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Abstract: From a theoretical and practical viewpoint, the zig-zag theory is well 

adopted in the analysis of laminated composite structures. Nevertheless, for the 

available zig-zag models, artificial constraints in which the first derivatives of 

transverse displacement are replaced by the assumed variables have to be employed to 

avoid C
1 

interpolation functions in the finite element implementation. Such artificial 

constraints violate continuity conditions of interlaminar transverse stresses at 

interfaces. To avoid using artificial constraints, a C
0
-type zig-zag model is proposed in 

this paper. C
0 

interpolation functions are only required in the finite element 

formulation as first derivatives of transverse displacement have all been eliminated 

from the displacement field based on stress compatibility conditions between plies 

and on the top and bottom surfaces of the plate. Moreover, the number of variables 

involved in the proposed zig-zag model is less than that of the existing zig-zag models, 

yet accurate results are produced comparable to analytical solutions and 

three-dimensional finite element results. Effects of ply orientations, boundary 

conditions and length-to-thickness ratio on displacements and stresses of laminated 

composite plates have been studied.  

Keywords: C
0
 zig-zag theory; Composite plates; Angle-ply; Finite element 

formulation  

1. Introduction 

    Laminated composite structures are frequently applied in aerospace, automotive 

and civil engineering due to their advantages of high stiffness, high strength and low 
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weight. In order to achieve an effective design, the mechanical behaviors of 

multilayered composite structures ought to be assessed as accurate as possible. 

However, the analysis and the design of laminated composite structures are more 

challenging compared with conventional one-layer metallic structures as the material 

is weak in shear compared to extensional rigidity. Thus, transverse shear deformation 

of laminated composite structures has to be rigorously modeled. In addition, Carrera 

[1] showed that the in-plane displacement field for multilayered composite structures 

exhibits discontinuous derivatives with respect to each interface which is known as 

zig-zag effect.  

    In order to model the variation of the zig-zag form of in-plane displacement 

components along the thickness direction, Murakami [2] developed a zig-zag theory 

by adding a zigzag-shaped function (ZZF) to the in-plane displacement filed of the 

global displacement. By adding the zig-zag shape function in Legendre polynomials, 

Toledano and Murakami [3] proposed an improved zig-zag theory. By analyzing the 

cylindrical bending problems of laminated plates, it is found that the proposed zig-zag 

theory is able to improve the accuracy of in-plane displacements and stresses. By 

adding the ZZF to displacement field, Brischetto et al. [4] proposed a higher-order 

model for bending analysis of sandwich plates. Numerical investigation showed that 

accuracy of both displacement and stress evaluations can be significantly improved by 

using the ZZF. Carrera [5] employed the Murakami's zig-zag theory to study the 

bending problems of laminated composite plates and shells. Numerical results show 

that the introduction of zig-zag function is more effective than increasing the order of 

the global displacement. In addition, Rodrigues et al. [6] employed the Murakami's 

zig-zag theory for the static, vibration and buckling analysis of laminated composite 

plates. Neves et al. [7] extended the Murakami's zig-zag theory for the analysis of 

functionally graded plates.  

    The advantages of using the Murakami's zig-zag theory to analyze the laminated 

composite plates have been studied by Rodrigues et al. [8]. However, Murakami’s 

zig-zag model violated the interlaminar continuity for the transverse stresses. Dafedar 

et al. [9] showed that the higher-order model violating continuity conditions of 

interlaminar stresses overestimates the critical loads of soft core sandwich plates. As a 

result, zig-zag models [10-15] were developed that take into account the zig-zag effect 

and interlaminar continuity for transverse stresses in multilayered composite 

structures. However, constitutive equations in these zig-zag models are based on the 

plane stress assumption, in which transverse shear deformation effect is only included 
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but transverse normal deformation has been neglected. For thermo-mechanical 

problems of moderate thick composite plates, transverse normal deformation ought to 

be considered as transverse normal deformation is equally important compared to 

in-plane deformations [16,17]. By taking into account transverse normal strain, Cho 

and Oh [18] proposed a higher order zig-zag model to predict the deformation and 

stresses of thick smart composite plate subjected to mechanical, thermal and electric 

loads. In their model, the second derivatives of transverse displacement components 

have been involved in the expression of strain energy. Therefore, C
1
 interpolation 

functions are required in the finite element implementation. In order to circumvent the 

requirement of C
1 

continuity, Oh and Cho [19] employed the thin plate 

non-conforming triangular element proposed by Specht [20] which can only satisfy C
1 

continuity condition at the nodes. For the zig-zag model, the transverse shear stresses 

are unable to be obtained directly from the constitutive equations. In order to evaluate 

transverse shear stresses, stress smoothing technique within the entire domain has 

been adopted in regular meshes. An historical review on the zig-zag theories can be 

found in reference [21].  

    To avoid using the C
1
 continuity displacement functions in zig-zag model's finite 

element implementation, Pandit et al. [22] employed some artificial constraints in 

which the first derivatives of transverse displacement are replaced by the assumed 

variables. The same technique has been extended to analyze the vibration of sandwich 

plates with random material properties [23] and stochastic free vibration of soft-core 

sandwich plates [24]. By using the method of artificial constraints, Singh and 

Chakrabarti [25] proposed a C
0
 finite element model based on the zig-zag theory to 

study the buckling of laminated composite plates. Khandelwal et al [26] also 

employed the assumed variables to replace the first derivatives of transverse 

displacement in the zig-zag model. Recently, Kumar et al. [27] studied the static 

problems of laminated composite and sandwich shells by a C
0
 finite element 

formulation based on a higher-order zig-zag model using method of artificial 

constraints. However, numerical investigations show that such assumption will violate 

the continuity conditions of transverse shear stresses at interfaces.    

    In order to avoid the use of the C
1 

interpolation functions and the artificial 

constraints in finite element implementation of the zig-zag theories, Ren et al. [28] 

proposed a zig-zag theory in which the first derivatives of transverse displacement 

have been suppressed from the displacement field of the zig-zag model. The C
0 

interpolation functions are only needed in the finite element implementation. Without 
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the use of any artificial constraints, an six-node triangular element is developed for 

the static analysis of laminated composite and sandwich plates. Recently, by 

considering transverse normal strain, Wu et al. [29] proposed a C
0
-type zig-zag model 

in which derivatives of transverse displacements are eliminated from the displacement 

field for static analysis of thick cross-ply composite beams. Numerical investigations 

showed that the C
0
 zig-zag model [29] is more accurate than the C

1
-type zig-zag 

model [18]. Moreover, the effects of displacement variables in zig-zag models on 

displacements and stresses have been studied. In order to develop a coherent model 

for the angle-ply laminated plates [30,31], the laminated composite structures have to 

be fully exploited. This paper proposes a C
0
-type zig-zag model for thick laminated 

composite plates with general ply configurations. In addition to considering transverse 

normal strain, the merit of the proposed model is that derivatives of transverse 

displacement have been eliminated from the displacement field based on stress 

compatibility without artificial constraints. A six-node triangular element of the 

proposed C
0
 zig-zag model is presented to study the angle-ply laminated composite 

plates with different geometries, boundary conditions and loadings. Numerical results 

show that the accuracy of existing zig-zag model rapidly deteriorates as the thickness 

of laminated plates increases. Boundary conditions also have great impact on the 

accuracy of the C
1
-type zig-zag models; however, the proposed C

0
-type model is able 

to produce promising results in all these circumstances. 

2. Higher-order zig-zag model for thick angle-ply composite plates 

(ZZTC-C0) 

    In terms of the Cartesian coordinate system x, y and z on the middle plane of the 

rectangular plate a×b shown in Figure 1, an initial displacement field of the 

higher-order zig-zag model is expressed as 
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where the superscript k denotes the layer order of laminated plate,  iH z z  is the 

Heaviside unit step function, i

xS  and 
i

yS  are the slopes of ith layer [26]. The 
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number of unknowns can be reduced by imposing the top and the bottom surface 

transverse shear free conditions and the transverse shear stress continuity conditions 

at interfaces. 

    The stress-strain relationships for a lamina with reference to the axis system (x, y, 

z) can be written as  
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where Qk

ij  is the material constants of the kth ply. The transverse shear strain 

components in terms of the displacement components are given by 
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    Following the transverse shear free conditions at the upper and the lower 

surfaces of the plates, we have 
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which are satisfied by 
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where the expressions of iH  and iN  can be found in the Appendix. 

    In each interface, the continuity conditions of transverse shear stresses are 
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imposed, which are given by 
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    From the continuity conditions of transverse shear stresses, 2(N-1) linear 

algebraic equations for unknowns k

xS  and k

yS  (k=1~N-1) can be set up. From the 

equations, variables k

xS  and k

yS  are given by 
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where the expressions of k

iF  and k

iL  can be found in the Appendix. 

    By using the free conditions of transverse shear stresses on the upper surface, the 

first derivatives of unknown variables 1w  can be eliminated from the displacement 

field. The final displacement fields for angle-ply laminated composite plates are now 

written as 
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where the expressions for k

i  and k

i  are given in the Appendix.  

3. Finite element formulation 

    In equation (8), it is observed that the first derivatives of transverse 

displacements have been suppressed from the displacement fields of the proposed 

zig-zag model. Thus, C
0
 interpolation functions are only required in the finite element 

implementation.  

For the present study, a six-node triangular element with ten unknowns per node 

u0, u1, u2, u3, v0, v1, v2, v3, w0, and w1 is developed for the finite element analysis. In 

terms of the nodal variables and the shape functions, the displacement over an 
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element can be expressed as follows 
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where (2 1)m m mN L L  , 214 4 LLN  , 325 4 LLN  , 136 4 LLN  ; mL  is area 

coordinate, 1~ 3m  ; 1~ 3j  . 

    For linear elasticity, the strain can be written as follows 
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    The element stiffness matrix can be expressed as  

    
e T

e
dv K B QB                                                (12) 

where Q  is the transformed material constant matrix. 

    By employing the virtual work principle and equating work done to internal 

forces, the following system equation can be derived. 

Kδ P                                                       (13) 

where 
1

NE
e

e

K K , 
1

NE
e

e

P P ; e
P  is nodal load vector for one element; NE is the 

total number of elements. 

4. Numerical results and discussions 

    In this section, several examples of bending of angle-ply composite plates 

subjected to various boundary conditions are studied to assess the performance of the 

proposed C
0
 zig-zag model. As for C

1
-type zig-zag model [18], only analytical 
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solution for cross-ply plates is available in the literature, however in this paper finite 

element results of the angle-ply composite plates using the refined nonconforming 

element method proposed by Cheung and Chen [32] will be presented. Chakrabarti 

and Sheikh [33] attempted to developed a six-node triangular element based on the 

zig-zag theory for the free vibration analysis of sandwich plates. The six-node plate 

element developed is a nonconforming element as the element does not satisfy the 

normal slope continuity requirement. Thus, Kulkarni and Kapuria [34] indicated that 

the six-node triangular element [33] underestimated the natural frequencies of the 

sandwich plates. Therefore, three-node triangular element based on the C
1
-type 

zig-zag model [18] has been developed for comparison in this paper.  

4.1 Material constants 

Material (1) for laminated composite plates [35] 

GPaE 5.1721  , GPaEE 9.632  , GPaGG 45.31312  ,  

GPaG 38.123  , 25.0231312  vvv . 

Material (2) for laminated composite plates [36] 

          211 0025.1 EC  , 212 25.0 EC  , 222 0625.25 EC  , 1133 CC  , 

          244 5.0 EC  , 255 2.0 EC  , 4466 CC  . 

Material (3) for laminated composite plates [36] 

          211 0625.32 EC  , 212 2495.0 EC  , 222 00195.1 EC  , 2233 CC  , 

          244 2.0 EC  , 255 8.0 EC  , 5566 CC  . 

Material (4) for laminated composite plates [36] 

          211 0625.25 EC  , 212 25.0 EC  , 222 0025.1 EC  , 2233 CC  , 

          244 2.0 EC  , 255 5.0 EC  , 5566 CC  . 

where 1 and 2 denote the in-plane directions; 3 denotes transverse direction of 

laminates.  

4.2 Boundary conditions 

    Several types of boundary conditions are used in the examples, such as 

simply-supported boundary conditions and clamped boundary conditions, which are 

presented as follows. 
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    Simply supported boundary conditions on all sides of the composite plates 

(SSSS): 

    v0=w0= w1=v1=v2=v3=0 at x=0, a;  

    u0=w0= w1=u1=u2=u3=0 at y=0, b. 

    Simply-free conditions at two opposite edges has been considered. This plate is 

simply supported along the edges parallel to the y-axis while the other two edges are 

free (SFSF): 

    w0= w1 =0 at x=0, a. 

    Clamp-free conditions at two opposite edges has been considered. This plate is 

clamped along the edges parallel to the y-axis while the other two edges are free 

(CFCF): 

    u0=v0=w0= w1=u1=u2=u3=v1=v2=v3=0 at x=0, a. 

    In the tables and the figures, the following non-dimensional displacement and 

stresses are evaluated: 
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Example 1: Laminated composite plates subjected to double sinusoidal normal 

pressure q=q0sinπx/asinπy/b on the top surface (z=h/2). In this example, the cross-ply 

laminated composite plates (b/a=1) having antisymmetric and symmetric lamination 

schemes [ 0 / 90 ] and  [ 0 /90 / 0 ] are considered for simply-supported boundary 

condition on all sides (SSSS).  

    The finite element meshes for the static analysis of the composite plates are 

shown in Figure 2. In order to determine the required mesh density N×N for results of 

acceptable accuracy, a convergence study has been carried out. Figure 3 shows the 

convergence of transverse displacement for two-ply plate [ 0 /90 ] with material (1) 

where the mesh size parameter N is varied from 2 to 16. Acronym ZZTC-C0 

represents the results obtained from the six-node triangular element based on the 
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proposed C
0
-type zig-zag model with 10 unknowns at each node. HSDT-98 denotes 

the results obtained from the six-node triangular element based on the nine-order 

theory [37] with 29 unknowns at each node. ZZTC-C1 represents the results obtained 

from the three-node triangular element based on the C
1
-type zig-zag theory [18] in 

which the refined nonconforming element method proposed by Cheung and Chen [32] 

is used to circumvent the requirement of C
1 

continuity, and 13 variables are defined at 

each node. It can be found that the values of transverse displacement converge for 

N=12, so that all subsequent analysis are carried out with a mesh size of 12×12 for 

six-node triangular element. However, a mesh size of 24×24 will be used for the 

three-node triangular element (ZZTC-C1), so that the number of nodes are the same 

for the two meshes.  

    For moderately thick two-ply plate (a/h=4), comparison of in-plane displacement 

computed from different models is shown in Figure 4. It is observed that the results 

ZZTC-C0 and HSDT-98 are in close agreement with the three-dimensional elasticity 

solutions (Exact). Distributions of in-plane stresses through the thickness are shown in 

Figures 5 and 6. It is found that the model ZZTC-C0 can produce much better 

in-plane stress distributions through the thickness. However, the results ZZTC-C1 

obtained from C
1
-type zig-zag theory [18] are less accurate. The distributions of 

transverse shear stresses along the thickness are shown in Figure 7. It is found that 

transverse shear stress ZZTC-C1-E obtained by integrating three-dimensional 

equilibrium equations within one element is even worse than the ZZTC-C1-C 

obtained directly from the constitutive equations. For three-node triangular element, 

the interpolation functions of in-plane displacement parameters are linear which 

cannot provide contribution to transverse shear stresses based on the 

three-dimensional equilibrium consideration. As a result, for C
1
-type zig-zag model, 

transverse shear stresses are computed directly from the constitutive equations. 

However, for other models, transverse shear stresses are obtained by integrating 

three-dimensional equilibrium equations. 

    For a two-ply thick plate (a/h=2), comparisons of in-plane displacement and 

stress components are shown in Figures 8 and 9. It is found that results obtained from 

the model ZZTC-C0 are in good agreement with the three-dimensional elasticity 

solutions [37]. However, results obtained from the model ZZTC-C1 are less 

promising. For the model ZZTC-C1, the maximum percentage errors relative to the 

three dimensional elasticity solutions are more than 50%. Moreover, the results 

obtained from the first-order shear deformation theory (FSDT) are also disappointing. 
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Involving 29 variables in the displacement field, the model HSDT-98 could produce 

reliable accurate results, so HSDT-98 is chosen as reference for possible comparisons. 

    For a three-ply thin plate [ 0 / 90 / 0 ], transverse displacement and in-plane 

stresses computed from the proposed six-node triangular element are compared to 

three-dimensional elasticity solutions (Exact) and the results obtained from the 

classical laminated plate theory (CLPT) in Table 1. Numerical results show that the 

present six-node triangular element is free from the shear locking problem.  

Example 2: Laminated composite plates subjected to sinusoidal normal pressure 

q=q0sinπx/a on the top surface (z=h/2). In this example, the laminated composite 

plates (b/a=1) with material (1) having antisymmetric lamination scheme [15 /-15 ] 

and arbitrary lamination scheme [ 15 / 30 / 0 /- 45 /- 15 ] are studied for the 

simply-free conditions (SFSF) and the clamp-free conditions at two opposite edges 

(CFCF). 

    In Tables 2 and 3, the values of in-plane and transverse shear stresses are 

presented for two-ply plate [15 /-15 ] (a/h=4), respectively. It is found in the Tables 

that the present results ZZTC-C0 agree well with the exact solutions given by Ren [38] 

using Pagano's approach [39] and the three-dimensional results [40]. For two-ply 

moderately thick plate [15 /-15 ] (a/h=4), comparisons of displacements and stresses 

are clearly shown in Figures 10-13. Subsequently, results of thick plate (a/h=2.5) are 

shown in Figures 14-17. It can be found that with an increase in the thickness of the 

plate, accuracy of the model ZZTC-C1 [18] further deteriorates.  

    For the five-layer [  15/30/0/45/15  ] plate (a/h=4) with the simply-free 

conditions (SFSF), the results are respectively presented to compared with 

three-dimensional elasticity solution (3-D) [41] in Figures 18-20. Subsequently, the 

results of five-layer plates (a/h=4) with the clamp-free conditions (CFCF) are 

respectively plotted in Figures 21-23. It is noted in Figures 18-23 that for five-layer 

angle-ply plate with the same length-to-thickness ratio (a/h=4), the accuracy of the 

model ZZTC-C1 [18] decreases rapidly for the clamp-free conditions (CFCF). Figures 

24-26 present the distributions of displacements and stresses for the five-layer thick 

plate (a/h=2.5) with the simply-free conditions (SFSF). As for the distributions of 

displacements and stresses for the five-layer thick plate (a/h=2.5) with the clamp-free 
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conditions (CFCF), they are plotted in Figures 27-29.  

Example 3: Simply-supported laminated composite plate (SSSS) with different 

thickness and material properties at each ply. The laminated composite plate subjected 

to a doubly sinusoidal transverse loading    byaxqq /sin/sin0  . The plies of the 

composite plate are of thickness 0.3h/0.2h/0.15h/0.25h/0.1h and of materials 

4/2/4/3/2. 

    To further assess the performance of the proposed model, a five-layer plate with 

different thickness and material properties at each ply is studied in this example. 

Distributions of displacement and stresses through the thickness are shown in Figures 

30-33. With the rapid changes of material properties through the thickness direction 

for the five-layer plate, results (ZZT) obtained from the postprocessing method 

proposed by Cho and Choi [36] are less accurate. Again, it is observed that the results 

obtained from the proposed model ZZTC-C0 are in close agreement with the 

reference results of HSDT-98.  

5. Conclusions 

    In this paper, a C
0
-type zig-zag plate model (ZZTC-C0) is presented for the 

analysis of laminated composite plates with general angle-ply configurations. The 

proposed model satisfies the transverse shear free conditions at the top and bottom 

surfaces and interlaminar shear stress continuity at interfaces. Derivatives of 

transverse displacements have been eliminated from the displacement field, so that a 

C
0
 finite element can be formulated. With mesh refinement, convergence can be 

achieved, which shows that the accurate results can be obtained by using relatively 

fewer elements. Many problems have been analyzed covering different features of 

laminated composite plates such as ply orientations, boundary conditions and 

length-to-thickness ratio. Numerical results show that the proposed zig-zag model is 

capable to produce results close to the three dimensional elasticity solutions for 

laminated composite plates with general lamination configurations. The available 

C
1
-type zig-zag model (ZZTC-C1) is less promising for laminated composite under 

simply-supported boundary conditions. Moreover, the accuracy of the model 

ZZTC-C1 deteriorates rapidly for the clamped boundary conditions, in particular with 

an increase of plate thickness. There are 13 variables at each node in the displacement 

field of ZZTC-C1, whereas only 10 variables are involved in the displacement field of 

the proposed model ZZTC-C0. Nevertheless, the newly developed model ZZTC-C0 



 14 

making use of all stress compatibility conditions can produce results with accuracy 

comparable to the much more costly model HSDT-98. 
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      4 5 4 4 8 4

1

k
k k k k

i

i

L L A L B z z z


      , 

       2

5 6 4 5 8 5

1

k
k k k k

i

i

L L A L B z z z


      , 

       3

6 7 4 6 8 6

1

k
k k k k

i

i

L L A L B z z z


      . 

where 

       1 8 1 8 1 8 4 8 4/A            ,    2 8 2 8 2 8 4 8 4/A            , 

       3 8 3 8 3 8 4 8 4/A            ,    4 8 5 8 5 8 4 8 4/A            , 

       5 8 6 8 6 8 4 8 4/A            ,    6 8 7 8 7 8 4 8 4/A            ; 

       1 4 1 4 1 8 4 8 4/B            ,    2 4 2 4 2 8 4 8 4/B            , 
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    For k =1, the coefficients k

iF  and k

iL  are given by 

 1 1

1 1 11F H  ,  1 1

2 1 22F z H  ,  1 1 2

3 1 33F z H  ,  1 1

4 1 4F z H  , 

 1 1

5 2 11F N  ,  1 1

6 2 22F z N  ,  1 1 2

7 2 33F z N  ,  1 1

8 2 4F z N  . 

 1 1

1 1 11L H  ,  1 1

2 1 22L z H  ,  1 1 2

3 1 33L z H  ,  1 1

4 1 4L z H  , 

 1 1

5 2 11L N  ,  1 1

6 2 22L z N  ,  1 1 2

7 2 33L z N  ,  1 1

8 2 4L z N  . 

    For k > 1, the coefficients k

iF  can be obtained from the following recursive 

equations. 
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where 

    
1 1H   , 

2 12H z  , 2

3 13H z  , 
4 1H z  ; 

    
1 1N   , 

2 12N z  , 2

3 13N z  , 
4 1N z  ; 
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Fig. 6 Distribution of in-plane stress through thickness of two-layer [ 0 /90 ] plate (a/h=4) 

 

 

 

 

h

z
 

h

z
 

h

z
 

h

z
 



 24 

 

 

-0.1 0 0.1 0.2 0.3 0.4
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Exact

ZZTC-C0 (12x12)

ZZTC-C1-C (24x24)

ZZTC-C1-E (24x24)

HSDT-98 (12x12)

θ=0

θ=90

-0.1 0 0.1 0.2 0.3 0.4
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Exact

ZZTC-C0 (12x12)

ZZTC-C1-C (24x24)

ZZTC-C1-E (24x24)

HSDT-98 (12x12)

θ=0

θ=90

 

 0, / 2,xz b z  

Fig. 7 Distribution of transverse shear stress through thickness of two-layer [ 0 /90 ] plate 

(a/h=4) 

 

 

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Exact

ZZTC-C0 (12x12)

ZZTC-C1 (24x24)

HSDT-98 (12x12)

FSDT (12x12)

θ=0

θ=90

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Exact

ZZTC-C0 (12x12)

ZZTC-C1 (24x24)

HSDT-98 (12x12)

FSDT (12x12)

θ=0

θ=90

 

 0, / 2,u b z  

Fig. 8 Distribution of in-plane displacement through thickness of two-layer [ 0 / 90 ] plate 
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Fig. 9 Distribution of in-plane stress through thickness of two-layer [ 0 /90 ] plate (a/h=2) 
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Fig. 11 Distribution of in-plane stress through thickness of two-layer [15 /-15 ] plate (a/h=4) 
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Fig. 12 Distribution of in-plane stress through thickness of two-layer [15 /-15 ] plate (a/h=4) 
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Fig. 13 Distribution of transverse shear stress through thickness of two-layer [15 /-15 ] plate 

(a/h=4) 

 

 

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

ZZTC-C0 (12x12)

ZZTC-C1 (24x24)

HSDT-98 (12x12)

θ=15

θ=-15

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

ZZTC-C0 (12x12)

ZZTC-C1 (24x24)

HSDT-98 (12x12)

θ=15

θ=-15

 

 0, / 2,u b z  

Fig. 14 Distribution of in-plane displacement through thickness of two-layer [15 /-15 ] plate 
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Fig. 15 Distribution of in-plane stress through thickness of two-layer [15 /-15 ] plate 

(a/h=2.5) 
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Fig. 16 Distribution of in-plane stress through thickness of two-layer [15 /-15 ] plate 

(a/h=2.5) 
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Fig. 17 Distribution of transverse shear stress through thickness of two-layer [15 /-15 ] plate 

(a/h=2.5) 

 

 

-1.5 -1 -0.5 0 0.5 1 1.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

3-D

ZZTC-C0 (12x12)

ZZTC-C1 (24x24)

HSDT-98 (12x12)

θ=15

θ=30

θ=0

θ=-45

θ=-15

-1.5 -1 -0.5 0 0.5 1 1.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

3-D

ZZTC-C0 (12x12)

ZZTC-C1 (24x24)

HSDT-98 (12x12)

θ=15

θ=30

θ=0

θ=-45

θ=-15

 

 0, / 2,u b z  

Fig. 18 Distribution of in-plane displacement through thickness of five-layer 

[15 /30 / 0 /- 45 /-15 ] plate (a/h=4) 
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Fig. 19 Distribution of in-plane stress through thickness of five-layer [15 / 30 / 0 /- 45 /-15 ] 

plate (a/h=4) 
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Fig. 20 Distribution of transverse shear stress through thickness of five-layer 

[15 /30 / 0 /- 45 /-15 ] plate (a/h=4) 
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Fig. 21 Distribution of in-plane displacement through thickness of five-layer 

[15 /30 / 0 /- 45 /-15 ] clamped plate (a/h=4) 
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 / 2, / 2,x a b z  

Fig. 22 Distribution of in-plane stress through thickness of five-layer [15 / 30 / 0 /- 45 /-15 ] 

clamped plate (a/h=4) 
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Fig. 23 Distribution of transverse shear stress through thickness of five-layer 

[15 /30 / 0 /- 45 /-15 ] clamped plate (a/h=4) 
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 0, / 2,u b z  

Fig. 24 Distribution of in-plane displacement through thickness of five-layer 

[15 /30 / 0 /- 45 /-15 ] plate (a/h=2.5) 
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Fig. 25 Distribution of in-plane stress through thickness of five-layer [15 / 30 / 0 /- 45 /-15 ] 

plate (a/h=2.5) 
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Fig. 26 Distribution of transverse shear stress through thickness of five-layer 

[15 /30 / 0 /- 45 /-15 ] plate (a/h=2.5) 
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 / 4, / 2,u a b z  

Fig. 27 Distribution of in-plane displacement through thickness of five-layer 

[15 /30 / 0 /- 45 /-15 ] clamped plate (a/h=2.5) 
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 / 2, / 2,x a b z  

Fig. 28 Distribution of in-plane stress through thickness of five-layer [15 / 30 / 0 /- 45 /-15 ] 

clamped plate (a/h=2.5) 
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 / 4, / 2,xz a b z  

Fig. 29 Distribution of transverse shear stress through thickness of five-layer 

[15 /30 / 0 /- 45 /-15 ] clamped plate (a/h=2.5) 
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 0, / 2,u b z  

Fig. 30 Distribution of in-plane displacement through thickness of five-layer plate (a/h=4) 
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Fig. 31 Distribution of in-plane stress through thickness of five-layer plate (a/h=4) 
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 / 2, / 2,xy a b z  

Fig. 32 Distribution of in-plane stress through thickness of five-layer plate (a/h=4) 
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Fig. 33 Distribution of transverse shear stress through thickness of five-layer plate (a/h=4) 
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Tab. 1 Transverse displacement and in-plane stresses of a simply supported thin 

composite plate ( 0 / 90 / 0 ) under double sinusoidal loading 

a/h  w  

(a /2,a/2,0) 

x  

(a /2,a/2,h/2) 

y  

(a /2,a/2, h /6) 

xy  

(0,0, h /2) 

100 ZZTC-C0 

(24×24) 

0.4293 0.5369 0.1801 0.0213 

 Exact [35] 0.4368 0.539 0.181 0.0213 

200 ZZTC-C0 

(24×24) 

0.4261 0.5352 0.1783 0.0213 

500 ZZTC-C0 

(24×24) 

0.4223 0.5304 0.1762 0.0216 

1000 ZZTC-C0 

(24×24) 

0.4142 0.5196 0.1726 0.0220 

 CLPT [38] 0.43125 0.53870 0.17957 0.02128 

 

 

Tab. 2 In-plane stress  / 2, / 2,x a b z  for a two-ply [15 /-15 ] plate.  

z/h 3-D [40] Exact [38] ZZTC-C0 

(12×12) 

ZZTC-C1 

(24×24) 

HSDT-98 

(12×12) 

-0.5 -0.9960 -0.9966 -0.9607 (3.60) -1.0284 (3.19) -0.9860 (1.06) 

0
 

0.4526 0.4529 0.4336 (4.26) 0.4261 (5.91) 0.4402 (2.80) 

0
 

-0.4719 -0.4716 -0.4566 (3.18) -0.4589 (2.69) -0.4591 (2.65) 

0.5 1.0446 1.0439 1.0102 (3.23) 1.0999 (5.36) 1.0393 (0.44) 

The number in bracket () is the % errors of various theories relative to exact solutions 
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Tab. 3 Transverse shear stress  0, / 2,xz b z  for a two-ply [15 /-15 ] plate.  

z/h 3-D [40] Exact [38] ZZTC-C0 

(12×12) 

ZZTC-C1 

(24×24) 

HSDT-98 

(12×12) 

-0.5 0.0004 0.0000 0.0000 (0.00) 0.0000 (0.000) 0.0000 (0.00) 

-0.2 0.4061 0.4066 0.3865 (4.94) 0.3447 (15.22) 0.3879 (4.59) 

0
 

0.2887 0.2884 0.2626 (8.95) 0.4037 (39.97) 0.2841 (1.49) 

0
 

0.2883 0.2884 0.2626 (8.95) 0.4037 (39.97) 0.2841 (1.49) 

0.2 0.4183 0.4166 0.4013 (3.67) 0.3444 (17.33) 0.3945 (5.30) 

0.5 0.0008 0.0000 0.0000 (0.00) 0.0000 (0.000) 0.0000 (0.00) 

The number in bracket () is the % errors of various theories relative to exact solutions 

 


