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Abstract: Analytical solution taking into account the transverse normal strain is 

developed for the analysis of the mechanical and hygrothermal behaviors of 

functionally graded material (FGM) plates. In order to include the transverse normal 

deformation, the hygrothermal deformation through the thickness due to thermal and 

moisture loads is introduced in the transverse displacement field. Employing the 

bounding surface free traction condition, effects of transverse normal hygrothermal 

deformation can be incorporated in the in-plane displacement field. Moreover, there 

are only five displacement variables in the proposed model as transverse normal 

deformations due to hygrothermal loads are absorbed in the generalized force vector. 

By analyzing the hygrothermal behaviors of FGM plates, the accuracy and efficiency 

of the proposed model are assessed. Moreover, the effects of temperature, moisture 

concentration, transverse normal strain, volume fraction distributions and 

side-to-thickness ratios on the displacements and the stresses of FGM plates have all 

been studied.  

Keywords: Analytical model; functionally graded plate; transverse normal strain; 

hygro-thermo-mechanical loads. 
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1. Introduction 

    The functionally graded materials (FGMs) is generally composed of metal and 

ceramic in which metal provides the toughness and strength at low temperature while 

ceramic can offer a high resistance to heat at elevated temperature. Most FGM 

structures are subjected to changing environmental conditions during both initial 

fabrication and service life. As a result, internal stresses in FGM structures are 

generated with the change of hygrothermal environment, which will induce large 

deformation and even cause failure of the structures. Displacements and stresses in 

the functionally graded material structures subjected to mechanical and hygrothermal 

loads have been widely studied in the past, which are still the subject of research 

interest in recent years [1-3]. 

    Based on the first-order shear deformation theory and von Karman's assumptions, 

Sundararajan et al. [4] studied the free vibration of FGM plates subjected to thermal 

load. In terms of the first-order theory, Nguyen-Xuan et al. [5] proposed an 

edge-based smoothed finite element method for static, free vibration and buckling 

analysis of FGM plates, in which thermal and mechanical properties of FGM plates 

are assumed to vary through the thickness by a power rule of the volume fraction of 

the constituents. Based on the first-order theory, Singha et al. [6] proposed a 

four-node quadrilateral plate bending element for the analysis of nonlinear behaviors 

of functionally graded plates subjected to transverse distributed loads. Nguyen-Xuan 

et al. [7] developed an improved finite element approach based on the first-order 

theory to study the mechanical/thermal buckling of FGM plates. Transverse shear 

strains in the first-order shear deformation theory are assumed to be constant through 

the thickness direction. Thus, the correction factors have to be employed to adjust the 

transverse shear stiffness. It is noted that the accuracy of results obtained from the 

first-order theory is strongly influenced by the shear correction factors [8,9]. In order 

to represent the smooth distribution of transverse shear stresses across the thickness, 

the higher-order shear deformation models have been developed for the 

thermomechanical analysis of the FGM plates. 
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    In order to study the effects of volume fractions and modulus ratio of the 

constituents on displacements and transverse shear stresses of FGM plates, Reddy [10] 

presented a theoretical formulation and a finite element model based on a third-order 

shear deformation [11]. Analytical solution in terms of the third-order model [11] 

allows parabolic variation of transverse shear strain along the plate thickness and 

satisfies the transverse shear free conditions on the plate surfaces. Zenkour [12] 

employed a sinusoidal shear deformation theory (SPT) [13] to study the static 

behaviors of a simply-supported functionally graded plates subjected to a transverse 

uniform loads. The sinusoidal shear deformation theory satisfies the traction-free 

boundary conditions and transverse shear correction factors are not required. On the 

other hand, Zenkour and Alghamdi [14] extended the model SPT to study the 

thermoelastic bending behaviors of functionally graded sandwich plates. Employing 

the sinusoidal shear deformation plate theory, Zenkour [15] investigated the 

thermoelastic bending behaviors of a simply-supported FGM plate subjected to 

thermomechanical loading and resting on elastic foundation. Moreover, effects of 

side-to-thickness ratio, volume fraction distributions and elastic foundation 

parameters are studied in detail. Subsequently, the model SPT was extended to 

investigate hygrothermal bending of functionally graded material plates resting on 

elastic foundations [16]. Applying the sinusoidal shear deformation plate theory in 

conjunction with the first-order, the third-order, and the classical plate bending 

theories, Zenkour and Alghamdi [17,18] studied the flexural behaviors of functionally 

graded sandwich plates subjected to mechanical and thermal loads. Based on the 

sinusoidal shear deformation plate models, Zenkour et al. [19] studied the bending 

behaviors of a simply-supported functionally graded viscoelastic sandwich beam 

resting on Pasternak's elastic foundation. Zenkour and Sobhy [20] further employed 

the sinusoidal shear deformation plate model and the third-order model to evaluate the 

static response of simply-supported FGM viscoelastic sandwich plates under 

transverse uniform loads. Employing the sinusoidal shear deformation plate theory, 

Zenkour and Sobhy [21] computed the deflection and stresses in functionally graded 

plates resting on two-parameter elastic foundations. based on higher-order theories 
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with five displacement variables, Sobhy [22] investigated the vibration and buckling 

behaviors of exponentially graded material sandwich plates resting on elastic 

foundations. By means of the generalized shear deformation models including the 

third-order model [11], the sinusoidal shear deformation plate model [12], the 

fifth-order shear deformation model (FiSDT) [23], trigonometric shear deformation 

model [24], exponential shear deformation model (ESDT) [25], Thai et al. [26] 

studied the static, dynamic and buckling behaviors of functionally graded material 

sandwich plates.  

    It is seen from the literature that the generalized shear deformation models with 

five displacement parameters are widely used to study the hygrothermal behaviors of 

the FGM structures [10-26]. However, the transverse normal strain has been neglected 

in these models. For thermomechanical problems even in the moderate thick plate 

configuration, transverse normal deformation effect ought to be considered as the 

effect of out-of-plane thermal deformation is equally important in comparison with 

those of the in-plane thermal deformation [27-29]. Due to the omission of transverse 

normal strain, the third-order model with five displacement variables failed to produce 

accurate results for thermal expansion problems [30]. To extend the generalized 

higher-order model for hygrothermal analysis of FGM plate, a refined model 

including transverse normal strain will be developed. Although transverse normal 

strain is taken into account, there are only five displacement parameters in the 

proposed model as transverse normal deformations due to hygrothermal loads can be 

absorbed in the generalized force vector. In the proposed model, the equations of 

equilibrium are established by means of the principle of minimum total potential 

energy. To maintain the simplicity of the analytical solution with the same number of 

displacement parameters, the main idea is to extend the Reddy's solution to 

simply-supported FGM plates subjected to hygro-thermo-mechanical loads by 

applying the Navier's technique [31]. Several numerical examples are presented to 

demonstrate the reliability and accuracy of the proposed model in comparison with 

other existing higher-order models in the literature.  
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2. Theoretical formulation 

A rectangular FGM plate with length a, width b and thickness h is considered. 

The FGM plate is subjected to transverse loading q(x, y, ±h/2) on the surfaces, a 

temperature field T(x, y, z) and a moisture concentration C(x, y, z). The material 

properties Μ  of the FGM plate, such as Young's modulus E, thermal expansion 

coefficient α, and moisture expansion coefficient β are given by [12] 

( ) ( ) 0.5
k

metal ceramic metal
zz
h

⎛ ⎞Μ =Μ + Μ −Μ +⎜ ⎟
⎝ ⎠

                          (1) 

where metalΜ  and ceramicΜ  represent respectively the corresponding material 

properties of the metal and the ceramic, and k denotes the volume fraction exponent. 

The mixture of metal and ceramic with continuously varying volume fraction can 

avoid the interface problems of laminated composites. 

2.1 Reddy-type higher-order plate theory considering transverse normal 

hygrothermal strain for the FGM plate (RHSDTC) 

In order to model accurately the hygrothermal behaviors of the FGM plate, a 

Reddy-type higher order shear deformation plate model taking into account the 

transverse normal strain (RHSDTC) is proposed in the present work. To include 

transverse normal effect which is significant for the hygrothermal problems, 

transverse deformation due to hygrothermal loading is introduced in the out-of-plane 

displacement field. Thus, the initial displacement field is given by 
2 3

0 1 2 3
2 3

0 1 2 3

0 T C

u u zu z u z u

v v zv z v z v
w w w w

= + + +

= + + +
= + +

                                           (2) 

where wT is the transverse normal deformation due to thermal load and wC is the 

transverse normal deformation caused by moisture concentration load, which are 

given by 

    
( ) ( )
( ) ( )

, , , ,

, , , ,

T z

C z

w x y z T x y z dz

w x y z C x y z dz

α

β

=

=

∫
∫

                                      (3) 
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where zα  and zβ  are respectively the transverse normal thermal expansion 

coefficient and the transverse normal moisture expansion coefficient through the 

thickness of the plate.  

    The temperature field T (x, y, z) and the moisture concentration C (x, y, z) are 

given by 

    
( ) ( ) ( )
( ) ( ) ( )

, , ,

, , ,
T

C

T x y z f z T x y

C x y z f z C x y

=

=
                                         (4) 

    Employing equations (3) and (4), transverse normal deformation due to 

hygrothermal load can be written as 

    
( ) ( ) ( )
( ) ( ) ( )

, , ,

, , ,
T T

C C

w x y z z T x y

w x y z z C x y

=

=

F

F
                                        (5) 

where  

    
( ) ( )
( ) ( )

T z T

C z C

z f z dz

z f z dz

α

β

=

=

∫
∫

F

F
                                             (6) 

    The transverse shear stresses related linearly with the shear strains are given by 

    
( )
( )

44

55

xz xz

yz xz

D z

D z

τ γ

τ γ

=

=
                                                  (7) 

where, ( ) ( ) ( )
( )44 55 2 1
E z

D z D z
υ

= =
+

, E(z) and υ  are Young's modulus and Poisson's 

ratio of the FGM plate, respectively. From equation (2), we have 

    

2 0
1 2 3

2 0
1 2 3

2 3

2 3

CT
xz

CT
yz

w wwu zu z u
x x x

w wwv zv z v
y y y

γ

γ

∂ ∂∂
= + + + + +

∂ ∂ ∂
∂ ∂∂

= + + + + +
∂ ∂ ∂

                             (8) 

Employing the top and the bottom surface transverse shear free condition, we have 

    

2 0
/2 1 2 3

2 0
/2 1 2 3

| 2 3 0

| 2 3 0

CT
xz z h

CT
yz z h

w wwu zu z u
x x x

w wwv zv z v
y y y

γ

γ

=±

=±

∂ ∂∂
= + + + + + =

∂ ∂ ∂
∂ ∂∂

= + + + + + =
∂ ∂ ∂

                      (9) 

    Applying the zero shear stress boundary conditions at the top and the bottom 

surfaces, a Reddy-type higher-order plate theory including transverse normal 
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hygrothermal strain (RHSDTC) is given by 

    

0
0 1 1 2 3 4

0
0 1 1 2 3 4

0 T C

w T Cu u u
x x x

w T Cv v v y
y y x

w w w w

∂ ∂ ∂
= +Φ +Φ +Φ +Φ

∂ ∂ ∂
∂ ∂ ∂

= +Ψ +Ψ +Ψ +Ψ
∂ ∂ ∂

= + +

                           (10) 

where 

    2

3

1 3
4
h
zz −=Φ , 2

3

2 3
4
h
z

−=Φ ,  

    ( ) ( ) ( ) ( )2 3
1 2 1 2

3 2

4
2 3 2

T T T Tz z z zz z
h h

− +⎛ ⎞ ⎛ ⎞
Φ = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

F F F F
, 

    ( ) ( ) ( ) ( )2 3
1 2 1 2

4 2

4
2 3 2

C C C Cz z z zz z
h h

− +⎛ ⎞ ⎛ ⎞
Φ = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

F F F F
;  

    2

3

1 3
4
h
zz −=Ψ , 2

3

2 3
4
h
z

−=Ψ ,  

    ( ) ( ) ( ) ( )2 3
1 2 1 2

3 2

4
2 3 2

T T T Tz z z zz z
h h

− +⎛ ⎞ ⎛ ⎞
Ψ = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

F F F F
, 

    ( ) ( ) ( ) ( )2 3
1 2 1 2

4 2

4
2 3 2

C C C Cz z z zz z
h h

− +⎛ ⎞ ⎛ ⎞
Ψ = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

F F F F
. 

where z1 and z2 are respectively the z-coordinate at the bottom and the top of the ply 

as shown in Figure 1.  

 In equation (10), it is found that there are only five displacement variables in the 

displacement field of the proposed model RHSDTC. In order to assess the 

performance of the model RHSDTC, the generalized higher-order shear deformation 

theories with five displacement parameters [12] is chosen for comparison, which is 

given by 

    

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0 1

0 1

, , , ,

, , , ,

, , ,

wu x y z u x y z z u x y
x
wv x y z v x y z z v x y
y

w x y z w x y

Ψ

Ψ

∂
= − +

∂
∂

= − +
∂

=

                           (11) 
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 A Reddy-type higher-order shear deformation plate theory neglecting transverse 

normal strain (RHSDT) [11] can be given by setting function Ψ(z) as 

    ( )
241

3
zz z
h

Ψ
⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
                                           (12) 

    In addition, a displacement field of the sinusoidal shear deformation plate theory 

(SPT) [12] can be given by setting 

    ( ) sinh zz
h
πΨ

π
⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                             (13) 

    Karama et al. [25] proposed a higher-order shear deformation theory ESDT in 

which the function Ψ(z) is set as  

    ( ) ( )22 /z hz zeΨ −=                                                 (14) 

    A higher-order shear deformation theory FiSDT [23] has been proposed by 

setting function Ψ(z) as 

    ( )
3 5

2 4

7 2 2
8

z zz z
h h

Ψ = − +                                           (15) 

   A ninth-order theory HSDT-98 proposed by Matsunaga [32] will be employed to 

assess the performance of the generalized higher-order shear deformation models with 

five displacement parameters. The in-plane displacement field of the model HSDT-98 

consists of 9th-order polynomial in the global thickness coordinate z and the 

transverse deflection is represented by an 8th-order polynomial in z. Performance of 

the model HSDT-98 has been verified in reference [32], so results of HSDT-98 will be 

used as reference solutions to assess the performance of all other models. The 

ninth-order theory HSDT-98 is given by 
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( ) ( )

( ) ( )

( ) ( )

9

0
1

9

0
1

8

1

, , ,

, , ,

, , ,

i
i

i

i
i

i

i
i

i

u x y z u x y z u

v x y z v x y z v

w x y z w x y z w

=

=

=

= +

= +

= +

∑

∑

∑

                                      (16) 

    In equation (16), it is found that there are 29 variables in the displacement field 

of the mode HSDT-98.  

2.2 Constitutive equations 

For linear elasticity, the strain components of the model RHSDTC can be written 

as 

( )

( ) ( )

2 2 2
0 01

1 2 3 42 2 2

2 2 2
0 01

1 2 3 42 2 2

2
0 0 01 1

1 1 2 2

2 2

3 3 4 4

0 31 2
1 1

x

y

xy

xz

u wu T C
x x x x x
v wv T C
y y y y y
u v wu v
y y x x x y

T C
x y x y

w Tu
z z x z x

ε

ε

γ

γ

∂ ∂∂ ∂ ∂
= +Φ +Φ +Φ +Φ
∂ ∂ ∂ ∂ ∂
∂ ∂∂ ∂ ∂

= +Ψ +Ψ +Ψ +Ψ
∂ ∂ ∂ ∂ ∂

∂ ∂ ∂∂ ∂
= +Φ + +Ψ + Φ +Ψ
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂
+ Φ +Ψ + Φ +Ψ

∂ ∂ ∂ ∂

∂ ∂Φ∂Φ ∂Φ ∂⎛ ⎞= + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
4

0 3 31 2
1 1

CT

CT
yz

wwC
z x x x

w wwT Cv
z z y z y z y y y

γ

∂∂Φ ∂∂
+ +

∂ ∂ ∂ ∂

∂ ∂Ψ ∂Ψ ∂∂Ψ ∂Ψ ∂∂ ∂⎛ ⎞= + + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

          (17) 

 

The temperature distribution T and the moisture concentration C through the 

thickness of plate are taken from reference [16]  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 1 2

0 1 2

, , , / , / ,

, , , / , / ,
z

z

T x y z T x y z h T x y f h T x y

C x y z C x y z h C x y f h C x y

= + +

= + +
                (18) 

where ( ) ( )/ sin /zf h z hπ π= . 

The relationships between stresses and strains of the FGM plate subjected to 

hygrothermal load can be written as  
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( ) ( )
( ) ( )

( )
( )

( )

11 12

21 22

33

44

55

0 0 0
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

x x

y y

xy xy

xz xz

yz yz

D z D z
D z D z

D z
D z

D z

σ ε
σ ε
τ γ
τ γ
τ γ

⎡ ⎤⎧ ⎫ ⎧ ⎫
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎣ ⎦

             (19) 

where ( ) ( )x x z T z Cε ε α β= − Δ − Δ , ( ) ( )y y z T z Cε ε α β= − Δ − Δ , xy xyγ γ= , 

xz xzγ γ= , yz yzγ γ= ; ( ) ( )
11 21

E z
D z

υ
=

−
, ( ) ( ) ( )

12 21 21
E z

D z D z
υ

υ
= =

−
, ( ) ( )

22 21
E z

D z
υ

=
−

, 

( )
( )33 44 55 2 1
E z

D D D
υ

= = =
+

; α  is the linear thermal expansion coefficients in the 

plate coordinates; β  is the moisture expansion coefficients; T T TΔ = −
)

 is the rise 

of temperature with respect to the reference temperature, where T
)

 is the reference 

temperature; Δ = −
)

C C C  is the rise of moisture concentration with respect to the 

reference moisture concentration 
)

C . 

2.3 Equilibrium equations 

    Applying the principle of minimum potential energy, the equilibrium equations 

for the model RHSDTC can be established. Rectangular Cartesian coordinates (x, y, z) 

are used to describe the deformation of the FGM plate, in which x∈[x0, xa] represents 

the plate longitudinal axis, y∈[y0, yb] represents the plate width axis, and z∈[-h/2, h/2] 

is the thickness coordinate. The principle of minimum potential energy can be 

expressed as 

0=− WU δδ                                                    (20) 

where the virtual strain energy Uδ  and virtual work Wδ  done by applied loads are 

respectively given by 

    ( )/2

/2

0 0

h

x x y y xy xy xz xz yz yzA h

px py q Tx Txa Ty Tyb

U dzdxdy

W W W W W W W W

δ σ δε σ δε τ δγ τ δγ τ δγ

δ δ δ δ δ δ δ δ
−

= + + + +

= + + + + + +
∫ ∫            (21) 

where 
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[ ]

1 2

1 2

1 2

/2

0 0 0 0 0/2

0 0 0 0

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) (

b t
px x xA

b t
py y yA

b t
q A

h

Tx x xzh

Ty y yz

W p u x y z p u x y z dxdy

W p v x y z p v x y z dxdy

W q w x y z q w x y z dxdy

W T u x y z T w x y z dz

W T v x y z T w

δ δ δ

δ δ δ

δ δ δ

δ δ δ

δ δ δ

−

⎡ ⎤= − +⎣ ⎦

⎡ ⎤= − +⎣ ⎦

⎡ ⎤= − +⎣ ⎦

= +

= +

∫∫
∫∫
∫∫
∫

/2

0/2
, , )

h

h
x y z dz

−
⎡ ⎤⎣ ⎦∫

                      (22) 

    
[ ]

/2

/2

/2

/2

( , , ) ( , , )

( , , ) ( , , )

h

Txa xa a xza ah

h

Tyb yb b yzb bh

W T u x y z T w x y z dz

W T v x y z T w x y z dz

δ δ δ

δ δ δ

−

−

= − +

⎡ ⎤= − +⎣ ⎦

∫
∫

 

where pb(x,y) and pt(x,y) are the distributed loads on the bottom and top surfaces of 

the plate; qb(x,y), qt(x,y) are the transverse loads on the bottom and the top surfaces of 

the plate; Tx0, Txa, Ty0 and Tyb are the axial loads at the end cross-sections of the FGM 

plate; Txz0, Txza, Tyz0 and Tyzb are the transverse shear tractions at the end cross-sections 

of the plate. 

By employing integration by parts and collecting the variational coefficients 0uδ , 

1uδ , 0vδ , 1vδ  and 0wδ , the equilibrium equations for the model RHSDTC are 

given by 

0 , , 0: 0x x xy y xu N N pδ + + =  

1 1, 1, 1 1: 0x x xy y xu M M V pφ φ φδ + − + =  

0 , , 0: 0y y xy x yv N N pδ + + =  

1 1, 1, 1 1: 0y y xy x yv M M V pψ ψ ψδ + − + =                             (23) 

0 2 , 2 , 2 , 2 ,

2 , 2 , 2 , 2 , 0

:

0
x xx y yy xy xy xy xy

x y x x y y

w M M M M

V V p p q
φ ψ φ ψ

φ ψ

δ + + +

− − + + − =
   

where 

    
/2

1 2 1 2/2
, , , ,

h k k k
x x x x x xh

N M M dzφ φ σ σ σ
−

⎡ ⎤⎡ ⎤ = Φ Φ⎣ ⎦ ⎣ ⎦∫ ; 

    
/2

1 2 1 2/2
, , , ,

h k k k
y y y y y yh

N M M dzφ φ σ σ σ
−

⎡ ⎤⎡ ⎤ = Ψ Ψ⎣ ⎦ ⎣ ⎦∫ ; 
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/2

1 2
1 2 /2

[ , ] , 1 d
h k k

xz xzh
V V z

z zφ φ τ τ
−

⎡ ⎤⎛ ⎞∂Φ ∂Φ
= +⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦
∫ ; 

/2
1 2

1 2 /2
[ , ] , 1 d

h k k
yz yzh

V V z
z zψ ψ τ τ

−

⎡ ⎤⎛ ⎞∂Ψ ∂Ψ
= +⎢ ⎥⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦
∫ ; 

    
/2

1 2 1 2 1 2 1 2/2
, , , , , , , ,

h k k k k k
xy xy xy xy xy xy xy xy xy xyh

N M M M M dzφ φ ψ ψ τ τ τ τ τ
−

⎡ ⎤⎡ ⎤ = Φ Φ Ψ Ψ⎣ ⎦ ⎣ ⎦∫ ; 

1 1
0 1 2 1 1 2 2[ , , ] [ , , ]b t b N t b N t

x x x x x x x x xp p p p + p p + p p + p= Φ Φ Φ Φ  

1 1
0 1 2 1 1 2 2[ , , ] [ , , ]b t b N t b N t

y y y x x x x x xp p p p + p p + p p + p= Ψ Ψ Ψ Ψ  

0[ ] [ ]b tq q +q= . 

    A set of consistent geometric (kinematic-variable) and kinetic (stress-resultant) 

boundary conditions [33] at the boundaries of the plates (x=x0, x=xa, y=y0 and y=yb) 

can be expressed as 

    0 0( , )u x y uβ β=       or ( , )x xN x y Nβ β=  

    1 1( , )u x y uβ β=       or 1 1( , )x xM x y Mφ β φ β=  

    0 0( , )v x y vλ λ=       or ( , )y yN x y Nλ λ=  

    1 1( , )v x y vβ λ=       or 1 1( , )y yM x y Mψ λ ψ λ=  

    0, 0,( , )x xw x y wβ β=    or 2 2( , )x xM x y Mφ β φ β=  

    0, 0,( , )y yw x y wλ λ=    or 2 2( , )y yM x y Mψ λ ψ λ=                         (24) 

    0 0( , ) xw x y wβ β=      or 

    2 2, 2, 2( , ) ( , ) ( , ) ( , )x x xy y x xxV x y M x y M x y p x y Vφ β φ β φ β β β− − − =    

    0 0( , ) yw x y wλ λ=     or 

    2 2, 2, 2( , ) ( , ) ( , ) ( , )y y xy x y yxV x y M x y M x y p x y Vψ λ ψ λ ψ λ λ λ− − + =    

where 0 , ax xβ = ; 0 , by yλ = ; 

    
/2

1 2 1 2/2
[ , , ] [ , , ]d

h

x x x xh
N M M T T T zβ φ β φ β β β β−

= Φ Φ∫ ; 

    
/2

1 2 1 2/2
[ , , ] [ , , ]d

h

y y y yh
N M M T T T zλ ψ λ ψ λ λ λ λ−

= Ψ Ψ∫  
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/2

/2
[ ] [ ]d

h

xx xzh
V T zβ β−

= ∫ , ( 0, aβ = ); 

/2

/2
[ ] [ ]d

h

yx yzh
V T zλ λ−

= ∫ , ( 0,bλ = ); 

2.4 Analytical solution 

Analytical solutions in terms of trigonometric functions for the FGM plates with 

simply-supported boundaries are considered. The external force, the temperature loads 

and moisture concentration loads are given by  

0 sin( )sin( )
sin( )sin( )
sin( )sin( )

i i

i i

q q x y
T T x y
C C x y

α β

α β

α β

=

=

=

                                          (25) 

where i=0, 1, 2. 

The simply-supported boundary conditions along the edges of the FGM plate are 

given as follows: 

At edges x=0 and x=a ; 

00 =v , 1 0v = , 00 =w                                           (26) 

At edges y=0 and y=b; 

00 =u , 1 0u = , 00 =w                                           (27) 

Following the Navier’s procedure [31], analytical solution in terms of the 

displacement parameters satisfying the simply-supported boundary conditions are 

expressed as a double trigonometric series, such that 

0 0
1 1

1 1
1 1

cos sin

cos sin

mn
m n

mn
m n

u u x y

u u x y

α β

α β

∞ ∞

= =

∞ ∞

= =

=

=

∑∑

∑∑
 

0 0
1 1

1 1
1 1

sin cos

sin cos

mn
m n

mn
m n

v v x y

v v x y

α β

α β

∞ ∞

= =

∞ ∞

= =

=

=

∑∑

∑∑
                                      (28) 

0 0
1 1

sin sinmn
m n

w w x yα β
∞ ∞

= =

=∑∑  
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where am /πα = ; bn /πβ = ; a and b denote respectively the length and the width of 

plates. Substituting equations (28) into equilibrium equations (23) and collecting 

coefficients, the following system equation can be obtained.  

    5 5 5 1 5 1× × ×=K U P                                                  (29) 

where displacement parameters { }0 1 0 1 0
Tu u v v w=U .  

    In equation (29), it is found that there are only five displacement variables in the 

model RHSDTC as transverse normal deformations wT and wC due to hygrothermal 

loads have been absorbed in the generalized force vector 5 1×P .  

3. Results and discussion 

    In this section, the static behavior of aluminum and alumina FGM plates 

subjected to hygro-thermo-mechanical loads is investigated by using the proposed 

model and other generalized higher-order models. The top surface of the FGM plate is 

ceramic (alumina) rich and the bottom surface is metal (aluminum) rich, which can be 

seen in Figure 1. Young's modulus, Poisson's ratio and coefficient of thermal 

expansion for aluminum are respectively 70 GPa, 0.3, 23(10-6/�), and for alumina are 

380 GPa, 0.3 and 7.4(10-6/℃), respectively [18]. The effective Young's modulus E(z), 

thermal expansion coefficient α(z) and moisture expansion coefficient β(z) in the 

thickness direction of FGM plate can be computed using equation (1).     

Example 1：Bending of a FGM square (a=b) plate subjected to thermal loading 

( ) ( ) ( )1
2, sin / sin /zT x y T x a y b
h

π π⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

    Transverse displacement is expressed in terms of the following dimensionless 

parameter. 

( )
1

/ 2, / 2,
ˆ

c

w a b z
w

h Tα
= , αc=7.4×10-6/℃ 

    Transverse displacements obtained using various models are presented in Table 1. 

It is remarked that results obtained from the models RHSDT, SPT, ESDT, FiSDT and 



 15

HSDT-98 are recalculated in this paper. Numerical results showed that the transverse 

displacements obtained using the model HSDT-98 for the FGM plate subjected to 

thermal loading are in excellent agreement with those (HSDT-98*) obtained in 

reference [32] based on a similar analysis. As a result, the model HSDT-98 will be 

employed to assess the proposed model RHSDTC as well as other generalized 

higher-order models.  

Example 2: The FGM plates subjected to hygro-thermo-mechanical loads 

q=q0sin(πx/a)sin(πy/b), ( ) ( ) ( ) ( ) ( ) ( )0 1 2, , , / , / ,zT x y z T x y z h T x y f h T x y= + + and 

( ) ( ) ( ) ( ) ( ) ( )0 1 2, , , / , / ,zC x y z C x y z h C x y f h C x y= + + , 

where ( ) ( ) ( ) ( ) ( ) ( )0 1 2 0 1 2, , , , , , , sin / sin /T x y T x y T x y T T T x a y bπ π⎡ ⎤ =⎣ ⎦ , 

      ( ) ( ) ( ) ( )0 1 2 0 1 2, , , , , , ,C x y C x y C x y C C C⎡ ⎤ =⎣ ⎦ ( ) ( )sin / sin /x a y bπ π . 

    The dimensionless displacements and stresses are given by 

( )
0 0

0, / 2,u b z
u

h T aα
= , ( )

0 0

/ 2, / 2,w a b z
w

h Tα
= ,  ( )

0 0

1= / 2, / 2,x x
c

a b z
E T

σ σ
α

, 

( )
0 0

1= 0,0,xy xy
c

z
E T

τ τ
α

, ( )
0 0

1= 0, / 2,xz xz
c

b z
E T

τ τ
α

, Ec=380 GPa, α0=10-6/℃ 

    This example illustrates the effects of temperature and moisture concentration on 

the displacements and the stresses of FGM plate. Figure 2 depicts the distributions of 

displacements and stresses through the thickness of the FGM plates subjected to 

hygro-thermo-mechanical loads (q0=100, T0=T1=100, T2=0, C0=C1=3×10-3, C2=0, 

k=1). It is found that the results obtained from the model RHSDTC are in good 

agreement with those computed from the model HSDT-98 for thick (a/h=2) and 

moderately thick (a/h=4) FGM plates. However, the generalized higher-order theories 

RHSDT, SPT, ESPT and FiSDT are less accurate as transverse normal strain has been 

neglected in these models. For thin (a/h=100) FGM plate, all models produce almost 

the same displacements and stresses. Numerical results show that hygrothermal 

response of thin FGM plates is insensitive to transverse normal strain, while 
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transverse normal strain has significant impact on hygrothermal behaviors of thick 

FGM plates.  

    In Figure 3, the effect of volume fraction exponent k on the displacements and 

stresses of the FGM plate subjected to hygro-thermo-mechanical load (q0=100, 

T0=T1=100, T2=0, C0=C1=3×10-3, C2=0, a/h=4) has been studied. The FGM plates are 

very sensitive to the change of volume fraction exponent k. The maximum absolute 

values of all results increase with the increase of the volume fraction exponent k. 

Numerical results also show that the distribution of in-plane displacements obtained 

from the models RHSDT, SPT, ESPT and FiSDT is linear, while in-plane 

displacements obtained from the model RHSDTC are not linear across the thickness 

of the FGM plate. In addition, the model RHSDTC produces the minimum in-plane 

displacements near the middle surface of the FGM plate, while the models RHSDT, 

SPT, ESPT and FiSDT yield the minimum in-plane displacements at the bottom 

surface of the plate. It ought to be indicated that transverse shear stresses are obtained 

by integrating three-dimensional equilibrium equation through the thickness of plates. 

However, transverse shear stresses obtained from the models RHSDT, SPT, ESPT and 

FiSDT deviate substantially from those of HSDT-98 as shown in Figure 3. In addition, 

results obtained from the models RHSDT, SPT, ESPT and FiSDT are closer to those 

computed from the models RHSDTC and HSDT-98 with an increase of volume 

fraction exponent k.  

    Figure 4 depicts the effects of loading on the displacements and the stresses of 

the thick FGM plates (a/h=2). For hygrothermal expansion of FGM plate (q0=100, 

T0= 100, T1=T2=0, C0= 3×10-3, C1=C2=0), the models RHSDT and FiSDT are pretty 

bad in producing reliable displacements and stresses. In terms of the models RHSDT 

and FiSDT, the minimum in-plane stresses xσ  occur at the bottom surface of plate. 

In fact, the minimum in-plane stresses xσ  obtained from the models RHSDTC and 

HSDT098 appear close to the middle surface. In addition the models RHSDTC and 

HSDT-98 produce the minimum in-plane displacements near the middle surface of the 

FGM plate, while the models RHSDT and FiSDT yield the minimum in-plane 
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displacements at the top surface of the plate. Furthermore, transverse shear stresses 

obtained from the models RHSDT and FiSDT are close to zero, which completely 

differs from those computed from the models RHSDTC and HSDT-98. With increase 

of hygrothermal loads, in-plane displacement u  and in-plane shear stress xyτ  at the 

top surface of plate rapidly increase, whereas in-plane displacement and in-plane 

shear stress at the bottom surface of the plate rapidly decrease. However, transverse 

shear stresses are insensitive to hygrothermal loads. Figure 5 shows the effects of the 

aspect ratio a/b on the displacement and the stresses of the FGM plate. The in-plane 

displacement u  and the in-plane shear stress xyτ  gradually decrease as the aspect 

ratio a/b increases. However, the absolute values in-plane stresses xσ  and transverse 

shear stresses xzτ  increase with the increase of the aspect ratio a/b. 

4. Conclusion 

    A analytical model in terms of five displacement parameters has been developed 

for hygro-thermo-mechanical analysis of FGM plates. Compared to other generalized 

higher-order theories with five displacement parameters, the model RHSDTC takes 

into account the transverse normal strain without adding any extra degrees of freedom. 

Based on the proposed model, the equations of equilibrium have been developed by 

using the principle of minimum total potential energy. Analytical solutions for the 

simply-supported FGM plates subjected to hygro-thermo-mechanical loads are 

presented by applying the Navier procedure. Relative to the other models of the same 

number of displacement parameters, numerical results show that the model RHSDTC 

agrees particularly well with the analytical solution of the model HSDT-98 with 29 

displacement variables. The influence of the temperature, moisture concentration, 

volume fraction, the thickness-to-side ratio and the aspect ratio on displacements and 

the stresses is very significant as shown in the case of the simply-supported FGM 

plates. More importantly, it is found that distributions of displacements and stresses 

through the thickness obtained from the proposed model RHSDTC generally differ 
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from those obtained from other generalized higher-order models of thick FGM plates. 

From the computed results, it is found that the proposed model is very promising to 

offer a simple and effective solution to FGM plate structures subjected to 

hygro-thermo-mechanical loads.  
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Fig. 1 A FGM plate subjected to various loads 
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Fig. 2 Comparison of displacement and stresses through thickness of the FGM plate subjected to thermomechanical loading (k=1, q0=100, 

T0=T1=100, T2=0, C0=C1=3×10-3, C2=0)  
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Fig. 3 Comparison of displacement and stresses through thickness of the FGM plate subjected to thermomechanical loading (a/h=4, q0=100, 

T0=T1=100, T2=0, C0=C1=3×10-3, C2=0) 
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Fig. 4 Comparison of displacement and stresses through thickness of the FGM plate subjected to various loadings (a/h=2, k=0.8) 
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Fig. 5 Comparison of displacement and stresses through thickness of the FGM plate subjected to various loadings (a/h=4, k=1, q0=100, 

T0=T1=100, T2=0, C0=C1=3×10-3) 
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Table 1 Transverse displacement ŵ  of the FGM plate subjected to thermal loading 

(q0=0, T1=100, T0=T2=0, C0=C1= C2=0) 

a/h Models k=0 k=0.5 k=1 

5 RHSDTC 3.2929 5.3949 5.9910 

 ESDT 3.2929 5.3943 5.9877 

 FiSDT 3.2929 5.3938 5.9856 

 HSDT-98 3.2270 5.2855 5.8415 

 HSDT-98* [32] 3.227 5.286 5.842 

10 RHSDTC 13.1717 21.5896 24.0103 

 ESDT 13.1717 21.5890 24.0070 

 FiSDT 13.1717 21.5885 24.0048 

 HSDT-98 13.1065 21.4803 23.8602 

 HSDT-98* [32] 13.11 21.48 23.86 

 

 


