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Abstract

Background: The recent release of the gene-targeted metagenomics assembler Xander has demonstrated that
using the trained Hidden Markov Model (HMM) to guide the traversal of de Bruijn graph gives obvious advantage
over other assembly methods. Xander, as a pilot study, indeed has a lot of room for improvement. Apart from its
slow speed, Xander uses only 1 k-mer size for graph construction and whatever choice of k will compromise either
sensitivity or accuracy. Xander uses a Bloom-filter representation of de Bruijn graph to achieve a lower memory
footprint. Bloom filters bring in false positives, and it is not clear how this would impact the quality of assembly.
Xander does not keep track of the multiplicity of k-mers, which would have been an effective way to differentiate
between erroneous k-mers and correct k-mers.

Results: In this paper, we present a new gene-targeted assembler MegaGTA, which attempts to improve Xander in
different aspects. Quality-wise, it utilizes iterative de Bruijn graphs to take full advantage of multiple k-mer sizes to
make the best of both sensitivity and accuracy. Computation-wise, it employs succinct de Bruijn graphs (SdBG) to
achieve low memory footprint and high speed (the latter is benefited from a highly efficient parallel algorithm for
constructing SdBG). Unlike Bloom filters, an SdBG is an exact representation of a de Bruijn graph. It enables
MegaGTA to avoid false-positive contigs and to easily incorporate the multiplicity of k-mers for building better
HMM model.
We have compared MegaGTA and Xander on an HMP-defined mock metagenomic dataset, and showed that
MegaGTA excelled in both sensitivity and accuracy. On a large rhizosphere soil metagenomic sample (327Gbp),
MegaGTA produced 9.7–19.3% more contigs than Xander, and these contigs were assigned to 10–25% more gene
references. In our experiments, MegaGTA, depending on the number of k-mers used, is two to ten times faster than
Xander.

Conclusion: MegaGTA improves on the algorithm of Xander and achieves higher sensitivity, accuracy and speed.
Moreover, it is capable of assembling gene sequences from ultra-large metagenomic datasets. Its source code is
freely available at https://github.com/HKU-BAL/megagta .

Keywords: Metagenomics, Assembly, De Bruijn graph, Targeted gene

* Correspondence: twlam@cs.hku.hk
1Department of Computer Science, University of Hong Kong, Pokfulam,
Hong Kong
2L3 Bioinformatics Limited, Western District, Hong Kong

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

The Author(s) BMC Bioinformatics 2017, 18(Suppl 12):408
DOI 10.1186/s12859-017-1825-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1825-3&domain=pdf
https://github.com/HKU-BAL/megagta
mailto:twlam@cs.hku.hk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Next generation sequencing has greatly promoted the
study of metagenomics in recent years. These studies
often involve de novo assembling of millions to
billions of reads into contigs for gene annotation.
This has triggered the study of advanced algorithms
to significantly enhance the computational efficiency
for metagenome assembly [1–3]. On the other hand,
due to the prevalence of uneven coverage and cross-
genome repeats [4], it is common to get fragmented
gene sequences. To overcome these drawbacks,
several gene-targeted assembly methods, including
EMIRGE [5], REAGO [6], SAT-Assembler [7], and
Xander [8], have been published. Unlike the first
three methods which attempt to sort out the reads
that might have originated from targeted genes before
assembly, Xander constructs a de Bruijn graph (DBG)
whose nodes are the k-mers of all reads and searches
the genes by a guided traversal through the k-mers
on-the-fly. The assembly of a specific gene is guided
by a profile Hidden Markov Model (HMM) [9], which
is built using the results of multiple sequence align-
ment of the underlying gene family. Starting from a
node, Xander makes decisions at the branches in
graph and outputs a unique path that results in the
highest probability of the HMM. This overcomes the
problem of de novo assembly that intrinsically stops
at branches. More specifically, the Xander algorithm
is operated on a combined graph of DBG and HMM.
Its workflow is shown in Fig. 1 and will be explained
in detail in the next section.
Although Xander produces longer and higher-quality

gene specific contigs than previous methods, there is still
a lot of room for improvement. The followings are three
improvements we considered in this paper:

A. Use multiple k-mer sizes. Xander uses a fixed k to
build a de Bruijn graph of k-mers. This leads to a
classic dilemma, in which a large k results in gaps
among low-coverage genomic regions, and genes
coming from these regions are unlikely to be assembled
[10]; and a small k may collapse short repetitive regions
and result in excessive branches in the de Bruijn graph.
Though HMM-guided assembly targets to resolve a
repeat by choosing a best path that “suggested” by
HMM, it is not impossible for two parts of different
genes be combined into a chimeric contig via a repeat.
In this regard, a small k tends to produce more
misassemblies. Iterative de Bruijn graph [10], which
leverages k-mers with multiple sizes, has showed its
advantages in several de novo assemblers [3, 11–13].
Benchmarks hereinafter show that HMM-guided
assembly can benefit from iterative de Bruijn graphs.

B. Filter erroneous k-mers in de Bruijn graph.
k-mers that appear only once in a given set of reads
are error prone. In order to achieve a higher
sensitivity of low coverage genes, Xander opted not
to filter k-mers with low multiplicity. Instead,
Xander relies on the HMM to avoid erroneous
k-mers. But it still results in many contigs with
either structural errors or incorrect bases, especially
when a small size of k-mer is used. To avoid this
defect, we penalize k-mers that occur only once
during the HMM-guided searching (equivalent to
set a prior erroneous probability to these k-mers).

C. Avoid false positive k-mers caused by
probabilistic data structure. To achieve better
memory efficiency, Xander represents de Bruijn
graph using a Bloom filter [14], a probabilistic data
structure that contains a certain rate of false positive
(but free of false negative) members. In our solution,

Fig. 1 The workflow of Xander (left) and MegaGTA (right). Their differences are highlighted in bold
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we replace Bloom filter with succinct de Bruijn
graph [3, 15], a state-of-the-art memory-efficient
data structure free from both false positives and false
negatives. To study the improvement, we identified
and benchmarked the Xander’s misassembled con-
tigs due to k-mers, by querying the exact representa-
tion of a de Bruijn graph.

The three aforementioned improvements have been
implemented and integrated into a new gene-targeted
assembler called MegaGTA (workflow and the differ-
ences to Xander also shown in Fig. 1). We demonstrate
the effectiveness of MegaGTA with two datasets, first on
an HMP-defined mock community, and second on a
large rhizosphere soil metagenomic sample [8]. With
iterative de Bruijn graphs, MegaGTA achieved higher
sensitivity and accuracy than Xander (even with well-
tuned parameters). More interestingly, MegaGTA, even
with more calculations due to multiple k-mer sizes, was
still about two to four times faster than Xander when
tested on a 24-core server, while using a similar amount of
peak memory. If one runs Xander repeatedly with differ-
ent k-mer sizes in a way similar to MegaGTA, then the
relative speed-up of MegaGTA is even more significant.
With respect to the rhizosphere soil dataset, we found

that 0.02, 0.39 and 10.52% of contigs generated by Xan-
der contain false positive k-mers, when using a Bloom
filter size of 256GB, 128GB and 64GB, respectively. Ap-
parently Bloom filter causes accuracy issues when mem-
ory is constrained. Succinct de Bruijn graph overcomes
the inexactness of Bloom filter, while allows faster graph
construction.

Implementations
HMM-guided assembly on combined weighted assembly
graphs
A combined weighted assembly graph (CAG) is the key
structure of the HMM-guided algorithm exploited by
Xander, as well as our implementation MegaGTA. A
CAG is a combination of a de Bruijn graph and a profile
HMM.
De Bruijn graphs (DBG) are used in most short-read

assemblers. In the context of genome assembly, each
node in a de Bruijn graph is a k-mer, a length-k string in
nucleotide or peptide alphabet. If the (k-1)-long suffix of
a node u is the same as the (k-1)-long prefix of a node v,
there is a directed edge from u to v. The k-mers typically
comes from a set of unassembled reads.
A profile HMM [7] is a directed graph that represents

a set of aligned sequences. A node of HMM corresponds
to a column (or position) of the alignment, and there are
three kinds of states, namely match, insertion and dele-
tion for each node. Each edge is associated with a transi-
tion probability (Ptransition), modelling the likelihood of

the transition from a position with a certain state to
another with the same or another state. For nodes of
match states only, emission probability (Pemission) is a
property denotes how likely a base (nucleotide or pep-
tide) would appear at that position.
Let V(G) and E(G) be the vertex set and edge set of a

graph G, respectively. Conceptually, given a de Bruijn
graph D, and an HMM H, the vertices of the CAG C of
D and H is the Cartesian product of V(D) and V(H). For
a vertex w of C, we denote w . u ∈ V(D) and w . v ∈ V(H)
the de Bruijn graph component and HMM component
of w, respectively. An edge (w,w′) exists in E(C) if and
only if it satisfies one of the following conditions:

� (w . u,w' . u)∈ E(D) and (w . v,w' . v)∈ E(D), and
w' . v is a match or insertion state of HMM;

� w . u =w' . u and (w . v, w' . v)∈ E(D), and w' . v is a
deletion state of HMM.

Every edge in a CAG is assigned a weight:

� weight(w, w') = log[Ptransition(w . v,w' . v)] +
log[Pemission(vj, c)], where c is the last character w' . u,
if w' . v is a match state;

� weight(w, w') = log[Ptransition(w . v,w' . v)], if w' . v is an
insertion or deletion state.

Given a de Bruijn graph D and an HMM H, the algo-
rithm of Xander searches for a path from a starting ver-
tex to a terminating vertex, with the highest sum of edge
weights on the CAG of D and H using the A* algorithm
[16]. A starting vertex is identified by a k-mer appearing
in the reads and exactly matching a set of aligned refer-
ence sequences. Such a k-mer and the HMM state im-
plied by the matched position in the reference sequences
form a starting vertex of the CAG. A terminating vertex
here means a vertex in the CAG whose HMM compo-
nent is an ending vertex of the HMM. A reverse search
guided by a reverse HMM H′ is also needed, and the
two sequences spelled from the de Bruijn graph compo-
nent of the two best paths are merged to create a contig.

Adding low coverage penalty to a CAG
In MegaGTA, we introduce a penalty for the vertices
with low multiplicity, i.e. k-mers that appear only once
in the set of reads (multiplicity = 1). More precisely, for
an edge (w,w′) of a CAG, if w′ . u appears only once in
the set of reads, the weight of weight(w,w') becomes:

� weight(w, w') = log[Ptransition(w . v,w' . v)] +
log[Pemission(vj, c)] + log(α), where c is the last
character w′ . u, or

� weight(w, w′) = log[Ptransition(w . v,w' . v)] + log(α), if
w' . v is an insertion state,
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where α is a user-defined threshold (0.5 by default in
MegaGTA, which means that we assume the prior prob-
ability of a k-mer with multiplicity = 1 being an errone-
ous k-mer is 0.5). Intuitively, we reduce the probability
of entering a CAG vertex with count-1 k-mer by a factor
α. This leads the search onto high-coverage paths that
are more likely to be correct.

Iterative de Bruijn graphs
The selection of k-mer size affects the character of a de
Bruijn graph, and further affects the result of an HMM-
guided assembly. Basically, a large k makes the graph
more fragmented, especially for low-coverage regions,
due to the absence of overlapping k-mers. A fragmented
graph is less sensitive for both de novo assembly and
gene-targeted assembly. A small k makes the graph
collapse at short repeats, and though ideally an HMM
could resolve the repeats, it is still possible for different
genes to be incorrectly fused via a repetitive segment.
With a less stringent overlapping requirement, a small k
also results in a graph with more simple bubbles or
complex grids. This expands the number of paths to be
examined by the HMM-guided graph traversal and
makes it likely to result in a path with more mismatches.
To benefit from both small and large k-mer sizes, we

adopt the HMM-guided algorithm on iterative de Bruijn
graphs. Let DBG(R, k) be the de Bruijn graph whose k-mer
size is k and constructed form a set of reads R. Given a set
of n integers k1 < k2 <… < kn and a set of reads R, an itera-
tive de Bruijn graph of R up to ki G(R, ki) is defined recur-
sively as follows:

G R; k1ð Þ ¼ DBG R; k1ð Þ;
C kið Þ ¼ the set of de novo assembled contigs from

G R; kið Þ;

� G(R, ki + 1) = DBG(R∪C(ki), ki + 1).

For simplicity, we call G(R) = G(R, kn) the iterative de
Bruijn graph of R. Intuitively, for each i, some ki + 1-mers
absent from R (due to insufficient read coverage) could
be de novo assembled from G(R, ki). The intermediate
contigs C(ki) are dependent on the de novo assembly
algorithm used. In our implementation, tip removal and
bubble merging [17] are done prior to output the se-
quences of maximum paths without branches as contigs.
The HMM-guided algorithm is applied on G(R) to
search for targeted gene sequences.
In gene-targeted assembly, it is possible to replace

intermediate contigs C(ki) with a set of HMM-guided as-
sembled contigs. However, we only applied traditional
assembly graph pruning tactics due to the reason that

HMM-guided contigs at a smaller k-mer size are error-
prone in practice; the errors would be accumulated into
the final graph G(R). Traditional de novo assembly graph
pruning methods, such as tips removal, bubbles mer-
ging, et cetera are empirically more accurate.

Succinct de Bruijn graphs
In our implementation, we represent a de Bruijn graph
with a compressed data structure, namely Succinct de
Bruijn Graph (SdBG) [3, 15]. Unlike Xander that uses a
Bloom filter to represent a de Bruijn graph, which may
incur false positive k-mers, we choose an SdBG for the
following reasons: First, it is not only memory-efficient
but also an exact representation of a de Bruijn graph.
Second, there is a highly parallelized algorithm to
construct an SdBG rapidly, which is essential since we
need to build multiple intermediate graphs until the final
iterative de Bruijn graph is obtained. Third, de novo as-
sembly, as required by building an iterative de Bruijn
graph, is an uneasy job with a Bloom filter. The inexact-
ness of bloom filter could be solved by marking false
k-mers in a Bloom filter with extra memory, but by
using a disk-based algorithm [18], which is time-
consuming. In contrast, it is easy to do in-memory,
multi-threaded de novo assembly with an SdBG.

Results and discussion
We conducted five experiments using two metagenomic
NGS datasets. The first three experiments were carried
out on a mock metagenomic community dataset with
known reference gene sequences. Thus, we can evaluate
the sensitivity and accuracy of assembling results by
MegaGTA and Xander directly. We evaluated the trade-
off between sensitivity and accuracy in k-mer size
selection (Section 3.1), the effectiveness of low-coverage
penalty strategy on accuracy (Section 3.2), and the
improvements in sensitivity and accuracy brought by
iterative de Brujin graphs (Section 3.3). The other two
experiments were conducted using a real, large and
complex soil metagenomic sample. We showed that the
MegaGTA not only assembled more contigs as well as
genes than Xander on real dataset, but also achieve a
higher speed, which is essential to large metagenomic
samples (Section 3.4). The false positive effect of Bloom
filters was also evaluated using this dataset (Section 3.5).
All experiments were run on a server equipped with 24
2.6GHz Intel CPU cores and 1 T DDR3 RAM. Both
MegaGTA and Xander were configured with 24 threads
though Xander only supported multi-threading for its
starting k-mer finding component.

Trade-off in k-mer size selection
We ran MegaGTA (using single k) and Xander on an
HMP-defined mock community dataset (SRR172902 and
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SRR172903), that contains 22 known microorganisms, to
observe the differences in gene sensitivity and accuracy
with different k-mer sizes. We assembled the rplB genes
from the sequencing data, using the protein/nucleotide
reference sequences and the HMM used in the Xander
paper. The reads were firstly preprocessed by Trimmo-
matic [19] to remove adaptor sequences and trim low
quality bases (at a quality score of 2 to both ends of a
read). Raw contigs of length at least 450 nucleotides (or
150 amino acid) were passed through a series of post-
processing steps as suggested by Xander, including
clustering at 99% amino acid identity and choosing the
longest one as a representative. Then UCHIME [20] was
used for chimeric removal against a set of reference DNA
sequences. The contigs after the post-processing steps
were then aligned to the know rplB gene sequences for
analysis.
Among the 22 microorganisms in the mock commu-

nity, only 20 known rplB gene sequences could be
downloaded from the NCBI as of Jan 2016. We evalu-
ated the sensitivity (number of genes recovered and their
gene fractions), accuracy (number of misassemblies and
mismatches), and duplication ratio for each assembly
using metaQUAST [21] on these 20 known gene
sequences.
We chose three k-mer sizes, 30, 36 and 45, for both

MegaGTA and Xander. The evaluation results given by
metaQUAST are shown in Table 1. In total, 10 rplB

genes were recovered by either MegaGTA or Xander.
Both MegaGTA and Xander recovered more genes with
a k-mer size of 30. Both reported fewer misassemblies,
partially unaligned contigs and mismatches as the k-mer
size went larger. The duplication ratio was also higher
with a smaller k-mer size, except for the assembly of
Xander with k = 36. By checking the 36-mers or 45-mers
in the contigs assembled by k = 30, we found that some
of them were unrecovered because they were missing in
low coverage regions. It is interesting that some genes
(for example, the rplB gene of Staphylococcus epidermi-
dis) were only assembled by k = 45. When looking at the
contigs before chimeric removal, we found that the
missing genes were actually “assembled”, but contained
too many mismatches and hence been removed by
UCHIME. This again indicates that a small k-mer size is
prone to produce chimeric or erroneous contigs. Re-
garding time efficiency, using small k required more
time than large k, due to excessive number of branches
in the correponding de Bruijn graphs. MegaGTA was 8.8
to 14.9 times faster than Xander depending on the k-
mer size used.
In conclusion, small k-mer size is more sensitive, but

tends to yield erroneous contigs. Large k-mer size could
assemble genes accurately, at the expense of losing low
coverage genes.

Low coverage penalty improves the accuracy of
gene-targeted assembly
It is shown in Table 1 that MegaGTA and Xander gener-
ated slightly different results for each k-mer size. This is at-
tribute to the low coverage penalty of MegaGTA. We
picked k = 36 as an example to evaluate its effectiveness. In
addition, we evaluated how much the low coverage penalty
could substitute the chimeric removal using UCHIME.
As shown in Table 2, without low coverage penalty,

MegaGTA had almost the same results (after UCHIME)
as Xander (as shown in Table 1). With low coverage
penalty enabled, the number of mismatches decreased
significantly. The effectiveness of the penalty was more
salient before chimeric removal. It also reduced the
number of partially unaligned contigs.
With low coverage penalty, MegaGTA produced one

extra contig corresponding to Streptococcus mutans, and
it covered 55% of the gene after chimeric removal. By
manual inspection, we found that the contig was also
assembled by MegaGTA without the penalty, but had
been merged into a longer contig (which has three more
mismatches than that of low coverage penalty) at 99%
amino acid clustering similarity and then removed by
UCHIME. Thus, although UCHIME can remove errone-
ous contigs, the accuracy of the raw contigs, which may
affect the clustering result, is still important. In this re-
gard, the low coverage penalty is really helpful.

Table 1 Assembly statistics of different k-mer sizes

MegaGTA Xander

k-mer size 30 36 45 30 36 45

# of contigs 16 7 4 14 7 4

# of gene recoverd 9 5 4 8 4 4

duplication ratio 1.82 1.46 1.00 1.75 1.82 1.00

# misassembled contigs 1 0 0 1 0 0

# partially unaligned contigs 2 0 0 2 0 0

# mismatches per 100kbp 148 150 96 534 278 64

Wall time (second) 101 73 65 1264 1090 573

The gene fraction of each recovered rplB genes (%)

Acinetobacter baumannii 84.8 – – 84.8 – –

Bacteroides vulgatus 82.5 82.5 – 82.5 82.5 –

Deinococcus radiodurans 99.6 99.6 81.5 99.6 99.6 81.5

Escherichia coli 81.4 – – 81.4 – –

Propionibacterium acnes 78.1 – – 78.1 – –

Rhodobacter sphaeroides 98.2 64.3 – 98.2 64.3 –

Staphylococcus aureus 99.6 99.6 99.6 99.6 99.6 99.6

Staphylococcus epidermidis – – 99.6 – – 99.6

Streptococcus mutans 55.0 55.0 93.2 – – 93.9

Streptococcus pneumoniae 62.2 – – 62.2 – –
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Iterative de Bruijn graph outperforms merging contigs of
individual k-mers
We evaluated the effectiveness of iterative de Bruijn graph
approach of MegaGTA on the HMP-defined dataset. We it-
erate the de Bruijn graph on 3 k-mer sizes 30, 36 and 45. In
order to conduct a fair comparison with Xander that ran
with a single k only, we manually combined the raw contigs
outputted by Xander with the 3 k-mer sizes, to maximize
its sensitivity. The same post-processing procedures as
Xander were applied to the combined contigs.
Evaluation results given by metaQUAST are presented in

Table 3. MegaGTA achieved the same or higher fraction for
every microorganism, and much fewer misassemblies and
mismatches. By combining the contigs of different k-mer
sizes, Xander gained higher gene sensitivity, but many mis-
assembled or erroneous contigs assembled by k = 30 were
also included. Moreover, the duplication ratio went higher
after the combination, and the running time of Xander was
ten times greater than that of MegaGTA.
In Streptococcus mutans, although metaQUAST reported

a fraction of 99.29% for its rplB gene assembled by Xander,
we found that the gene (840 bp) was covered by two
shorter contigs of length 783 bp and 468 bp, respectively.
In contrast, MegaGTA assembled one contig of length
828 bp that covered the almost full length of the gene.
Therefore, for some genes, a small k or a large k alone
could only assemble part of their sequence accurately.
However, a longer path that correctly encodes the target
gene and is detectable by the HMM-guided search could
exist in an iterative graph. Arguably, an iterative de Bruijn
graph provides a better solution to assemble such genes.

MegaGTA achieves higher sensitivity on real dataset
To test the performance of MegaGTA on real dataset,
we compare the performance of MegaGTA with the

gene-targeted assembler Xander and the de novo meta-
genome assembler MEGAHIT [3] (v1.0.5) on assembling
one phylogenetic marker gene (rplB) and two functional
marker genes (nifH and nirK) from a corn rhizosphere
soil metagenomic sample [8]. The reads were trimmed
at the first bases with the quality score of 2. 327Gbp
remained after the quality trimming.
We ran MegaGTA in its default iterative mode (k = 30,

36 and 45), and ran Xander with k = 45 and a Bloom filter
size of 128G (allocating 200GB JAVA virtual machine
memory) as suggested in its paper. We also tried to run
Xander with k = 30 and 784GB JAVA virtual machine
memory, but the process did not finish after 2 weeks.
We ran MEGAHIT with “meta-large” preset and used

FragGeneScan [22] (v1.30) to predict genes from the as-
sembled contigs. HMMER [23] was then applied
(v3.1b2) to identify the genes of rplB, nifH and nirK.
Only gene sequence with bit-score > = 50 against the
profile-HMMs were retained as gene contigs assembled
by MEGAHIT.
All raw gene contigs constructed by the above assem-

blers with length longer than 450 bp were clustered at
99% amino acid identity, and chimeras were removed
using UCHIME against a set of reference sequences. We
also lowered the clustering identity threshold to 95%, as
this value was also used in [8] for analysis. Similar to the
experiments described in [8], we used Framebot [24] to
find the closest matches to a set of reference sequences.

Table 3 Assembly results of MegaGTA (using iterative de Bruijn
graph) and Xander (merging contigs of three k-mer sizes)

MegaGTA (iterates
on k = 30,36,45)

Xander (Union
of k = 30,36,45)

# of gene contigs 10 19

# of genes recovered 10 10

duplication ratio 1 1.79

# misassembled contigs 0 1

# partially unaligned contigs 1 2

# mismatches per 100kbp 13.52 453.05

Time (second) 277 2927

The gene fraction of each recovered rplB genes (%)

Acinetobacter_baumannii 98.77 84.77

Bacteroides_vulgatus 82.48 82.48

Deinococcus_radiodurans 99.64 99.64

Escherichia_coli 81.39 81.39

Propionibacterium_acnes 78.14 78.14

Rhodobacter_sphaeroides 98.21 98.21

Staphylococcus_aureus 99.64 99.64

Staphylococcus_epidermidis 99.64 99.64

Streptococcus_mutans 99.29 99.29

Streptococcus_pneumoniae 63.31 62.23

Table 2 Assembly result with or without low coverage penalty

Before UCHIME After UCHIME

with
penalty

without
penalty

with
penalty

without
penalty

# of gene contigs 13 14 7 7

# of gene recoverd 6 6 5 4

# misassembled contigs 0 0 0 0

# partially unaligned contigs 2 3 0 0

# mismatches per 100kbp 543.9 997.1 149.9 208.8

The gene fraction of each recovered rplB genes (%)

Bacteroides vulgatus 82.5 82.5 82.5 82.5

Deinococcus radiodurans 99.6 99.6 99.6 99.6

Rhodobacter_sphaeroides 64.3 64.3 64.3 64.3

Staphylococcus_aureus 99.6 99.6 99.6 99.6

Staphylococcus_epidermidis 99.6 99.6 – –

Streptococcus_mutans 84.3 84.3 55.0 –
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We found that all contigs of MegaGTA and Xander were
matched by Framebot, while quite a few MEGAHIT con-
tigs were not (1.3, 10 and 66.6% of rplB, nifH and nirK,
respectively). These unmatched contigs were discarded.
Table 4 summarizes the assembly result. At a thresh-

old of 99% amino acid clustering identity, MegaGTA as-
sembled 6.5–16.6% more contigs than Xander in total
length, and this number became 9.7–19.3% at 95% clus-
tering identity. MegaGTA also matched 7.7–10% and
10.9–25% more genes by Framebot at these two cluster-
ing thresholds, while retained a similar level of median
identity. This indicates that MegaGTA, by using iterative
de Bruijn graph, achieves higher sensitivity for the real
dataset, and the improvement is more significant at
lower clustering identity threshold (indicating higher
taxonomy level).
It is not surprising that gene-targeted assembler

MegaGTA and Xander assembled much more gene se-
quences than de novo assembler MEGAHIT. Moreover,
the median aa identity of nifH and nirK contigs assem-
bled by MegaGTA and Xander were significantly higher
than MEGAHIT’s. For nirK, although MEGAHIT’s con-
tig matched more reference genes, MegaGTA and
Xander found more genes with high identity (Fig. 2). All
nirK contigs of MegaGTA were matched with >55%
identity by Framebot to 55 and 53 nirK genes at 99 and

95% clustering identity respectively. With the same cut-
off, only 73.4 and 73.2% of MEGAHIT’s contigs were
matched by Framebot against 52 and 50 nirK genes
respectively.
By using a similar amount of RAM, MegaGTA was

twice as fast as Xander, even though it had to build mul-
tiple de Bruijn graphs. The speed-up ratio is consistent
with the experiment on the mock community (see Table
1 and Table 2). MegaGTA was highly parallelized and
got the whole gene assembly process done in 4.4 days,
which is reasonably fast enough for such a large and
complex dataset. MEGAHIT is faster than Xander, but a
bit slower than MegaGTA.

False positive effects of bloom filters
To evaluate how false k-mers in Bloom filters affect the
assembly, we queried the rplB contigs of the rhizosphere
metagenomic dataset assembled by Xander, with Bloom
filter sizes of 256GB, 128GB and 64GB, respectively.
As shown in Table 5, the number of contigs containing

false k-mers increased as the Bloom filter size decreased,
but was still acceptably small with a Bloom filter size of
256GB or 128GB (only 0.02 and 0.39%). Recall that
MegaGTA, based on succinct de Bruijn graphs, required
242GB to assemble this dataset; Bloom filters, when
using a similar amount of memory, performed well.

Table 4 Performance of MegaGTA, Xander and MEGAHIT on the rhizosphere soil metagenomic sample

MegaGTA Xander MEGAHIT

Gene rplB

Cluster Identity 99% 95% 99% 95% 99% 95%

# of gene contigs aligned by Framebot 17,668 5079 15,933 4237 578 465

Total length (bp) 13.9 M 3.96 M 12.5 M 3.32 M 378 k 311 k

Median length (bp) 822 822 822 822 639 660

# of matched reference genes 491 427 456 385 208 193

Median % aa identity 76.73 76.00 77.46 76.90 77.50 77.07

Gene nifH

Cluster Identity 99% 95% 99% 95% 99% 95%

# of gene contigs aligned by Framebot 33 11 31 10 9 5

Total length (bp) 27.8 k 9225 25.3 k 8412 7368 4464

Median length (bp) 888 888 882 883.5 930 930

# of matched reference genes 13 10 12 8 8 5

Median % aa identity 91.55 90.54 92.96 91.19 85.14 83.99

Gene nirK

Cluster Identity 99% 95% 99% 95% 99% 95%

# of gene contigs aligned by Framebot 1336 392 1242 336 203 179

Total length (bp) 1.09 M 321 k 1.02 M 277 k 170 k 153 k

Median length (bp) 687 787.5 690 748.5 735 750

# of matched reference genes 55 53 50 47 71 66

Median % aa identity 89.29 86.61 89.06 87.30 66.41 65.97
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However, when the Bloom filter size decreased to 64GB,
more than 10% of the contigs contained false k-mers,
and even worst, most of the false k-mers located amid a
contig. Note that an internal false k-mer may lead to a
chimeric contig. Therefore, one should be careful with
the size of the Bloom filter.

Conclusion
By utilizing information of known genes, gene-targeted
assembly is a higher resolution manner to assemble and
annotated genes of interests. Our work is an improve-
ment of Xander, a gene-targeted assembler that com-
bines de Bruijn graphs and profile-HMMs. We observed
that a single k-mer size has a trade-off in HMM-guided
metagenomic assembly: a small k tends to produce more
erroneous contigs, and a large k leads to missing low-
coverage genes. We applied iterative de Bruijn graph ap-
proach to tackle this challenge. This idea, along with low
coverage penalty and succinct de Bruijn graph represen-
tation, have been implemented in a new gene-targeted
assembler, MegaGTA.
We used MegaGTA and Xander to assemble rplB gene

from the HMP mock community sequencing data, and
found MegaGTA demonstrated higher sensitivity and ac-
curacy than Xander. MegaGTA scales up easily to as-
semble very large and complex metagenomic dataset in
an acceptable amount of time. It had been used to

assemble a much larger and more challenging metage-
nomic sequencing dataset of rhizosphere corn soil, and
produced more rplB, nifH and nirK genes than both
Xander and MEGAHIT. As a side note, the advantage of
MegaGTA is more substantial at higher taxonomy level.
It is of practical interests whether Bloom filters, the

probabilistic data structure used by Xander, will
introduce many false contigs. We confirmed that when
being configured to use a substantial amount of
memory, Bloom filters result in a low proportion of false
contigs, and are suitable for HMM-guided assembly.
MegaGTA still has a lot of room for improvement. A

more versatile de Bruijn graph, for example, annotated
with read threading and paired-end information, could
possibly be used to design a better HMM-guided
algorithm. How to construct and make use of a more
versatile graph is an interesting future direction.
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