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Abstract

Background: Breast cancer is one of the leading causes of deaths for women. It is of great necessity to develop
effective methods for breast cancer detection and diagnosis. Recent studies have focused on gene-based signatures
for outcome predictions. Kernel SVM for its discriminative power in dealing with small sample pattern recognition
problems has attracted a lot attention. But how to select or construct an appropriate kernel for a specified problem

still needs further investigation.

Results: Here we propose a novel kernel (Hadamard Kernel) in conjunction with Support Vector Machines (SVMs) to
address the problem of breast cancer outcome prediction using gene expression data. Hadamard Kernel outperform
the classical kernels and correlation kernel in terms of Area under the ROC Curve (AUC) values where a number of
real-world data sets are adopted to test the performance of different methods.

Conclusions: Hadamard Kernel SVM is effective for breast cancer predictions, either in terms of prognosis or
diagnosis. It may benefit patients by guiding therapeutic options. Apart from that, it would be a valuable addition to
the current SVM kernel families. We hope it will contribute to the wider biology and related communities.

Keywords: SVM, Hadamard Kernel, Breast Cancer

Background

It is known that 13% of deaths all over the world are caused
by cancer [1]. For women, breast cancer is a leading cause
of deaths world-wide. In the U.S. alone, it is estimated
that 246,660 new patients will be diagnosed with breast
cancer, and 40,450 deaths associated with malignancy are
estimated [2]. Early detection and identification of breast
cancer is necessary for reducing the side-effects of the dis-
ease. On the other hand, cancer prognosis can assist in
designing treatment protocol which is also of great impor-
tance. Cancer prognosis can be interpreted as estimating
survival probability within a certain period of time. A
10-year prognosis of 60% represents the probability of sur-
viving 10 years after surgery or diagnosis is 60%. Here we
formulate the prognosis problem as a classification one
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where label information can be retrieved from the survival
information beyond the prognosis period. For example,
patients who died before the considered prognosis period
are labeled negative and vice versa.

In cancer research, cDNA Microarrays and high den-
sity oligonucleotide chips are increasingly used and in the
meantime they raise numerous excellent and challenging
research problems in fields. By monitoring expression
levels in cells for tens of thousands of genes simul-
taneously, microarray experiments may lead to a bet-
ter understanding of the molecular variations among
tumors and hence to a more informative classifica-
tion [3]. Over the last few years, substantial efforts
[4-7] have been made on gene expression profile based
classifiers for predicting patient outcomes in breast
cancer.

Maglogiannis et al. [8] proposed Support Vector
Machines (SVMs) based classifier for the prognosis and
diagnosis of breast cancer disease. It was compared
with Bayesian classifiers and Artificial Neural Networks
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(ANNSs). Delen et al. [9] compared three algorithms for
predicting breast cancer survivability where they used
SEER data for evaluation. Endo et al. [10] proposed opti-
mal model for 5-year prognosis of breast cancer. They
compared seven algorithms (Logistic Regression model,
ANN, Naive Bayes, Bayes Net, Decision Trees with Naive
Bayes, Decision Trees (ID3) and Decision Trees (J48)) on
SEER data and results show that decision tree J48 showed
the highest sensitivity, ANN had the highest specificity.
We note that the data used for model comparisons in
[9, 10] is very large in samples (over 30,000) but rela-
tively small in attributes. When the data sets involved
small number of samples, SVM based algorithms can usu-
ally outperform other considered algorithms. Vikas et al.
[11] compared Naive Bayes, SVM-RBF kernel, RBF neu-
ral networks, Decision Trees (J48) and Classification And
Regression Tree (CART) to find the best classifier for
the breast cancer data sets. Experimental on 286 samples
show that SVM-RBF kernel is more accurate. Aruna et al.
[12] compared SVM, Decision Tree, and RBF Neural Net-
works in prediction of Wisconsin Breast Cancer Dataset
(there are 699 samples). Results show that SVM-RBF ker-
nel is the best among the considered methods. Asri et al.
[13] compared SVM, Decision Tree (C4.5), Naive Bayes,
K-Nearest Neighbors (KNN) on the Wisconsin Breast
Cancer Datasets to assess the efficiency and effectiveness
of algorithms. Experimental results show that SVM vyields
the highest accuracy.

In the current perspective, SVM demonstrates as a
benchmark for various disciplines in particular for deal-
ing with small sample problems. The effectiveness of
SVMs depends on the choice of kernels. In [14], we pro-
posed a novel kernel based on correlation matrix for
cancer diagnosis purpose. Experiments on 5 real-world
cancer data sets with gene expression profiles showed
that correlation based kernel outperformed other classical
kernels.

In this paper, we propose a parsimonious kernel named
Hadamard Kernel for breast cancer outcome predic-
tions. The remainder of this paper is structured as
follows. In “Method” section, we propose the parsimo-
nious positive semi-definite kernel. Theoretical proof
on the positive semi-definite property of the kernel is
provided. In “Results” section, publicly available data
sets are utilized to check the performance of the pro-
posed method. Finally, concluding remarks are given in
“Conclusions” section.

Method
® Preliminaries
The basic SVM considers binary classification
problem through building an appropriate model
representing data points, mapping them so as to best
separate different categories. In a formal setting, if we
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assume a data set of n data instances with
corresponding class annotations:

{(Xl,yl) P (anyn)}

where x; € R?,y; € {—1,1}. SVM constructs a
hyperplane to ensure good separation having largest
distance from it to the nearest data points in each
class category [15]. The optimization problem can be
formulated as follows:

Minimize 1 [jw/?

subjecttoy; (w-x; —b) > 1 (1)

foranyi e {1,2,...,n}

The dual form of the primal optimization problem is
given by:

Maximize Y ; o; — o Hor
subject to o; > 0
foranyi e {1,2,...,n}
Y0y =0

where a = [a1, a9, . ..,q,],

24T T T
YiX1 X1 J1)2X1 X2 ... Y1YuX] Xy

T T T
H Y2Y1Xo X1 Y2)3X5 X3 ... V2YuXy Xy

T 24T
YnY1X;, X1 . cen YRX, Xy

When the data sets are nonlinearly separable, one can
construct a nonlinear mapping for input vectors into
feature space of higher dimensionality [16]. Different
from previous setting based on inner product of input
vectors, kernel matrix is constructed in terms of
similarity measure through pairwise comparisons.
Given n data instances X = {x1, Xy, ..., Xy}, kernel
matrix K is a # x n matrix which is symmetric, i.e.,

Kx,x) =Kx,x)

for any x,x" € X.

There are a number of popular kernels, the most
straightforward one is:

Linear Kernel.

K(x,x) =x'x,
which is an inner product of x and x’ in RP.

Another popularly used kernel matrix is polynomial
kernel that is expressed as

T d
Kxx) = (x x + 1) ,
Gaussian Radial Basis Function (RBF) kernel is
defined as
K(x,X') = exp (—d||x - x/||2)

where d is parameter. If the distance between x and
x is small, the kernel value would be large; on the
contrary, if x is far away from x’ in terms of Euclidean
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distance, the kernel value would be small. Hence this
kernel provides a similarity measure between data
points.

Hadamard Kernel

Kernel trick is useful in the sense that there is no
need to calculate ¢ (x) explicitly as long as
constructing appropriate kernel matrix. The Positive
Semi-Definite (PSD) property [17] of a kernel matrix
is required to ensure the existence of a Reproducing
Kernel Hilbert Space (RKHS) where a convex
optimization formulation can be deduced to yield an
optimal solution.

We propose Hadamard Kernel in this way:

p

1 A, O
Ka(xi,xj)=ZMi'=1,2,...,n.

2y
= 2 (i =+ lje|*)
Here o # 0 is a flexible parameter within the kernel
. e |6k |* s |
matrix. For some k, if x;z = 0, then T ) 15

defined as 0.

Theorem Kernel K, is positive semi-definite for all
data matrix X.

The proposed Hadamard Kernel with varying
parameter o constitute to a broad range of kernel
families which can fit all kinds of data matrix if the
theorem holds.

Before we prove the theorem, let’s first consider the
following kernel:

P XikXjk
Ko (xix) = ) ~r—r—, ij=1,2,...,n
k=1 2 xzk + x}k)
For some certain k, if x;z = 0, the en “XT s defined

as 0.
This kernel is not generally positive semi-definite.
Let’s consider the following example.

Example Assume
=[1,1---1]7 ,xp =[-1/2,-1/2--- — 1/2]T, then
the kernel matrix has the following structure:

—2n —n/2

If x=[1,1,0,--- ,017, we have
xTKox =—-7n/2<0 when n=>1

If x=[-1,0,--- ,017, we have

xTI(ox:n>O when n>1
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However, in our particular case, where all the gene o
expression values are positive valued, the kernel here
is positive semi-definite. We give the proof in the
subsequent statement.

Theorem Kernel Ky is positive semi-definite when
that data matrix X is positive valued.

Proof For a positive matrix A = (a;;), we define the
Hadamard inverse of A by A°(-1 = (;T;) . First

proved by Bapat [18] and reformulated by Reams
[19], we have the following proposition. O

Proposition If A is a positive symmetric matrix with
only one positive eigenvalue, then A°~V is positive
semi-definite.

X1
X2
Lete=(1,...,1),X = . =[w,wa,..., W),

Xn
and define Vx(i,j) = (Z’: 1 x,,+x ) We therefore
have

1
K = Eon(q).

To show that K is always positive semi-definite is
equivalent to show that Vx is always positive
semi-definite.

To show that Vx is positive semi-definite, we only
need to show that Vi, is positive semi-definite for
any positive column vector w; as we have

VX = lee + - pre'

Suppose w; = (x1;, . . . %)L, then we have

Vivie = (Wie + (w,'e)T)o(il).

Note that we + (wie)T is a positive symmetric
matrix of rank 2 and it is not positive semi-definite
(the determinant of any principal 2 x 2 submatrix is
negative), hence it has exactly one positive
eigenvalue. Therefore by the result of Reams, Vi, is
positive semi-definite.

We can generalize the result to any non-negative
matrix X as well.

Theorem Kernel Ky is positive semi-definite when
data matrix X is non-negative.

Proof For x,y > 0, we define the binary operation

Xty 1 :
xoy=|w =TT 1fxy7é0.
0 ifxy=0



Jiang et al. BMC Systems Biology 2017, 11(Suppl 7):138

Here K = Ux = 5 (37_, Xir - Xj»)).

Then Ux = Uw,e + - - - Uw,e. To show that U is
positive semi-definite, we only need to show that
Uy, is positive semi-definite for any nonnegative
column vector w.

Suppose w has zero entries. Without loss of
generality, write w = (y,0)” where y > 0, then
e = (%6 o
and only if Uy, is positive semi-definite. Hence it
suffices to show that Uy, is positive semi-definite for
any positive column vector y.

Take y’ to be the Hadamard inverse of y, then

Uye = (Ye+ (Ye) Tyo(=D, Note that y'e + (y'e)T isa
positive symmetric matrix of rank 2 and it is not
positive semi-definite (the determinant of any
principal 2 x 2 submatrix is negative), hence it has
exactly one positive eigenvalue. Therefore by the
result of Reams [19], Uy, is positive

semi-definite. O

which is positive semi-definite if

We now proceed to prove the first theorem.

Proof For any data sample within matrix X, we can
generate a corresponding new matrix X, by

Xu (G, )) = |xij|a-

Then according to the previous theorem, we can
show the validity of the theorem. O

e Models for comparison
In this paper, we consider breast cancer outcome
predictions based on high dimensional gene
expression profiles. Hence the number of samples is
relatively small. In the literature it is shown that SVM
is statistically better than other machine learning
algorithms. We therefore confine our research in the
framework of SVMs and exclude other algorithms
from our scope of research. Other kernels for a
comparison are listed below.

— SVM Linear Kernel
Kxx) = xI'x,
— SVM Quadratic Kernel
- 2
Kx,x) = (x x + 1) ,
— SVM RBF Kernel

/ lIx — x|
K(x,x) = exp R —

o

— SVM Correlation Kernel
This kernel construction can be decomposed
into three steps.
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1. Based on the correlation matrix, we first
construct a preliminary kernel.

KCB =1— e—corr(X)

2. We do eigenvalue decomposition for the
matrix Kcp where V is the matrix composed
of eigenvectors, P is the diagonal matrix where
diagonal entries are eigenvalues.

Keg=VIpy

3. Denoising strategy. If we denote

e

The denoising strategy is to transform the
diagonal matrix P to another diagonal matrix P,

P10 -0
y 0 py--- 0
p=1\ . .
0 0 - py
where
- 0, pi<0;
= ,i=1,2,...,n
pi {Pi: Di = 0.
Finally, the kernel matrix becomes
Kpcs = VIPV.
Results
Materials

We obtained a number of real-world data sets from
National Center for Biotechnology Information [20]. The
first data set is derived from a N-methyl-N-nitrosourea-
induced breast cancer model. It has 35 samples in total,
of which 11 are normal. The number of attributes used
to describe a sample is 15923. Expression profiles were
obtained through Affymetrix Rat Expression 230A Array.
The annotation ID for this data set is GSE1872.

Estrogen Receptor-Positive (ER+) and ER- breast can-
cers tend to show different patterns of metastasis. In
this data set where the access number is GSE32394, gly-
can structure analyse by Custom Affymetrix Glyco v4
GeneChip was conducted to compare the two types of
breast cancer. There are 19 samples in total, of which 9 are
ER+, the number of attributes is 1259.

The third data set is used to differentiate non-invasive
breast cancer and invasive breast cancer, the access num-
ber is GSE59246. mRNA, miRNA and DNA copy number
profiles are generated to measure the expression of differ-
ent samples. Arrays consist of 3 normal controls, 46 ductal
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carcinoma in situ lesions, and 56 small invasive breast can-
cers. We discard the 3 normal controls, so we have 102
samples in total. In this data set, the number of attributes
is 62976.

Studies show that circulating miRNAs have the poten-
tial to become biomarkers. This data set involves 78 sam-
ples in total, 1205 circulating miRNAs for measurements.
26 of the 78 samples are negative. Identification number
for this data set in NCBI is GSE59993.

One more data set is related to breast cancer prognosis,
GSE25055 is the identification number. A total num-
ber of 310 breast cancer patients is involved. The num-
ber of attributes is 22283. This study is conducted with
Affymetrix Human Genome U133A Array. It is a neoad-
juvant study of HER2-negative breast cancer cases treated
with taxane-anthracycline chemotherapy pre-operatively
and endocrine therapy if ER-positive. Response was
assessed at the end of neoadjuvant treatment. Using 5
years as a cutoff, we conduct the outcome prediction.

The last data set contains 60 patients with ER-
positive primary breast cancer and treated with tamoxifen
monotherapy for 5 years [21], the identification num-
ber in NCBI is GSE1379. This study was conducted
using expression profiling by array, with the number of
attributes 22575. We build models to predict the 5-year
recurrence outcome for the considered patients. There
were 28 patients who showed recurrence symptoms.

Performance evaluation

5-fold cross validation

Cross validation is a standard way to evaluate the super-
vised learning model. The k-fold cross validation is per-
formed as follows: first of all, the training data set M is
randomly divided into k subsets M, - - - , M of approxi-
mately equal size. The prediction model is trained on k—1
subsets and the remaining subset is treated as the test
set. Repeating this process k times such that each subset
is tested once, all the prediction results are recorded for
the computation of prediction accuracy. In our case, we
conduct 5-fold cross validation for model evaluations.

Area under the receiver operating characteristic (ROC) curve
In the context of classification, suppose the two true
classes are P (positive) and N (negative), while the pre-
dicted positive and negative classes are P’ and N’, respec-
tively. This is illustrated by Table 1 below where ROC
Curve is a graphical plot of False Positive Rate (FPR) vs.
True Positive Rate (TPR) as x and y axes, respectively, for
a binary classifier system as its discrimination threshold is
varied. FPR and TPR are defined as follow:

Jp
tn+fp

p

and TPR = .
tp + fun

FPR =
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Table 1 Definitions for True/False Positive/Negatives

Result

True P N

P True positive (tp) False negative (fn)
N False positive (fp) True negative (tn)

TPR determines a classifier performance on classifying
positive instances correctly among all positive samples
available during the test, while FPR defines how many
incorrect positive results occur among all negative sam-
ples available during the test. Each prediction result rep-
resents one point on the ROC curve. The best possible
prediction method would yield a point in the upper left
corner or coordinate (0,1) of the ROC space, representing
no false negatives and no false positives.

The area under the ROC curve (AUC) [22, 23] is a
widely adopted statistics for assessing the discriminatory
capacity of models. It can be interpreted as a measure
of aggregated classification performance, and also the
tradeoff between specificity and sensitivity [24].

Experimental results

In this section, we will show the performance of the
Hadamard Kernel in conjunction with SVM and the other
4 kernels for breast cancer outcome predictions as tested
on the five data sets. We employed the AUC measured by
5-fold cross-validation run 10 times to evaluate the perfor-
mance. All the experiments are conducted using Matlab
R2012 under Window 7 Operations System.

In RBF kernel, we have to specify the parameter o before
model training. Therefore, we initially conduct 10 time
5-fold cross validation solely on RBF kernel with o €
{1072,1071, 1,10, 100, 1000}. Averaged AUC Values with
corresponding standard deviations are shown in Table 2.
For example, in GSE1872 data set, the performance of RBF
kernel is not sensitive to different values of o. The best
o of RBF kernel for GSE32394 and GSE59246 breast can-
cer prediction is 1000 whereas the best o for GSE59993
is 10. Particular case can also arise when RBF kernel is
insensitive to values of 0. We can draw the conclusion that
there is no optimal o for all the considered data sets and
different data sets may have different best o.

For hadamard kernel, we would like to see the per-
formance of Hadamard Kernel in relation with param-
eter «. Figures S1 to S6 (attached in Additional file 1)
record the performance of Hadamard Kernel in rela-
tion with parameter o from (0,5) with step size 0.1.
Optimal o in Hadamard Kernel varies in different
data sets. For example, one can see a steady decre-
ment in performance when ¢ > 1.3 in GSE1872
and when @ > 2.8 in GSE59246. There is no obvi-
ous pattern detected in Additional file 1: Figure S2 in
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Table 2 Averaged AUC values for determining optimal o in RBF kernel
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o

Datasets o =001 o =01 o=1 o =10 o =100 o = 1000
GSE1872 0.2379 + 0.0538 0.2379 + 0.0538 0.2379 &+ 0.0538 0.2379 &+ 0.0538 0.2379 &+ 0.0538 0.2379 &+ 0.0538
GSE32394 0.1811 £0.0707 0.1811£0.0707 0.2044 £ 0.0845 0.6767 £0.1125 0.9456 + 0.0133 0.9456 + 0.0122
GSE59246 04408 £ 0.0446 0.4408 £ 0.0446 0.4408 £ 0.0446 0.4408 £ 0.0446 0.8424 £ 0.0379 0.8658 + 0.0110
GSE59993 0.3542 4+ 0.0283 0.3542 4+ 0.0283 04305 & 0.0355 0.8392 + 0.0235 0.6937 & 0.0340 0.6940 & 0.0342
GSE25055 0.3651 &+ 0.0182 0.3651 &+ 0.0182 0.3651 &+ 0.0182 0.3651 &+ 0.0182 0.8092 + 0.0156 0.7259 & 0.0127
GSE1379 0.3952 + 0.0478 0.3952 4+ 0.0478 0.3982 + 0.0468 0.3970 &+ 0.0468 0.6712 + 0.0294 0.6276 & 0.0374

The bold face represents best performance detected for different considered o

GSE32394, the performance is unstable with respect to «.
But we can see a tendency of decrement in an overall
manner. For GSE59993, the performance is firstly increas-
ing, achieving the best for « = 0.5. The performance is
then decreasing steadily. In GSE25055, the performance of
hadamard kernel stays in a stable range when o < 2.8, it
then decreases drastically. For GSE1379, the performance
of hadamard kernel gradually increases when o > 2. It
can be seen that different datasets may fit for different
best « in Hadamard Kerne, the optimal « determination
becomes an interesting problem.

Figures S7 to S12 (attached in Additional file 1) depict
the AUC values of the 5 considered methods in each
5-fold cross validations. Dark blue refers to Hadamard
Kernel, Linear Kernel is marked in blue, green repre-
sents Quadratic Kernel, and orange stands for RBF Kernel,
brown stands for Correlation Kernel. In the x-axis, 1 rep-
resents the first 5-fold cross-validation. The correspond-
ing values in y axis are the AUC values for the considered
5 methods. For example, in Additional file 1: Figure S7
for GSE1872, the best performance is shown in Hadamard
Kernel and Correlation Kernel in the first round, achiev-
ing 100% in accuracy. The performances of Linear Kernel,
RBF Kernel and Quadratic Kernel are not satisfactory.
RBF Kernel shows the worst performance, the AUC val-
ues are below 30%. Similar patterns can be detected in
the remaining 9 round 5-fold cross-validations. In sum-
mary, Hadamard Kernel and Correlation Kernel show
the best performance regarding the 10 runs 5-fold
cross-validations .

Additional file 1: Figure S8 shows the performance of
different models for data set GSE32394. The best per-
formance is shown in Hadamard Kernel, it is slightly
better than Linear Kernel. RBF Kernel and Correlation
Kernel show comparable performance, and the worst per-
formance is shown in the Quadratic Kernel.

Additional file 1: Figure S9 depicts the result for
GSE59246 breast cancer outcome prediction. Hadamard
Kernel still demonstrates the best performance, the sec-
ond best performance is shown in Linear Kernel. Overall,
RBF Kernel is better than Correlation Kernel. They rank

the third the fourth place this time. Quadratic Kernel can
only get 50% in AUC values on average.

In GSE59993, Hadamard Kernel is better than the other
4 kernels as shown in Additional file 1: Figure S10. RBF
Kernel shows the second best in this context. Linear Ker-
nel ranks the third place and Quadratic Kernel shows the
worst performance.

Additional file 1: Figure S11 shows the result for
GSE25055 breast cancer outcome prediction. GSE25055
is a data set related to breast cancer prognosis. We for-
mulate the problem into a classification one by labeling
patients who survive within 5 years after diagnosis as pos-
itive classes. Hadamard Kernel and Linear Kernel reach
the top places, yielding around 84% on average in AUC
values. The performance of RBF kernel is also acceptable,
achieving around 81% in Averaged AUC Values.

Additional file 1: Figure S12 reports the result for
GSE1379, a data set related to ER-Positive breast cancer
recurrence status prediction. It can be clearly shown that
hadamard kernel shows the best performance, RBF ker-
nel ranks the second best, and Quadratic kernel ranks the
worst.

Table 3 illustrates the average AUC value over the 10
runs with standard deviations. The best performance is
marked in bold face. It is clear to see that on average
Hadamard Kernel shows the best performance on all the
considered data sets.

To sum up, Hadamard Kernel is effective and robust in
predicting breast cancer outcomes. There is no dominant
algorithm for the other 4 considered kernels. Quadratic
Kernel always shows the worst performance, implying that
Quadratic Kernel may not be a good choice in breast
cancer outcome predictions.

Discussions

In this section, we are going to investigate the effect
of normalization strategy on our proposed Hadamard
kernel. As most of our datasets are microarray data, we
therefore introduce ‘manorm’ which is an embedded
function in Matlab for microarray data normalization.
It scales the values in each column of microarray data
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Table 3 Averaged AUC values for comparison of different methods
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Methods

Datasets Linear kernel Quadratic kernel RBF kernel Hadamard kernel Correlation kernel
GSE1872 03788 + 0.1019 0.3686 £ 0.1136 02117 £ 0.0584 1.000 + 0.000 0.9989 + 0.0018
GSE3239%4 0.9456 £ 0.0312 0.5544 £ 0.1248 0.9344 £ 0.0254 0.9589 + 0.0166 0.9233 + 0.0294
GSE59246 0.8977 £ 0.0172 0.5386 £ 0.0579 0.8431 £ 0.0379 0.9022 + 0.0145 0.8562 £ 0.0113
GSE59993 0.8283 £ 0.0226 0.5935 £+ 0.06%4 0.8347 £ 0.0182 0.8855 + 0.0088 0.7869 + 0.0144
GSE25055 0.8575 + 0.0182 04743 + 0.0393 0.8196 £+ 0.0203 0.8653 + 0.0171 0.7654 £+ 0.0152
GSE1379 0.6205 £ 0.0481 0.5237 &+ 0.0701 0.6743 £ 0.0427 0.7300 + 0.0375 0.6419 £+ 0.0453

The bold face represents the best performance detected for different compared methods

matrix, by dividing by the mean column intensity.
Besides, we also include quantile normalization for
testing purpose. Quantile normalization is designed
for making two distributions identical in statistical
properties. We employed the AUC measured by 5-fold
cross-validation run 10 times to evaluate the perfor-
mance of Hadamard kernel with data normalization
and without. The experimental results are recorded in
supplementary files under figure names Figs. 1, 2, 3, 4, 5,
and 6. It can be seen that in general Hadamard ker-
nel after data normalization tend to perform better
than the original Hadamard kernel without normal-
ization.Green ‘o’ represents ‘manorm’ normalization,
red star ‘A’ represents Hadamard kernel without
normalization, and black square represents ‘quantile’
normalization. For example, in Fig. 1 for GSE1872, after
normalization, the performance of Hadamard kernel

is approaching 100% in AUC value, while the original
hadamard kernel is relatively unstable. Similar patterns
can be detected for GSE32394 and GSE59993 where
‘manorm’ and ‘quantile’ normalization with Hadamard
kernel perform better than Hadamard kernel without
data normalization. However, some exceptions also occur
where we can see that for GSE1379, Hadamard kernel
without normalization tends to perform more stably.
When we further check the data format for GSE1379,
we can see that the data set was already normalized
where the data was measured as log2 normalized ratio of
Cy5/Cy3. Hence, it is not surprising. In GSE25055, the
performance of Hadamard kernel without data normal-
ization is not very stable. When « is relatively large, the
performance decreases drastically. When normalization
is done on the data, we can see that the performance
becomes stable. Besides, ‘quantitle’ normalization based
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Fig. 1 Normalization Effect on Hadamard Kernel: GSE1872
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GSE32394--Normalization Effect

Fig. 2 Normalization Effect on Hadamard Kernel: GSE32394
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Hadamard kernel is slightly better than Hadamard kernel
without normalization when o < 3. In GSE59246, we
can see that Hadamard kernel after normalization show
comparable performance with Hadamard kernel without
normalization when « in relatively small range. When the
value of « increases, we can see that Hadamard kernel

after normalization is more stable. To sum up, we can see
that normalization positively affect the performance of
Hadamard kernel.

A new perspective regards Hadamard kernel as a ker-
nel on implicitly normalized data, hence in the following
we are going to compare the performance of Hadamard

GSE59246--Normalization Effect
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GSE59993--Normalization Effect

Fig. 4 Normalization Effect on Hadamard Kernel: GSE59993
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kernel with other kernels under normalization. Similarly
we introduce quantile normalization for testing purpose.
Since correlation kernel needs to calculate the eigenspace
of the correlation matrix, data after normalization some-
times yields unsolvable kernel, hence we use original
correlation in this context. We still conduct 5-fold cross-

validation to test the performance of different meth-
ods. In the following Table 4, we can see the com-
parison of Hadamard kernel on raw data and other
kernel methods on normalized data. We can find that
Hadamard kernel is robust as it performs best for almost
all the considered datasets compared to other methods

GSE25055--Normalzation Effect
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GSE1379--Normalization Effect
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after data normalization. In GSE1872, linear kernel and
quadratic kernel after normalization perform significantly
better than kernels without normalization. Almost all
kernels can yield 100% averaged AUC value except for
RBF kernel. In GSE32394, GSE59246, GSE59993 and
GSE25055, quadratic kernel after data normalization per-
forms significantly better, competing with linear kernel.
But Hadamard kernel still demonstrates the best. Normal-
ization effect on linear kernel is demonstrated in GSE1872
and GSE1379. We can see that after normalization the per-
formance does improves. For RBF kernel, the performance
in some data sets after normalization decreases. Possible
reason is that we used the optimal o selected for data
without normalization. When normalization is imposed,

Table 4 Comparison of Hadamard kernel on raw data and
different methods on normalized data

Methods
Datasets Linear ~ Quadratic ~ RBF Correlation  Hadamard
kernel  kernel kernel  kernel kernel
GSE1872 1 1 02367  0.9962 1
GSE32394 09556  0.9556 0.8500  0.9444 0.9833
GSE59246 08546  0.8546 0.8061  0.8626 0.8849
GSE59993 08521  0.8476 0.7977 08277 0.8913
GSE25055 08619 08615 07914 0.7715 0.8590
GSE1379 0.7009 05017 07411 06797 0.7623

perhaps the best o has changed, hence the performance in
some data sets decreases.

As a generalization ability test on Hadamard kernel,
we introduce some RNAseq data sets for validation. The
results are illustrated in Table 5. One of the test data
sets is obtained from NCBI GEO database, the acces-
sion number is GSE87517. Gene expression analyses in
leukocytes sorted from normal breast tissues, ductal car-
cinomas in situ (DCIS), and HER2+ and triple nega-
tive invasive ductal carcinomas (IDC) were conducted.
RNAseq counts are used to measure the expression levels.
We have 41 samples in total, and the number of attributes
is 27011. We focus on differentiating normal samples
from breast tumor samples. We conduct experiments on
Hadamrd kernel without data normalization and impos-
ing quantile normalization on data for other methods.
The best o in RBF kernel and best « in Hadamard ker-
nel are shown to be 0.01 and 0.2 respectively where details

Table 5 Comparison of Hadamard kernel on raw data and
different methods on normalized data(RNA)

Methods

Datasets Linear ~ Quadratic ~ RBF Correlation  Hadamard
kernel kernel kernel kernel kernel

GSE87517 06022 04562 05459  0.7189 0.9524

GSE47462 07422 05322 04029  0.7506 0.8949

GSE48213 09990  0.9982 03375 09993 0.9996

The bold face represents significantly best performance for different compared
methods

The bold face represents significantly best performance for different compared
methods
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are attached in Additional file 2 (Table S1, Figure S13).
We further compare on Hadamard kernel with other
kernel methods through 5-fold cross-validations. Aver-
aged AUC values are calculated as shown in Table 5. It
can be seen that Hadamard kernel on raw data shows
the best performance, achieving 0.9524 in AUC value.
While the best performance in other kernels is achieved
in Correlation kernel, yielding only 0.7189 in averaged
AUC value.

One of the test data sets is also obtained from NCBI
GEO database, the accession number is GSE47462. Raw
counts IncRNAs are used to measure the expression lev-
els. We have 72 samples in total, of which 24 are normal,
25 early neoplasia, 9 carcinoma in situ, and 14 invasive
cancer. The number of attributes is 2173. We focus on dif-
ferentiating normal samples from breast tumor samples.
The best o in RBF kernel and best « in Hadamard kernel
are shown to be 1000 and 0.5 respectively where details
are attached in Additional file 2 (Table S2, Figure S14).
We further compare on Hadamard kernel with other ker-
nel methods through 10 runs 5-fold cross-validations.
Averaged AUC values are calculated and the results are
reported in Table 5. It can be shown that Hadamard kernel
is robust and can demonstrate satisfactory performance
compared to other kernels even with data normalization.
The averaged AUC value in Hadamard kernel is 0.8949
while in linear kernel 0.7422. The performance in RBF ker-
nel is not satisfactory, achieving only 0.4029 in averaged
AUC value.

The third data set is under accession number GSE48213.
56 breast cancer cell lines were profiled to identify pat-
terns of gene expression associated with subtype and
response to therapeutic compounds using RNAseq tech-
nology. There are 4 unknown cell lines, with 27 samples
related to Luminal, 14 samples related to Basal like breast
cancer, 5 normal samples and 6 samples of Claudin-low
subtype. Subtype Luminal constitutes the majority of all
the considered subtypes, hence we try to differentiate
Luminal from others by removing the 4 unknown sam-
ples. Hadamard kernel on raw data can yield 0.9996 in
averaged AUC value. The performance in other kernels
after data normalization is also comparable except in
RBF kernel.

In Additional file 2: Table S4, we also record the perfor-
mance of the 4 compared kernels on considered RNAseq
data sets without data normalization.

In a word, we can see that Hadamard kernel is robust for
dealing with expression data in general.

Conclusions

In this paper, we proposed Hadamard Kernel for breast
cancer outcome predictions. It is a valid and effective
kernel for dealing with high dimensional gene expres-
sion data when they are positive valued. In particular, we
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have given theoretical verification on the positive semi-
definiteness for all kinds of data. Through comparison
with classical kernels in SVM and correlation kernel that
is good at cancer predictions, we show the superiority
of Hadamard Kernel. The hadamard kernel is flexible in
varying the parameter o, the determination of optimal «
can be devoted to our future work. We hope Hadamard
kernel as a novel class of kernels can enrich kernel com-
munities in SVM and contribute to the wider biological
problems.

Additional files

Additional file 1: Figures. Additional file 1 includes 12 figures. Figure S1 to
S6 describe the performance of Hadamard kernel with different values of a.
Figure S7 to S12 show the performance of Hadamard kernel compared
with other kernel methods. (PDF 40 kb)

Additional file 2: Results on RNAseq data. Additional file 2 contains results
on RNAseq data for breast cancer outcome predictions. (DOCX 157 kb)
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