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Abstract In this study, the correlations between the fluxes of precipitating soft electrons in the cusp
region and solar wind coupling functions are investigated utilizing the Lyon-Fedder-Mobarry global
magnetosphere model simulations. We conduct two simulation runs during periods from 20 March 2008
to 16 April 2008 and from 15 to 24 December 2014, which are referred as “Equinox Case” and “Solstice
Case,” respectively. The simulation results of Equinox Case show that the plasma number density in the
high-latitude cusp region scales well with the solar wind number density (ncusp∕nsw = 0.78), which agrees
well with the statistical results from the Polar spacecraft measurements. For the Solstice Case, the plasma
number density of high-latitude cusp in both hemispheres increases approximately linearly with upstream
solar wind number density with prominent hemispheric asymmetry. Due to the dipole tilt effect, the average
number density ratio ncusp∕nsw in the Southern (summer) Hemisphere is nearly 3 times that in the Northern
(winter) Hemisphere. In addition to the solar wind number density, 20 solar wind coupling functions are
tested for the linear correlation with the fluxes of precipitating cusp soft electrons. The statistical results
indicate that the solar wind dynamic pressure p exhibits the highest linear correlation with the
cusp electron fluxes for both equinox and solstice conditions, with correlation coefficients greater
than 0.75. The linear regression relations for equinox and solstice cases may provide an empirical
calculation for the fluxes of cusp soft electron precipitation based on the upstream solar wind
driving conditions.

1. Introduction

The polar cusp provides direct access for solar wind (SW) plasma of the magnetosheath into the magneto-
sphere and the ionosphere at low altitudes (e.g., Heikkila & Winningham, 1971). The direct-entry electrons in
the polar cusp region have a relatively soft energy (approximately several hundred eV) compared with those
of precipitating monoenergetic and diffuse electrons (approximately several keV). Over the decades, the soft
electron precipitation in the cusp region have been observed by both ground-based instruments (Eather,
1985) and in situ satellite measurements (Newell et al., 1989, 2009; Smith & Lockwood, 1996), suggesting that
the energy of these direct-entry soft electrons is similar to the typical values in the magnetosheath.

Direct-entry soft electron precipitation plays an important role in multiple physical processes within the cou-
pled ionosphere-thermosphere system, depositing energy by heating ionospheric plasma through collisions
and enhancing the ionization and conductivity at F region altitudes (Rentz, 2009). For instance, the ions
in the cusp region are suggested to be accelerated by parallel electric fields which are established by pre-
cipitating soft electrons, which is known as the type 2 ion upflow (Burchill et al., 2010; Ogawa et al., 2003;
Skjæveland et al., 2011; Strangeway et al., 2005; Wahlund et al., 1992). Studies have also shown that soft elec-
tron precipitation has a prominent impact on the thermospheric density enhancement in the cusp region,
through changing the F region ionization and conductivity above 150 km and further influencing the alti-
tudinal distribution of Joule heating rates (Deng et al., 2013; Rentz, 2009; Zhang et al., 2012; Zhang, Varney,
et al., 2015).
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A number of SW coupling functions have been used extensively to describe the SW-magnetosphere inter-
actions and magnetosphere-ionosphere coupling processes, including the location of the polar cusp (e.g.,
Borovsky, 2013; Kan & Lee, 1979; McPherron et al., 2015; Newell et al., 2007; Perreault & Akasofu, 1978). The
most commonly used SW coupling functions in the literature are the variations of the SW electric field vBT (e.g.,
Kan & Lee, 1979; Scurry & Russell, 1991; Vasyliunas et al., 1982; Wygant et al., 1983), where v is the SW velocity
and BT is

√
b2

z + b2
y . These SW coupling functions work well for the hard electron precipitations (such as the

OVATION aurora model (Newell et al., 2002, 2014)) since the electrodynamic processes play a great role in the
plasma sheet and magnetotail. However, the SW coupling functions may not work well in the soft electron
precipitations. Due to the lack of long-term measurements in the cusp region, it is difficult to study these cor-
relations from the observations. Recently, Walsh et al. (2016) investigated the plasma density variations in the
high-altitude cusp region using 7 years of measurements from the Polar spacecraft and the statistical results
showed that the plasma number density in the high-altitude cusp region scales well with the solar wind num-
ber density (ncusp∕nsw ˜ 0.8) with a linear correlation of 0.78 for radial distances greater than 4 RE . Their results
suggest that the plasma density of the SW might be an important parameter for describing the direct-entry
cusp electrons, which is not included in most SW coupling functions based on the SW electric field. There-
fore, it is necessary to investigate whether these SW coupling functions with the electric field involved can
be extended to describe the direct-entry cusp soft electron precipitation and test the hypothesis that the SW
number density is a critical parameter for direct-entry soft electrons in the cusp region as suggested by Walsh
et al. (2016).

In this study, we investigate the relationship between solar wind conditions and cusp number density at
high-altitude (radial distance of 5 RE) using the Lyon-Fedder-Mobarry (LFM) global magnetosphere model
based on two event simulations near March equinox and December solstice, respectively. The simulated rela-
tionship between solar wind number density and cusp number density is in agreement with the statistical
results derived by Walsh et al. (2016). With the implementation of a direct-entry cusp electron precipitation
model, the effectiveness of various SW coupling functions are tested using the simulated number flux and
energy flux of cusp soft electron, for both the equinox and the solstice cases. In section 2, we describe the infor-
mation of LFM global MHD model and SW/interplanetary magnetic field (IMF) conditions for the two event
simulations. Sections 3 and 4 show the simulation results and the discussions about the effect of ionospheric
outflow. We summarize the results in section 5.

2. Simulation Information
2.1. The LFM Model
The LFM global model has been widely utilized to investigate the interactions between solar wind, mag-
netosphere, and ionosphere. A high-order, finite volume total variation diminishing scheme is used in the
LFM simulation to solve the single-fluid ideal MHD equations. In the solar magnetospheric (SM) coordi-
nates (XSM, YSM, ZSM), the simulation domain of the LFM model has a range of −300RE ≤ XSM ≤ 30RE and
−100RE ≤ YSM, ZSM ≤ 100RE . The bottom boundary of the model is nearly a spherical surface at a radial dis-
tance of 2 RE . In the high-altitude region where the cusp locations are calculated in the following sections, the
grid spacing is approximately 0.4 RE in the radial direction. The detailed description of the LFM model can be
seen in Lyon et al. (2004) and Merkin and Lyon (2010).

The cusp electron precipitation model implemented in the LFM global code is described in detail in Zhang,
Lotko, et al. (2015). Here we provide the basic calculation of the number flux and energy flux of the precipitat-
ing cusp electrons in the global model. Based on the identification of the cusp area (see Zhang et al., 2013),
the number flux FN and energy flux FE of precipitating direct-entry cusp electrons are calculated as

FN = L0

NeT 1∕2
e√

2𝜋me

(1)

FE = 2FNTe (2)

where me is the electron mass. Ne and Te are the electron number density and temperature in the high-altitude
cusp region, respectively. In the event simulations, the Ne and Te are calculated at a fiducial surface of 5 RE . The
empirical parameter L0 represents the degree of loss cone filling in the electron source region. Since cusp flux
tubes are assumed to be continuously refilled by solar wind plasma, a full loss cone is used in this study. In this
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Figure 1. Variations of SW/IMF conditions for the events of (left column) Equinox Case and (right column) Solstice Case,
respectively.

study, we consider all the electrons in the cusp region where the soft electrons are the majority. In the global
simulation, soft electron precipitation is differentiated from monoenergy and diffuse electron precipitations
which are usually in the keV range. The modeled direct-entry cusp electron precipitation usually represents
the magnetosheath temperature ranging from approximately 100 eV to 500 eV depending on the upstream
driving conditions. The details about the properties of the direct-entry cusp electron precipitation can be
found in Zhang, Lotko, et al. (2015).

2.2. Two Event Simulations
Two simulations are conducted from 20 March 2008 to 16 April 2008 and from 15 to 24 December 2014,
which are referred as the Equinox Case and the Solstice Case in the following sections, respectively. Both
simulations use the standard LFM grid with 53 × 48 × 64 cells. The simulation data are recorded at a time
resolution of 2 min. Figure 1 shows the SW and interplanetary magnetic field (IMF) for the Equinox Case and
the Solstice Case, respectively. The SW data covers a reasonable range for a linear correlation analysis, for
example, for the Equinox Case, the SW velocity varies from −700 km/s to −300 km/s and the SW density
has a range from 2 cm−3 to 30 cm−3. These two event simulations provide a reasonable statistical ensemble
for determining the correlation between the simulated direct-entry cusp soft electron precipitation and the
upstream SW parameters, especially the SW density and dynamic pressure which are ignored in most SW
coupling functions. In both event simulations, the geomagnetic activity level was relatively low: the Kp index
was less than 5 and no major magnetic storms occurred during the two intervals. The Equinox Case is near the
solar minimum, with a mean F10.7 value of about 80 (solar flux unit, sfu). The Solstice Case has a much higher
solar activity and the F10.7 index is above 150 (sfu). The minimum, mean, and maximum values of the SW/IMF
conditions derived from the two cases are summarized in Table 1. In this study, the solar wind data at the nose
point of the bow shock are compared with the cusp direct-entry electron precipitations.

3. Results
3.1. Cusp Density Versus SW Density
3.1.1. The Equinox Case
In order to compare the simulation results with Walsh et al. (2016), we apply the cusp identification algorithm
developed by Zhang et al. (2013) to calculate the average cusp number density at different altitudes in the
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Table 1
The Minimum, Mean, and Maximum Value of Solar Wind, IMF, and Geomagnetic Data for the
“Equinox Case” and “Solstice Case”

Name Equinox Case (Min, Mean, Max) Solstice Case (Min, Mean, Max)

Vx (km/s) −758.7, −515.5, −319.9 −574.3, −403.0, −304.1

Density (cm−3) 0.81, 4.0, 31.1 1.4, 6.5, 30.4

Bz (nT) −10.7, 0.1, 9.8 −16.7, 0.9, 25.7

By (nT) −10.8, 0.3, 12.7 −26.4, 3.0, 17.3

Kp 0, 2.0, 5.0 0, 2.1, 5.3

F10.7 67.4, 73.8, 88.2 140.6, 182.7, 208.9

LFM simulation. Figure 2 shows the simulated relationship between the average cusp plasma number density
at a radial distance of 5 RE and the solar wind number density in the Northern Hemisphere and Southern
Hemisphere derived from the Equinox Case, respectively. The cusp number density ncusp averaged within the
high-altitude cusp region at a radial distance of 5 RE . The dipole tilt effect on the linear correlation between
the simulated ncusp and nsw is relatively small. As shown in Figure 2a, in the Northern Hemisphere, the average
number density in the high-altitude cusp region increases approximately linearly with the solar wind number
density with a correlation coefficient of 0.91, which indicates the efficient direct entry of solar wind plasma
into the high-altitude cusp region in the simulation. The ratio between the cusp number density and SW
number density is 0.78 in the global simulation, which agrees well with the ratio of 0.8 in the observations of
Walsh et al. (2016), which is averaged over all seasons and dipole tilt conditions. Note that since the Polar’s
orbit passes through the noon-midnight meridian twice per year (once with perigee toward noon and once
with apogee toward noon), the condition of being within 1.5 h of local noon is met during two periods each
year, one in March–April and the other in September–October. Therefore, the equinox simulation will better
represent the Polar data than the solstice simulation. As compared with Figure 2a, the simulated cusp number
density in the Southern Hemisphere shown in Figure 2b still scales well with the SW number density. However,
the mean density ratio ncusp∕nsw is 0.53, which is lower than the ratio of 0.78 in the Northern Hemisphere. This
could be explained by the dipole tilt effect caused by the time period used in the Equinox Case simulation.
The simulation period is not centered on the March equinox but moves into April. As a consequence, the
Northern Hemisphere tilts more toward the Sun, leading to a larger plasma density ratio ncusp∕nsw than that
in the Southern Hemisphere.

Figure 3 shows the simulated density ratio (ncusp∕nsw) derived from the high-altitude cusp region in two hemi-
spheres as a function of geocentric radial distance derived from the Equinox Case simulation. The red band
inside the box is the median value, while the bottom and top of the box represent the first and third quartiles of
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Figure 2. Plasma number density within the cusp at a radial distance of 5 RE in the (a) Northern Hemisphere and
(b) Southern Hemisphere as a function of solar wind number density derived from the Equinox Case.
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Figure 3. Ratio of cusp plasma number density and solar wind plasma number density as a function of radial distance in
the (a) Northern Hemisphere and (b) Southern Hemisphere derived from the Equinox Case.

ncusp∕nsw. The whiskers indicate 1.5 times the interquartile range. As shown in Figure 3a, the simulated density
ratio ncusp∕nsw in the Northern Hemisphere increases from 0.46 to 1.42 as the radial distance increases from
2.5 RE to 7 RE . The simulated ncusp∕nsw ratio at the radial distances greater than 4 RE agrees with the measured
plasma density ratio variations in Walsh et al. (2016). At radial distances smaller than 4 RE , the density ratio in
the Equinox Case simulation asymptotes to approximately 0.5, which is significantly lower than the observed
ratio around 1–4. This is due to the absence of ionospheric plasma population at low altitudes in the LFM sim-
ulations. Multifluid global simulations have shown that the inclusion of a cold ionosphere population at low
altitudes brings the plasma density ratio closer to the observed values below radial distances of 4 RE (Walsh
et al., 2016). The single-fluid LFM simulation uses the “hard wall” boundary condition for magnetospheric
plasma such that the cold “de facto outflow” population (Welling & Liemohn, 2014) does not contribute to the
plasma density at low altitudes. The radial variation of the simulated ncusp∕nsw in the Southern Hemisphere is
similar to that in the Northern Hemisphere, but with lower magnitudes. The simulated density ratio ncusp∕nsw

in the Southern Hemisphere increases from 0.30 to 0.94 as the radial distance increases from 2.5 RE to 7 RE .
3.1.2. The Solstice Case
The location and spatial extension of the polar cusp are regulated by the dipole tilt angle (e.g., Zhou et al.,
1999). Solar wind more easily enters the hemisphere which is tilted toward the Sun, especially during south-
ward IMF driving. As a consequence, hemispheric asymmetry in the relation between solar wind plasma and
cusp plasma is expected at solstice when the dipole tilt angle is large. Figure 4 shows the simulated solar wind
number density versus cusp plasma number density in the Northern Hemisphere and the Southern Hemi-
sphere derived from the Solstice Case. The average plasma number density ratio in the Southern (summer)
Hemisphere is 0.79, which is much larger than that in the Northern (winter) Hemisphere. The simulation results
suggest that at solstice, the winter hemisphere tilts away from the Sun and the entry of solar wind plasma
becomes less efficient, with only a plasma number density ratio of 0.24. Note that the simulated high-altitude
cusp plasma number density from both hemispheres shows high correlations with the solar wind number
density, with correlation coefficients of 0.8 (north) and 0.88 (south). Further observational studies are nec-
essary to verify the simulated hemispheric asymmetry associated with the direct entry of plasma under
solstice conditions.

Figure 5 shows the simulated plasma density ratio (ncusp∕nsw) as a function of radial distance in two hemi-
spheres derived from the Solstice Case simulation. The simulated density ratios in both hemispheres increase
as the radial distance increases, which is similar to the results derived from the Equinox Case. The ncusp∕nsw

ratio in the Northern (winter) Hemisphere increases from 0.2 to 0.4 as the radial distance increases from 2.5 RE

to 7 RE . In the Southern (summer) Hemisphere, the simulated density ratio ncusp∕nsw has a much larger value
than that in the winter hemisphere, which increases from 0.34 to 1.67 as the radial distance increases from
2.5 RE to 7 RE . As discussed in the previous section, the absence of ionospheric contribution again leads to a
low ncusp∕nsw ratio at radial distances less than 4 RE as in the Equinox Case.
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Figure 4. Same as Figure 2 but for the Solstice Case.

Figure 6 shows the plasma density distribution in the X-Z plane at 00:00 UT on 21 March 2008 and 21
December 2014, respectively. Both cases exhibit direct entry of plasma from magnetosheath to the
high-altitude cusp region. As shown in Figure 6a, the plasma density in the Equinox Case shows a hemispheri-
cally symmetric distribution in the magnetosheath, which is the source region of the direct-entry plasma in the
high-altitude polar cusp. The plasma in Figure 6a has a maximum density of about 19 cm−3. However, for the
Solstice Case with large dipole tilt angle, prominent hemispheric asymmetry can be seen in the plasma distri-
bution in Figure 6b. The plasma density in the Southern Hemisphere is nearly 2–3 times of that in the Northern
Hemisphere. This is consistent with the results of plasma density ratio ncusp∕nsw in two hemispheres in
Figure 5. Note that in Figure 6 the magnetopause location is different in two cases due to the difference of
SW/IMF conditions.

3.2. Cusp Electron Precipitation Versus SW Coupling Functions
The above results show that the LFM results generally agrees with the observations of Walsh et al. (2016),
both in the high correlation between the cusp plasma number density and solar wind plasma number density
and the mean plasma density ratio ncusp∕nsw. This suggests that the LFM global model is able to simulate the
source region plasma density appropriately. In this subsection, we investigate the relationship between cusp
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Figure 5. Same as Figure 3 but for the Solstice Case.
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Figure 6. The distribution of plasma density in the X-Z plane for the Equinox Case and Solstice Case.

electron precipitations and various SW coupling functions. The hemispheric electron precipitation rate and
power are calculated by the hemispheric integration of the electron number flux and energy flux over the
cusp region, respectively.
3.2.1. The Equinox Case
Figure 7 displays the linear correlations between the simulated hemispheric integrated rate of the precipi-
tating cusp electrons and the upstream solar wind electric field (vBT ), number density, dynamic pressure (p),
and dΦMP/dt in the Northern Hemisphere derived from the Equinox Case. The dayside merging rate dΦMP/dt,
which is expressed as (v4∕3B2∕3

T sin8∕3(𝜃c∕2)), was proposed by Newell et al. (2007) to be the optimal SW cou-
pling function to predict magnetospheric indices. Results of linear correlation analysis in Figure 7 show that
the dynamic pressure and number density significantly higher linear correlation coefficients than the SW elec-
tric field and dΦMP/dt. The SW number density and dynamic pressure have linear correlation coefficients of
0.79 and 0.77, while the correlation coefficients are 0.43 and 0.31 for the solar wind electric field and dΦMP/dt,
respectively. The results indicate that the hemispheric integrated precipitation rate of cusp soft electrons may
depend more on the SW plasma number density and dynamic pressure rather than the electric field, suggest-
ing that the direct-entry process is less affected by the electromagnetic coupling process between the SW
and magnetosphere than the SW drivers.

Figure 8 shows the linear correlations between the simulated hemispheric power of precipitating cusp soft
electrons and the upstream solar wind electric field, number density, dynamic pressure, and dΦMP/dt in the
Northern Hemisphere for the Equinox Case. Note that the simulated soft electron precipitation within the
cusp region has a hemispheric power around 0.1–1 GW, which is much less than the total precipitating hemi-
spheric power in the simulation. Once again the dynamic pressure has the highest linear correlation of 0.75
with the hemispheric cusp precipitation power. Compared with the results shown in Figures 7a and 7d, the
solar wind electric field and dΦMP/dt give better correlations with the hemispheric power than those with the
hemispheric precipitation rate. However, the SW number density, which gives the highest correlation with the
soft electron precipitation rate, only correlates the hemispheric power with a correlation coefficient of 0.51.

We also performed linear correlation analysis using the SW coupling functions listed in Newell et al. (2007).
Table 2 lists the linear correlations between these 20 SW coupling functions and the simulated hemispheric
rate and of precipitating cusp soft electrons based on the Equinox Case simulation. The highest linear corre-
lation between the soft electrons and SW coupling function is with the SW dynamic pressure. As expected,
the direct-entry cusp electron precipitation rate correlates better with the coupling functions which contain
the number density (such as EWV and ETL), while the hemispheric power of soft electrons correlates better
with the SW velocity. The linear regression relations between SW dynamic pressure and hemispheric power
and hemispheric precipitation rate of cusp soft electrons derived from the Equinox Case in the Northern
Hemisphere are

Power = (0.266p ± 0.003) − (0.110 ± 0.006) (3)

Rate = (0.425p ± 0.005) − (0.214 ± 0.009) (4)
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Figure 7. Scatterplots of hemispheric precipitation rate of soft electrons versus solar wind electric field, density,
dynamic pressure, and dΦMP∕dt in the Northern Hemisphere derived from the Equinox Case.

where p (in unit of nanopascals) denotes the SW dynamic pressure and Power (in unit of GW) and Rate (in
unit of 1025 s−1) represent the hemispheric power and hemispheric precipitation rate of precipitating soft
electrons, respectively.
3.2.2. The Solstice Case
The linear correlation analysis discussed in the previous section suggests that the SW dynamic pressure has
the highest correlation coefficients with the direct-entry cusp electron precipitation during equinox. In this
section we investigate the corresponding linear correlation during solstice conditions. Figure 9 shows the
relationship between SW dynamic pressure and hemispheric precipitation rate and hemispheric power of
cusp soft electrons derived from the Solstice Case simulation. Results show that the SW dynamic pressure
correlates well with hemispheric precipitation rate and hemispheric power in both hemispheres, with linear
correlations greater than 0.8. Note that simulated the soft electron precipitation in the cusp region of the
winter hemisphere still has a good correlation with the SW dynamic pressure, although the ncusp∕nsw ratio is
only 0.24 as shown in Figure 4. As a consequence, the magnitudes of the hemispheric precipitation rate and
the hemispheric power of cusp soft electrons in the winter hemispheric are significantly lower than those in
the summer hemisphere.

Table 3 shows the linear correlations between the simulated hemispheric precipitation rate and hemispheric
power of cusp soft electrons and the 20 SW coupling functions listed in Table 2 derived from the Solstice Case
in the Northern and the Southern Hemisphere, respectively. Similar to the results derived from the Equinox
Case, the dynamic pressure p has the highest linear correlation coefficient for the hemispheric integrated pre-
cipitation rate and power in both hemispheres regardless of the dipole tile angle. The plasma number density
has the second highest linear correlation coefficient in the 20 SW coupling functions. In the Solstice Case, the
solar wind electric field vBT has significantly higher linear correlation coefficient compared to the results in
the Equinox Case, especially on the hemispheric precipitation rate. Hemispheric asymmetries are evident in
the correlation coefficients listed in Table 2, which suggests that most SW coupling functions correlate bet-
ter with the cusp soft electron precipitation in the summer hemisphere than those in the winter hemisphere,
except Bz , SW velocity, and SW electric field.
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Figure 8. Same as Figure 7 but with the hemispheric power as the y axis.

Table 2
The Linear Correlation Between SW Coupling Functions and Cusp Soft Electron Hemispheric Precipitation Rate and
Hemispheric Power Derived From the Equinox Case Simulation

Name Function form Hemispheric precipitation rate Hemispheric power

Bz Bz −0.27 −0.38

Velocity v −0.15 0.22

Density n 0.79 0.51

p nv2∕2 0.77 0.75

Bs Bz (Bz < 0) −0.46 −0.56

0 (Bz > 0)
Half-wave rectifier vBs −0.39 −0.58

𝜀 vB2 sin4 (𝜃c∕2) 0.53 0.68

𝜀1 vB2
T sin4 (𝜃c∕2) 0.53 0.68

𝜀2 vB sin4 (𝜃c∕2) 0.41 0.61

Solar wind E field vBT 0.43 0.62

EKL vBT sin2 (𝜃c∕2) 0.42 0.64

E1∕2
KL [vB2 sin2 (𝜃c∕2)]1∕2 0.36 0.56

EKLV v4∕3BT sin2 (𝜃c∕2)p1∕6 0.45 0.68

EWAV vBT sin4 (𝜃c∕2) 0.41 0.61

E2
WAV [vBT sin4 (𝜃c∕2)]2 0.43 0.62

E1∕2
WAV [vBT sin4 (𝜃c∕2)]1∕2 0.35 0.54

EWV v4∕3BT sin4 (𝜃c∕2)p1∕6 0.43 0.65

ESR vBT sin4 (𝜃c∕2)p1∕6 0.55 0.73

ETL n1∕2v2BT sin6 (𝜃c∕2) 0.53 0.69

dΦMP/dt v4∕3B2∕3
T sin8∕3 (𝜃c∕2) 0.31 0.56
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Figure 9. Scatterplots of (a, b) hemispheric precipitation rate and (c, d) hemispheric power of cusp soft electrons as a
function of solar wind dynamic pressure derived from the Solstice Case for the Northern (Figures 9a and 9c) and
Southern (Figures 9b and 9d) Hemispheres, respectively.

In the Solstice Case, the dynamic pressure is still the SW coupling function that has the highest linear correla-
tion with the soft electron precipitation in the cusp region during tilted dipole conditions. The simulated linear
regression relations between the hemispheric integrated rate/power of precipitating cusp soft electrons and
SW dynamic pressure derived from the Solstice Case simulation are

Powersum = (0.289 ± 0.004)p − (0.070 ± 0.011) (5)

Ratesum = (0.667 ± 0.009)p − (0.278 ± 0.023) (6)

Powerwin = (0.162 ± 0.002)p + (0.050 ± 0.006) (7)

Ratewin = (0.339 ± 0.005)p − (0.115 ± 0.012) (8)

where the subscript sum and win stand for the summer hemisphere and winter hemispheres, respectively.

Neither SW number density nor dynamic pressure was considered to have significant impact on predict-
ing magnetospheric indices associated with the electrodynamic coupling between SW and magnetosphere
in the literature (e.g., Newell et al., 2007). However, the simulation results suggest that the commonly used
SW coupling functions, which involve the use of SW electric field, may not be the appropriate SW coupling
functions describing the direct-entry of magnetosheath plasma into the I-T system. The simulation results
suggest that the SW dynamic pressure gives the best correlation with the cusp soft electron precipitation.
According to equations (1) and (2), the precipitating cusp electron number flux FN can be linked to SW

dynamic pressure through the relation FN = L0
NeT1∕2

e√
2𝜋me

∝ NeVthe ∝ n1∕2
sw p1∕2, where Vthe is the thermal veloc-

ity, which is proportional to
√

Te∕me. This indicates that the electron number flux is directly controlled by
both the SW number density and dynamic pressure. Meanwhile, the electron energy flux FE has the relation
FE = 2FNTe ∝ NeV3

the ∝ p3∕2n−1∕2. Therefore, both the precipitating electron number flux and energy flux
are closely related to the SW dynamic pressure. It should be pointed out that the integrated number flux
FN and energy flux FE are also influenced by the size of the polar cusp, which is also controlled by the SW
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Table 3
The Linear Correlation Between SW Coupling Functions and Cusp Soft Electron Hemispheric Precipitation Rate and
Hemispheric Power Derived From the Solstice Case Simulation for Northern Hemisphere (NH) and Southern
Hemisphere (SH)

Hemispheric precipitation rate Hemispheric power

Name Function form NH SH NH SH

Bz Bz 0.48 0.06 0.37 0.02

Velocity v 0.21 0.15 0.37 0.26

Density n 0.79 0.87 0.73 0.80

p nv2∕2 0.85 0.87 0.85 0.84

Bs Bz (Bz < 0) 0.04 −0.27 −0.08 −0.33

0 (Bz > 0)
Half-wave rectifier vBs 0.03 −0.26 −0.10 −0.34

𝜀 vB2 sin4 (𝜃c∕2) 0.14 0.44 0.29 0.53

𝜀1 vB2
T sin4 (𝜃c∕2) 0.14 0.44 0.29 0.53

𝜀2 vB sin4 (𝜃c∕2) 0.01 0.32 0.15 0.41

Solar wind E field vBT 0.74 0.60 0.82 0.66

EKL vBT sin2 (𝜃c∕2) 0.12 0.43 0.29 0.53

E1∕2
KL [vB2 sin2 (𝜃c∕2)]1∕2 0.09 0.38 0.25 0.47

EKLV v4∕3BT sin2 (𝜃c∕2)p1∕6 0.20 0.52 0.38 0.62

EWAV vBT sin4 (𝜃c∕2) 0.01 0.32 0.15 0.41

E2
WAV [vBT sin4 (𝜃c∕2)]2 0.07 0.32 0.20 0.40

E1∕2
WAV [vBT sin4 (𝜃c∕2)]1∕2 −0.07 0.27 0.08 0.35

EWV v4∕3BT sin4 (𝜃c∕2)p1∕6 0.05 0.40 0.21 0.48

ESR vBT sin4 (𝜃c∕2)p1∕6 0.14 0.54 0.3 0.61

ETL n1∕2v2BT sin6 (𝜃c∕2) 0.09 0.47 0.23 0.53

dΦMP/dt v4∕3B2∕3
T sin8∕3 (𝜃c∕2) −0.03 0.29 0.13 0.39

electric field. To provide a more accurate prediction of cusp soft electron precipitations from upstream SW
driving conditions, pairs of coupling functions, which includes the electric field term, might be considered in
a future study.

Note that we analyzed two event-based global magnetosphere simulations in this work. We have also per-
formed two additional ideal simulations (not shown here) with fixed dipole tilt angle of 0∘ and 30∘ driven by
fixed, moderate solar velocity and IMF conditions (V = 400 km/s, Bz = −5 nT) but with increasing solar wind
density within 8 h. The results indicate that the idealized simulations with fixed dipole tilt angles give similar
average ratios of Ncusp∕Nsw, but with much less scattering in the data points due to the lack of variations in
the upstream conditions. Therefore, it is more reasonable to use relatively long event simulations with realis-
tic variabilities in the upstream driving conditions in order to validate the simulation results using statistical
observations in Walsh et al. (2016).

4. Effect of Ionospheric Outflow

In this study, we assume there is no ionospheric plasma population from the inner boundary of LFM model. To
test the possible influence of this assumption on the high-altitude cusp region, we did additional test simula-
tions in order to see the effects of ionospheric outflow on the simulated Ncusp∕Nsw results. Here we used the
recently developed multifluid LFM (MFLFM)-Ionosphere Polar Wind Model (IPWM) driven by idealized SW/IMF
conditions that may be representative to the simulation period above in order to see the role of ionospheric
outflow on the direct entry of solar wind, especially the Ncusp∕Nsw calculations together with pressure balance.
The details about the IPWM code and the coupling processes within MFLFM-IPWM can be found in Varney
et al. (2015, 2016a, 2016b).

The test simulations were driven by moderate SW/IMF conditions with Nsw = 5 cm−3, V = 400 km/s,
Cs = 40 km/s, and Bz = −5 nT. The solar F10.7 = 80 sfu corresponding to solar minimum conditions similar to
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Ncusp∕Nsw ratios derived from the two controlled simulations with and without ionospheric outflow.

the simulation event of Equinox Case. The model was preconditioned for 2 h southward IMF with Bz = −5 nT
followed by 2 h northward IMF with Bz = +5 nT. Then IMF is switched to Bz = −5 nT for another 4 h. The
simulation results presented in the following section are averaged from the last simulation hour.

The MFLFM-IPWM test simulation uses four fluids: solar wind H+, polar wind H+, polar wind O+, and trans-
versely accelerated (energetic) O+. The details about a phenomenological wave-particle interactions model
used in IPWM for energetic O+ ion outflow together with the model validations are described in Varney et al.
(2016a). Figure 10 shows the average distributions of number density and thermal pressure of the solar wind
H+, ionospheric H+, and ionospheric O+ in the x-z plane (SM coordinates) derived from the last hour of the
test simulation. It is clear that at a radial distance of 5 RE , both number density and pressure of the ionospheric
ion populations are orders of magnitude lower than the solar wind H+.

Figure 11 shows the comparisons on the solar wind number density and pressure between a single-fluid
simulation (similar to the single-fluid simulation results analyzed in the previous section) and the multifluid
simulation with physics-based ionospheric outflow populations implemented. While ionospheric outflow
populations are included in the simulation, the shape of the magnetosphere changes as a consequence of
system dynamics; for example, the location of the polar cusp moves slightly. Although the magnetotail is
more influenced by the outflow population which has been demonstrated in previous simulation studies (e.g.,
Brambles et al., 2011), the entry of the solar wind plasma to low altitude is not significantly affected as shown
in Figure 11, which is shown in the line plots in Figure 12.

Figure 12 displays the average distributions of total plasma number density in the x-z plane derived from the
two controlled simulation with and without ionospheric outflow. The average ratio of the simulated Ncusp∕Nsw

as a function of radial distance is also calculated in Figure 12. It is evident that without ionospheric popula-
tions, the Ncusp∕Nsw ratio increases with radial distance. At a radial distance of 5 RE (shown by the red dashed
line), the average Ncusp∕Nsw ratio is approximately 0.83, which is consistent with the average value derived

DANG ET AL. 223



Journal of Geophysical Research: Space Physics 10.1002/2017JA024379

0 20 40 60 80
0

1

2

3

4

5

6

7

8

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SW H  (Outflow)+

PW H+

O+

θ

cm
−

3

NUMBER DENSITY

θ

nP
a

PRESSURE

PoleEquator

θ x

z

5 RE

PoleEquator

SW H  (No Outflow)+

Figure 13. Distributions of number density and pressure of SW H+, ionospheric H+, and O+ ions at a radial distance of
5 RE in the x-z plane.

from the single-fluid simulation. When ionospheric populations are included in the simulation, the Ncusp∕Nsw

ratio changes significantly especially at radial distances smaller than 3.6 RE (shown by the green dashed line).
Near the radial distance of 1.5 RE , the Ncusp∕Nsw ratio is approximately 2.6, which is also consistent with Walsh
et al. (2016). On the other hand, the Ncusp∕Nsw ratio at a radial distance of 5 RE derived from the simulation with
outflow is approximately 0.85, which is close to the single-fluid simulation, suggesting that at radial distances
larger than 5 RE , the Ncusp∕Nsw ratio is most likely dominated by the direct-entry of the solar wind H+ rather
than ionospheric H+ or O+. The simulated Ncusp∕Nsw ratios in both simulations are consistent with Walsh et al.
(2016) for radial distances greater than 5 RE , regardless the present of ionospheric populations.

Figure 13 shows the distributions of number density and pressure of SW H+, ionospheric H+, and O+ ions at a
radial distance of 5 RE in the x-z plane. It is again evident that at a radial distance of 5 RE , the number density
and pressure are dominated by the solar wind H+ rather than ionospheric populations. Note that the mag-
nitudes of the number density and pressure of SW H+ remain about the same with ionospheric populations
included, while the spatial distribution of the density and pressure shift toward high latitudes slightly (several
degrees at a radial distance of 5 RE) due to the global change of the magnetosphere state when ionospheric
outflow populations are included in the simulation. This effect has been reported and studied in literature
and is not the focus of our study.

To conclude, as shown in Figures 10–13, the coupled MFLFM-IPWM test simulation suggests that at a radial
distance of 5 RE (and above), ionospheric populations have relatively small contributions to the total plasma
pressure and the simulated ratio of Ncusp∕Nsw especially during quiet periods, which is consistent with Walsh
et al. (2016). At radial distances smaller than 3.5 RE , the ionospheric populations are important in order to make
the Ncusp∕Nsw ratio in agreement with observations. In addition, we have also looked at coupled IPWM-MFLFM
simulations for F10.7 = 200 cases and found similar conclusions as shown in Figures 10–13. Therefore, ignoring
ionospheric contributions to plasma populations at a radial distance of 5 RE (and above) in the cusp region
does not affect the simulated Ncusp∕Nsw ratio derived from the simulations.

5. Summary

Predicting the cusp electron precipitation is important in investigating the dayside SW-magnetosphere-
ionosphere coupling process and in forecasting space weather phenomena. The current global iono-
sphere/thermosphere circulation models usually calculate the impact of precipitating electrons by employing
the empirical ionization models such as Lazarev (1967), Roble and Ridley (1987), and Frahm et al. (1997). For
instance, The auroral particle precipitation is specified using the method of Roble and Ridley (1987) in the
National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation
Model. However, the soft electron precipitations in the cusp region has been rarely considered in these empir-
ical models. The aim of this paper is to find the optimal SW coupling function for describing the fluxes of
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precipitating soft electrons in the polar cusp region and provide a possible empirical calculation for the fluxes
of cusp soft electron precipitation based on the upstream solar wind driving conditions.

In this study, we use the LFM global simulation to investigate the correlation between the fluxes of pre-
cipitating electrons in the cusp and the upstream solar wind conditions. The simulations are run from 20
March 2008 to 16 April 2008 and from 15 to 24 December 2014, which are referred as Equinox Case and
Solstice Case, respectively. For the Equinox Case, the mean plasma density ratio Ncusp∕Nsw is 0.78, which
agrees well with the statistical observations in Walsh et al. (2016). The effectiveness of 20 candidate SW cou-
pling functions are examined for the linear correlation with the simulated number flux and energy flux of
cusp soft electrons. The statistical results indicate that the solar wind dynamic pressure has the highest cor-
relation coefficients with both hemispheric precipitation rate and hemispheric power of precipitating soft
electrons. The linear regression relations between SW dynamic pressure p and cusp soft electrons at equinox
for the hemispheric electron precipitation rate and power are Power = (0.266p ± 0.003) − (0.110 ± 0.006),
Rate = (0.425p ± 0.005) − (0.214 ± 0.009).

We have also investigated the correlation between SW parameters and cusp soft electrons at solstice when
the dipole tilt angle is large. The simulation results in Solstice Case show that the average plasma density
ratio ncusp∕nsw in the Southern (summer) Hemisphere is much larger than that in the Northern (winter) Hemi-
sphere due to the large dipole tilt angle. The SW dynamic pressure p is still the highest correlated SW coupling
function for both hemispheric precipitation rate and hemispheric power of soft electrons, with the correla-
tion coefficients larger than 0.8. Thus, our results can be used to improve the specification of precipitating soft
electrons in the cusp region in the ionosphere and thermosphere models.
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