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Abstract 

Small and medium river basins may frequently suffer from the destructive hydrological 

extremes (e.g., floods). However, the common problem in such regions is a lack of long-

term historical observations. Meteorological and hydrological station networks in some 

river basins in China were newly-built only a few years ago, and it is infeasible to estimate 

hydrological parameters from calibration and validation with a long time period directly. 

This paper aims to develop a method to estimate the feasible hydrological parameters 

based on rainfall patterns in such regions. Digital Yellow River Integrated Model (DYRIM) 

is adopted as the hydrological model, and the feasible hydrological parameters can be 

estimated based on limited rainfall-runoff events. First, for each rainfall-runoff event, the 

parameters are independently calibrated with the observed rainfall and hydrological data 

using a double-layer parallel system. Then, the performances of the simulation results are 

comprehensively evaluated, and the value ranges of the parameters can be obtained. 

Finally, the statistical relationships between hydrological parameters and rainfall patterns 

(i.e., amount and intensity) are established, which are expressed by the statistical equations 

and the distribution of hydrological parameters with the rainfall patterns. From a sample 

demonstration, it is concluded that this parameter estimation method will be useful to 

estimate the feasible hydrological parameters for future rainfall-runoff events in river 

basins with no long-term historical observations.  

Keywords: Hydrological parameter estimation; Rainfall patterns; Digital Yellow River 

Integrated Model (DYRIM); Small and medium river basins. 
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1. Introduction 

Hydrological extremes (e.g., floods) in small and medium river basins are regarded as 

an important factor that can affect the social and economic development. In such regions, 

high-intensity rainstorms frequently occur during the rainy season, which may lead to 

serious flood disasters and cause enormous losses of lives and property (Liu et al., 2010; 

Ye et al., 2012; Shi et al., 2015). However, the mechanism of the occurrence of rainstorms 

is quite complicated so that it is difficult to have an in-depth understanding of it. Moreover, 

another problem in such river basins is a lack of long-term historical observations (e.g., 

Skaugen et al., 2015; Athira et al., 2016; Garambois et al., 2017; Yoo et al., 2017). For 

example, the meteorological and hydrological station networks in some small and medium 

river basins in China are usually poor. No meteorological and hydrological stations can be 

found in some river basins; even if there are several stations, the series of the observed data 

are usually not long enough for calibration and validation of hydrological models with a 

long time period. Consequently, more technical and financial supports should be provided 

for such river basins; moreover, it is important and necessary to develop an effective 

method to estimate hydrological parameters in river basins with no long-term historical 

observations. 

In the past few years, many researchers have made efforts to address this problem in 

ungauged or poorly gauged river basins (e.g., Bardossy, 2007; Hundecha et al., 2008; 

Bulygina et al., 2012; Woldemeskel et al., 2013; Shi et al., 2015; Yu et al., 2016; Gao et al., 

2017; Garambois et al., 2017; Yoo et al., 2017), mainly focusing on the following two 

types of methods. The first type is the methods based on regional information representing 
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river basin characteristics (e.g., Bardossy, 2007; Hundecha et al., 2008; Bulygina et al., 

2012; Yoo et al., 2017). It is supposed that river basins with similar characteristics may 

show a similar hydrological behavior and thus can be simulated with similar hydrological 

parameters. As a result, hydrological parameters in an ungauged or poorly gauged river 

basin can probably be transferred from a reference river basin which is adjacent or has 

similar characteristics with this river basin (Bardossy, 2007; Tang et al., 2010). Moreover, 

for a designated river basin, correlation analysis between hydrological parameters and river 

basin characteristics can be conducted to improve the model performance (e.g., Merz and 

Blöschl, 2005; Wagener and Wheater, 2006; Coff et al., 2009; Bulygina et al., 2012). For 

example, using a formal Bayesian procedure, Bulygina et al. (2012) combined three 

different sources of knowledge (i.e., physical properties, regionalized signatures of flow 

and available flow measurements) into a distributed model for a river basin in the UK and 

found that the physical properties source could contribute most to improving the model 

performance. Recently, the global-scale satellite-based meteorological datasets have been 

developed rapidly with the development of science and technology, which are regarded to 

be an effective supplement for the gauge-station measurements (e.g., Pappenberger et al., 

2008; Li et al., 2012; Woldemeskel et al., 2013). Hence, the second type is the methods 

based on the utilization of the satellite-based meteorological datasets (e.g., Shi et al., 2015; 

Yu et al., 2016; Gao et al., 2017). For the river basins with poor historical observations, 

especially for the ungauged river basins, the satellite-based meteorological datasets may 

provide the necessary input data to overcome the problem of lacking data when estimating 

the hydrological parameters through calibration and validation of models (e.g., Sun et al., 

2012; Maswood and Hossain, 2016; Garambois et al., 2017). 
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In China, an increasing number of meteorological and hydrological station networks 

have been built in some small and medium river basins to acquire the necessary data for 

hydrological simulation; however, due to the lack of long-term historical observations, it is 

still difficult to estimate the hydrological parameters from calibration and validation of 

hydrological models with a long time period directly. To this end, this paper aims to 

propose a feasible hydrological parameter estimation method in such river basins through 

establishing the relationships between hydrological parameters and rainfall patterns (i.e., 

amount and intensity). A physically-based hydrological model, the Digital Yellow River 

Integrated Model (noted as DYRIM hereafter) (Wang et al., 2007, 2015; Li et al., 2009), is 

adopted in this paper to conduct hydrological simulations, and the Leli River basin, a sub-

basin of the Pearl River basin in China, is selected as the study area. From a sample 

demonstration, it is concluded that the proposed method will be useful to estimate the 

feasible hydrological parameters for future rainfall-runoff events in such river basins. The 

remainder of this paper is organized as follows. Section 2 shows the main methodologies. 

Section 3 gives a brief introduction to the study area and research data. Section 4 shows 

results and discussion of the case study. The final section displays the conclusions of this 

paper. 

2. Methodology 

2.1. The hydrological parameter estimation method 

In order to conduct hydrological simulations using distributed hydrological models, the 

applicable hydrological parameters for the designated river basin should be determined 

first. Normally, they can be calibrated and validated with long-term historical observations; 
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however, with respect to small and medium river basins with few available observations, 

such method will probably be invalid. Therefore, in consideration of the uncertainty of the 

hydrological parameters, the hydrological parameter estimation method for river basins 

with no long-term historical observations is proposed based on the rainfall patterns derived 

from limited rainfall-runoff events (Figure 1). In this paper, the rainfall-runoff events (i.e., 

the flood events in the subsequent sections) are selected based on the observed streamflow 

data. For a designated river basin, the observed streamflow data is equal to the base flow of 

this river basin during the period with no rain. When the rain occurs, there is a significant 

increase in the observed streamflow data until reaching the peak, and then a decrease in the 

observed streamflow data until returning to the base flow. Therefore, the day when the 

observed streamflow data begin to increase can be identified and the day before this day is 

regarded as the start date of a rainfall-runoff event. Moreover, the day when the observed 

streamflow data return to the base flow can be identified and the day after this day is 

regarded as the end date of a rainfall-runoff event. Then, the proposed method involves the 

following three steps. 

Step 1: 

For each rainfall-runoff event, the hydrological simulation is conducted using the 

DYRIM (Wang et al., 2007, 2015), and the hydrological parameters in the DYRIM are 

independently calibrated with the observed rainfall and hydrological data using a double-

layer parallel system for hydrological model calibration (Zhang et al., 2016). In recent 

years, there have been several studies (e.g., Choi et al., 2015; Reshma et al., 2015; Huang 

et al., 2016; Fuentes-Andino et al., 2017) on event-based calibration of hydrological 

models, including some of our previous studies (e.g., Shi, 2013; Zhang et al., 2016). 
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Step 2:  

For each rainfall-runoff event, the performance of the hydrological simulation result is 

separately evaluated using the selected assessment criteria (see subsection 2.4 for details). 

Then, all the rainfall-runoff events are regarded as a whole and comprehensive evaluation 

is conducted to show the overall simulation accuracy. Moreover, the value ranges of the 

hydrological parameters can be determined from multiple sets of calibrated parameters 

through identifying the maximum and minimum values. 

Step 3: 

For each rainfall-runoff event, the rainfall patterns (i.e., amount and intensity) are 

obtained based on the observed rainfall data. In this paper, the rainfall amounts of all the 

stations during the period of each rainfall-runoff event are calculated, and then the average 

rainfall amount over the river basin can be derived using the Thiessen polygon method 

(Thiessen and Alter, 1911; Brassel and Reif, 1979). In addition, the observed rainfall data 

recorded at all the stations are converted into the rainfall intensities in millimeters per hour, 

and then the maximum one can be derived. Correlations between hydrological parameters 

and rainfall patterns (i.e., amount and intensity) are analyzed, and the variables applicable 

for establishing the statistical relationships are determined. Using the regression method, 

the statistical equations including the selected variables can be obtained; moreover, the 

distributions of hydrological parameters with rainfall patterns can be mapped. Both of 

them will be valuable for estimating hydrological parameters for future rainfall-runoff 

events with limited observed data. 
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2.2. Brief Introduction of the DYRIM 

The DYRIM is a physically-based, distributed-parameter, and continuously-simulated 

model developed by Tsinghua University for hydrological and sediment simulations in 

river basins based on the high-resolution digital drainage network (Wang et al., 2007, 2015; 

Li et al., 2009), which is extracted from the 30-m-resolution Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model 

(GDEM) dataset (ASTER GDEM Validation Team, 2011; Bai et al., 2015a, 2015b) and 

coded by using a modified binary tree method (Li et al., 2010). Regarding the hillslope-

channel as the basic hydrological unit, the DYRIM can simulate runoff yield and flow 

routing on each hillslope-channel unit. Moreover, the dynamic parallelization technology 

based on sub-basin decomposition has been developed to speed up the simulation (Li et al., 

2011; Wang et al., 2011, 2012; Zhang et al., 2016). In our previous studies, the DYRIM 

has been widely employed to the hydrological and sediment simulations in major river 

basins of China, such as the Yellow River basin, the Yangtze River basin and the Pearl 

River basin (Yin, 2009; Shi, 2013; Shi et al., 2011, 2015, 2016; Zhang et al., 2016), which 

can demonstrate its universal applicability at the time scales ranging from daily to monthly. 

The rainfall-runoff model in the DYRIM is established on each hillslope unit, 

considering two soil layers (i.e., topsoil and subsoil layers) to reflect both the infiltration-

excess and storage-excess mechanisms, in fine time steps (e.g., 6 minutes). Infiltration-

excess runoff on the hillslope surface, along with related hydrological processes, such as 

vegetation interception, evapotranspiration, groundwater discharge and water redistribution 

between the two soil layers, constitute the fundamental hydrological processes simulated 
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by this model. Moreover, the flow routing is simulated over this drainage network using a 

diffusive wave method. 

The parameters in the ranifall-runoff model can be divided into two types, namely, 

physical parameters and calibration parameters. Physical parameters, including the field 

capacity (CT1) and the free water content (CT2) of the topsoil layer, the field capacity 

(CS1) and the free water content (CS2) of the subsoil layer, the depth of topsoil layer (D), 

and the water capacity of unit LAI (I), are used to describe the properties of the land use 

and soil type. These parameters have less influence on the hydrological simulation over a 

river basin and can be determined from field measurements and handbooks. By contrast, 

calibration parameters, which are sensitive and adjustable, must be calibrated before model 

application using the observed data. According to our previous studies (Wang et al., 2015; 

Shi et al., 2015, 2016), the most important calibration parameters are the vertical saturated 

conductivity of the topsoil layer (KVT), the vertical saturated conductivity between the two 

soil layers (KVS), and the horizontal saturated conductivities of the two soil layers (KHT 

for the topsoil layer and KHS for the subsoil layer). Moreover, among the four parameters, 

the two vertical saturated conductivities (KVT and KVS) are the key calibration parameters 

(Wang et al., 2007, 2015; Zhang et al., 2016). 

2.3. Calibration of the DYRIM 

The model parameters in the DYRIM are automatically calibrated with a double-layer 

parallel system (Zhang et al., 2016). A dynamic sub-basin decomposition method (Li et al., 

2011) was developed to parallelize the hydrological simulation of the DYRIM, which 

contributes to the lower-layer parallelism. The MPI standard is adopted to realize the 



  

10 

 

lower-layer parallelism, mainly because it is the dominant technique to develop parallel 

programs on distributed memory systems. Moreover, the job scheduling functions of an 

HPC (High Performance Computing) system are used to manipulate simultaneous model 

executions with different hydrological parameter combinations in the same generation of 

an optimization algorithm, which contributes to the upper-layer parallelism. 

In this paper, the genetic algorithm (GA) (Holland, 1975) is adopted to search the 

feasible hydrological parameters due to its stability, natural parallelism and problem-

independence. Herein the GA implementation treats the parameters to be optimized as real 

numbers with simulated binary crossover and real-parameter mutation. This technique 

promises the parameters independent of the GA and easy to be optimized. When the GA 

needs to evaluate the fitness of various model parameter combinations, the job scheduler of 

the HPC system is called to put a number of DYRIM jobs with different parameter values 

into the job list of the HPC and to monitor the job list. When all of the jobs are completed, 

the model efficiency will be estimated using observed data to propose the fitness 

evaluation list. Generations of the GA will be run to explore more parameter combinations 

until the stop criterion is reached (Zhang et al., 2016). 

2.4. Assessment Criteria 

To evaluate the performances of the hydrological simulation results using the DYRIM, 

two objective functions are selected as assessment criteria, namely, the RE (Relative Error) 

and the NSCE (Nash-Sutcliffe Coefficient of Efficiency) (Nash and Sutcliffe, 1970). The 

equations for computing these two objective functions are given as follows: 
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where Xi,obs and Xi,sim are the i-th observation and simulation, respectively; obsX  is the 

mean value of the observations; and N is the sample size. 

These two objective functions can provide different criteria in evaluating the model 

performance. The RE can indicate the degree of bias between the simulations and 

observations, and the value of 0 indicates a perfect simulation. The NSCE can measure the 

goodness of fit, and its value approaches 1.0 if the simulations are close to the observations. 

In addition, according to the assessment criteria proposed by the Ministry of Water 

Resources of China (MWR, 2000), the acceptable simulation result for a single rainfall-

runoff event should meet the following three criteria at the same time: (1) the NSCE value 

is higher than 0.80, (2) the RE of the peak flow (noted as REPF hereafter) is within ±10%, 

and (3) the RE of the flood volume (noted as REFV hereafter) is within ±10%. While for a 

group of rainfall-runoff events, there are three grades of simulation accuracy, i.e., the first 

grade with the NSCE value larger than 0.9, the second grade with the NSCE value between 

0.70~0.90 and the third grade with the NSCE value between 0.50~0.70. The acceptable 

simulation result should at least meet the requirement of the third grade. 

3. Study area and research data 

To demonstrate the performance of the proposed hydrological parameter estimation 

method, the Leli River basin located in Guangxi, China (105°55' - 106°15' E, 24°16' - 
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24°34' N), is selected as the study area (Figure 2). It is a sub-basin of the Pearl River basin 

and has a drainage area of 606 km
2
. This river basin is a humid region with the multi-year 

mean precipitation of 1200 mm, and nearly 80% of the annual precipitation occurs during 

the rainy season from May to October. Moreover, affected by extreme weather events, 

floods may easily happen in this river basin. 

The high-resolution digital drainage network of the Leli River basin extracted from the 

ASTER GDEM for running the DYRIM is also shown in Figure 2. Within the Leli River 

basin, there is only one hydrological station (i.e., Tianlin station) built in 2005 (Figure 2), 

and the observed streamflow data at the hourly time scale are available from 2005 to 2008. 

In addition, there are four rainfall stations (i.e., Bantao, Geyan, Sanyao and Tianlin stations) 

built in 2005 within this river basin (Figure 2), and the observed rainfall data at the hourly 

time scale are available from 2005 to 2008. Based on the observed streamflow data from 

2005 to 2008, there are totally 18 floods identified (i.e., 3 floods in 2005, 6 floods in 2006, 

5 floods in 2007 and 4 floods in 2008, respectively), regarding the flood occurred during 

June 20-27, 2005, as the first one, and the flood occurred during July 22-31, 2008, as the 

last one. In this paper, the 14 floods occurred during 2005-2007 are used to develop the 

statistical relationships between hydrological parameters and rainfall patterns, while the 4 

floods occurred in 2008 are used to validate the proposed relationships. 

According to the Soil Map of China (Chinese Academy of Sciences, 1978), the major 

soil type of the study area is red soil, which has large hydraulic conductivities. Therefore, 

the soil type of the study area is assumed to be homogeneous in this paper. The vegetation 

coverage is represented by Global Inventory Modeling and Mapping Studies Normalized 

Difference Vegetation Index (GIMMS NDVI) data, which are derived from the Advanced 
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Very High Resolution Radiometer (AVHRR) instrument onboard the National Oceanic 

and Atmospheric Administration (NOAA) satellite (Tucker et al., 2005). 

4. Results and discussion 

4.1. Results of hydrological simulations 

In this paper, the hydrological simulations of all the 18 floods occurred during 2005-

2008 in the Leli River basin are conducted using the DYRIM and the hydrological 

parameters for each flood event are independently calibrated using the double-layer 

parallel system. Before the simulations, the physical parameters should be determined, 

which are primarily derived from the previous study on the Pearl River basin using the 

DYRIM (Yin, 2009) and further validated based on the observed rainfall and streamflow 

data in 2005 (see Table 1). Moreover, Yin (2009) has pointed out that the vertical saturated 

conductivity of the topsoil layer is large and should be higher than 95 mm/hr. Therefore, 

the KVT value is set to be 100 mm/hr to ensure that the runoff yield is under the saturated 

storage condition, which properly reflects the mechanism of runoff yield in this river basin; 

while the value ranges of the other three calibration parameters are all set to be 0.01~10 

mm/hr, which is wider than those proposed by Yin (2009) to ensure that the reasonable 

value ranges are included. Moreover, the computational time step and output time step for 

simulation using the DYRIM are set to be 6 minutes, and the original outputs are averaged 

in each hour to generate the hourly streamflows, which can be easily compared against the 

observed streamflow data recorded at the Tianlin hydrological station. 

Because each flood event is independently calibrated in order to obtain the optimal 

hydrological parameters for this event, the performances of calibration are different among 
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events. Table 2 lists the values of the relevant assessment criteria, i.e., the NSCE, REPF 

and REFV values, for each flood. It is observed that the simulation accuracy is generally 

high: (1) the NSCE values of 14 floods are higher than 0.5, with the highest value of 0.95 

for the flood occurred during June 28 - July 4, 2005; moreover, the overall NSCE value of 

these 14 floods is 0.84; (2) the REPF values of 13 floods are within ±20%, with the 

lowest value of 1% for the flood occurred during August 4-15, 2006 and -1% for the flood 

occurred during June 26-29, 2007, respectively; (3) the REFV values of 14 floods are 

within ±20%, with the lowest value of -2% for the flood occurred during July 22-31, 2008. 

However, only the simulation results of two floods, which occurred during July 7-14, 2006 

and June 12-14, 2008, can meet the three assessment criteria at the same time: (1) the 

NSCE values are 0.94 and 0.92, higher than 0.80, (2) the REPF values are -9% and -2%, 

within ±10%, and (3) the REFV values are 7% and -6%, within ±10%. 

Figure 3 shows the comparisons of the simulations against the observations for the 3 

floods with the NSCE values higher than 0.9. It is observed that both the peak values and 

the peak times can be well simulated, which indicates the good performance of the model. 

However, there are also 4 floods with the NSCE values lower than 0.5, which indicates that 

the model performance may not be so good for these floods. In order to investigate the 

sources of errors, the comparisons of the simulations against the observations for these 4 

floods are shown in Figure 4. It is observed that the low NSCE values are mainly caused by 

the discrepancies between the simulated and observed peak flow. The simulated peak 

values are all much smaller than the observed ones (i.e., -21%, -19%, -44% and -17% for 

these 4 floods, respectively), and for the 3 floods in Figures 4(a), 4(c) and 4(d), the peak 
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times are all several hours in advance (i.e., 5, 6 and 4 hours, respectively). By contrast, for 

the flood in Figure 4(b), there are three observed peak flows, among which, the first one 

cannot be captured, the second one is captured in the right peak time but much smaller (i.e., 

-19%), and the third one is captured in the right order of magnitude with a time lag. The 

major reason for this may be that the spatial and temporal resolutions of the rainfall data 

used in this paper are not high enough. The mean control area of each rainfall station is 

approximately 150 km
2
, and the time intervals between the adjacent records are mostly 1 

hour (or larger). Because rainfall intensity has been proved to have a great impact on 

hydrological processes (Shi and Wang, 2015), there might be a certain negative impact on 

the rainfall-runoff simulation since the short-duration and high-intensity rains may be 

homogenized. Second, the model structure of the DYRIM is regarded as an influencing 

factor in the simulation accuracy (Shi et al., 2015, 2016). 

4.2. Comprehensive evaluation as a group of floods 

Normally, a number of floods can be regarded as a group in order to comprehensively 

evaluate the simulation accuracy. Considering all the 18 floods, the mean NSCE value is 

0.66, the mean REPF value is -9%, and the mean REFV value is -5% (see Table 2). In 

addition, the overall NSCE value of all the 18 floods is 0.79, which is approximately equal 

to 0.80. According to the assessment criteria proposed by the MWR of China (MWR, 

2000), such a group of floods can meet the requirement of the third grade for hydrological 

simulation accuracy even if the mean NSCE value (i.e., 0.66, between 0.50~0.70) is used. 

In consideration of the overall NSCE value (i.e., 0.79, between 0.70~0.90), the requirement 

of the second grade can be met by this group of floods. Moreover, both the mean REPF 
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and REFV values are within ±10%, which further indicates the generally high simulation 

accuracy of this group of floods. 

Therefore, the calibration parameters (i.e., KVS, KHT and KHS) after calibrations are 

regarded as the feasible hydrological parameters for each flood, and Table 3 lists the value 

ranges of these calibration parameters in this river basin. For the KVS value, the value 

range is 1.2~10.0 mm/hr, with the mean value of 5.5 mm/hr and standard deviation of 2.8 

mm/hr. For the horizontal saturated conductivities, the KHT value is in the same order of 

magnitude as the KVS value, with the value range of 1.8~9.9 mm/hr, the mean value of 6.2 

mm/hr and standard deviation of 2.5 mm/hr. In contrast, the KHS value is nearly one order 

of magnitude smaller than the KVS and KHT values, with the value range of 0.01~1.0 

mm/hr, the mean value of 0.41 mm/hr and standard deviation of 0.3 mm/hr, indicating that 

the subsoil layer in this river basin is a relatively impermeable layer. Although these three 

parameters are still changing after calibrations, they are supposed to be distributed with 

reasonable value ranges (e.g., 1.2~10.0 mm/hr for the KVS value, 1.8~9.9 mm/hr for the 

KHT value, and 0.01~1.0 mm/hr for the KHS value, respectively). 

Furthermore, a significant negative correlation (i.e., the correlation coefficient is -0.60, 

significance level p < 0.01) is found between the NSCE value and the KVS value, while the 

correlations of the NSCE value with the KHT (i.e., the correlation coefficient is -0.04) and 

KHS (i.e., the correlation coefficient is 0.29) values are not statistically significant. This 

indicates that the KVS value is more sensitive than the KHT and KHS values, which can 

prove the statement mentioned above that the vertical saturated conductivities are the key 

calibration parameters (Wang et al., 2007, 2015; Zhang et al., 2016). Figure 5 shows the 
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relationships of the NSCE value with the KVS, KHT and KHS values, as well as the linear 

regression equations with the R
2
 values. The NSCE value shows a decreasing trend along 

with the increase of the KVS value, and the R
2
 value is 0.36. Moreover, the R

2
 values in 

Figures 5(b) and 5(c) are approximately equal to 0, indicating the rather weak relationships 

of the NSCE value with the KHT and KHS values. 

4.3. Relationships between hydrological parameters and rainfall patterns 

The estimation methods of the hydrological parameters under different rainfall patterns 

have been reported by several previous studies, especially for the extreme rainfall events 

(e.g., Soulis and Valiantzas, 2012; Chen et al., 2015; Garcia and Koike, 2016). In this 

paper, the relationships between parameters in hydrological models and rainfall patterns 

(i.e., amount and intensity) are analyzed using the regression method, and the statistical 

equations to estimate the feasible hydrological parameters based on the selected rainfall 

patterns are established. 

Based on the observed data recorded at each rainfall station in the Leli River basin, the 

rainfall patterns (i.e., amount and intensity) during the period of each flood are computed. 

Table 4 lists the average rainfall amount and the maximum rainfall intensity during the 

period of each flood in the Leli River basin. The average rainfall amount values are 

markedly different, and the highest value (i.e., 139.3 mm during June 8-11, 2008) is nearly 

3-fold higher than the lowest value (i.e., 45.3 mm during June 13-16, 2006). Moreover, the 

maximum rainfall intensity values are all lower than 100 mm/hr (i.e., the given KVT value 

in this paper), varying from the lowest value (i.e., 15.7 mm/hr during August 4-15, 2006) 

to the highest value (i.e., 57.1 mm/hr during June 8-11, 2008). This indicates that setting 
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the KVT value to be 100 mm/hr is high enough to ensure the runoff yield under the 

saturated storage condition. 

The correlations of the average rainfall amount with the KVS, KHT and KHS values are 

firstly investigated but none of them is significant even at the significance level of p = 0.1, 

which indicates that these parameters cannot be estimated based on the average rainfall 

amount. The correlation coefficients are all low, i.e., 0.08 for the KVS value, -0.02 for the 

KHT value and 0.20 for the KHS value, respectively. However, it is observed that the KVS 

and KHS values slightly increase while the KHT value slightly decreases along with the 

increase of the average rainfall amount. With reference to the maximum rainfall intensity, 

a significant positive correlation (significance level p < 0.01) between the maximum 

rainfall intensity and the KVS value is found with the correlation coefficient of 0.76, while 

the correlations of the maximum rainfall intensity with the KHT and KHS values are 

relatively weak (significance level p > 0.1), with the correlation coefficients of 0.30 for the 

KHT value and 0.15 for the KHS value, respectively. However, all the three parameters 

increase along with the increase of the maximum rainfall intensity. Therefore, only the 

statistical equation to estimate the KVS value is established in this paper, based on the data 

of the 14 floods occurred during 2005-2007. In this paper, various functional forms, such 

as linear, logarithmic and exponential, have been attempted, and the relationship between 

the maximum rainfall intensity and the KVS value in this river basin can approximately be 

expressed as follows: 

  6.59ln( ) 17.88KVS MRI= −  (3) 
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where MRI is the maximum rainfall intensity and KVS is the vertical saturated conductivity 

between the two soil layers. The R
2
 value of Eq. (3) is 0.50. 

Figure 6 shows the relationship between the maximum rainfall intensity and the KVS 

value.  The solid black line shows the estimated KVS values by using Eq. (3), and the dash 

grey lines show the ranges of the RE values within ±50% because the R
2
 value of Eq. (3) 

is equal to 0.50. The 4 floods occurred in 2008, which are used to validate the proposed 

equation, are also shown in Figure 6. It is observed that the range between the dash grey 

lines can basically cover the scatters including the four points representing the 4 floods 

occurred in 2008, which indicates Eq. (3) can well estimate the KVS value based on the 

maximum rainfall intensity. Table 5 lists the KVS values estimated by Eq. (3) as well as the 

corresponding RE values (in parentheses) for the 4 floods occurred in 2008 which are used 

for validation. However, there are four points lying outside the range between the dash 

grey lines in Figure 6. It is worth noting that the KVS values of three points are lower than 

2.0 mm/hr, which indicates that the relatively lower KVS values may not be well estimated 

based on the maximum rainfall intensity. 

Figure 7 shows the comparisons of the simulations using the calibrated and estimated 

KVS values against the observations for the 4 floods occurred in 2008. The NSCE values of 

the simulation results using the estimated KVS values are 0.65, 0.74, 0.24 and 0.83, 

respectively, which are all lower than those using the calibrated KVS values (i.e., 0.71, 0.92, 

0.25 and 0.87). For the two floods in Figures 7(a) and 7(c), the simulation results using the 

calibrated and estimated KVS values are similar; and more significant differences between 

the simulation results using the calibrated and estimated KVS values can be observed in 
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Figures 7(b) and 7(d) due to the relatively larger RE values of the estimated KVS values for 

these two floods. 

4.4. Discussion 

In this paper, the case that the maximum rainfall intensity and the average rainfall 

amount are both considered as influencing factors is also analyzed, and the statistical 

equation to estimate the KVS value can be obtained by the multiple regression method. 

   7.03ln( ) 0.75ln( ) 16.18KVS MRI ARA= − −  (4) 

where ARA is the average rainfall amount. The R
2
 value of Eq. (4) is 0.58. 

Figure 8 shows the comparisons of the KVS values estimated by Eq. (3) and Eq. (4) 

against the calibrated KVS values, and the scatters are evenly distributed beside the dash 

grey line. Although the R
2
 value of Eq. (4) is higher than that of Eq. (3), the improvement 

in estimating the KVS value is limited. The KVS values estimated by Eq. (4) as well as the 

corresponding RE values (in parentheses) for the 4 floods in 2008 are also listed in Table 5. 

The improvements are more obvious for the KVS values overestimated by Eq. (3) (e.g., the 

RE values turn to 34% from 41% and 38% for the second and fourth floods, respectively). 

Moreover, it is worth noting that, for the flood occurred during August 4-15, 2006 (i.e., the 

circle point near the lower left corner), the KVS value estimated by Eq. (4) cannot be 

presented in this figure because it is a negative value (i.e., -0.4 mm/hr). To further 

investigate this problem, it is found that the KVS value estimated by Eq. (4) will be a 

negative value if the maximum rainfall intensity is lower than 16.6 mm/hr while the 

maximum rainfall intensity is 15.7 mm/hr for the flood occurred during August 4-15, 2006. 

In contrast, such threshold value of Eq. (3) is 15.1 mm/hr. This means that these two 
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equations will be invalid if the maximum rainfall intensity is lower than the corresponding 

threshold values. 

Figure 9 shows the distribution of the KVS value associated with the rainfall patterns 

(i.e., the average rainfall amount and the maximum rainfall intensity in this paper), which 

is produced based on the data of the 14 floods occurred during 2005-2007. The KVS value 

generally shows the increasing trend with the increase of the maximum rainfall intensity 

but almost no trend with the increase of the average rainfall amount. For the 4 floods 

occurred in 2008, the KVS values can be identified from Figure 9 according to the average 

rainfall amount and the maximum rainfall intensity, which are also shown in Table 5. For 

the second and third floods, the improvements in estimating the KVS values are significant, 

i.e., the RE values turn to -19% and -5%, respectively. For the first flood, the KVS values 

estimated by Eq. (3), Eq. (4) and Figure 9 are more or less the same. Only for the fourth 

flood, the KVS value estimated by Figure 9 has a larger error than those estimated by Eq. 

(3) and Eq. (4). This indicates that mapping the distribution of hydrological parameters 

associated with the rainfall patterns can be regarded as another way to estimate the feasible 

hydrological parameters. 

Furthermore, this paper has attempted to establish the relationships between the 

maximum rainfall intensity and the horizontal saturated conductivities (i.e., the KHT and 

KHS values) in this river basin. However, the R
2
 values of the derived statistical equations 

(Eq. (5) and Eq. (6)) are quite low (i.e., 0.09 for the KHT value and 0.03 for the KHS value, 

respectively), which indicates that they may not be applicable to the future rainfall-runoff 

events. The estimated KHT and KHS values can be regarded as reference values only if 

there is no other option. 
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   2.42ln( ) 2.34KHT MRI= −  (5) 

   0.15ln( ) 0.11KHS MRI= −  (6) 

where KHT and KHS are the horizontal saturated conductivities of the two soil layers. 

Nevertheless, this paper can provide a method to estimate the feasible hydrological 

parameters based on rainfall patterns (i.e., amount and intensity) in river basins with no 

long-term historical observations. However, the limitations of this paper should be fully 

aware, which are mainly related to the following four aspects. First, this method is area-

dependent. For different river basins, the relationships between hydrological parameters 

and rainfall patterns should be reestablished based on the observed rainfall and streamflow 

data. Second, whether to select the average rainfall amount as an influencing factor when 

estimating the feasible hydrological parameters should be carefully considered because the 

improvement is limited, at least in this study area. Third, the method to estimate the KVS 

value in case of relatively lower rainfall intensity should be further investigated because 

the proposed statistical equations will be invalid in such case. Fourth, considering the weak 

relationships between the horizontal saturated conductivities and the rainfall patterns, the 

method to estimate these parameters should be further developed by other means.  

5. Conclusions 

This paper develops a hydrological parameter estimation method for river basins with 

no long-term historical observations based on the statistical relationships of hydrological 

parameters with rainfall patterns (i.e., amount and intensity). Regarding the Leli River 

basin as the study area, the findings of this paper can be described as follows: 
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First, the calibration parameters in the DYRIM are independently calibrated for each 

flood event using a double-layer parallel system, and the performances of the hydrological 

simulation results are evaluated by two ways, namely, separate evaluation for each flood 

event and comprehensive evaluation for a group of flood events. The results reveal that the 

simulation accuracy is generally high and can meet the national standards of China (MWR, 

2000). Moreover, the value ranges of the calibration parameters are determined through 

identifying the maximum and minimum values. 

Second, based on the correlation analysis between hydrological parameters and rainfall 

patterns (i.e., amount and intensity), the variables applicable for establishing the statistical 

relationships are determined and the statistical equations including the selected variables 

are developed. Moreover, the results reveal that mapping the distribution of hydrological 

parameters associated with the rainfall patterns can also provide a solution to the problem 

of estimating the necessary hydrological parameters with limited observations. 

Overall, the proposed method is feasible in estimating hydrological parameters for 

future rainfall-runoff events in small and medium river basins such as the Leli River basin 

with no long-term historical observations. This will be valuable for making better decisions 

on flood control, integrated water resources management and ecological environment 

assessment in future. 
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Figures 

 

 

Figure 1. Flow chart of the hydrological parameter estimation method. 
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Figure 2. The locations of rainfall stations and hydrological station in the Leli River basin. 
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Figure 3. The comparisons of the simulations against the observations for the 3 floods 

with the NSCE values higher than 0.9. 
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Figure 4. The comparisons of the simulations against the observations for the 4 floods 

with the NSCE values lower than 0.5. 
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Figure 5. The relationships of the NSCE value with the KVS, KHT and KHS values. 
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Figure 6. The relationship between the maximum rainfall intensity and the KVS value. 
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Figure 7. The comparisons of the simulations using the calibrated and estimated KVS 

values against the observations for the 4 floods occurred in 2008. 
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Figure 8. The comparisons of the KVS values estimated by Eq. (3) and Eq. (4) against the 

calibrated KVS values. 
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Figure 9. The distribution of the KVS value associated with the rainfall patterns. Note: the 

black points denote the 4 floods occurred in 2008. 
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Tables 

 

Table 1. The physical parameters determined from the previous study on the Pearl River 

basin using the DYRIM (Yin, 2009) 

Parameter CT1 CT2 CS1 CS2 D (m) I (m) 

Value 0.212 0.296 0.1 0.13 0.5 0.0036 
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Table 2. The hydrological simulation results of all the 18 floods occurred during 2005-

2008 in the Leli River basin 

Year Flood NSCE REPF (%) REFV (%) 

2005 

6.20-6.27 0.72 -5 -24 

6.28-7.4 0.95 -3 -12 

8.21-8.26 0.66 11 -14 

2006 

6.13-6.16 0.64 -31 -23 

6.17-6.21 0.45 -21 -8 

7.7-7.14 0.94 -9 7 

7.15-7.24 0.51 -5 4 

8.4-8.15 0.75 1 -14 

8.16-8.25 0.42 -19 -12 

2007 

6.26-6.29 0.57 -1 53 

6.30-7.6 0.15 -44 -23 

7.11-7.19 0.79 -32 -3 

9.2-9.7 0.68 9 -6 

9.8-9.14 0.85 -19 -7 

2008 

6.8-6.11 0.71 31 -6 

6.12-6.14 0.92 -2 -6 

7.11-7.14 0.25 -17 12 

7.22-7.31 0.87 -11 -2 

Mean value 0.66 -9 -5 

Overall value 0.79 / / 
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Table 3. The value ranges of the calibration parameters in the Leli River basin 

Parameter 
KVS 

(mm/hr) 

KHT 

(mm/hr) 

KHS 

(mm/hr) 

Mean value 5.5 6.2 0.41 

Maximum value 10.0 9.9 1.0 

Minimum value 1.2 1.8 0.01 

Standard deviation 2.8 2.5 0.3 
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Table 4. The average rainfall amount and the maximum rainfall intensity during the period 

of each flood in the Leli River basin 

Year Flood 
Average rainfall amount 

(mm) 

Maximum rainfall intensity 

(mm/hr) 

2005 

6.20-6.27 74.7 26.8 

6.28-7.4 62.0 42.9 

8.21-8.26 70.5 44.5 

2006 

6.13-6.16 45.3 26.4 

6.17-6.21 54.2 37.3 

7.7-7.14 118.4 36.8 

7.15-7.24 81.0 32.9 

8.4-8.15 120.0 15.7 

8.16-8.25 97.4 55.2 

2007 

6.26-6.29 45.6 30.5 

6.30-7.6 71.7 33.0 

7.11-7.19 65.5 27.8 

9.2-9.7 46.6 36.1 

9.8-9.14 95.7 27.6 

2008 

6.8-6.11 139.3 57.1 

6.12-6.14 91.9 29.3 

7.11-7.14 86.8 45.4 

7.22-7.31 130.3 48.5 
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Table 5. The KVS values estimated by Eq. (3), Eq. (4) and Figure 9 as well as the RE 

values (in parentheses) for the 4 floods occurred in 2008 

Flood 
KVS (mm/hr) 

Calibrated Estimated by Eq. (3) Eq. (4) Figure 9 

6.8-6.11 10.0 8.8 (-12%) 8.6 (-14%) 8.77 (-12.3%) 

6.12-6.14 3.1 4.4 (41%) 4.2 (34%) 2.51 (-19%) 

7.11-7.14 8.6 7.3 (-16%) 7.3 (-16%) 8.19 (-5%) 

7.22-7.31 5.6 7.7 (38%) 7.5 (34%) 8.48 (51%) 
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Research Highlights 

1. Estimation of hydrological parameters with limited observed data 

2. Comprehensive evaluation of simulation results as a group of events 

3. Establishment of statistical equations based on rainfall patterns 

4. Mapping the distribution of hydrological parameters with rainfall patterns 
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