listed in Error! Reference source not found.. For each 

parking lot attribute variable, the elasticity value changes regularly from open-air parking to 

off-campus parking lots. The elasticity values for price in both modeling measures remain 

nearly the same for open-air and off-campus parking and become the smallest for 

underground parking. The elasticity value of price is approximately four times higher for 

open-air or off-campus than for underground parking. This regulation implies that the users 

were less concerned about the price of underground parking than the price of the other two 

parking lots, which means that other aspects of underground parking such as the level of 

security and walking distance are considered to be more important. The elasticity values for 

walking time are almost the same for open-air and underground parking but are 

approximately eight times larger for off-campus parking lots. Obviously, parking off campus 

may increase walking time considerably, which greatly increases the elasticity value. The 

relatively distant off-campus parking lot locations also contribute to the large elasticity value 

because the sub-choice may lead to a 20-minute increase in walking time. In terms of the 
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number of free hours, parking inside the Siping campus tends to result in fewer free hours, 

whereas when parking outside, users may park all day for free. Therefore, the elasticity for 

number of free hours is particularly different between open-air and off-campus parking. 

Underground parking lots share similar elasticity regularity with off-campus parking 

lots for various parking lot attributes. For both types of parking, the highest elasticity value is 

for the number of free hours, followed by walking time, then price. However, considering the 

order of magnitude, the elasticity of price and walking time are almost the same for 

underground parking, but differ greatly for off-campus parking. Therefore, similar elasticity 

value regularities represent different ‘relative elasticity’ results (comparing the elasticity 

value with the value of the variable). For underground parking, the relative elasticity is 

almost the same for price and walking; however, for off-campus parking, because the value 

of walking time is many times higher than the value of price, the relative elasticity for price 

should be much greater than that for walking time. This means that people care more about 

price when considering off-campus parking lots because all of these parking lots require 

extremely long walking times. For the open-air parking lots on-campus, the elasticity values 

for number of free hours is the largest, followed by price and walking time. Considering the 

order of magnitude of the various variables, price has larger relative elasticity than walking 

time for off-campus parking. This results from the limited area of Siping campus, which 

leads to the lack of elasticity in walking time. 

Comparing the elasticity values calculated from the CL and ML models, it is obvious 

that the absolute values in the ML model are larger. This proves that the ML model can 

release the IIA limit and become more interpretive. Further, among all of the elasticity 

values, the one for the number of free hours for off-campus parking is the largest and is 
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greater than 1 (1.34 for the CL model and 2.13 for the ML model). This is a consequence of 

the order of magnitude of the variables. 

4.4. Area comparison 

To access the role in decision making of the large underground parking lot being constructed, 

ML parking choice models for both Area A and B were established and analyzed (Table 6).  

The parking choice model shows that number of free hours is a major contributory 

factor for both Area A (Coefficient for Area A = 0.1932) and B (0.4312), at a 1% significant. 

On the other hand, walking time is significant at the 0.001 level for Area B (-0.0767) only, 

which indicates that decision makers in Area B cared more about walking distance than those 

in Area A. Different from the overall parking choice model, price is not a major 

consideration for drivers in Area A and B.  

For the individual characteristics, it was found that four variables in Area A show 

significant interactions with underground parking, including mid-income middle-age 

(Middle-age & UG: -0.6244), parking duration (Short-term & UG: -1.5638; Mid-term & UG: 

-0.7130) and teacher (Teacher & UG: -0.5585). All of the parameters of these four variables 

are less than zero, which means that the probability of people with these four characteristics 

parking in underground lots is relatively low. Similarly, drivers belong to the mid-income 

(Mid-income & OA: -0.1484), middle-age (Middle-age & OA: -0.2851) and short-term 

parking (Short-term & OA: -1.2514) also have a negative interaction with open-air parking, 

and hence drivers from these groups are less likely to park in an open-air parking. Different 

from Area A, no interaction was found between the individual characteristics and 

underground parking. On the other hand, it was found that drivers with mid-income are likely 

to use the open-air parking (Mid-income & OA: 1.1408) and underground parking (Mid-
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income & UG: 1.0113). Furthermore, teachers in this area also demonstrated a positive 

interaction with open-air parking (Teacher & OA: 2.8994). Interestingly, off-campus parking 

is a favorable parking choice for mid-term parking (Mid-term & OC: 2.8136) in Area B. 

Random parameters 

The variables that show heterogeneity are number of free hours for both areas and Teacher & 

OA for Area B. There is a difference in heterogeneity in teachers’ attitudes toward open-air 

parking. The probability of this parameter being greater than 0, calculated from a uniform 

distribution between (-1, 1) is 100%, which means that in general, the teachers in Area B 

indicated a significant preference for parking inside the campus, but the preference was 

expressed at different levels. The difference in attitudes toward parking in the open-air areas 

may result from the different walking distances to underground parking lots between the two 

areas: the imbalanced distribution of the underground lots in Area B increases the willingness 

of the drivers to park in the open air. 

5. Conclusions 

University campuses have a semi-isolated transportation network with specific transport 

problems, which can severely influence the surrounding neighborhood. Although the concept 

of TDM has started to be applied in campus parking management, the heterogeneous 

characteristics of people parking on university campuses has rarely been considered. This 

study proposes an ML modeling approach with interaction terms to model special parking 

behavior in university campuses considering the preferences of various user groups. 

A case study in Siping Campus, Tongji University, Shanghai, China, was conducted 

to assess the performance of the modeling framework. The preferences of parking space 
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users on the Siping campus were surveyed using SP questionnaires. Three hypothetical 

scenarios were provided: open-air, underground and off-campus parking lots. Through 

primary statistical analyses, the parking preferences of the teachers, staff and students were 

identified, together with the major variables that influenced parking behaviors. The results of 

this study demonstrated that the parking lot factors (including 2 specific constants, price, 

walking time and number of free hours) were all influential in the context of the parking 

choice models. The strong preference for underground parking on campus should facilitate 

campus parking management to set up vertical parking policies. Moreover, heterogeneity 

among individuals with different demographic and parking characteristics was found in 

campus parking choice modeling. In the interaction models, individual characteristics and 

alternative specific attributes were interacted as independent variables and all other terms 

except for the parking lot constants were removed from the model. The interaction models 

showed that walking time strongly influenced people with different characteristics, and 

should therefore be considered the most important parking lot variable in campus parking 

management. Mid-term parking and gender, the parameters of which were random when 

interacted with walking time, improved the goodness-of-fit and LR results of the ML model 

much more than those of the CL model. Heterogeneity was quantified by assuming that the 

parameters followed a uniform distribution. 

In the elasticity analyses, stable regularity was found in every direction. The elasticity 

value of the number of free hours was larger than for the other parking lot variables and can 

be considered as having full elasticity. Further, the elasticity values of the ML model were 

larger and the model was shown to be free from the IIA limitation. 
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5.1. Parking policy implications in Tongji University  

To systematically manage parking issues in Tongji University, separated ML parking choice 

models were developed for the two campus areas in Siping Campus of Tongji University. It 

was found that 1) drivers who work (or study) in Area B, which is located farther from the 

proposed parking lot than Area A, care more about walking distance; and 2) drivers in Area 

A indicated a greater unwillingness to park in underground lots. Despite this, both findings 

indicate resistance to parking in the new underground parking lot. In this regard, distinctive 

parking policies for various parking locations should be adopted after the large underground 

parking lot is finished.  

To systematically manage parking issues in Tongji University, several suggestions on 

policy making are provided: 

(1) Walking time should be given great consideration when devising the parking 

fee scheme because it was proved to be the most significant attribute in both of the 

parking choice model and the interaction model. 

(2) The number of free hours should be set higher than that in commercial 

parking lots because this is a much more important requirement for commuters than 

for temporary commercial parking. 

(3) The duration of free parking in open-air parking lots of area A can be set 

lower than in other lots to encourage drivers to use the underground parking lot. 

(4) A smaller increase in the duration of free parking in the underground parking 

lot than the proposed raise in ((3) would offset the unwillingness of people in area B 

to walk long distances while maintaining the available parking supply in area A. 
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(5) Teachers should be offered a subsidy to park in the new underground parking 

lot. 

5.2. Limitations of this study 

The random parameter ML model is one of the most common measures for quantifying 

heterogeneity in discrete choice behavior. The high significance levels and the relatively 

large number of choice-specific constants in the models illustrate that some hidden properties 

may influence parking choice behavior on campuses, and it might be of value to explore and 

model these properties, such as environmental characteristics and some traffic management 

measures. Because of the limited sample size and the properties of real-world situations, the 

number of variables and alternatives had to be carefully selected, which meant that some 

other important factors (such as traffic conditions during parking searches) and other possible 

alternatives (such as splitting open-air parking into curbside and open parking lots) could not 

be considered. A detailed parking policy scheme for managing campus parking demand 

should be settled on after further enrichment of the survey and modeling process. 
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Table 1. Summary of Attribute Levels in the SP Experiment 

 Alternative 
Price 

(CNY/ha) 
Walking time 

(min) 
Number of free 

hours (h) 

Scenario 1 
OA 3 5 24 
UG 0 5 24 
OC 0 15 24 

Scenario 2 
OA 3 8 6 
UG 0 5 24 
OC 0 15 24 

Scenario 3 
OA 4 1 4 
UG 0 5 24 
OC 0 15 24 

Scenario 4 
OA 2 1 4 
UG 4 5 10 
OC 0 15 24 

OA: Open-air parking; UG: Underground parking; OC: Off-campus parking. 
a. CNY is the official unit of currency in China: 1 CNY=0.161 USD. 
 

Table 2. Summary of Explanatory Variables 

Category Explanatory variable Description Mean SD 

(a) Parking lot 
attributes 

Specific constant for 
OA 

1=on-campus parking, 0=else 
- - 

Specific constant for 
UG 

1=underground parking, 0=else 
- - 

Price Continuous variable, unit: CNY/h 1.65 1.96 
Walking time Continuous variable, unit: min 12.74 5.81 

Number of free hours 
The number of the first several hours 
in which parking is free of charge. 
Continuous variable, unit: h 

17.20 4.69 

(b) Individual 
characteristics 

Gender 1=male, 0=female 0.60 0.49 
Age    
- Youth 1=15<age≤30, 0=else 0.07 0.25 
- Middle-age 1=30<age≤55, 0=else 0.73 0.45 
Occupation    
- Teacher 1=teacher, 0=else 0.68 0.47 
- Staff 1=executive staff, 0=else 0.32 0.47 
- Student Control level - - 
Income    
- High-income 1=income≧20000CNY, 0=else 0.02 0.14 

- Mid-income 
1=10000CNY≤income<20000CNY, 
0=else 

0.57 0.50 

- Low-income Control level - - 

Daily parking duration    
- Short-term  1=daily parking duration ≤3 h, 0=else 0.09 0.28 
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- Mid-term  
1=3 h<daily parking duration≤8 h, 
0=else 

0.32 0.47 

 - Long-term Control level - - 
OA: Open-air parking; UG: Underground parking. 
SD: Standard deviation 
 

Table 3. Modeling Results of Parking Choice  

Variable Conditional logit  Mixed logit  
Coefficient Pr>|t| Coefficient Pr>|t| 

(a) Parking lot attributes     
Specific constant for OA 3.0564*** <.0001 3.1160*** <.0001 
Specific constant for UG 2.2233*** <.0001 2.2814*** <.0001 
Price -0.0439*** <.0001 -0.0439*** <.0001 
Walking time -0.0487*** <.0001 -0.0486*** <.0001 
Number of free hours 0.1395*** <.0001 0.1395*** <.0001 
(b) Individual characteristics     
Mid-income & OA 0.7855*** <.0001 0.7262*** 0.0002 
Mid-income & UG 0.8315*** <.0001 0.7730*** <.0001 
Middle-age & OA 0.4651* 0.0514 0.4457* 0.0670 
Middle-age & UG 0.6718** 0.0044 0.6525** 0.0066 
Short-term & UG -0.6317*** <.0001 -0.6363*** <.0001 
Short-term & OC -0.5886*** <.0001 -0.5919*** <.0001 
Mid-term & UG -0.1657** 0.0068 -0.1657** 0.0090 
Teacher & OC 0.3289** 0.0076 0.3294* 0.0140 
Number of observations 7,492 7,492 

Likelihood ratio 6,406 6,406 

McFadden LRI 0.3892 0.3892 
OA = Open-air parking; UG = Underground parking; OC = Off-campus parking. 
LRI = Likelihood ratio index.  
* = significant at 10%; ** = significant at 5%; *** = significant at 1%. 
 

Table 4. Estimation Results for Interaction Models 

Variable Conditional logit Mixed logit 
Coefficient Pr>|t| Coefficient Pr>|t| 

Specific constant for OA 24.2184*** <.0001 24.8422*** <.0001 
Specific constant for UG 21.0686*** <.0001 21.8972*** <.0001 
Price & Gender  0.0561** 0.0010 0.0546** 0.0032 
Price & Parking duration  -0.0150*** 0.0002 -0.0138*** <.0001 
Walking Time & Gender 
(scale) 

-0.0317** 0.0092 -0.0584**

(-0.1303*) 
0.0188 
(0.0416) 

Walking Time & Youth -0.0417* 0.0846 - - 
Walking Time & Middle-age -0.0613*** <.0001 -0.0338* 0.0665 
Walking Time & Teacher  1.2646*** <.0001 1.3064*** <.0001 



28 
 

Walking Time & Staff 1.2826*** <.0001 1.3162*** <.0001 
Walking Time & Mid-income -0.0422*** 0.0005 -0.0463** 0.0040 
Walking Time & Mid-term 
(scale) 

-0.0358* 0.0202 
-0.3991*** 

(0.5733***) 
<.0001 
(<.0001) 

Number of free hours & Mid-
term  

0.0353** 0.0093 0.2329*** <.0001 

Number of Observations 7,492 7,492 

Likelihood Ratio 10,960 10,972 

McFadden LRI 0.6658 0.6665 
OA = Open-air parking; UG = Underground parking. 
LRI = Likelihood ratio index. 
* = significant at 10%; ** = significant at 5%; *** = significant at 1%. 
 

Table 5. Elasticity of Parking Lot Attribute Variables 

Variable Conditional logit Mixed logit 
 OA UG OC OA UG OC 
Price -0.07397 -0.02186 -0.07362 -0.1636 -0.04836 -0.1626 
Walking time -0.05078 -0.05986 -0.40319 -0.06058 -0.07144 -0.48042
Number of free hours 0.25322 0.39752 1.33878 0.40287 0.63263 2.12712 

OA = Open-air parking; UG = Underground parking; OC = Off-campus parking.  

 

Table 6. Estimation Results for Parking Choice Models in Area A and Area B 

Variable 
Area A Area B 

Coefficient Pr>|t| Coefficient Pr>|t| 
(a) Parking lot attributes     
Specific constant for OA 0.4601*** 0.0002 3.3449*** <.0001 
Specific constant for UG -3.2323*** <.0001 - - 
Walking time - - -0.0767*** <.0001 
Number of free hours  
(scale) 

0.1932***

(0.2333***) 
<.0001 
(0.0004) 

0.4312***  
(-0.5759*) 

<.0001 
(0.0244) 

(b) Individual characteristics     
Mid-income & OA -0.1484* 0.0811 1.1408*** 0.0003 
Mid-income & UG - - 1.0113*** 0.0008 
Middle-age & OA -0.2851** 0.0015 - - 
Middle-age & UG -0.6244* 0.0192 - - 
Short-term & OA -1.2514*** <.0001 - - 
Short-term & UG -1.5638** 0.0065 - - 
Mid-term & UG -0.7130* 0.0147 - - 
Mid-term & OC - - 2.8136*** <.0001 
Teacher & OA 
(scale) 

- - 
2.8994***

(2.3141***) 
<.0001 
(0.0001) 
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OA = Open-air parking; UG = Underground parking; OC = Off-campus parking. 
  LRI = Likelihood ratio index. 
* = significant at 10%; ** = significant at 5%; *** = significant at 1%. 
 
  

Teacher & UG -0.5585*** <.0001 -  
Number of observations 7492 7492 

Likelihood ratio 3453 3021 

McFadden LRI 0.3918 0.3950 
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Figure 1. Parking arrangement in Siping campus of Tongji University 

 


