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1 2 3 4

The confining stresses in a concrete column confined with fibre-reinforced polymer (FRP) are uniform across the

section and isotropic only when the column is under concentric loading and circular in shape. If the column is under

eccentric loading or non-circular in shape, the confining stresses in the column become non-uniform and anisotropic.

However, without knowing the confining stresses, it is impossible to predict the structural behaviour of confined

concrete columns. To overcome this difficulty, a new finite-element (FE) method was developed based on the most

up-to-date lateral strain–axial strain and axial stress–strain constitutive models of concrete. This paper reports on

using the method to analyse circular concrete columns confined by FRP under eccentric loading. It was found that,

under eccentric loading, the confining stresses are generally smaller at larger eccentricity. Overall, good agreement

between the theoretical results and published experimental data was achieved. In theory, the FE method can be

applied to concrete columns of any shape and even those provided with lateral reinforcement, as will be elaborated

upon in subsequent papers.

Notation
A strain transformation matrix
Ac total area of concrete cross-section
Ai area of concrete element i
B strain–displacement matrix
C constitutive matrix
c neutral axis depth
d effective depth
de eccentricity of axial load
Ec elastic modulus of concrete
e out-of-roundness parameter
fc unconfined concrete strength
fcc confined concrete stress
f ′cc confined concrete stress taking into account strain

gradient
fr confining concrete stress
fr,avg average confining stress
ft uniaxial tensile strength

J3 third deviatoric stress invariant
Mx moment about x-axis
My moment about y-axis
n total number of concrete elements
P axial load
PFE maximum predicted load by finite-element (FE)

analysis
PFE-I maximum predicted load by FE analysis using 2203

elements
PFE-II maximum predicted load by FE analysis using 6718

elements
tf thickness of FRP
u displacement vector
xp x-coordinate of eccentric load
yp y-coordinate of eccentric load
γ12 shear strain in the plane defined by directions 1

and 2
ε1 lateral strain in principal direction 1
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ε2 lateral strain in principal direction 2
ε3 axial strain in direction 3
εc axial strain in concrete
εcc axial strain at peak stress of confined concrete
εco axial strain at peak stress of unconfined concrete
εe elastic component of lateral strain
εp inelastic component of lateral strain
εo3;1 threshold value of axial strain ε3 before splitting

cracks occur in direction 1
εo3;2 threshold value of axial strain ε3 before splitting

cracks occur in direction 2
λ Ec/[(1 + νc)(1− 2νc)]
νc Poisson’s ratio of concrete
σ stress vector
σ1 confining stress in direction 1
σ2 confining stress in direction 2
σ3 axial stress in direction 3
σc axial concrete stress
σsz axial stress of steel tube
τ12 shear stress in the plane defined by directions 1

and 2
ωx bi-curvature about x-axis
ωy bi-curvature about y-axis

1. Introduction
Recent studies have shown that the performance of concrete
columns can be significantly boosted by adding external fibre-
reinforced polymer (FRP) confinement (Hu, 2013; Lam and
Teng, 2002; Ozbakkaloglu et al., 2013). As the concrete in a
FRP-confined column expands laterally when subjected to
axial compression, the FRP confinement restrains the lateral
expansions and thereby produces confining stresses in the con-
crete. The concrete column is thus under triaxial compression
and both the strength and ductility of the concrete column
would be significantly increased. The increases in strength and
ductility are highly dependent on the actual confining stresses
developed at various stages of loading, which in turn are
dependent on the stiffness of the FRP confinement and the
lateral strain–axial strain constitutive relation of the concrete
(Fam and Rizkalla, 2001; Harries and Kharel, 2002; Mirmiran
and Shahawy, 1997; Teng et al., 2007). Particularly, after crack-
ing, the concrete would increase in volume albeit subjected to
triaxial compression (Imran and Pantazopoulou, 1996),
leading to substantially larger lateral expansions and confining
stresses at the inelastic stage. However, the lateral expansions
and confining stresses are inter-related and therefore not easy
to determine for an analysis of the structural behaviour of
FRP-confined concrete columns.

Even with the confining stresses at various stages of loading
determined, an axial stress–strain constitutive model for con-
fined concrete under given confining stresses is needed to
evaluate the axial behaviour of a FRP-confined column.

A number of axial stress–strain constitutive models have been
developed. Among them, the one developed by Mander et al.
(1988), based on the pioneering work of Popovics (1973), is
probably the most practical. This model has been widely
adopted to analyse FRP-confined concrete (Fam and Rizkalla,
2001; Jiang and Teng, 2007; Saadatmanesh et al., 1994; Teng
et al., 2007) but is only applicable to normal-strength concrete.
In contrast, a later model developed by Attard and Setunge
(1996), based on the test results of concrete cylinders under
active confinement, is applicable to a much wider range of
concrete strength, covering both normal- and high-strength
concretes. It is interesting to note that the classical but rather
old model developed by Saenz (1964) has also been modified
for application to concrete confined by steel tubes (Hu et al.,
2003).

After extensive studies on the axial stress–strain behaviour of
FRP-confined concrete, many axial stress–strain models for
FRP-confined concrete have been developed. These models
may be classified into design-oriented models and analysis-
oriented models (Teng and Lam, 2004). The design-oriented
models give closed-form axial stress–strain curves in terms of
certain design parameters and are therefore relatively easy to
use in practical design applications. They are developed based
on test results of circular columns under concentric loading.
No reference is made to the confining stresses whatsoever and
thus the variation of the confining stresses during loading is
not traceable. On the other hand, the analysis-oriented models
require the use of an incremental iterative numerical procedure
to trace the development of confining stresses for axial stress–
strain analysis. They are not suitable for hand or spreadsheet
calculations and thus demand computer analysis, but should
be more rigorous and accurate. However, a uniform and isotro-
pic distribution of confining stresses across the concrete section
is assumed and therefore these so-called analysis-oriented
models are applicable only to circular columns under con-
centric loading.

To deal with cases in which the confining stresses could be
non-uniform or anisotropic, such as columns subjected to
eccentric loading or with non-circular shape, a more general
analytical method, such as the finite-element (FE) method,
is needed. However, the FE analysis of confined concrete is
not without problems. Mirmiran et al. (2000) used the
Drucker–Prager failure surface and non-associated flow rule
in the Ansys environment to analyse the non-linear beha-
viour of concentrically loaded FRP-confined circular concrete
columns. They obtained theoretical axial stress–strain curves
in good agreement with the experimental counterparts, but
lateral strains significantly different from the experimental
results. Similarly, Yu et al. (2010a, 2010b) used the extended
Drucker–Prager failure surface and non-associated flow rule
in the Abaqus environment to conduct FE analysis of con-
centrically loaded FRP-confined circular and non-circular
concrete columns. For non-circular columns, they either
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treated the non-circular section as an equivalent circular
section or replaced the anisotropic confining stresses at each
point by equivalent isotropic confining stresses. They also
obtained theoretical axial stress–strain curves in good agree-
ment with the experimental counterparts. However, it has
been found necessary to use certain solution-dependent field
variables in the flow rule to ensure that the lateral strains
would vary with the axial strain according to the con-
stitutive models established from experimental results (Tao
et al., 2013).

A new FE method for the analysis of FRP-confined concrete
columns is proposed in this paper. Non-uniform and anisotro-
pic confining stresses are allowed so as to deal with the general
case of circular or non-circular columns under eccentric
loading. In the analysis, the axial strain is applied incremen-
tally to the section in the form of prescribed axial strain at
the loading point with plane sections assumed to remain
plane after loading. For determination of the biaxial lateral
strains at each point within the section, the lateral strain–axial
strain constitutive model developed by Dong et al. (2015a)
is employed. The inelastic components of the biaxial lateral
strains so evaluated are treated as residual strains and the
biaxial confining stresses are then determined by two-
dimensional (2D) FE analysis. Finally, the axial stress at each
point within the section is determined using the 3D failure
surface developed by Menétrey and Willam (1995), the axial
stress–strain constitutive model developed by Attard and
Setunge (1996) and the strain gradient model developed by
Ho and Peng (2013). To verify its applicability and accuracy,
the proposed FE method is used to analyse FRP-confined cir-
cular concrete columns under eccentric loading tested by pre-
vious researchers.

2. Constitutive modelling of concrete
under triaxial stresses

When a FRP-confined concrete column is subjected to
eccentric loading, the lateral strains and confining stresses are
anisotropic. Hence, at each point, there are two lateral strains
and two confining stresses, as shown in Figure 1. Here, the
coordinate axes in the two in-plane principal directions are
taken as directions 1 and 2, whereas the coordinate axis in the
out-of-plane principal direction (the axial direction) is taken
as direction 3. Following this coordinate system, the lateral
strains in directions 1 and 2 are denoted by ε1 and ε2, respect-
ively, and the axial strain in direction 3 is denoted by ε3.
Likewise, the confining stresses in directions 1 and 2 are
denoted by σ1 and σ2, respectively, and the axial stress in direc-
tion 3 is denoted by σ3.

The confining stresses σ1 and σ2 are to be evaluated by 2D
FE analysis taking into account the in-plane stress–strain
relation of the concrete and the stress–strain relation of the
confining material. Then, the axial strength of the concrete
in each concrete element with confining stresses σ1 and σ2

applied can be determined from the triaxial failure surface of
the concrete. Having determined the axial strength, the axial
stress σ3 developed in each concrete element can be eval-
uated by applying the axial stress–strain constitutive model
and the strain gradient model. Finally, by integrating the axial
stresses in all the concrete elements over the concrete section
and their respective bending moments about the coordinate
axes, the total axial force and bending moments can be
evaluated.

The constitutive modelling of concrete in the above analysis
consists of four parts – the lateral strain–axial strain constitu-
tive model, the triaxial failure surface, the axial stress–strain
constitutive model and the strain gradient model, which are
now presented in turn in the following sections.

2.1 Lateral strain–axial strain constitutive model
At elastic range, concrete subjected to axial compression
undergoes lateral expansions at a constant rate due to the
Poisson’s ratio effect. Beyond a certain compressive strain
limit, splitting cracks start to develop and lateral expansions
increase with compressive strain at an increasing rate (Imran
and Pantazopoulou, 1996). The lateral strains are dependent
on the axial strain, confining stress and concrete strength.
Dong et al. (2015a) recently developed a constitutive model for
predicting the lateral strains of confined concrete by analysing
published test results. In this constitutive model, the two lateral
strains ε1 and ε2 are each divided into two components – an
elastic component arising from the Poisson’s ratio effect and
an inelastic component arising from the formation of splitting
cracks. In other words, ε1 = εe1 + εp1 and ε2 = εe2 + εp2, in which
εe1 and εe2 are the elastic components and εp1 and εp2 are the
inelastic components. It is noted that the model has been veri-
fied by several previous theoretical studies on axially loaded
FRP-confined concrete columns with circular and rectangular
sections (Dong et al., 2015b; Kwan et al., 2015; Lo et al.,
2015).

ε3, σ3

ε2, σ2

ε1, σ1

2D concrete element

Cross-section of the column

Figure 1. Definition of coordinate axes
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The elastic components εe1 and εe2 are linear functions of ε3,
σ1 and σ2, and can be obtained by linear elasticity theory as

1a: εe1 ¼ �νcε3 þ ð1� ν2cÞ
σ1
Ec

� νcð1þ νcÞ σ2Ec

1b: εe2 ¼ �νcε3 þ ð1� ν2cÞ
σ2
Ec

� νcð1þ νcÞ σ1Ec

in which νc and Ec are the Poisson’s ratio and Young’s
modulus of the concrete, respectively. Before the concrete
cracks, these elastic lateral strains are the only lateral strains.

When the axial strain ε3 exceeds the threshold value εo3;1, split-
ting cracks would be formed in direction 1, and when the axial
strain ε3 exceeds the threshold value εo3;2, splitting cracks would
be formed in direction 2. Based on analysis of the published
test results, the threshold values εo3;1 and εo3;2 are given by

2a:
εo3;1 ¼ εcoð0�44þ 0�0021fc � 0�00001f 2c Þ

� 1þ 30 expð�0�013fcÞ σ1fc

� �

2b:
εo3;2 ¼ εcoð0�44þ 0�0021fc � 0�00001f 2c Þ

� 1þ 30 expð�0�013fcÞ σ2fc

� �

where fc is the unconfined compressive strength of the concrete
(this may be taken as the cylinder strength of the concrete) and
εco is the axial strain corresponding to the unconfined com-
pressive strength of the concrete. Based on analysis of the
published test results, the inelastic components εp1 and εp2 are
given by

3a:

εp1 ¼ 19�1ðε3 � εo3;1Þ1�5

� 0�1þ 0�9 exp �5�3 σ1
fc

� �1�1 !" #( )

3b:

εp2 ¼ 19�1ðε3 � εo3;2Þ1�5

� 0�1þ 0�9 exp �5�3 σ2
fc

� �1�1 !" #( )

The lateral strains and the confining stresses are thus inter-
related. By combining Equations 1a, 1b, 3a and 3b and

expressing them in matrix form, the following constitutive
equation at element level is obtained

4:

σ1

σ2

τ12

8>><
>>:

9>>=
>>; ¼ λ

1� νc νc 0

νc 1� νc 0

0 0 ð1� νcÞ=2

2
64

3
75

�
ε1 � εp1
ε2 � εp2
γ12

8><
>:

9>=
>;þ λνc

ε3
ε3
0

8><
>:

9>=
>;

where λ=Ec/[(1 + νc)(1− 2νc)]. Since the inelastic components
εp1 and εp2 are dependent on the axial strain ε3, they have to be
computed at each loading step.

2.2 Triaxial failure surface of concrete
The Drucker–Prager failure surface employed by Mirmiran
et al. (2000) has the limitation that it is applicable only when
the two confining stresses σ1 and σ2 are equal. In general, σ1
and σ2 may not be equal and the presence of the third deviato-
ric stress invariant J3 could result in a lower axial strength of
the concrete. To avoid over-estimating the axial strength due to
omission of the third deviatoric stress invariant, Yu et al.
(2010a, 2010b) used the extended Drucker–Prager failure
surface with the third deviatoric stress invariant incorporated.
However, the K value in the extended Drucker–Prager failure
surface was restricted to between 0·778 and 1·0 to ensure con-
vexity of the yield surface, and such a restriction would still
lead to over-estimation of the axial strength when σ1 and σ2
are unequal. To overcome such a difficulty, therefore, the
failure surface proposed by Menétrey and Willam (1995) is
adopted here.

According to Menétrey and Willam (1995), the failure surface
of concrete under triaxial compression is described by

5:
Fðξ; ρ; θÞ ¼

ffiffiffiffiffiffiffi
1�5

p ρ

fc

� �2

þm
ρffiffiffi
6

p
fc
rðθ; eÞ þ ξffiffiffi

3
p

fc

� �
� c ¼ 0

in which

6a: ξ ¼ I1ffiffiffi
3

p ; I1 ¼ σ1 þ σ2 þ fcc

6b:
ρ ¼

ffiffiffiffiffiffiffi
2J2

p
; J2 ¼ 1

6
½ðσ1 � σ2Þ2

þ ðσ2 � fccÞ2 þ ð fcc � σ1Þ2�
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6c:
θ ¼ 1

3
cos�1 3

ffiffiffi
3

p
J3

2J2=3
2

 !
;

J3 ¼ σ1 � I1
3

� �
� σ2 � I1

3

� �
� fcc � I1

3

� �

6d: m ¼ 3
f 2c � f 2t
fcft

� e
eþ 1

where fcc is the confined concrete strength, ft is the uniaxial
tensile strength and e is the out-of-roundness parameter. As
recommended by Papanikolaou and Kappos (2007), the par-
ameter e is evaluated by assuming that the ratio between the
biaxial compressive strength fbc (the compressive strength when
either σ1 = 0 or σ2 = 0) and the uniaxial compressive strength fc
is equal to 1·5·fc

−0·075, as per

7: e ¼ 44�55f �0�075
c þ 6�75f �0�15

c � 3
89�1f �0�075

c � 6�75f �0�15
c þ 3

The value of e given by Equation 7 varies from 0·50 to 0·53 as
the compressive strength fc increases from 20 MPa to higher
than 100 MPa. For comparison, it is noted that Menétrey and
Willam (1995) used a constant value of e=0·52.

The failure surface so derived is compared with the Drucker–
Prager failure surface and the extended Drucker–Prager failure
surface in Figure 2. Since there is no explicit expression of fcc

in terms of the other variables, an iterative numerical pro-
cedure has to be employed to determine the value of fcc.
First, an initial estimate of fcc is taken as fc. Then, the estimate
of fcc is successively adjusted by small changes until Equation
5 is satisfied. At each iteration step, the rate of change of F
(ξ,ρ,θ) with fcc is estimated and the small change in fcc to be
applied so that F(ξ,ρ,θ) would become zero is calculated
accordingly. In practice, this iterative procedure converges
quite quickly.

2.3 Axial stress–strain constitutive model
For modelling the non-linear axial stress–strain behaviour of
the confined concrete, the model developed by Attard and
Setunge (1996), which covers a wide range of concrete strength
from 20 to 130 MPa, is used. The axial stress–strain relation of
this model is given by

8:
σc
fcc

¼ a1ðεc=εccÞ þ a2ðεc=εccÞ2
1þ a3ðεc=εccÞ þ a4ðεc=εccÞ2

where σc is the axial concrete stress, εc is the axial strain corre-
sponding to σc, εcc is the axial strain corresponding to fcc and
a1, a2, a3 and a4 are coefficients governing the shape of the
stress–strain curve. In the FE analysis, σc and εc are equivalent
to σ3 and ε3, respectively.

According to Attard and Setunge (1996), if the two confining
stresses σ1 and σ2 are the same and equal to fr (i.e. σ1 = σ2 = fr),
then the value of εcc can be obtained as

9:
εcc
εco

¼ 1þ ð17� 0�06fcÞ fr
fc

� �

in which εco is the axial strain at peak axial stress of the con-
crete when unconfined as directly measured by uniaxial com-
pression testing. In the case εco has not been measured, the
following equation may be used for its estimation (Attard and
Setunge, 1996)

10: εco ¼ fc
Ec

4�26ffiffiffiffiffi
fc4

p

Likewise, Ec should be directly measured by a uniaxial com-
pression test. If Ec has not been measured, the following
equation proposed by Carrasquillo et al. (1981) may be used

σ3

σ1
σ2

Drucker–Prager

Extended Drucker–Prager

Menétrey and Willam

Figure 2. Different failure surfaces in deviatoric plane

6e: r ðθ; eÞ ¼ 4ð1� e2Þ cos2 θ þ ð2e� 1Þ2
2ð1� e2Þ cos θ þ ð2e� 1Þ½4ð1� e2Þ cos2 θ þ 5e2 � 4e�1=2
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for its estimation

11: Ec ¼ ð3320
ffiffiffiffiffi
fc

p
þ 6900Þ ρc

2320

� �1�5

where ρc is the density of the concrete in kg/m3. In this paper,
ρc is taken as 2320 kg/m3 for normal-weight concrete.

One set of the coefficients a1, a2, a3 and a4 is used to define
the shape of the ascending branch of the stress–strain curve
whereas another set of the coefficients is used to define the
shape of the descending branch. Each coefficient for either the
ascending branch or the descending branch is expressed as a
function of the concrete strength fc and the confining stress fr
so as to allow for their effects on the shape of the stress–strain
curve or, more specifically, the ductility of the concrete.
Formulas for all these coefficients have been given by Attard
and Setunge (1996) and are therefore not repeated here for
brevity. As the value of fr is changing during the analysis of
FRP-confined concrete under compression, the shape of
Attard and Setunge’s (1996) axial stress–strain curve shifts
with fr, so that a typical compressive stress–strain relation of
FRP-confined concrete is shown in Figure 3.

However, the model of Attard and Setunge (1996) is applicable
only when the two confining stresses are equal (σ1 = σ2 = fr).
When the two confining stresses are not equal (σ1≠ σ2), it is
not clear what confining stress fr should be used in the stress–
strain curve. The best way to overcome this difficulty is to
conduct true triaxial tests with unequal confining stresses
applied and develop a new constitutive model applicable to the

true triaxial case. Before such a true triaxial constitutive model
is available, it is suggested to take the confining stress fr
as an equivalent isotropic confining stress equal to the lesser
of σ1 and σ2 because the smaller of σ1 and σ2 would cause
earlier cracking of the concrete and thus should have dominat-
ing effects. Hence, the confining stress to be used in conjunc-
tion with Attard and Setunge’s model is taken to be
fr =min{σ1, σ2}.

Regarding the behaviour of the concrete under tension, it is
assumed that, before the axial stress σc reaches the tensile
strength ft, the concrete is perfectly elastic and, upon reaching
the tensile strength, the concrete would crack in the axial direc-
tion and the axial stress would immediately drop to zero.
Then, the concrete would have no tensile strength in the axial
direction.

2.4 Strain gradient model
Under eccentric loading, there is a strain gradient across the
concrete section and the concrete strength would be slightly
higher (Chen and Ho, 2015; Ho and Peng, 2013; Hu et al.,
2011; Wu and Jiang, 2013). To allow for this effect, the strain
gradient model developed by Ho and Peng (2013) is employed.
The original equation given in this model is

12a:
f 0cc
fcc

¼

0�85 for 0 � d
c
, 1�3

0�92 d
c

� �
� 0�35 for 1�3 � d

c
, 2�0

1�5 for 2�0 � d
c

8>>>>>><
>>>>>>:

0

0·2

0·4

0·6

0·8

1·0

1·2

1·4

1·6

1·8

0 2 4 6 8 10 12 14 16

σ c/f
c

ε3/εco

Increasing fr

fr = 0

Figure 3. Typical compressive stress–strain relation of

FRP-confined concrete
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where f′cc is the increased concrete strength due to the strain
gradient effect, d is the effective depth of the concrete section
and c is the neutral axis depth. This value of f′cc is used to
replace the value of fcc in Equation 8 when applying Attard
and Setunge’s model to evaluate the confined concrete
strength. Ho and Peng’s model takes into account the fact that
the axial strength of in situ concrete is approximately equal to
0·85·fc due to the differences in size, shape and curing con-
dition. However, if the column specimens have the same size,
shape and curing condition as those of the concrete cylinders
used to determine fc, there is no need to incorporate the factor
0·85 and Equation 12a should be modified as

12b:
f 0cc
fcc

¼

1�0 for 0 � d
c
, 1�3

1�08 d
c

� �
� 0�41 for 1�3 � d

c
, 2�0

1�76 for 2�0 � d
c

8>>>>><
>>>>>:

3. FE analysis

3.1 Concrete elements
The concrete section is modelled by 2D plane strain linear
three-node T3 elements. In the formulation, two coordinate
systems are used: the global x–y coordinate system and the
local 1–2 coordinate system. The local axes 1 and 2 are taken
as the principal directions or crack directions after the for-
mation of splitting cracks. Following the standard formulation,
the strain vector {εx εy γxy}

T in the global coordinate system
(denoted by ε′) is expressed as a function of the nodal displace-
ment vector (denoted by u) by the equation ε′=Bu, in which B
is the strain–displacement matrix. The strain vector ε′ in the
global coordinate system is then transformed to the strain
vector {ε1 ε2 γ12}

T in the local coordinate system (denoted by
ε) by the equation ε=Aε′, in which A is the strain transform-
ation matrix.

In the local coordinate system, the stress–strain relation is
given by Equation 4. Expressed in matrix form we have

13: σ ¼ Cðε� εp1;2Þ þ λνcε3

where σ is the stress vector {σ1 σ2 τ12}
T in the local coordinate

system, σεp1;2 is the residual strain vector fεp1 εp2 0gT, ε3 is the
axial strain vector {ε3 ε3 0}T and C is the constitutive matrix,
given by

14: C ¼ λ
1� νc νc 0
νc 1� νc 0
0 0 1� νcð Þ=2

2
4

3
5

From the stress vector σ in the local coordinate system, the
stress vector {σx σy τxy}

T in the global coordinate system

(denoted by σ′) is obtained as σ;′=ATσ, and the nodal force
vector F in the global coordinate system is obtained as
F=BTσ′. After such transformations, the element stiffness
matrix equation in the global x–y coordinate system is
obtained as

15: F ¼ Δ BTATCABu� BTATCεp1;2 þ BT λνcε3ð Þ
n o

in which Δ is the area of the T3 element. In the above
equation, the terms εp1;2 can be regarded as the residual strain.

For each concrete element, the axial strain ε3 is taken as that at
the centroid of the element. Furthermore, before the axial
strain reaches the splitting crack limit εo3;1 or εo3;2, the local 1
and 2 directions are taken as the principal strain directions
and, once the axial strain reaches either εo3;1 or ε

o
3;2, the concrete

element is deemed to have splitting cracks formed and the
local 1 and 2 directions are set along and perpendicular to the
crack so that the angle between the 1–2 axes and the x–y axes
is fixed.

3.2 FRP elements
The FRP wrap is modelled by two-node bar elements. Since
FRP is perfectly elastic before rupture, constant stiffness is
assumed. The standard formulation is followed to derive the
element stiffness matrix equation as

16:

Q1

R1

Q2

R2

8>><
>>:

9>>=
>>; ¼ tfEf

Lf

c2 cs �c2 �cs
cs s2 �cs �s2

�c2 �cs c2 cs
�cs �s2 cs s2

2
664

3
775

u1
v1
u2
v2

8>><
>>:

9>>=
>>;

where tf is the thickness of the FRP, Ef is Young’s modulus of
the FRP, Lf is the length of the bar element, c and s stand for
cos θf and sin θf respectively, θf is the orientation angle of the
bar element in the global x–y coordinate system, {u1 v1 u2 v2}

T

is the nodal displacement vector and {Q1 R1 Q2 R2}
T is the

nodal force vector.

3.3 Method of analysis
Although the confined concrete column is subjected to triaxial
stresses, the concrete column is analysed using section analysis
(Ho et al., 2003, 2010; Kwan and Liauw, 1985) with the
biaxial confining stresses evaluated by 2D FE analysis. To gen-
erate the axial load–axial strain curve of the column, the
column is loaded by prescribed axial strain at the loading
point starting from zero and increasing in small increments
until the FRP ruptures or the axial load on the column has
reached a peak value and then dropped by more than 30%.

For the section analysis, the assumption ‘plane sections remain
plane after loading’ is made (Ho et al., 2003, 2010; Kwan and
Liauw, 1985). Under eccentric loading, the section would be
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subjected to axial load and biaxial bending, and the axial
deformation can be fully described by an overall axial strain
and two biaxial curvatures. Let the eccentric load be applied at
the point (xp, yp), the axial strain at the loading point be εp,
and the biaxial curvatures about the x-axis and y-axis be ωx

and ωy, respectively, as shown in Figure 4. Since the section
moves as a plane, the axial strain ε3 at each point (x, y) in the
section is given by

17: ε3 ¼ εp þ ωyðx� xpÞ þ ωxðy� ypÞ

From the axial strain ε3, the axial stress σ3 can be evaluated
using the model of Attard and Setunge (1996) model.
However, this requires knowledge of the biaxial confining
stresses σ1 and σ2, which are to be determined by the 2D FE
analysis. The standard procedures of 2D plane strain analysis
are followed. First, the element stiffness matrix equations of
the concrete and FRP elements (i.e. Equations 15 and 16) are
assembled to form the global stiffness matrix equation. In the
in-plane directions, there are actually no external loads. Hence,
no external loads need to be applied. Only the residual strains
due to the inelastic lateral strains εp1 and εp2 and the residual
stresses due to the axial strain ε3 are causing internal stresses.
In the end, the global stiffness matrix equation is given by

18: K � u ¼ Fpfεp1;2½σðuÞ; ε3�g � F3ðε3Þ

where Fp and F3 are load vectors related to inelastic lateral
strains and axial strain in concrete, respectively. To find the
values of lateral strains and confining stresses in each
concrete element, nodal displacements have to be determined
from Equation 18. However, since the right-hand side of
Equation 18 is also dependent on nodal displacements, it is
obvious that Equation 18 is a non-linear matrix system, which
requires specific numerical techniques, such as an iteration
process for approximate solutions with Equation 18 being
solved repeatedly. For example, a nodal displacement vector ui
can be calculated using the current values of axial strain and
confining stresses in step i

19: K � ui ¼ Fpfεp1;2½σi; ε3�g � F3ðε3Þ

The global stiffness matrix equation is solved for ui using
lower, diagonal and upper matrices (LDU) decomposition (or
Cholesky decomposition) and band-solver. Then the new nodal
displacement vector can be used to produce a new stress vector
σ′i, which is used to compute the confining stresses for step i+1

20: σiþ1 ¼ r � σi þ ð1� rÞ � σ0
iðuiÞ ð0 , r , 1Þ

where r is the relaxation factor. Normally the value of r is set
between 0·3 and 0·7 to maintain the convergence rate during
the iteration process.

In general, the iterative procedure for calculating the lateral
strains and confining stresses can be summarised as follows.
First, the axial strains as given by Equation 17 are applied to
the concrete elements. Second, using the confining stresses
evaluated in the previous iteration, the inelastic lateral strains
are evaluated as per Equations 3a and 3b. Third, based on the
inelastic lateral strains so evaluated, the 2D FE analysis is per-
formed to obtain a new set of confining stresses. The whole
procedure is repeated until the inelastic lateral strains and con-
fining stresses converge to steady values.

Having determined the biaxial confining stresses and evaluated
the axial stress at each concrete element, the axial load P
acting on the concrete section can be calculated by integrating
σ3 over the whole concrete section and the internal moments
Mx and My about the x-axis and y-axis can be calculated by
integrating σ3y and σ3x, respectively, over the whole concrete
section. To satisfy the equilibrium between the external
moments (P·yp and P·xp) and the internal moments (Mx and
My), the biaxial curvatures ωx and ωy have to be adjusted such
that P·yp +Mx=0 and P·xp +My=0. This is done iteratively
by applying small changes to ωx and ωy, repeating the whole
process of evaluating the axial strain ε3, determining the
biaxial confining stresses σ1 and σ2, evaluating the axial stress
σ3 and integrating to obtained new values of P, Mx and My

until the moment equilibrium condition is satisfied. The values

FRP wraps

Concrete core

y

x

P

xp

yp

εp

ωxωy

ε3

Figure 4. FRP-confined concrete column section under eccentric

loading
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of the biaxial curvatures ωx and ωy for each iteration can be
determined through the secant method (Liang and Fragomeni,
2010)

21a: ωx;iþ2 ¼ ωx;iþ1 � ðωx;iþ1 � ωx;iÞ�REx;iþ1

REx;iþ1 �REx;i

21b: ωy;iþ2 ¼ ωy;iþ1 � ðωy;iþ1 � ωy;iÞ�REy;iþ1

REy;iþ1 �REy;i

where RE stands for the remainders between the external
moments and the internal moments given by REx=P·yp +Mx

and REy=P·xp +My if they do not meet the equilibrium con-
dition. The iteration process will stop until the absolute values
of the remainders are smaller than the allowance limit (nor-
mally very small). It should be noted that the value of fcc on
the triaxial failure surface can be determined similarly by this
secant method.

On the whole, there are three iteration loops, which are
depicted schematically in Figure 5. The first iteration loop

BEGIN

Set axial strain εp; set initial curvature ωx and ωy as those in
previous loading step

For each concrete element, find axial strain ε3

Evaluate inelastic lateral strains ε1 or ε2
p p

Have ε1, ε2, σ1 and σ2 converge to
steady values

p p

Form element stiffness matrix equation and assemble global
stiffness matrix equation

Solve global stiffness matrix equation and evaluate confining
stresses σ1 and σ2

No
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s 
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Find fr, fcc and σ3 for each concrete element'

Integrate over concrete section to obtain P, Mx and My

Has moment equilibrium condition
been satisfied?

Has failure state been reached?
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END

Adjust curvature
ωx and ωy

Increase axial
strain εp

Figure 5. Procedures for the proposed FE analysis
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comprises loading steps in which loading is applied incremen-
tally at the loading point in the form of a prescribed axial
strain εp. The second iteration loop is that, at each loading
step, the biaxial curvatures ωx and ωy are adjusted until the
bending moments evaluated satisfy the moment equilibrium
condition. The third iteration loop is that, for each given set of
axial strain εp and biaxial curvatures ωx and ωy, the axial
strain ε3 at each point in the section is evaluated and successive
2D FE analysis using updated inelastic lateral strains is per-
formed until steady values of inelastic lateral strains and con-
fining stresses are obtained. From the confining stresses so
obtained, the axial stress σ3 in each element is evaluated and
the axial load and bending moments acting on the section are
obtained by integration.

4. FE analysis of FRP-confined
concrete columns

4.1 Eccentric load–displacement relation
The proposed FE method was verified against the FRP-con-
fined circular concrete columns reported by Wu and Jiang
(2013), which have no internal steel reinforcements, under
eccentric loading. The concrete columns tested were all of
150 mm diameter and 300 mm length, which were the same as

the dimensions of the concrete cylinders used to determine fc.
The FRP wraps, made of unidirectional carbon fibre, were all
applied horizontally to the concrete columns. They had a
Young’s modulus of 254·0 GPa and a thickness of either
0·167 mm (one-ply) or 0·334 mm (two-ply). Two concrete
mixes were used to cast the columns; they had unconfined
cylinder strengths of 28·7 MPa and 30·1 MPa and Young’s
moduli of 42·9 GPa and 42·1 GPa, respectively. The eccentri-
city (de) of the applied load ranged from 0 mm to 50 mm
in 10 mm intervals. It should be noted that the moment
equilibrium condition becomes P·de +My=0 for this specific
configuration, so that only uniaxial curvature about the
y-axis needs to be determined in the FE analysis. For each
configuration, two specimens were tested; except for the E50
group only the test results of one specimen were reported
because the linear variable differential transformer of one
of the specimens failed to function properly. The section
properties and test results of the specimens are listed in
Table 1: Ptest is the maximum load obtained from the test and
δa,f is the corresponding axial displacement at the loading
point.

In the first place, the FE mesh has to be generated. In the case
that the concrete column section to be analysed is symmetric,

Test ID fc: MPa Ec: GPa tf: mm de: mm δa,f: mm Ptest: kN PFE-I: kN
PFE-I
Ptest

PFE-II: kN
PFE-II
Ptest

PD: %

A1E0 28·7 42·9 0·167 0 5·09 1048·6 923·7 0·88 929·3 0·89 − 0·53
B1E0 28·7 42·9 0·167 0 4·31 968·7 863·7 0·89 868·2 0·90 − 0·46
A1E10 28·7 42·9 0·167 10 3·98 938·7 806·2 0·86 802·3 0·85 0·42
B1E10 28·7 42·9 0·167 10 3·89 880·7 798·6 0·91 794·0 0·90 0·52
A1E20 28·7 42·9 0·167 20 4·36 850·7 734·5 0·86 731·7 0·86 0·33
B1E20 28·7 42·9 0·167 20 3·21 739·7 657·2 0·89 654·8 0·89 0·32
A1E30 28·7 42·9 0·167 30 4·23 755·7 673·1 0·89 650·8 0·86 2·95
B1E30 28·7 42·9 0·167 30 4·06 768·7 665·2 0·87 642·8 0·84 2·91
A1E40 28·7 42·9 0·167 40 4·33 691·7 690·4 1·00 683·3 0·99 1·03
B1E40 28·7 42·9 0·167 40 3·76 633·8 658·3 1·04 648·8 1·02 1·50
B1E50 28·7 42·9 0·167 50 3·37 434·8 443·5 1·02 428·0 0·98 3·56
A2E0 30·1 42·1 0·334 0 7·78 1557·5 1450·5 0·93 1458·1 0·94 − 0·49
B2E0 30·1 42·1 0·334 0 7·61 1597·5 1436·6 0·90 1443·2 0·90 − 0·41
A2E10 30·1 42·1 0·334 10 7·17 1463·5 1278·2 0·87 1267·1 0·87 0·76
B2E10 30·1 42·1 0·334 10 7·10 1434·5 1272·7 0·89 1261·5 0·88 0·78
A2E20 30·1 42·1 0·334 20 6·03 1267·6 1020·0 0·80 1009·8 0·80 0·80
B2E20 30·1 42·1 0·334 20 6·69 1349·5 1066·6 0·79 1055·1 0·78 0·85
A2E30 30·1 42·1 0·334 30 6·30 1164·6 943·1 0·81 929·7 0·80 1·15
B2E30 30·1 42·1 0·334 30 6·48 1201·6 952·8 0·79 941·9 0·78 0·91
A2E40 30·1 42·1 0·334 40 5·48 908·7 883·2 0·97 840·5 0·92 4·70
B2E40 30·1 42·1 0·334 40 4·04 766·1 779·6 1·02 740·7 0·97 5·08
B2E50 30·1 42·1 0·334 50 3·46 560·6 479·7 0·86 442·4 0·79 6·65
Mean 0·90 0·88
Coefficient of variance (= standard deviation/mean) 7·1% 7·7%

Table 1. Experimental and FE analysis results for specimens

studied by Wu and Jiang (2013)
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only half of the section is meshed for FE analysis so as to sim-
plify the FE model. A 2D mesh of a FRP-confined circular
concrete column section is shown in Figure 6 as an example.
The larger the eccentricity, the greater the gradient of stress
fields over the cross-section will be. To achieve simulation
results with good confidence for sections under eccentric
loading, the domain of each T3 element in the concerned area
therefore has to be fairly small to approximate the stress fields
with drastic variation, resulting in a fine T3 mesh. In order to
determine the influence of mesh density on the numerical
results, 2203-element, 4483-element, 5923-element and 6718-
element meshes were respectively tested in the FE analyses of
B2E50 where the largest variations of stresses were expected to
occur over the cross-section among the specimens by Wu and

Jiang (2013). Using a computer with a dual-core 3·33 GHz
Intel CPU and 3·25 GB RAM running in a Windows 7 32-bit
environment, the simulation process of one specimen took
15–45 min depending on the number of elements (2203 to
6718). The predicted maximum loads by the FE analysis (PFE)
for each mesh density were normalised by the experimental
result and the numerical result of the 6718-element mesh, as
shown in Figure 7. It can be observed that the numerical result
steadily converged when the number of mesh elements was
around 6000. When normalised by the experimental result, the
difference between the 2203-element mesh and the 6718-
element mesh, which was the largest for any two meshes con-
sidered, was 6·7%. To further study the relations between mesh
density and other parameters, both the 2203-element mesh and
the 6718-element mesh were adopted in the FE analysis. The
numerical results for the specimens studied by Wu and Jiang
(2013) are listed in Table 1, where PFE-I and PFE-II respectively
correspond to the 2203-element mesh and the 6718-element
mesh.

The load–displacement curves as obtained by the FE analysis
are compared with those obtained experimentally in Figure 8
(one-ply group) and Figure 9 (two-ply group), where FE-I
and FE-II indicate FE analysis results obtained by the
2203-elment mesh and the 6718-element mesh, respectively.
From Figure 8(a) and Figure 9(a), it can be seen that for speci-
mens A1E0 and B1E0 (de = 0 mm, one-ply), the FE analysis
slightly underestimates the loading by about 10% during the
whole inelastic stage, whereas for specimens A2E0 and B2E0
(de = 0 mm, two-ply), the FE analysis yields predicted loading
in close agreement with the experimental results at small

1·084 
1·032 1·006 1·000 

0·856 
0·814 0·794 0·789 

0

0·2

0·4

0·6

0·8

1·0

1·2

1·4

1·6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
or

m
al

is
ed

 P
FE

Number of elements

Normalised by numerical result (6718-element mesh) Normalised by experimental result

Figure 7. FE analysis of A1E10 and B1E10 using two different

meshes

80

60

y:
 m

m 40

20

0
–80 –60 –40 –20 0

x: mm
20 40 60 80

Figure 6. 2D mesh of a FRP-confined circular concrete column

section

902

Structures and Buildings
Volume 169 Issue SB12

A new analysis method for
polymer-confined concrete columns
Ouyang, Lo, Kwan and Ho

Downloaded by [ University of Hong Kong] on [14/01/18]. Copyright © ICE Publishing, all rights reserved.



displacements (less than 6 mm) but still slightly underestimates
the loading by about 10% at large displacements (greater than
6 mm).

From Figures 8(b)–8(d), it is noted that for specimens A1E10
and B1E10 (de = 10 mm, one-ply), A1E20 and B1E20

(de = 20 mm, one-ply) and A1E30 and B1E30 (de = 30 mm,
one-ply), the FE analysis slightly underestimates the loading
by about 5–15% during the inelastic stage. On the other
hand, from Figures 9(b)–9(d), it is noted that for specimens
A2E10 and B2E10 (de = 10 mm, two-ply), A2E20 and B2E20
(de = 20 mm, two-ply) and A2E30 and B2E30 (de = 30 mm,
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two-ply), the FE analysis underestimates the loading by about
10–20% during the inelastic stage.

As the eccentricity de increased further, the differences between
the FE analysis results and the experimental results reduced
for most of the specimens. From Figures 8(e), 8(f) and

Figure 9(e), it is noted that for specimens A1E40 and B1E40
(de = 40 mm, one-ply), B1E50 (de = 50 mm, one-ply) and
A2E40 and B2E40 (de = 40 mm, two-ply), the FE analysis
results are in good agreement with the experimental counter-
parts, with errors mostly within ± 5%. However, it is noted
from Figure 9(f) that for specimen B2E50 (de = 50 mm,
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two-ply), the FE-I and FE-II curves underestimate the loading
by at most 14% and 21% during the inelastic stage, respectively.

The values of PFE-I/Ptest and PFE-II/Ptest for all 22 specimens
analysed are given in Table 1; the respective mean values for
these two sets of results were 0·90 and 0·88 and the respective
coefficients of variation were 7·1% and 7·7%. In order to deter-
mine how the difference between two different mesh densities
applied in the FE analysis can be affected by the eccentricity
of the loading, the percentage difference (PD) between
PFE-I/Ptest and PFE-II/Ptest is defined as

22: PD ¼ PFE-I � PFE-II
Ptest

� 100

which is correlated with de/D in Figure 10. It can be observed
that PD is less than 1% for the axial loading case but, as de/D
increases, the value of PD grows larger and larger due to the
concentrations of the stress and the strain fields over the
cross-sections. Therefore, a finer mesh is necessary for FE
analysis on specimens with relatively large eccentricities, say
de/D>0·15.

Although the FE analysis has a tendency to slightly underesti-
mate the loading, the error is generally of the order of about
10%. Hence, in terms of predicted loading, the proposed FE
method should be regarded as reasonably accurate, given the
complexity of the non-linear behaviour of FRP-confined
concrete columns.

4.2 Distributions of triaxial stresses over the sections
In previous studies, the eccentric loading case has been ana-
lysed using the fibre element method (Lee et al., 2011; Liang,

2011) in which the non-uniform stress distributions are mod-
elled in the form of parallel strips and the confining stresses
within a single strip are assumed to be isotropic. However,
from the present FE analysis (which should be more rigorous)
it was observed that, under eccentric loading, the stress distri-
butions are not in the form of parallel strips and the confining
stresses are not isotropic, as shown in Figure 11. Moreover, to
illustrate the distributions of axial stress over the cross-section,
numerical results of the one-ply and the two-ply specimens
with de = 10 mm and de = 50 mm when the displacement at the
loading point is equal to 3·0 mm are plotted in Figure 12. All
these results were achieved by FE analysis using the 6718-
element mesh.

When de = 10 mm, most of the concrete sections for both the
one-ply and the two-ply specimens are subjected to σ1 greater
than 2·5 MPa at a displacement of 3·0 mm, as shown in
Figures 11(a) and 11(b). In the same sections, the areas with σ2
greater than 2·5 MPa are slightly smaller than those of σ2,
as shown in Figures 11(c) and 11(d). It can be observed
that, although the boundaries of different domains of stresses
are irregular, the pattern of distribution is presented by
definite layers of different colours, which is following the trend
that the areas with higher axial compression normally possess
larger values of σ1 and σ2. An exception was found in
Figure 11(b), with σ1 built up at the top zone of the half circu-
lar section.

Figures 12(a) and 12(b) illustrate that more than half of the
concrete sections of the one-ply and the two-ply specimens
with de = 10 mm were subjected to an axial stress (i.e. σ3
greater than 1·2fc (36·1 MPa)). Although the distribution pat-
terns of the stresses for these two cases are similar, it is very
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2203 and 6718 elements for one-ply and two-ply specimens
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obvious that the magnitudes of the stresses in the two-ply
section are significantly larger than those in the one-ply
counterpart. However, for the cases of de = 50 mm displayed in
Figures 12(c) and 12(d), both the distributions and magnitudes
of σ3 in the two sections bear decent resemblance, and the
areas with σ3 > 36·1 MPa are all localised to the most compres-
sive ends of the sections.

It was mentioned in Section 2.3 that the effective value of fr is
determined by fr =min{σ1, σ2}; the variations of fr along with
the displacement at the loading point for two-ply specimens
with de = 10 mm and 50 mm are shown in Figure 13. The
magnitudes of fr keep increasing as the displacement grows,
and their distribution patterns are similar to those displayed in
Figures 11 and 12, but with more regular curved boundaries
between layers of different colours.

To further study how the confining stresses vary with the
eccentricity, the average confining stress fr,avg was determined as

23: fr;avg ¼
Pn

i¼1ð fr;i�AiÞ
Ac

where n is the total number of concrete elements, Ai is the area
of the element i and Ac is the total area of the concrete
section. The average confining stress so determined at each
loading step is plotted against the displacement for the differ-
ent specimens with different eccentricities in Figure 14. It is
obvious from the figure that the average confining stress
increases as the displacement increases but its value is gener-
ally lower at a larger eccentricity. This also means that in the
design of FRP-confined columns under eccentric loading,
thicker FRP wraps have to be used to attain the same level of
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Figure 11. Distributions of (a) σ1 (one-ply), (b) σ1 (two-ply),

(c) σ2 (one-ply) and (d) σ2 (two-ply) specimens with de = 10 mm

(displacement at loading point = 3·0 mm)
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confinement at larger eccentricity. Another important obser-
vation is that one more layer of FRP will let the value of fr,avg
increase from 4·2 MPa to 6·5 MPa at a displacement of
3·0 mm for specimens under concentric loading, whereas there
is not much of a difference (2·4 MPa for one-ply and 2·6 MPa
for two-ply) for specimens with de = 40 mm. In other words,
FRP wraps are less effective under eccentric loading than con-
centric loading.

5. Conclusions
In order to evaluate non-uniform and anisotropic confining
stresses in confined concrete and study the full-range non-
linear behaviour of confined concrete columns, a new FE
analysis method was developed by integrating the lateral
strain–axial strain model of Dong et al. (2015a), the triaxial
failure surface of Menétrey and Willam (1995), the axial
stress–strain model of Attard and Setunge (1996) and the
strain gradient model developed by Ho and Peng (2013) and

treating the analysis of the biaxial confining stresses in the con-
crete section as a 2D analysis problem. In theory, the new FE
analysis method should be applicable to confined concrete
columns of any shape and under any combination of axial
load and bending moment, but, as a start, it was applied in
this paper only to FRP-confined concrete columns of circular
shape and under eccentric loading.

To verify the applicability and accuracy of the newly developed
FE analysis method, 22 specimens of FRP-confined circular
concrete columns tested under eccentric loading by Wu and
Jiang (2013) were analysed and two sets of numerical results
obtained by the FE analysis implementing different meshes (a
2203-element mesh and a 6718-element mesh) were compared
with the corresponding experimental results. It was found that
a high-density mesh is necessary when a large eccentricity is
present in the load case due to the concentration of strains and
stresses over the section. Overall, the loads predicted by the
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Figure 12. Distribution of σ3: (a) de = 10 mm, one-ply;

(b) de = 10 mm, two-ply; (c) de = 50 mm, one-ply; (d) de = 50 mm,

two-ply (displacement at loading point = 3·0 mm)
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FE analysis agreed quite well with the experimental results, the
respective mean values for PFE-I/Ptest and PFE-II/Ptest equal to
0·90 and 0·88 and corresponding coefficients of variance equal
to 7·1% and 7·7%.

The FE analysis results revealed that, for FRP-confined circu-
lar concrete columns under eccentric loading, the confining
stresses are far from being uniform or isotropic. Hence, the
previously developed formulas and models for evaluation of

confining stresses, which assume that the confining stresses are
uniform and isotropic, are not generally applicable. Moreover,
the axial stress distribution is very different from the axial
strain distribution and therefore has to be analysed as an inte-
gral part of the theoretical analysis. Lastly, the FE results also
revealed that the average confining stress in the section
decreases as the eccentricity of the loading increases. Hence,
FRP wraps are less effective under eccentric loading than con-
centric loading.
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Figure 13. Variation of fr for two-ply specimens:

(a) de = 10 mm and (b) de = 50 mm with displacement at loading

point = 0·75 mm; (c) de = 10 mm and (d) de = 50 mm with

displacement at loading point = 1·5 mm; (e) de = 10 mm and

(f) de = 50 mm with displacement at loading point = 2·25 mm;

(g) de = 10 mm and (h) de = 50 mm with displacement at loading

point = 3·0 mm (continued on next page)
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