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Highlights
 Hypoxia causes trans-generational effects in the water fleas Daphnia. 
 124 genes were differentially expressed in Daphnia embryos under hypoxia.
 There were acclimatory changes of haemoglobin.
 There was suppression in vitellogenin gene family.
 The expressions of histone H2B, H3, H4 and HDAC4 were deregulated.
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ABSTRACT

Hypoxia occurs when dissolved oxygen (DO) falls below 2.8 mg L-1 in aquatic environments.

It can cause trans-generational effects not only in fish, but also in the water fleas Daphnia. In this 

study, transcriptome sequencing analysis was employed to identify transcriptomic alterations 

induced by hypoxia in embryos of Daphnia magna, with an aim to investigate the mechanism 

underlying the trans-generational effects caused by hypoxia in Daphnia. The embryos (F1) were 

collected from adults (F0) that were previously exposed to hypoxia (or normoxia) for their whole 

life. De novo transcriptome assembly identified 18270 transcripts that were matched to the 

UniProtKB/Swiss-Prot database and resulted in 7419 genes. Comparative transcriptome analysis 

showed 124 differentially expressed genes, including 70 up- and 54 down-regulated genes under 

hypoxia. Gene ontology analysis further highlighted three clusters of genes which revealed 

acclimatory changes of haemoglobin, suppression in vitellogenin gene family and histone 

modifications. Specifically, the expressions of histone H2B, H3, H4 and histone deacetylase 4 (HDAC4)

were deregulated. This study suggested that trans-generational effects of hypoxia on Daphnia may be 

mediated through epigenetic regulations of histone modifications.



1. Introduction

In aquatic environments, hypoxia occurs when dissolved oxygen (DO) falls below 2.8 mg L-

1, at which level can lead to mass mortality of fish and macroinvertebrates (Gray et al., 2002; Díaz

and Rosenberg, 2011). Substantial changes in ecosystem composition and function may also occur in 

affected estuaries, coastal waters and freshwater lakes. Although hypoxia occurs naturally in some 

areas, the duration, intensity and frequency of hypoxia are increasing worldwide. This is primarily 

due to eutrophication fuelled by the use of agricultural fertilizers and sewage discharges (Gilbert et 

al., 2010; Rabalais et al., 2010). Global warming may further exacerbate the problem, through an 

increase in freshwater outflow, influx of nutrients, water stratification and community metabolism 

coupled with a reduction in oxygen solubility (Zeis et al., 2009).

The freshwater planktonic crustacean (water fleas) Daphnia magna and conspecific species 

are frequently used as model organisms for ecology, ecotoxicology and evolutionary genomics 

studies due to their small size, short life cycle and amenability to culture in the laboratory

(Guilhermino et al., 2000; Tatarazako and Oda, 2007; Zeis et al., 2009). When exposed to hypoxia, 

Daphnia demonstrated changes in fitness traits, including a smaller body size (Seidl et al., 2005),

reduced body mass (Seidl et al., 2005; Andrewartha and Burggren, 2012), higher mortality rate (Lyu 

et al., 2014) and reduced fecundity (Homer and Waller, 1983) as well as altered phenotypes, such as 

an increase in concentration and oxygen affinity of haemoglobin and changing heart rate (Seidl et al., 

2005). Remarkably, the effects may persist to filial generations. The first and second brood neonates

(F1) from mothers previously exposed to chronic hypoxia were significantly smaller in body mass 

compared to those from mothers of normoxic control. These neonates (F1) in turn produced offspring 

(F2) that were much smaller during early development than F2 produced from neonates whose mothers 

were not exposed to hypoxia (Andrewartha and Burggren, 2012).

In this study, transcriptome sequencing analysis was employed to identify transcriptomic 

alterations induced by hypoxia in embryos of the freshwater crustacean Daphnia magna, with an aim



to investigate the mechanism underlying the trans-generational effects caused by hypoxia in Daphnia. 

The embryos (F1) were collected from adults (F0) that were previously exposed to hypoxia (or 

normoxia) for their whole life (i.e. from newly released neonates to gravid females; ten days). 

Comparative transcriptome analysis showed 124 differentially expressed genes, including 70 up- and 

54 down-regulated genes under hypoxia. Gene ontology analysis highlighted three clusters of genes 

which revealed acclimatory changes of haemoglobin, suppression in vitellogenin gene family and 

histone modifications. qPCR analysis of haemoglobin (Hb), histone H3, H4, H2B and vitellogenin

(VTG) was employed to verify the reliability of transcriptome sequencing analysis results. De novo

transcriptome assembly further identified a subset of novel transcripts, which provides genetic 

information for further trans-generational study of hypoxia in Daphnia.

2. Materials and methods

2.1. Maintenance of Daphnia magna

Daphnia magna Straus cultures were purchased from Carolina® (Burlington, USA) and 

maintained in the laboratory in continuous parthenogenetic reproduction following OECD guideline 

211 (1998). Briefly, D. magna were cultivated in artificial M4 medium (Elendt and Bias, 1990) at a 

density of 1 individual 10 mL-1 in plastic beakers (capacity: 500 mL) at 20 ± 1°C under a DO level 

>6 mg O2 L-1 and a 16:8 h light:dark photoperiod. One-third of the medium was renewed twice a 

week. D. magna was fed with the unicellular freshwater green algae Ankistrodesmus angustus (Strain 

NIES-2192).

2.2. Hypoxia exposure 

Newly released neonates (F0) were reared under the same conditions as those described in 

above paragraph with the exception of dissolved oxygen (DO) level. Two levels of DO (hypoxia: 1.5 

± 0.2 mg O2 L-1; normoxia: 5.8 ± 0.2 mg O2 L-1) were set up and each level consisted twelve



replicate beakers. To achieve the desired DO of 1.5 ± 0.2 mg O2 L-1, a gas mixing tank was injected 

with nitrogen gas and air (the flow of nitrogen gas and air was regulated by a DO controller), 

following the design described in our previous study (Li and Chiu, 2013; Cheung et al., 2014). This 

gas mixing tank in turn supplied the replicate beakers (Cole-Parmer’s 01972-00). Water for the 

normoxic control was bubbled with air only. After ten days of exposure, gravid females of Daphnia

brooding embryos with black eye pigmentation from each replicate beaker were dissected and 

embryos carefully removed from brood chambers for RNA isolation. 

2.3. RNA isolation and qualification 

For cDNA library construction, there were two biological replicates for each of the normoxic and

hypoxic groups. RNA extracted from embryos collected from ten individuals from the first six replicate 

beakers were pooled to obtain the first biological replicate, and those from the remaining six replicate 

beakers were pooled to obtain the second biological replicate (n=2). While for qRT-PCR analysis, there 

were twelve biological replicates for each of the normoxic and hypoxic groups. RNA extracted from 

embryos collected from three individuals from each of the twelve replicate beakers served as a biological 

replicate (n=12). Total RNA from D. magna was extracted using mirVanaTM RNA Isolation Kit 

(Applied Biosystems) and treated with DNase (Ambion) to remove contaminating genomic DNA. 

RNA quality was assessed using Agilent 2100 Bioanalyzer system and all samples that had an RNA 

Integrity Number (RIN) greater than nine were used for cRNA library construction.

2.4. cDNA library construction and strand-specific Illumina RNA sequencing

Four independent libraries (two from hypoxic group and two from normoxic group) were 

prepared for RNA sequencing as previously described (Gu et al., 2015; Hagenaars et al., 2013). Briefly, 

cDNA libraries were prepared using TruSeq Stranded mRNA LT Sample Prep Kit (Illumina, San Diego, 

USA) following the manufacturer’s protocol. Index codes were ligated to identify individual samples. 



mRNA was purified from the total RNA using poly-T oligo-attached magnetic beads (Illumina, San 

Diego, USA), and fragmented RNA was subjected to first and second strand cDNA syntheses using 

random oligonucleotides and SuperScript II, followed by DNA polymerase I and RNase H. After 3’ end 

adenylation, Illumina PE adapter oligonucleotides were ligated to cDNA. DNA fragments that ligated 

with adaptor molecules were amplified using Illumina PCR Primer Cocktail in 15-cycle PCR. Products 

were purified using AMPure XP system and quantified using Agilent Bioanalyzer 2100 system. Before 

sequencing, the libraries were normalized and pooled together in a single lane on Illumina MiSeq 

platform. Paired-end reads, each of 150-bp read-length, were sequenced. Adapters and reads containing 

poly-N were trimmed and the resulting sequence-reads were in turn dynamically trimmed according 

to BWA's − q algorithm. Briefly, a running sum algorithm was executed in which a cumulative area-

plot was plotted from 3’-end to the 5’-end of the sequence reads and where positions with a base-

calling Phred quality <30 caused an increase of the area and vice versa. Such plot was built for each 

read individually and each read was trimmed from the 3’-end to the position where the area was 

greatest. Read-pairs were then synchronized and all read-pairs with sequence on both sides longer

than 35 bp after quality trimming were retained. Singleton reads resulting from read trimming were

removed. All downstream analyses were based on quality-trimmed reads (Lai et al., 2014; Li et al., 

2014).

2.5. Differential expression of known genes and GO enrichment analysis 

Quality-trimmed sequence reads were mapped to Daphnia pulex genome reference 

(Daphnia_pulex.GCA_000187875) obtained from Ensemble (Flicek et al., 2014) using BWA-MEM 

v.0.7.5a-r405. Read-counts of genes were quantified against Ensemble gene annotation 

(Daphnia_pulex.GCA_000187875.1.24.gtf) using HTSeq-count (Anders et al., 2015) with following 

parameters: --stranded=reverse for illumina dUTP strand specific sequencing; --mode=union; and, --

type=exon. Read-count data were then subjected to differential expression analysis using edgeR package



(Li and Dewey, 2011). Genes with B&H corrected p-value<0.05 and log2 (fold change)>1 were 

considered to show statistically significant differential expression (Robinson et al., 2010). 

2.6. De novo transcriptome assembly, annotation and identification of novel transcripts

Forward and reverse reads from all libraries/samples were pooled and subjected to 

transcriptome de novo assembly using Trinity (version r20140413p1) with ‘‘min_kmer_cov’’ set to 

2; “SS_lib_type” set to RF, and all other parameters set to default (Grabherr et al., 2011). Coding 

sequences (open reading frames, ORF) were identified by Transdecoder (Haas et al., 2013) using 

following criteria: (1) the longest ORF was identified within each transcript; (2) from the longest 

ORFs extracted, a subset of the longest ones was identified and randomized to provide a sequence 

composition corresponding to non-coding sequences before being used to parameterize a Markov 

model based on hexamers; and, (3) all the longest ORFS were scored according to the Markov model 

to identify the highest scoring reading-frame out of six possible reading-frames. These ORF were 

then translated to protein sequences and subjected to (1) BLASTp search against UniProtKB/Swiss-

Prot with a cut-off e-value (Ewen-Campen et al., 2011; Du et al., 2012) of 1 x 10-6, (2) protein 

domain search via HMMScan, (3) transmembrane helicase prediction by TMHMM, and (4) signal 

peptide prediction by SignalP. Differential gene expression and TMM-normalized FPKM gene 

expression were calculated by RSEM pipeline using edgeR package. K-mer clustering of samples

was performed with k=2 on differentially expressed genes (Li and Dewey, 2011). Transcripts in the 

resulting sub-clusters were BLASTn against Daphnia pulex transcripts with e-value cut off at 1 x 10-

6. Those without significant matches were considered as novel transcripts, and were subjected to 

manual BLASTx check to nr database with e-value cut off at 1 x 10-6. 

2.7. Quantitative PCR analysis 

PCR primers of the target genes are listed in Supplementary Table 1. Each reaction



contained 1:25 diluted RT products, 1 x SYBR FAST qPCR Master Mix (Kapa Biosystems, 

Woburn, MA) and 200nM of each primers and was run at a profile including 3 min initial 

denaturation at 95°C, 40 cycles of 95°C for 5s and 60°C for 20s on StepOnePlus Real-Time PCR 

System (Life Technologies). The beta-actin housekeeping gene was used for internal normalization 

for each gene. A dissociation curve was constructed for each reaction to analyse the specificity of 

amplification. Data were checked for normality with Shapiro-Wilk’s W test (Shapiro and Wilk, 

1965). Student’s t-test was used to test the differences in gene expression level.

2.8. Availability of supporting data

Sequencing data of this study were submitted to NCBI Sequence Read Archive (SRA) 

(http://www.ncbi.nlm.nih.gov/sra) under the accession number SRP057045.

3. Result

3.1. Sequencing summary

9.54 M and 11.18 M quality-trimmed reads were obtained from normoxia replicates, and 11.07 

M and 10.10 M quality-trimmed reads were obtained from hypoxia replicates. 3.08 Gb of clean bases

were obtained from normoxia samples, and 2.86 Gb from hypoxia samples (Supplementary Table 2). 

Integrated analysis was performed by combining reference based and de novo based transcriptome 

analyses (Figure 1).

3.2. Differential gene expression and GO enrichment analysis

Since D. magna genome and transcriptome reference were not available, the transcriptome

sequencing data were mapped to the reference genome of the congeneric species Daphnia pulex

(Colbourne et al., 2011). The mapping rate of cDNA libraries ranged from 63.56% to 67.97%

(Supplementary Table 2). A total of 124 genes were identified to be differentially expressed under 



hypoxia. These included 70 up- and 54 down-regulated genes in the hypoxic group compared to the 

normoxic group (Table 1 and Table 2). The deregulated genes under hypoxia could be classified into 

three clusters according to their functional annotation and gene ontology analysis (Table 3). Cluster I: 

haemoglobin-related genes were highly expressed under hypoxia treatment. Cluster II: VTG1, VTG2C

and VTG2N of the vitellogenin gene family were suppressed under hypoxic condition. Cluster III: 

histone-related genes including histone H2B, H3, H4 and histone deacetylase 4 (HDAC4) were 

deregulated. Our results is concordant to the previous findings that hypoxia could induce the expression 

of haemoglobin, but cause a reduction of vitellogenin expression in different organisms (Table 4). Also, 

HDAC4 was reported to be associated with hypoxia-inducible factor 1 α (HIF1α). Five genes from these 

clusters were selected and validated by qRT-PCR analysis and the results agreed with the Illumina 

sequencing data (Figure 2).

3.3. De novo transcriptome assembly and identification of novel transcripts

Results of de novo transcriptome assembly were complimentary to those obtained by reference 

mapping. The de novo transcriptome was formed by 43835 contigs with an average contig length of 1216

bp (the shortest sequence was 201 bp and the longest was 23730 bp). 18270 transcripts were matched to 

the UniProtKB/Swiss-Prot database and resulted in 7419 genes (Supplementary Table 3). K-mean 

clustering based on expression profiles with k=2 further resulted in clusters of transcripts that were 

deregulated under hypoxia. The upregulated cluster contained 36 genes, of which 55.6% (20/36) could be 

matched to D. pulex gene sets and they were haemoglobin genes and known genes but unannotated in D.

pulex (Supplementary Table 4). Unmatched transcripts were sulfate anion transporters, serpin peptidase 

inhibitor, cytoglobin-2 and platelet derived growth factor receptor. The downregulated cluster contained 

42 genes and 52.4% (22/42) could be matched to D. pulex gene sets (Supplementary Table 5). They 

were vitellogenin, myosin, dystrophin, and Cubitus interruptus-like protein. Unmatched transcripts were 

trypsin, ARV1 like mRNA and Chitinase-3-like protein 2.



  

4. Discussion

Trans-generational effects may be mediated via maternal processes, epigenetic processes or a 

combination of both. Using comparative transcriptome analysis, this study revealed a dysregulation of 

histone expression, including histone H2B, H3, H4 and HDAC4 in D. magna embryos from mothers 

which was previously exposed to hypoxia. H2A, H2B, H3 and H4 are core histones, playing an 

important role in the maintenance of chromatin structure (Luger et al., 1997). Histone modification 

especially on histone H3 is one of the major epigenetic mechanisms controlling gene expression without 

alteration of DNA sequence (Colon-Caraballo et al., 2015). Histone deacetylation can be promoted by 

HDAC (histone deacetylase), which facilitates the removal of an acetyl group from histone, leading to a 

condensed nucleosome and transcriptional inactivation. The results in this study suggested that hypoxia 

could alter the expressions of histone as well as histone deacetylase, which may be linked to the trans-

generational effects of hypoxia on Daphnia embryos. Trans-generational and epigenetic effects of 

hypoxia were also demonstrated in Oryzias melastigma fish in our previous study (Wang et al.,

accepted). When the parental fish (F0) were exposed to hypoxia, there were reproductive 

impairments, including retarded gonad development, decrease in sperm count and sperm motility in 

F1 and F2 generations associated with a differential methylation pattern of specific genes in sperm of 

both F0 and F2. Trans-generational effects of environmental hypoxia was not yet demonstrated in in 

vivo mammalian studies, but results from in vitro studies suggested that tissue hypoxia can alter 

histone modifications which often correlate with transcriptional response to hypoxia (Johnson et al., 

2008; Ponnaluri et al., 2011; Hancock et al., 2015). For instance, hypoxia induced the expression of a 

number of histone lysine demethylases (KDMs) in retinal pigment epithelial cells, which influenced 

the expression of pro-angiogenic genes (ADM, GDF15, HMOX1, SERPE1 and SERPB8) (Ponnaluri

et al., 2011). Nevertheless, these genes were not found in our de novo transcriptomic assembly 

database.The results in this study are concordant to previous findings which suggested that 



Daphnia can adapt to a low level of environmental oxygen through an up-regulation of haemoglobin 

expression (Lyu et al., 2014). Increased haemoglobin (Hb) levels may result in a higher haemolymph 

concentration and oxygen affinity (Zeis et al., 2009; Andrewartha and Burggren, 2012), and may 

confer significant ecological advantages, including refuge from predation, access to alternative food 

resources and better survival, growth and reproduction (Pirow et al., 2001). In Daphnia, hypoxia-

induced expression of Hb genes were suggested to be mediated by hypoxia-inducible factor 1 (HIF-1) 

and play a key role to a central regulatory mechanism in face of hypoxia (Becker et al., 2011; Gerke et 

al., 2011). Our data did not suggest an increase or decrease in the expression level of HIF-1 

(DAPPUDRAFT_347564) under hypoxic condition. Nevertheless, it has been suggested that HIF-1 

stimulation may disappear under prolonged exposure to hypoxia (Uchida et al., 2004).

Results of current study further suggested that hypoxia can lead to a reduction in the expression 

of vitellogenin gene family in D. magna. Vitellogenin is a precursor of lipoproteins and phosphoproteins,

which are main components of egg yolk in oviparous species including fish and most of the invertebrates

(Robinson, 2008; Kim, 2011). Reduced vitellogenin gene expression may therefore, have adverse 

effects on embryonic development and carryover effects on larval development. D. magna neonates were 

much smaller in size when their mothers were previously exposed to chronic hypoxia (Andrewartha and 

Burggren, 2012). Interestingly, there is a vitellogenin and juvenile hormone feedback loop in 

invertebrates – juvenile hormones stimulate the transcription of the vitellogenin genes and subsequently, 

vitellogenin production (Wyatt and Davey, 1996; Engelmann, 2002). At the same time, juvenile 

hormones co-regulate the haemoglobin genes through a juvenoid signalling pathway (Gorr et al., 2006). 

This coincidence may suggest that the regulation of vitellogen and haemoglobin are related.

De novo transcriptome assembly produced a reference set of mRNA sequences for D. magna and

facilitated the understanding of local adaptation, genome evolution and population genetics of Daphnia.

This study also resulted in a number of hypoxia-induced novel transcripts, including sulfate anion 

transporters, serpin peptidase inhibitor, cytoglobin-2 and platelet-derived growth factor receptor, as well 



as hypoxia-reduced novel transcripts, including trypsin, ARVI like mRNA and Chitinase-3-like protein 2.

Serpin peptidase inhibitor, a potent inhibitor of angiogenesis, is a regulator of bone density (Ziff, et al., 

2016). It is supressed in many types of tumors, such as breast and prostate cancers (Vecchi, et al., 2008; 

Teoh, et al., 2010). Cytoglobin-2 is a new member of vertebrate globin, which can act as a respiratory 

protein that stores and transports oxygen (Wawrowski et al., 2011). The elevation of serpin peptidase 

inhibitor and cytoglobin-2 might help the organism to cope with hypoxic stress. Sulfate anion 

transporters are responsible for the homeostasis of sulfate and oxalate (Markovich, et al., 2011), and 

sulfate itself plays an important role in growth, development, and cellular metabolism (Regeer, et al., 

2003). Platelet-derived growth factor receptor is a cell surface tyrosine kinase receptor that binds to 

platelet-derived growth factor, linking MAPK and PI3K signalling pathways. These processes are critical 

for embryonic development, cell proliferation and angiogenesis (Demoulin and Essaghir, 2014). The 

induction of sulfate anion transporters and platelet-derived growth factor receptor suggested that hypoxia

could affect the embryonic development of Daphnia.
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Figure Legends

Fig. 1. Schematic summary of sample preparation, Illumina sequencing and bioinformatic analyses.

Fig. 2. Quantitative PCR (qPCR) results of haemoglobin (Hb), histone H3, H4 and H2B and vitellogenin
(VTG) expression in embryos of Daphnia magna. The embryos were collected from adults that were 
previously exposed to hypoxia (or normoxia) for the whole life (i.e. ten days). Data are presented as 
the means ± s.e.m.; n = 12, each with embryos collected from three females. *p < 0.05, student’s t-test.
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Table 1. 70 differentially up-regulated genes in D. magna under hypoxia.

Gene ID
log2 fold change 
(Normoxia/Hypoxia)

p-value Gene description

DAPPUDRAFT_316317 -8.60 <0.01 Haemoglobin  

DAPPUDRAFT_230333 -6.40 <0.01 Daphnia magna dhb2 mrna for complete cds

DAPPUDRAFT_234838 -5.97 <0.01 Haemoglobin  

DAPPUDRAFT_93831 -5.51 <0.01 Haemoglobin  

DAPPUDRAFT_234836 -4.89 <0.01 Haemoglobin  

DAPPUDRAFT_315134 -4.50 <0.05 Strongylocentrotus purpuratus glycoprotein-n-
acetylgalactosamine 3-beta-galactosyltransferase 1-like 
mrna

DAPPUDRAFT_104360 -4.44 <0.05 Daphnia pulex hsp90 complete cds

EMDPUG00000003016 -4.44 <0.05 tRNA-Thr for anticodon CGU 

DAPPUDRAFT_314292 -4.44 <0.05 Transporter  

DAPPUDRAFT_125764 -4.19 <0.05 Pseudomonas brassicacearum strain complete genome

DAPPUDRAFT_60881 -4.15 <0.05 Innexin  

DAPPUDRAFT_65647 -4.15 <0.05 Daphnia magna partial mrna for protein (pairediiib gene) 
isolate embryonic allele 2

DAPPUDRAFT_327264 -4.11 <0.05 Drosophila yakuba ge18986 (dyak\ge18986) mrna

DAPPUDRAFT_311662 -4.01 <0.01 dmu67067 Daphnia magna haemoglobin complete cds

DAPPUDRAFT_92880 -3.99 <0.01 Haemoglobin  

DAPPUDRAFT_105344 -3.74 <0.05 Septin-4-like protein  

DAPPUDRAFT_43976 -3.74 <0.05 Histone H2B  

DAPPUDRAFT_442640 -3.74 <0.05 Synaptotagmin 15  

EMDPUG00000004510 -3.74 <0.05 tRNA-Leu for anticodon UAG 

DAPPUDRAFT_107399 -3.74 <0.05 Astyanax mexicanus homeobox protein six3-like mrna

DAPPUDRAFT_23898 -3.74 <0.05 Drosophila mojavensis gi24543 (dmoj\gi24543) mrna

DAPPUDRAFT_311388 -3.74 <0.05 Drosophila willistoni gk16044 (dwil\gk16044) mrna

DAPPUDRAFT_234837 -3.42 <0.01 Haemoglobin  

DAPPUDRAFT_318327 -3.38 <0.01 Na(+)/Pi cotransporter  

DAPPUDRAFT_299574 -3.27 <0.01 Uroporphyrinogen decarboxylase  

DAPPUDRAFT_234839 -2.88 <0.01 Haemoglobin  

DAPPUDRAFT_65174 -2.86 <0.05 Daphnia magna ap1 mrna for apterous partial cds

DAPPUDRAFT_290567 -2.83 <0.05 Putative transcription factor odd-paired  

DAPPUDRAFT_347625 -2.62 <0.01 Endoglucanase  

DAPPUDRAFT_347308 -2.60 <0.05 Transcriptional factor scalloped, isoform 2  

DAPPUDRAFT_264436 -2.54 <0.05 Daphnia pulex clone d11 retrotransposon dirs reverse 
transcriptase complete cds

DAPPUDRAFT_14338 -2.54 <0.05 DpSIX  

DAPPUDRAFT_96715 -2.48 <0.01 Thromboxane A synthase-like protein  

DAPPUDRAFT_128379 -2.43 <0.05 Ferrochelatase  

DAPPUDRAFT_347244 -2.38 <0.05 BTB3  

DAPPUDRAFT_59164 -2.36 <0.05 Protein Wnt  

DAPPUDRAFT_303260 -2.33 <0.05 Tupaia chinensis srsf protein kinase 3 mrna

DAPPUDRAFT_318553 -2.31 <0.05 Daphnia pulex clone op11 dappu_318553-like protein 
partial cds



DAPPUDRAFT_309533 -2.24 <0.01 Phospholipase-like protein A2, group  

DAPPUDRAFT_312948 -2.20 <0.05 ABC protein, subfamily ABCG  

DAPPUDRAFT_442468 -2.17 <0.05 Alpha-carbonic anhydrase  

DAPPUDRAFT_64722 -2.15 <0.01 Ornithodoros coriaceus clone oc-568 hypoxia-inducible 
factor prolyl hydroxylase 2 partial cds

DAPPUDRAFT_301963 -2.07 <0.01 Protein kinase C  

DAPPUDRAFT_299576 -2.07 <0.05 Pyruvate carboxylase  

DAPPUDRAFT_232076 -2.02 <0.01 Daphnia arenata isolate cc4 chitinase 15 partial cds

DAPPUDRAFT_249991 -2.00 <0.05 Eyeless  

DAPPUDRAFT_240551 -1.93 <0.01 Daphnia pulex clone 1793392:1 ferritin 3-like protein e 
complete cds

DAPPUDRAFT_242072 -1.89 <0.05 Elephantulus edwardii light intermediate chain 1 mrna

DAPPUDRAFT_332183 -1.89 <0.05 ABC protein, subfamily ABCH  

DAPPUDRAFT_18594 -1.86 <0.01 Chrysemys picta bellii ccaat enhancer binding protein (c 
ebp) epsilon mrna

DAPPUDRAFT_225386 -1.85 <0.05 5-aminolevulinate synthase  

DAPPUDRAFT_290511 -1.84 <0.05 Ferritin 2 light chain-like protein  

DAPPUDRAFT_108870 -1.82 <0.05 Capsaspora owczarzaki ATCC 30864 hypothetical protein 
(CAOG_05347) mRNA, complete cds

DAPPUDRAFT_301873 -1.81 <0.05 Entamoeba nuttalli p19 membrane complex biogenesis 
family protein partial mrna

DAPPUDRAFT_320395 -1.75 <0.05 5-aminolevulinate synthase  

DAPPUDRAFT_313427 -1.75 <0.05 Putative cyclooxygenase  

DAPPUDRAFT_302410 -1.74 <0.05 Daphnia magna hairy enhancer of split-like 2 partial cds

DAPPUDRAFT_442645 -1.71 <0.05 Glutathione S-transferase  

DAPPUDRAFT_42690 -1.69 <0.05 Transporter  

DAPPUDRAFT_64675 -1.65 <0.05 Protein Wnt  

DAPPUDRAFT_98433 -1.58 <0.05 Drosophila erecta gg23047 (dere\gg23047) mrna

DAPPUDRAFT_111909 -1.54 <0.05 Putative allatotropin  

DAPPUDRAFT_42745 -1.52 <0.05 Daphnia magna clone b039 microsatellite sequence

DAPPUDRAFT_442646 -1.47 <0.05 Glutathione S-transferase  

DAPPUDRAFT_308636 -1.46 <0.05 Daphnia pulex clone jgiazsn- complete sequence

DAPPUDRAFT_233847 -1.46 <0.05 Uricase  

DAPPUDRAFT_442802 -1.42 <0.05 Ecdysone-induced protein  

DAPPUDRAFT_442965 -1.31 <0.05 Histone deacetylase HDAC4 protein-like protein  

DAPPUDRAFT_347609 -1.29 <0.05 Endoglucanase-1,4-beta-glucanase  

DAPPUDRAFT_310801 -1.26 <0.05 Glutathione peroxidase  



Table 2. 54 differentially down-regulated genes in D. magna under hypoxia.

Gene ID
log2 fold change 
(Normoxia/Hypoxia)

p-value Gene description

DAPPUDRAFT_347667 9.66 <0.01 Vitellogenin fused with superoxide dismutase  

DAPPUDRAFT_58854 5.76 <0.01 mrna for alpha-like subunit of the nicotinic acetylcholine 
receptor

DAPPUDRAFT_64669 5.37 <0.01 Putative centromeric histone CENP-A  

DAPPUDRAFT_313994 5.00 <0.01 Daphnia pulicaria clone wfms0000345 microsatellite 
marker dp334 sequence

DAPPUDRAFT_212927 4.86 <0.01 Antheraea godmani dopa decarboxylase partial cds

DAPPUDRAFT_347678 4.75 <0.01 Vitellogenin fused with superoxide dismutase  

DAPPUDRAFT_47227 4.51 <0.01 Daphnia pulex clone jgiazsn- complete sequence

DAPPUDRAFT_299677 4.46 <0.01 Vitellogenin fused with superoxide dismutase  

DAPPUDRAFT_226762 4.44 <0.05 Daphnia pulex clone jgiazsn- complete sequence

DAPPUDRAFT_299508 4.12 <0.01 G2/mitotic-specific cyclin B, copy E-like protein  

DAPPUDRAFT_311736 4.08 <0.05 Lipoxygenase-like protein  

DAPPUDRAFT_239293 4.07 <0.05 Drosophila melanogaster chromosome 3l

DAPPUDRAFT_47503 3.86 <0.01 Daphnia pulex clone jgiazsn- complete sequence

DAPPUDRAFT_241731 3.21 <0.01 Poecilia reticulata fibroblast growth factor 20-like 
partial mrna

DAPPUDRAFT_53927 2.77 <0.05 Zinc finger-like protein  

DAPPUDRAFT_312949 2.67 <0.05 ABC protein, subfamily ABCG  

DAPPUDRAFT_442486 2.59 <0.01 Alpha-carbonic anhydrase  

DAPPUDRAFT_248107 2.58 <0.05 Superoxide dismutase 

DAPPUDRAFT_43920 2.54 <0.01 Histone H4  

DAPPUDRAFT_327753 2.47 <0.05 Drosophila erecta gg13378 (dere\gg13378) mrna

DAPPUDRAFT_347757 2.30 <0.01 Chymotrypsin-like protein  

DAPPUDRAFT_63051 2.28 <0.01 Delta-like protein  

DAPPUDRAFT_442485 2.22 <0.05 Alpha-carbonic anhydrase  

DAPPUDRAFT_97116 2.18 <0.05 Daphnia pulicaria clone wfms0000203 microsatellite 
marker dp197 sequence

DAPPUDRAFT_306533 2.15 <0.05 Musca domestica cytochrome p450 4d8-like mrna

DAPPUDRAFT_347377 2.11 <0.01 ABC protein, subfamily ABCG  

DAPPUDRAFT_442806 2.10 <0.05 Glycolipid-transport protein  

DAPPUDRAFT_315707 2.06 <0.05 ABC protein, subfamily ABCG  

DAPPUDRAFT_347230 2.05 <0.05 Putative transcriptional factor Ocelliless/Orthodenticle 
protein  

DAPPUDRAFT_304645 2.00 <0.01 Histone H3  

DAPPUDRAFT_223595 1.94 <0.01 Coronin  

DAPPUDRAFT_301902 1.94 <0.05 Cylicostephanus goldi genome assembly 
c_goldi_cheshire cgoc_contig0032236

DAPPUDRAFT_347295 1.88 <0.05 ABC protein, subfamily ABCC  

DAPPUDRAFT_347772 1.86 <0.01 Trypsin  

DAPPUDRAFT_329544 1.84 <0.05 Daphnia arenata isolate cc1 gram-negative binding 
protein 6 partial cds

DAPPUDRAFT_196131 1.84 <0.05 Eptesicus fuscus leucyl cystinyl aminopeptidase mrna

DAPPUDRAFT_330188 1.74 <0.05 Putative UDP-glucuronosyltransferase  



DAPPUDRAFT_442498 1.73 <0.05 Alpha-carbonic anhydrase  

DAPPUDRAFT_127273 1.70 <0.01 Apis dorsata uncharacterized loc102673834 transcript 
variant mrna

DAPPUDRAFT_308251 1.67 <0.05 Strongyloides papillosus genome assembly 
s_papillosus_lin spal_contig0000015

DAPPUDRAFT_222925 1.66 <0.05 Putative cyclin B, copy D  

DAPPUDRAFT_347474 1.63 <0.05 ABC protein, subfamily ABCH  

DAPPUDRAFT_55141 1.58 <0.05 Transporter  

DAPPUDRAFT_53622 1.53 <0.05 Canis lupus familiaris ribonuclease t2 transcript variant 
mrna

DAPPUDRAFT_306471 1.45 <0.05 RFS1  

DAPPUDRAFT_318905 1.41 <0.05 Helicoverpa armigera clone 5s01584 glucosidase partial 
cds

DAPPUDRAFT_317254 1.38 <0.05 Arthroderma benhamiae cbs 112371 leukotriene a4 
mrna

DAPPUDRAFT_306271 1.38 <0.05 Helobdella robusta hypothetical protein partial mRNA

DAPPUDRAFT_305892 1.35 <0.05 Naegleria gruberi rab family small mrna

DAPPUDRAFT_225264 1.35 <0.05 Doublesex and mab-3 related transcription factor-like 
protein 1  

DAPPUDRAFT_210571 1.34 <0.05 DpGSTS1  

DAPPUDRAFT_347623 1.27 <0.05 Astacin-like protease  

DAPPUDRAFT_226800 1.24 <0.05 Drosophila ananassae gf22409 (dana\gf22409) mrna

DAPPUDRAFT_299672 1.23 <0.05 Putative oxidoreductase  



Table 3. Classification of genes from D. magna based on functional annotation.

Gene name (gene symbol) Gene ID
Cluster I: Haemoglobin-related
Haemoglobin DAPPUDRAFT_316317
Haemoglobin DAPPUDRAFT_234838
Haemoglobin DAPPUDRAFT_93831
Haemoglobin DAPPUDRAFT_234836
Haemoglobin complete cds DAPPUDRAFT_311662
Haemoglobin DAPPUDRAFT_92880
Haemoglobin DAPPUDRAFT_234837

Cluster II: Embryonic development
Vitellogenin fused with superoxide dismutase (VTG1) DAPPUDRAFT_299677

Vitellogenin fused with superoxide dismutase (VTG2C) DAPPUDRAFT_347678

Vitellogenin fused with superoxide dismutase (VTG2N) DAPPUDRAFT_347667

Cluster III: Histone modification 
Histone H2B DAPPUDRAFT_43976

Histone deacetylase HDAC4 protein-like protein DAPPUDRAFT_442965

Histone H3 DAPPUDRAFT_304645

Histone H4 DAPPUDRAFT_43920



Table 4. Effects of hypoxia on the gene expression of haemoglobin (Hb), vitellogenin and histone 
deacetylase 4 in different organisms.

Gene
Cell / 
Organisms

Findings Reference

Haemoglobin Murine ATII 
cell line MLE-
15

Hb mRNA and protein were up-regulated during hypoxic 
exposure.

Grek et al.,
2011

Daphnia magna The haem-based Hb concentration increased by 266% as a 
consequence of hypoxia acclimation. Significant differences 
between both acclimation groups occurred in all generation 
(F0-2).

Seidel et 
al., 2005

Gadus morhua Level of Hb was significantly elevated by about 15% in the 
hypoxia-exposed group.

Petersen
and 
Gamperl,
2011

Oryzias latipes Significant increase in Hb mRNA level was found during 
hypoxia.

Wawrowsk
i et al., 
2011

Danio rerio Down-regulation of embryonic Hb mRNA was observed in 
embryos exposed in hypoxia for 24h.

Ton et al., 
2003

Sparus aurata Hypoxia significantly increased blood haemoglobin content by 
35%. 

Bermejo-
Nogales et 
al., 2014

Vitellogenin Spartina 
alterniflora

Vitellogene-1 was significantly down-regulated in the wild-
caught shrimp exposed to long-term cyclic hypoxia, suggesting 
a decrease in yolk provisioning of oocytes in grass shrimp.

Brown-
Peterson et 
al., 2011

Micropogonias 
undulatus

The production of mature oocytes and sperm (gametogenesis), 
as well as vitellogenin levels in the blood, were significantly 
lower in croaker from the hypoxic sites in East Bay compared 
to the values in fish collected from the adjoining normoxic 
Pensacola Bay. 

Thomas et 
al., 2007. 

Micropogonias 
undulatus

Ovarian dysfunction was associated with significant decreases 
in vitellogenin, the yolk protein precursor sequestered by the 
growing oocytes under hypoxia.

Thomas et 
al., 2006

Danio rerio A marked downregulation in both vitellogenin-1 and 
vitellogenin-2 was observed in zebrafish exposed to hypoxia.

Lu et al., 
2014

Palaemonetes 
pugio

Vitellogenin was significantly down-regulated in shrimp from 
the cyclic hypoxic location. This inhibition might be related to 
the significant reduction in reproduction as demonstrated by 
lower percentage of ovigerous females and the lower relative 
fecundity at hypoxic site.

Li and
Brouwer, 
2013

Histone deacetylase 
4

von Hippel-
Lindau (VHL)-
null kidney 
cancer cell lines

HDAC4 regulates HIF1α protein acetylation and stability. Geng et 
al., 2011
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