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Abstract

This paper considers the optimal investment and premium control problem in a

diffusion approximation to a non-homogeneous compound Poisson process. In the

nonlinear diffusion model, it is assumed that there is an unspecified monotone function

describing the relationship between the safety loading of premium and the time-varying

claim arrival rate. Hence, in addition to the investment control, the premium rate can

be served as a control variable in the optimization problem. Specifically, the problem

is investigated in two cases: (i) maximizing the expected utility of terminal wealth,

and (ii) minimizing the probability of ruin respectively. In both cases, some properties

of the value functions are derived, and closed-form expressions for the optimal policies

and the value functions are obtained. The results show that the optimal investment

policy and the optimal premium control policy are dependent on each other. Most

interestingly, as an example, we show that the nonlinear diffusion model reduces to

a diffusion model with a quadratic drift coefficient when the function associated with

the premium rate and the claim arrival rate takes a special form. This example shows

that the model of study represents a class of nonlinear stochastic control risk model.

Keywords CARA utility, Dependent control policies, Hamilton-Jacobi-Bellman equa-

tion, Investment, Premium control.
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1 Introduction

In the past few decades, ruin probability and other related actuarial variables are mainly

treated in risk theory and mathematical insurance. However, some optimization problems are

becoming more and more interesting in recent years. From the viewpoint of insurers, optimal

dividend, investment and/or reinsurance problems are extensively studied. For example, see

Schmidli (2008). In this paper, we formulate a dynamic risk model in which an insurer can

control premium loading and investment strategy to achieve utility maximization and risk

minimization.

In the actuarial literature, the surplus process {Yt, t ≥ 0} of an insurance portfolio is

usually described by the classical Cramér-Lundberg model

Yt = x+ Ct −
Nt∑
k=1

Xk, (1.1)

where {Nt, t ≥ 0} is a counting process describing the total number of claims up to time t;

the claim sizes {Xk, k = 1, 2, · · · }, independent of {Nt, t ≥ 0}, are positive independent and

identically distributed (i.i.d) random variables with finite first and second moments, µ and

σ2, respectively; and Ct is the accumulated premium income prior to time t.

In the classical risk model, it is usually assumed that {Nt, t ≥ 0} is a homogeneous

Poisson process, which implies that the claims arrive at a constant rate. However, the

arrival rate of claims often varies with time in practice. Intuitively, the claim arrival rate

of an insurance portfolio depends on the portfolio size which in turn relies heavily on the

premium rate charged by the insurance company. As one can observe in the insurance

market, an insurance company can take advantage of adjusting the premium rate to achieve

certain target. Once the premium rate is changed, the size of the insurance portfolio as well

as the claim arrival rate will change. This fact suggests that there exists a monotone function

mapping between the premium rate and the claim arrival rate. In view of this, we consider

a relationship between the two rates in the present paper. As a result, the premium rate or

the claim arrival rate can be served as a control variable in our optimization problem. In

fact, not much research in this direction has been done in the past few decades. For related

work, see Martin-Löf (1983), and Vandebroeka and Dhaenea (1990). Recently, Højgaard
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(2002) studies the optimal dividend problem in the compound Poisson model by taking an

unspecified function between the safety loading of premium and the claim arrival rate; and

Asmussen et al. (2013) consider the portfolio size as a function of premium, and derives the

optimal premium by minimizing ruin probability.

The purpose of this paper is to study the optimal investment and premium control

problem in a diffusion approximation to a non-homogeneous compound Poisson process

with time-varying intensity. In particular, similar to the work of Højgaard (2002), we use

an unspecified monotone function to describe the relationship between the safety loading of

premium and the claim arrival rate. Under the diffusion model, we consider the optimization

problem of maximizing the expected utility of terminal wealth and that of minimizing the

ruin probability. In both cases, it can be shown that the optimal investment policy and the

optimal premium control policy are dependent on each other. Most interestingly, in a special

case, the diffusion model of study reduces to a nonlinear diffusion model with a quadratic

drift coefficient.

The rest of the paper is organized as follows. In Section 2, we describe how the diffusion

model of study is derived from a non-homogeneous compound Poisson process. In Section

3, we derive the optimal investment and premium control policies and the value functions

for the two optimization objectives. Finally, in Section 4, we connect the safety loading of

premium and the claim arrival rate through a specific function, under which explicit optimal

investment and premium control policies can be obtained.

2 The model

In model (1.1), we assume that {Nt, t ≥ 0} is a non-homogeneous Poisson process with

time-varying deterministic rates λ(s), and that the premium is calculated by the expected

value principle with a time-varying relative safety loading θt. Then, we have

Ct = µ

∫ t

0

(1 + θs)λ(s)ds. (2.1)

In this set-up, the insurer can adjust the premium rate dynamically, and the safety loading

θ being the only parameter in the premium rate turns out to be a control variable. As was
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mentioned before, when the level of the safety loading rises, the portfolio size as well as the

claim arrival rate drop. Hence, it is reasonable to express the claim arrival rate as a strictly

decreasing function of the safety loading, say λt = h(θt) with h(∞) = 0. Furthermore, it is

natural to assume that there exists a finite number of potential customers in the market so

that h(0) = λmax <∞. As a consequence, we have

E[dYt] = dCt − E

[
d

Nt∑
k=1

Xk

]
= θth(θt)µdt, (2.2)

D[dYt] = D

[
d

Nt∑
k=1

Xk

]
= h(θt)σ

2dt, (2.3)

where E and D denote the expectation operator and variance operator respectively. Because

of (2.2) and (2.3), we further assume that θh(θ) → 0 as θ → ∞. This assumption ensures

that the insurer cannot make a profit by charging a positive premium rate without taking

any risk.

Suppose that the relationship between the safety loading θ and the claim arrival rate λ

is given by λ = h(θ), and that the function h satisfies the following assumptions.

Assumption A:

1. h is strictly decreasing on [0,∞) with h(0) = λmax and h(∞) = 0;

2. h(x)x→ 0 as x→ ∞.

Since h is a strictly decreasing function, we take the claim arrival rate λ, instead of θ, as a

control variable. Denote the inverse function of h by h−1. Then, the surplus process of the

insurance portfolio can be rewritten as

dY λ
t = (1 + h−1(λt))λtµdt− d

Nλ
t∑

k=1

Xk, Xλ
0 = x, (2.4)

where {Nλ
t , t ≥ 0} is a non-homogeneous Poisson process with time-varying intensity {λt, t ≥

0}.

We now present a diffusion approximation to the non-homogeneous compound Poisson

process (2.4). Let {N1(t), t ≥ 0} be a homogeneous Poisson process with a unit rate. Then,
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it follows from Jabari and Liu (2013) that

√
n

(
1

n
N1(nt)− t

)
≈ 1√

n

⌊nt⌋∑
k=1

(N1(k)−N1(k − 1)− 1)
D
≈ W (t),

where ⌊nt⌋ is the integral part of nt, and {W (t), t ≥ 0} is a standard Brownian motion. By

letting the scaled time t̃ = nt, we get

N1(t̃)− t̃
D≈
√
nW

(
t̃

n

)
D
=W (t̃),

where
D≈ means “approximately equal, in distribution, to” and

D
= denotes equivalence in

distribution. Thus, for the non-homogeneous Poisson process {Nλ(t), t ≥ 0}, we have

Nλ
t

D
= N1

(∫ t

0

λsds

)
,

and

Nλ
t −

∫ t

0

λsds
D≈ W

(∫ t

0

λsds

)
D
=

∫ t

0

√
λsdWs.

Along the same lines, for the non-homogeneous compound Poisson process {
∑Nλ

t
k=1Xk, t ≥ 0},

we obtain
Nλ

t∑
k=1

Xk − µ

∫ t

0

λsds
D
≈ σW

(∫ t

0

λsds

)
D
= σ

∫ t

0

√
λsdWs.

Thus, the diffusion approximation process {Y λ
t , t ≥ 0} to (2.4) can be written as

dY λ
t = µh−1(λt)λtdt+ σ

√
λtdW

Y
t , Y λ

0 = x,

where {W Y
t , t ≥ 0} is a standard Brownian motion.

For mathematical convenience, we make a change of variable by setting u =
√
λ and use

u as a control variable. Assume that there exists a fixed cost rate (or debit rate) c > 0 for

the insurance portfolio. Then, the surplus at time t satisfies the Itô stochastic differential

equation

dY λ
t = [µG(ut)− c]dt+ σutdW

Y
t , Y λ

0 = x, (2.5)

where

G(u) = u2h−1(u2).

From Assumption A, we can derive some properties of the function G in the following lemma.
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Lemma 2.1. The function G : [0,
√
λmax] → [0,∞) satisfies

G(0) = G(
√
λmax) = 0, xG′(x) → 0, and

x

G′(x)
→ 0, as x→ 0 + . (2.6)

Proof. It follows from Assumption A that h(0) = λmax, h(∞) = 0, and xh(x) → 0 as x→ ∞.

Since h−1 is the inverse function of h, we have h−1(λmax) = 0 and h−1(0) = ∞. In addition,

xh−1(x) = h(h−1(x))h−1(x) → 0, as x→ 0,

simply because h−1(x) → ∞ as x → 0 and xh(x) → 0 as x → ∞. Thus, we have G(0) =

G(
√
λmax) = 0. It also suggests that, as x→ 0+,

h−1(x) ∼ x−ϵ, 0 < ϵ < 1,

and hence

G′(x) = 2xh−1(x2) + 2x3h−1′(x2) ∼ x−2ϵ+1,

and

xG′(x) ∼ x−2ϵ+2,
x

G′(x)
∼ x2ϵ, as x→ 0.

By noting that −2ϵ+ 2 and 2ϵ are positive, we complete the proof of the lemma.

To end the section, we state another two assumptions which are useful in deriving the

main results of the paper.

Assumption B: G(x) is a strictly concave function on [0,
√
λmax].

Note that the function G is strictly concave with G(0) = G(
√
λmax) = 0. There exists a

unique point in [0,
√
λmax] at which G attains its maximum. If ū is the point, i.e., G′(ū) = 0,

then G is strictly increasing on [0, ū] and strictly decreasing for u > ū. So, for u > ū,

the volatility coefficient of the insurance portfolio is increasing but the drift coefficient is

decreasing (see (2.5)). Since this is unacceptable for a risk-averse insurer, we only focus on

the control variable u ∈ [0, ū]. Moreover, in order to have a positive drift coefficient in (2.5),

we need the following assumption.

Assumption C: µG(ū)− c > 0, i.e., G(ū) > c/µ.
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3 Optimizations with investment and premium control

Besides the insurance risk, we assume that the insurer also faces a classical Black-Sholes

financial market, in which there are one risky asset (e.g., a mutual fund) and one risk-free

asset. The risky asset’s price process {St, t ≥ 0} is assumed to follow a geometric Brownian

motion, i.e., St satisfies the Itô stochastic differential equation

dSt = αStdt+ βStdW
S
t ,

where α and β are positive constants, and {W S
t , t ≥ 0} is a standard Brownian motion.

As usual, it is assumed that {W Y
t , t ≥ 0} and {W S

t , t ≥ 0} are independent, and that the

risk-free asset has a fixed continuously compound return rate r ≥ 0. To avoid triviality, we

put α ≥ r.

Suppose that the insurer invests an amount of πt in the risky asset at time t, and that

the remaining surplus of the insurance portfolio accumulates at the compound interest rate

r. Then, with an investment policy π and a premium control policy u, the surplus process

of the insurance portfolio can be expressed as

dY π,u
t = (rY π,u

t + µG(ut) + π(α− r)− c)dt+ σutdW
Y
t + βπtdW

S
t , Y π,u

0 = x. (3.1)

For a pair of Markov control processes (π, u), and any function f(t, x) ∈ C1,2, we define an

operator Aπ,u associated with the surplus process (3.1) as

Aπ,uf(t, x) = ft +
1

2
[σ2u2t + β2π2

t ]fxx + [rx− c+ µG(ut) + πt(α− r)]fx. (3.2)

Furthermore, we denote the set of all admissible policies by Z. We say that a pair of policy

(π, u) ∈ Z is admissible if

1. The process u = {ut, t ≥ 0} is a predictable such that 0 ≤ ut ≤ ū;

2. The process π = {πt, t ≥ 0} is a predictable process such that

E
∫ T

0

π2
sds <∞, ∀ T <∞; (3.3)

3. The stochastic differential equation (3.1) determines a unique strong solution.
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3.1 Maximizing expected utility of terminal wealth

In this section, we study the optimal investment and premium control policies by maximizing

the expected utility of the terminal wealth of the insurance portfolio. Research on optimal

investment for insurers maximizing the utility of terminal wealth can be found in Browne

(1995), Irgens and Paulsen (2004), Yang and Zhang (2005), Bai and Guo (2008), Liang et

al. (2012), Liang and Bayraktar (2013), and references therein.

Assume that the insurer’s wealth utility function, denoted by U(x), is a strictly increasing

and concave function, i.e., U ′(x) > 0 and U ′′(x) < 0. Associated with each pair of policy

(π, u) ∈ Z, the performance function is defined as

V π,u(t, x) = E[U(Y π,u
T )|Y π,u

t = x], (3.4)

and the value function is defined as

V (t, x) = sup
(π,u)∈Z

V π,u(t, x). (3.5)

Theorem 3.1. The value function V (t, x) of (3.5) is strictly increasing and concave with

respect to x.

Proof. Given any initial surplus x and a pair of policy (π, u) ∈ Z, the controlled surplus

process, say {Xπ,u
t }, is determined by (3.1) with Xπ,u

t = x. On the other hand, for any initial

surplus y > x, if we take the same pair of policy (π, u), then the controlled surplus process

{Y π,u
t } is also determined by (3.1) with Y π,u

t = y. It is clear that d(Y π,u
s −Xπ,u

s ) = 0 for any

t < s < T , and hence

Y π,u
T −Xπ,u

T = Y π,u
t −Xπ,u

t = y − x > 0.

Note that the insurer’s wealth utility function U(x) is strictly increasing with respect to x.

It follows that

V π,u(x, t) = E[U(Xπ,u
T )|Xπ,u

t = x] < E[U(Y π,u
T )|Y π,u

t = y].

Taking supremum on both sides of the above inequality yields

V (x, t) < sup
(π,u)∈Z

E[U(Y π,u
T )|Y π,u

t = y] ≤ V (y, t),
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which implies that V (x, t) is a strictly increasing function with respect to x.

In addition, for any given initial values x1 and x2, we take any two pairs of policies

(π1, u1) ∈ Z and (π2, u2) ∈ Z, respectively. Let 0 ≤ p ≤ 1. Then, for the initial value

px1 + (1 − p)x2, we construct a pair of policy (π̄, ū) such that π̄ = pπ1 + (1 − p)π2 and

ū = pu1 + (1− p)u2. It is easy to verify that (π̄, ū) ∈ Z. Furthermore, it follows from (3.1)

that

d(pY π1,u1
t + (1− p)Y π2,u2

t )

= [r(pY π1,u1
t + (1− p)Y π2,u2

t ) + µ(pG(u1t) + (1− p)G(u1t)) + π̄t(α− r)− c]dt

+σūtdW
Y
t + βπ̄tdW

S
t

≤ [rY π̄,ū
t + µG(ūt) + π̄t(α− r)− c]dt+ σūtdW

Y
t + βπ̄tdW

S
t

= dY π̄,ū
t ,

where the inequality follows from the concavity of G and the comparison theorem of stochas-

tic differential equation (See Karatzas and Shreve (1988)). This inequality implies that, for

any t ≥ 0,

pY π1,u1
t + (1− p)Y π2,u2

t ≤ Y π̄,ū
t .

Given the events {Y π1,u1
t = x1}, {Y π2,u2

t = x2} and {Y π̄,ū
t = px1+(1−p)x2}, by the increasing

property and the concavity of the utility function U , we obtain

pV π1,u1(t, x1) + (1− p)V π2,u2(t, x2)

= pE[U(Y π1,u1

T )|Y π1,u1
t = x1] + (1− p)E[U(Y π2,u2

T )|Y π2,u2
t = x2]

≤ E[U(pY π1,u1

T + (1− p)Y π2,u2

T )|pY π1,u1
t + (1− p)Y π2,u2

t = px1 + (1− p)x2]

≤ E[U(Y π̄,ū
T )|Y π̄,ū

t = px1 + (1− p)x2].

Then, taking supremum on both sides of the above inequality, we have

pV (t, x1) + (1− p)V (t, x2) ≤ V (t, px1 + (1− p)x2),

which implies the concavity of V (t, x) with respect to x.

To study the optimization problem, we use the techniques of dynamic programming

principle. If the value function V (t, x) ∈ C1,2, then one can apply the standard procedure of
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dynamic programming principle (see Fleming and Soner (2006)) to show that V (t, x) satisfies

the Hamilton-Jacobi-Bellman (HJB) equation

sup
(π,u)∈Z

Aπ,uV (t, x) = 0, (3.6)

with boundary condition V (T, x) = U(x), where the generator Aπ,u is defined in (3.2). The

following verification theorem tells us that if we can find a solution to (3.6) under suitable

conditions, then the solution coincides with the value function.

Theorem 3.2. Suppose that w(t, x) ∈ C1,2 is a strictly increasing and concave (with respect

to x) solution to HJB equation (3.6) with boundary condition w(T, x) = U(x). Then, w(t, x)

is the value function, i.e.,

V (t, x) = w(t, x), t ≤ T.

Proof. Give any pair of policy (π, u) ∈ Z, since w(t, x) is a C1,2 function, we apply Itô’s

formula to w(t, Y π,u
t ). It follows that for 0 ≤ t ≤ s ≤ T

w(s, Y π,u
s ) = w(t, Y π,u

t ) +

∫ s

t

Aπ,uw(v, Y π,u
v )dv +

∫ s

t

σuvdW
Y
v +

∫ s

t

βπvdW
S
v

≤ w(t, Y π,u
t ) +

∫ s

t

σuvdW
Y
v +

∫ s

t

βπvdW
S
v , (3.7)

where the last step is due to the fact that w(t, x) is a solution to (3.6). It follows from the

boundedness of u and Condition (3.3) for π that the last two terms of (3.7) are martingales.

Taking conditional expectation and letting s = T , we have

w(t, x) ≥ E[w(T, Y π,u
T )|Y π,u

t = x] = E[U(Y π,u
T )|Y π,u

t = x], (3.8)

which implies that

w(t, x) ≥ sup
(π,u)∈Z

E[U(Y π,u
T )|Y π,u

t = x] = V (t, x).

On the other hand, since w(t, x) is a solution to

wt + sup
(π,u)∈Z

{
1

2
[σ2u2 + β2π2]wxx + [rx− c+ µG(u) + π(α− r)]wx

}
= 0, (3.9)
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we can use standard calculus to obtain the maximizers

π∗(t, x) = −α− r

β2

(
wx

wxx

)
, (3.10)

u∗(t, x)

G′(u∗(t, x))
= − µ

σ2

(
wx

wxx

)
. (3.11)

Note that wx > 0, wxx < 0, and G(x) is a concave function. We see from Lemma 2.1 that

x/G′(x) → 0 as x→ 0+ and x/G′(x) → ∞ as x→ ū− . Also,(
x

G′(x)

)′

=
G′(x)− xG′′(x)

G′2(x)
> 0, 0 < x < ū.

All these imply that (3.11) uniquely determines u∗(t, x) ∈ [0, ū]. Let π∗ = {π∗(t, Y π∗,u∗

t ), t ≥

0} and u∗ = {u∗(t, Y π∗,u∗

t ), t ≥ 0}. It follows that (π∗, u∗) ∈ Z. If we take the pair of

policy (π∗, u∗), then inequalities in (3.7) and (3.8) become equalities. So, we have w(t, x) =

V π∗,u∗
(t, x) ≤ V (t, x).

Suppose now that the insurer has an exponential utility function

U(x) = k − γ

θ
e−θx, γ > 0, θ > 0, (3.12)

where θ is the so-called constant absolute risk aversion (CARA) coefficient and (3.12) is the

so-called CARA utility function. In this case, we have the following result.

Theorem 3.3. Suppose that the insurer has a CARA utility function (3.12). The optimal

investment policy π∗ can be written as

π∗
t =

α− r

θβ2
e−r(T−t), t ≤ T, (3.13)

and the optimal premium control policy u∗ is uniquely determined by the equation

u∗t =
µ

θσ2
G′(u∗t )e

−r(T−t), t ≤ T. (3.14)

The value function has the form

V (t, x) = k − γ

θ
exp

{
−θxer(T−t) + g(T − t)

}
, t ≤ T, (3.15)

where the function g is given by (3.20) below.
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Proof. To solve for the optimal policies, the key step is to find a solution w(t, x) to HJB

equation (3.6). Since the insurer’s utility function has an exponential form, we try to find a

solution of the form

w(t, x) = k − γ

θ
exp

{
−θxer(T−t) + g(T − t)

}
, (3.16)

where g(·) is a suitable function. The boundary condition w(T, x) = U(x) implies that

g(0) = 0. Then, after some calculations, we get

wt = [w − k](θrxer(T−t) − g′(T − t)), (3.17)

wx = [w − k](−θer(T−t)), (3.18)

wxx = [w − k](θ2e2r(T−t)). (3.19)

Inserting (3.18) and (3.19) into (3.10) and (3.11) yields (3.13) and (3.14), respectively. Then,

putting (3.17)-(3.19) back into (3.9), one can show that the function g satisfies

g′(T − t) = cθer(T−t) − 1

2
m2 − µ

(
G(u∗t )−

1

2
u∗tG

′(u∗t )

)
θer(T−t),

where m = (α−r)/β is the market price of risk, also called Sharpe Ratio. By noting g(0) = 0

and integrating g′(x) from 0 to T − t, we obtain

g(T − t) =
cθ

r
(er(T−t) − 1)− 1

2
m2(T − t)− µθ

∫ T

t

(G(u∗s)−
1

2
u∗sG

′(u∗s))e
r(T−s)ds. (3.20)

Finally, it is easy to verify that the function w(t, x) obtained using (3.16) and (3.20) is a

C1,2 function and is also a solution to (3.6) with wx > 0, wxx < 0, and boundary condition

w(T, x) = U(x). Then, it follows from Theorem 3.2 that the value function (3.15) holds.

Remark 3.1. In Theorem 3.3, expressions for the optimal investment and premium con-

trol policies are given by (3.13) and (3.14), respectively. The optimal investment policy is

the same as the one obtained in Browne (1995) when the correlation coefficient of the two

Brownian motions is zero. A new feature of the optimization problem studied here is that

the optimal investment and premium control policies depends on each other in the way that

π∗
t =

(α− r)

β2
· σ

2

µ
· u∗t
G′(u∗t )

,
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which can be obtained from either (3.10) and (3.11), or (3.13) and (3.14). We also see

that the optimal investment does not depend on the insurance model but depends on the

parameters α and β of the risky asset, and that the optimal premium control does not depend

on the risky asset but depends on the parameters µ and σ of the insurance model and the

function G. These findings are likely due to the assumption that the two Brownian motions

of the risky asset and the insurance model are independent of each other.

3.2 Minimizing probability of ruin

In this subsection, we consider the optimization objective of minimizing the ruin probability

of the insurance portfolio. Recent research on the optimal investment for insurers minimizing

the probability of ruin can be found in Hipp and Plum (2000, 2003), Schmidli (2002), Liu

and Yang (2004), Promislow and Young (2005), Luo et al. (2008), and references therein.

Given any pair of policy (π, u) ∈ Z, the insurance portfolio’s surplus process {Y π,u
t } is

still governed by (3.1). We define the first time that {Y π,u
t } hits the level z as

τπ,uz = inf{t ≥ 0;Y π,u
t = z}.

Then, the performance function is defined as

ψπ,u(x) = P{τπ,u <∞|Y π,u
0 = x},

and the value function is defined as

ψ(x) = inf
(π,u)∈Z

ψπ,u(x). (3.21)

The objective of this section is to derive explicit expression for the value function ψ(x)

and find optimal investment and premium control policies (π∗, u∗) ∈ Z such that ψ(x) =

ψπ∗,u∗
(x).

For the current wealth level x ≥ c/r, if we choose a special policy with π = 0 and u = 0,

then the volatility of the controlled surplus process {Y π,u
t } is zero but the drift rx− c ≥ 0.

Under this pair of policy, the probability of ruin is 0. Thus, we can conclude that ψ(x) = 0

for all x ≥ c/r.
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We now investigate the value function ψ(x) for 0 ≤ x < c/r. Suppose that the value

function ψ of (3.21) is a C2 function. By the standard procedure of dynamic programming

principle again, we can show that ψ satisfies the HJB equation

inf
(π,u)∈Z

Aπ,uψ(x) = 0.

Since ψ is independent of time t, the HJB equation is equivalent to

inf
(π,u)∈Z

{
1

2
(σ2u2 + β2π2)ψ′′(x) + (µG(u) + (α− r)π + rx− c)ψ′(x)

}
= 0, (3.22)

for 0 ≤ x ≤ c/r. Also, the value function ψ satisfies the boundary conditions ψ(0) = 1 and

ψ(c/r) = 0.

Theorem 3.4. Suppose that the value function ψ of (3.21) is a C2 function. Then, ψ is a

strictly decreasing and convex function on (0, c/r).

Proof. Under the assumption of the theorem, ψ is a continuous function. Given any c/r >

x > y > 0, by the dynamic programming principle, we have

ψ(x) = inf
(π,u)∈Z

Px{τπ,uy <∞}ψ(y).

Taking a special policy with π = c/(α − µ) and u = 0 yields Px{τπ,uy < ∞} < 1. So,

ψ(x) < ψ(y) < 1 for any c/r > x > y > 0.

To show the convexity of the value function ψ(x), the method used in Theorem 3.1 does

not work anymore. It is because that the ruin probability is the expectation of an indicator

function, but the indicator function is not a concave or convex function. Fortunately, with

the assumption that ψ is a C2 function, the convexity of the value function ψ can be shown

using HJB equation (3.22). The proof of the convexity is similar to the one given in Schmidli

(2002). Assume that there exists a point x ∈ (0, c/r) such that ψ′′(x) < 0. Note that G(u)

is bounded for u ∈ [0, ū]. Then, the infimum of the left-hand side of (3.22) tends to −∞

rather than 0. Thus, we have ψ′′(x) ≥ 0. In addition, if there exists a point x ∈ (0, c/r)

such that ψ′′(x) = 0, then (3.22) follows only if ψ′(x) = 0. However, this contradicts with

the strictly decreasing property of ψ on (0, c/r). Thus, we can conclude that ψ′′(x) > 0 for

all 0 < x < c/r.
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We next present the verification theorem.

Theorem 3.5. Suppose that v(x) ∈ C2 on (0, c/r) is a strictly decreasing and convex solution

to HJB equation (3.22) with boundary conditions v(0) = 1 and v(c/r) = 0. Then, v(x) is

the value function, i.e.,

ψ(x) = v(x), 0 ≤ x ≤ c

r
.

Proof. We omit the proof as it is similar to that of Theorem 3.2.

Given a pair of policy (π, u) ∈ Z such that π and u are Markov control policy (feedback

policy). That is, both πt and ut are functions of the controlled state Y π,u
t , i.e., πt = π(Y π,u

t )

and ut = u(Y π,u
t ). Then, the controlled surplus process can be expressed as

dY π,u
t = Υ(Y π,u

t )dt+ σu(Y π,u
t )dW Y

t + βπ(Y π,u
t )dW S

t , (3.23)

where

Υ(x) = rx− c+ µG(u(x)) + (α− r)π(x).

Also, the scale function of (3.23) is given by

S(x) =

∫ x

0

exp

{
−
∫ t

0

2Υ(x)

σ2u2(s) + β2π2(x)
ds

}
dt, (3.24)

which can be used to express the value function.

In the following theorem, we derive the optimal investment and premium control policies

which minimize the probability of ruin.

Theorem 3.6. For minimizing the ruin probability, the optimal premium control policy

0 ≤ u∗(x) < ū is uniquely determined by the equation

1

2

(
mσ

µ

)2
u

G′(u)
+G(u)− 1

2
uG′(u) =

c− rx

µ
, 0 ≤ x ≤ c/r, (3.25)

such that u∗(c/r) = 0, and the optimal investment policy π∗(x) is given by

π∗(x) =
(α− r)

β2
· σ

2

µ
· u∗(x)

G′(u∗(x))
, (3.26)

such that π∗(c/r) = 0. Then, the value function is given by

ψ(x) = ψπ∗,u∗
(x) = 1− S∗(x)

S∗(c/r)
, 0 ≤ x ≤ c/r,

where S∗ is defined in (3.24) with π(x) and u(x) replaced by π∗(x) and u∗(x), respectively.
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Proof. Note that the value function ψ is shown to be strictly decreasing and convex in

Theorem 3.4. According to the verification theorem, we need to find a strictly decreasing

and convex solution, say v, to (3.22). Clearly, the infimum in (3.22) with respect to π and

u exists due to the strict convexity of ψ. Taking derivatives with respect to π and u, we

obtain the minimizers satisfying

π∗ = −α− r

β2

(
vx
vxx

)
, (3.27)

u∗ = −µG
′(u∗)

σ2

(
vx
vxx

)
, (3.28)

which implies a relationship between u∗ and π∗, i.e., (3.26). On the other hand, if we put

(3.27) and (3.28) back into (3.22), then the HJB equation turns out to be[
rx− c+

1

2
(α− r)π∗ + µ(G(u∗)− 1

2
u∗G′(u∗))

]
vx = 0, (3.29)

which implies, by the strictly decreasing property of v, that

rx− c+
1

2
(α− r)π∗ + µ(G(u∗)− 1

2
uG′(u∗)) = 0. (3.30)

Combining (3.26) with (3.30), we see that u∗ = u∗(x) is a solution to (3.25). Note that

G(0) = 0, G′(ū) = 0, uG′(u) → 0, and u/G′(u) → 0 as u → 0+ by Lemma 2.1. Thus, the

left-hand side of (3.25) equals 0 as u→ 0+ and ∞ as u→ ū. In addition, taking derivative

with respect to u on the left-hand side of (3.25) yields

1

2
(G′(u)− uG′′(u))

(
1 +

(
mσ/µ

G′(u)

)2
)
> 0,

for 0 < u < ū because G is strictly increasing and concave on (0, ū). Thus, for 0 < x < c/r,

the optimal policy 0 ≤ u∗(x) < ū is uniquely determined by (3.25) such that u∗(c/r) = 0,

and the optimal investment policy π∗ = π∗(x) is determined by (3.26). Furthermore, it

follows from u∗(c/r) = 0 and (2.6) in Lemma 2.1 that π∗(c/r) = 0.

Finally, it is easy to verify that u∗ and π∗ obtained in (3.25) and (3.26) respectively

belong to Z. Hence, the solution v to HJB equation (3.22) is a solution to

1

2
(σ2u∗2(x) + β2π∗2(x))v′′(x) + (µG(u∗(x)) + (α− r)π∗(x) + rx− c)v′(x) = 0,
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with boundary conditions v(0) = 1 and v(c/r) = 0. Solving this yields

v(x) = ψπ∗,u∗
(x) = 1− S∗(x)

S∗(c/r)
, 0 ≤ x ≤ c

r
.

Then, the result follows from the verification theorem (Theorem 3.5).

Remark 3.2. From the above analysis, we know that the left-hand side of (3.25) is strictly

increasing with respect to u. Thus, the solution to (3.25), u∗(x), is strictly decreasing with

respect to x. In addition, since the function u/G′(u) is a strictly increasing function of u, we

see from (3.26) that π∗(x) is strictly increasing with respect to u∗(x), and hence is strictly

decreasing with respect to x. Furthermore, for the special case with m = 0 (i.e., α = r), it

follows from (3.26) that the optimal investment policy π∗ = 0, and follows from (3.25) that

the optimal premium control policy u∗ is the solution to

G(u)− 1

2
uG′(u) =

c− rx

µ
,

which is independent of σ2, the second moment of the claim sizes.

Remark 3.3. In the paper of Browne (1995), it is shown that in the absence of risk-free

asset in the market (i.e., r = 0), the optimal investment policy for the maximization of

exponential utility of terminal wealth and the minimization of ruin probability are equivalent

by choosing suitable risk aversion coefficient, but this does not hold for r > 0 . In this paper,

this result also holds by observing (3.13) and (3.26). Let the constant u∗ be the solution to

(3.25) when r = 0. Then we can choose

θ =
µ

σ2
· G

′(u∗)

u∗
,

which implies that the optimal investment policies under the two criteria are equivalent.

Remark 3.4. A special policy with π = 0 and u = 0 is optimal, and the corresponding

ruin probability satisfies ψ(x) = 0 for all x ≥ c/r. This fact implies that when minimizing

ruin probability, the company will withdraw from the market when its wealth level exceeds

the level c/r. However, this is not the case at all in practice. From this point of view,

the criterion of minimizing ruin probability is somehow conservative, especially for large

insurance companies.

18



4 An Example

In Section 3, we obtain the optimal investment and premium control policies under the two

criteria: maximizing the expected utility of terminal wealth and minimizing the probability

of ruin. For the applications of our model in practice, the functional form of G should

be estimated from the empirical data of an insurance portfolio, or specified based on the

industry experience. In this section, we give a specific form of the function G to show that

model (2.5) represents a class of non-linear stochastic control risk model.

Let

G(u) = u(
√
λmax − u), 0 ≤ u ≤

√
λmax, (4.1)

from which we have

λt = h(θt) =
λmax

1 + θ2t
.

Clearly, the function G is a strictly concave function such that G(0) = G(
√
λmax) = 0. It is

also easy to verify that it satisfies properties (2.6) in Lemma 2.1. Then, with the function

(4.1), the diffusion model of the insurance portfolio without investment turns out to be

dYt = (but − au2t − c)dt+ σutdW
Y
t , (4.2)

where a = µ, b = µ
√
λmax, and c are positive parameters. As a special case of our model of

study (2.5), model (4.2) has been extensively studied in recent years. For example, Guo et

al. (2004) study the singular optimal dividend control problem; Meng et al. (2013) extend

the study of optimal dividends to the case with impulse dividend policy; and Zhou and Yuen

(2012) examine an optimal reinsurance and dividend problem under the variance premium

principle, which also leads to an optimization problem for model (4.2).

In this section, we set u as a premium control variable and study the optimal investment

policy and premium control policy for model (4.2). For the criterion of maximizing the

expected utility of terminal wealth, if the insurer has a CARA utility, then the optimal

investment and premium control policies are determined by (3.13) and (3.14). With the
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function G of (4.1), we have

π∗
t =

α− r

θβ2
e−r(T−t),

u∗t =
b

2a+ θσ2

µ
er(T−t)

=

√
λmax

2 + θσ2

µ2 er(T−t)
,

for t ≤ T . As was mentioned in Remark 3.1, the optimal investment policy is the same as

the one obtained in Browne (1995). The optimal premium control policy decreases with the

insurer’s CARA coefficient θ as well as with the time period T − t, and attains the maximum

value
√
λmax/(2 + θσ2/µ2) at time t = T . For the criterion of minimizing the probability of

ruin, by substituting the function G of (4.1) into (3.25) and (3.26), one can show that u∗(x)

is the root of

2µbu2 −
[
b2 + (mσ)2 + 4(c− rx)µ

]
u+ 2 (c− rx) b = 0,

with b = µ
√
λmax. Since ū = b/2a =

√
λmax/2, we need to find the root u∗(x) such that

0 < u∗(x) < ū. Thus, we obtain the optimal premium control policy

u∗(x) =
b2 + (mσ)2 + 4(c− rx)µ−

√
(mσ)4 + (b2 − 4(c− rx)µ)2 + 2(b2 + 4(c− rx)) (mσ)2

4µb
,

and the optimal investment policy

π∗(x) =
(α− r)

β2
· σ

2

µ
· u∗(x)

b− 2µu∗(x)
.

In particular, for m = 0 (i.e., α = r), we have π∗(x) = 0, which means that we invest all the

surplus in the risk-free asset. In this case, the optimal premium control policy becomes

u∗(x) =
b2 + 4(c− rx)−

√
(b2 − 4(c− rx))2

4µb
=

2(c− rx)

µb
,

where the last equality follows from Assumption C as G(ū) > c/µ implies that b2 > 4c >

4(c− rx) for 0 < x < c/r.

5 Concluding remarks

Inspired by the previous studies on optimal premium rate, we introduce a link between the

safety loading and claim arrival rate of an insurance portfolio. Based on the link function, we
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then propose an nonlinear diffusion model in which the premium rate and the investment can

be served as control variables. This nonlinear diffusion model is obtained by investigating

the diffusion approximation to a non-homogeneous compound Poisson process. The optimal

investment and premium control policies and the corresponding value functions are explicitly

obtained under the two criteria: maximizing exponential utility of terminal wealth and min-

imizing ruin probability. For the applications of our model in practice, the functional form

of G in model (2.5) should be estimated from the empirical data of an insurance portfolio,

or specified based on the industry experience. To see the application of the nonlinear model,

we present an example for a specific form of the link function between the safety loading

and claim arrival rate. In this special case, the model reduces to a quadratic diffusion model

studied by Guo et al. (2004). This example shows that our proposed model represents a

class of non-linear stochastic control risk model. As a by-product, we find another way to

describe the well-known quadratic diffusion model.
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