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Abstract 

In this review article we compare two different mathematical descriptions of 

electromagnetic radiation. Namely one describing the fields in terms of plane-waves, and 

the other using spherical-waves. We analyse the different approaches in terms of the 

multipole expansion, and weigh-up advantages and disadvantages of the two approaches. 

The focus is within the context of a non-relativistic quantum electrodynamical formulation, 

and we consider processes related to light-matter interactions, such as electronic energy 

transfer. We also include an analysis of symmetry and group theoretical considerations. 

Significant numerical details are provided in the appendices that may be useful to readers 

who want to apply the theory to applications.        

1. Introduction 

 The manipulation of electromagnetic radiation (EMR) at the level of photons is a 

highly active field of research. A complete understanding of photons at the quantum 

mechanical level is essential to the development of new technologies such as those centred 

around structured light [1], near-field imaging techniques [2-4] and ghost imaging [5, 6]. It 

will very likely also be key to many emerging technologies such as those associated with 

quantum computers [7, 8] and quantum communication [9, 10]. Key to this understanding 

is being able to describe the photonic fields mathematically. In some applications a preferred 

basis may be more desirable. In this review, we weigh-up the merits of two of the most 

common bases for describing electromagnetic radiation, namely the plane (PW) and 

spherical wave (SW) descriptions of photonic fields.  

 Early attempts to unite quantum theory with Maxwell’s equations, to produce an 

integrated and self-consistent description of EMR and its interaction with atoms and 

molecules, in which all elements of the theory are quantised were made rapidly; notably by 

Dirac [11, 12] and a little later by Jordan and Pauli [13]. Extraordinary progress in the 
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second half of the 20th century led to the sophisticated theory we now know as quantum 

electrodynamics (QED) [14-16]. Upon looking a little closer at these developments, a 

somewhat surprising detail emerges. Some of the earliest theoretical papers focused upon a 

description of EMR in terms of vector spherical harmonics (VSHs) and Bessel functions 

(BFs) - referred to in this review as the spherical wave approach. [17, 18] This description 

was elaborated by Franz, [19] and pursued especially by nuclear physicists, presumably 

because it is strongly angular momentum focused. The approach permits ready use of 

powerful mathematical concepts based upon angular momentum theory; vector coupling 

through Clebsch-Gordan coefficients or Wigner symbols, irreducible spherical tensor 

algebra and multipole fields [20-21]. It is also readily extendable to situations in which 

nuclear transitions are accompanied by large changes of angular momentum, [22], i.e. when 

Δ𝐽 ≥ 2. Though widely applied in nuclear physics, this type of description appears to have 

been little used in atomic and molecular physics, or in the analysis of the many complex 

quantum optical phenomena, such as structured light applications including Laguerre-

Gaussian beams, which have been so extensively studied in recent years [23, 24]. In these 

areas of research a plane wave description, implemented through Cartesian tensor algebra, 

is the method of choice. Few, if any, attempts have been made to compare these two 

approaches, namely the spherical and plane wave description of photonic fields, to the same 

problems. However, these descriptions are complementary and some cross-fertilization 

could be valuable; especially for those working in quantum optics and in particular those 

with a focus on structured light applications and in the area of quantum information.  

 Accordingly, in this review we compare the PW and SW methods, to illustrate their 

strengths and weaknesses, and to show how these different formulations can be related. In 

so doing we shall make use of Cartesian ( , , ) x y z and spherical polar ( , , ) R    unit vectors, 

which may be source- or photon-based. It is important to note that the relationships of 

source-based to photon-based vectors depends upon the direction of the wave vector, 𝑘⃗ ̂; i.e. 

they differ for in-coming and out-going photons. In the case of the spherical description of 

photonic fields, the radial component makes use of Bessel, Neumann and Hankel functions 

of half-integral order [25, 26]. EM waves described by Bessel functions, jl(r), and by 

Neumann functions, nl(r), are stationary waves for all values of r, including infinity, whilst 

their combination in the form of the Hankel functions, hl
(1)(r) and hl

(2)(r), give rise running 

waves for all r [27]. The direction in which the photon is travelling depends upon the choice 

of sign in the time-dependence factor. Combinations of exp(–it) with hl
(1)(r) and hl

(2)(r) 
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describe out-going and in-coming photons respectively, and we shall adopt this time-

dependence throughout this review. If exp(+it) is chosen the situation is reversed. 

 In this work we assume a non-relativistic quantum electrodynamical formulation 

within the Coulomb gauge. This is because the electrons of interest are bound within the 

valence shells of atoms or molecules. Although we won’t be discussing relativistic 

applications typically written in the Lorentz-covariant 4-vector formulation in this review, 

the ideas presented here are general and transferrable to such applications.   

2. Background Theory 

2.1 The quantum mechanical nature of the photon. 

 It is informative to briefly review the quantum mechanical description of the photon. 

There are a number of good references to which the reader is pointed for more detailed 

information [16, 28-31]. In regions free of charges and currents, Maxwell’s equations for the 

EMR field can be transformed into a differential equation having the same form for the 

vector potential, A , the electric field, E , and the magnetic field, B ; namely: 

2
2

2 2

1
0

X
X

c t


  


  (1) 

where , orX A E B . This is a wave equation for which there are many solutions, mostly 

in terms of sine, cosine and exponential functions or combinations of them. For a 

frequency  the energy of the wave is given by Planck’s relationship: 

E h      (2) 

where  is the angular frequency, 2. The field is envisaged as resulting from the motions 

of a system of harmonic oscillators and, since in free space there is no restriction on their 

frequencies, there is no quantisation and any energy is possible. The usual means by which 

quantisation is introduced is to restrict the possible values of  by enclosing the oscillators 

within a “box” or requiring that the waves be subject to periodic boundary conditions. Either 

form of restriction means that only certain wavelengths, , are possible and hence only the 

corresponding frequencies and energies. In the case of a cubic box of side L, for example, 

the only wavelengths (modes) allowed are those for which 

22 2
, and

yx z
x y z

nn n
k k k

L L L

 
      (3) 

 where k = 2/ is the wave number and the ni are integers. The solutions of the wave 

equation for , orA E B may be written as a Fourier series in the allowed modes. An example 

of such a mode expansion for the vector potential is: 
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 *( , ) ( )exp(i ) ( )exp( i )k kk
A r t a t k r a t k r       (4) 

Where the ak(t) are time-dependent amplitude coefficients and the second term in 

parentheses is the complex conjugate of the first. 

The excitations of these modes represent the photons, and since these are bosons there is no 

limit on the number which can occupy any particular mode. A single mode is symbolized by 

the ket ( , )n k  where n is the number of photons in the mode, k the wave vector and  the 

photon’s polarization. The complete radiation field is expressed as a product of the 

individual modes as: 

1 1 1 2 2 2 3 3 3( , ), ( , ), ( , )n k n k n k    .   (5) 

The Hamiltonian operator and its application to determine the eigen-energies of a harmonic 

oscillator is described in numerous elementary books on quantum mechanics. Following the 

procedure of second quantisation, the Hamiltonian can be written as, 

†ˆ ˆ ˆ( 1/ 2)H a a   .   (6) 

The operators †ˆ ˆanda a have the following remarkable properties: 

1/2ˆ ( , ) ( 1)( , )a n k n n k      (7) 

and 

† 1/2ˆ ( , ) ( 1) ( 1)( , )a n k n n k    ,  (8) 

from which we see that â reduces the number of photons in the mode by one while †â

increases it by one. For this reason they are called the annihilation and creation operators 

respectively, and they have exactly the effect needed to describe the interaction of EMR with 

atoms and molecules, when it is accompanied by the absorption or emission of a photon. 

Though we have now found a way to quantise the oscillator energy levels and express the 

electromagnetic field in terms of photons, Eq. (4) is a classical expression which requires 

further development. We may recall the procedure in basic quantum mechanics where the 

canonical variables of a classical expression are “promoted” to operators to generate a 

quantum-mechanical counterpart. One of the most important examples being the 

replacement of linear momentum along x by a differential operator; symbolically: 

i /x xmv p x       (9) 

Similarly, in passing from classical electrodynamics to quantum electrodynamics, the field 

amplitudes, ak(t), of the classical equations are replaced by the above creation and 

annihilation operators, which describe discrete excitations and de-excitations in the photonic 
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field. Photons are therefore regarded as elementary excitations of an optical mode, with a 

specific angular frequency and polarization. 

When classical field amplitudes are replaced by creation and annihilation operators Eq. (4) 

becomes: 

1/2

,
0

( , )
2k

A r t
ckV 

 
  

 
   

 * †( ) ( )exp i( ) ( )( ) ( )exp -i( )
k k

e k a k k r t e k k a k k r t                .  (10) 

Here 0 is the permittivity of free space, V the quantisation volume and e the photon 

polarization vector.  

 

2.2 The interaction of EMR with matter: the multipolar Hamiltonian  

 The focus of quantum electrodynamics is the interaction of EMR with matter, and 

unlike semi-classical theories, both radiation and matter are treated in a fully quantum 

mechanical way, and can be developed in terms of both Lagrangian and Hamiltonian 

formulations. The interaction Hamiltonians are of particular interest are because they dictate 

the nature of the emission and absorption. When atoms and molecules form sources for 

currents, the multipolar expansion is employed. That is to say, in matter electric and 

magnetic polarization results from charge and current densities. Charge densities have 

contributions from free and bound charges, while current densities originate from electric 

polarization and magnetic currents generated by motion of the bound charges. Convective 

and Röntgen currents also make contributions in certain situations. Decomposition of matter 

in this way leads to the multipolar form of the theory, as outlined below.  

 This work is focused towards atomic and molecular structure, however it should be 

noted that much of the theory is also applicable to nuclei. In the molecular case it should be 

noted that we consider only the electronic degrees of freedom and hence any vibrational 

contributions are assumed completely decoupled from the light-matter interaction. The 

Power-Zienau-Woolley (PZW) Hamiltonian in the exact multipolar form is given by, 

int
ˆ ˆ ˆ ˆ( ) ( )mult mol radH H H H


       (11) 

where the terms on the right correspond to the Hamiltonians for the molecule the radiation 

and their interaction respectively. If more than one molecule or atom is present they are each 

coupled to the radiation, but not to each other; all intermolecular interaction is via the field. 

The introduction of coupling between the radiation field and a molecule (or any other 
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interacting species) corresponds to the substitution (12) which is known as the principle of 

minimal electromagnetic coupling. 

ˆ ˆ ( )p p eA q      (12) 

A specific example is the interaction between EMR and the single electron of the hydrogen 

atom resulting in the absorption (annihilation) of the photon and the excitation of the atom, 

which takes the form. 

 int
ˆ ˆH = ( )

e
p A r

m
     (13) 

Equation 13, as it stands, is not particularly informative. Rather more insight may be 

obtained from the expression for the multipolar Hamiltonian which, as outlined in reference 

[6], is expressible as a series, 

1 1 1

int 0 0 0Ĥ ( )  ( ) ( ) ( ) : ( ) ( ) ( )d R Q d R d R                                (14) 

Where (), Q() and () represent the electric dipole, electric quadrupole and the electric 

octupole components of the interacting species, , and ( )d R


 is the transverse field 

displacement operator associated with the photon. In Eq. (14) we see how the radiation 

interacts with the various multipole moments of . Explicit calculations of these higher order 

terms typically involve the use of tensor algebra, where an increase in the order of the 2l - 

pole corresponds mathematically to an increase in the rank of the tensor (i.e. the dipole term 

requires evaluating a first order tensor, the quadrupole a second rank tensor, and so on).  

When describing electronic transitions, within the context of the multipolar formulation of 

QED, the emission and excitation processes, are typically described in terms of the leading 

order of the transition. For example, a transition that is dipole allowed is labelled E1, while 

a transition that is dipole forbidden, but quadrupole allowed is labelled E2. There are 

equivalent magnetic transitions labelled M1, M2, etc [32]. 

 

2.3 Helmholtz decomposition of (photonic) fields. 

 Central to the theory of quantum electrodynamics is that all interactions between 

electrons occur via the exchange of virtual photons. In the case of non-relativistic QED, 

where the electrons in question are typically bound to the valence orbitals of atoms and 

molecules, the Coulomb gauge is employed. Calculations, such as that of the electronic 

coupling between two molecules, are carried out formally, by summing over all possible 

virtual photon modes. In many applications it is informative to consider how the character 

of a virtual photon changes as we move from the near- to the far-zone. The implications of 
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whether a photonic event occurs in the near- intermediate- or far-zone could have could 

influence design principles of particular metamaterials [33, 34].  

 The regimes of the interaction between electronic species are defined in terms of the 

distance between the species 𝑅  and the wavevector of the mediating virtual photon, 𝑘 . 

Broadly speaking, near-zone events occur when 𝑘𝑅 ≪ 1, intermediate-zone when 𝑘𝑅~1 

and far-zone events occur when 𝑘𝑅 ≫ 1. In real terms, this means that interactions between 

molecules that are less than several nanometers apart are near-zone events, while 

experiments that involve traditional photon detectors occur well above the far-zone limit. 

An increasingly important regime is the intermediate-zone, which occurs at around 10 – 100 

nanometers for optical processes. This is of course the approximate dimension of many 

metamaterials. In these cases, both near- and far-zone considerations should be taken into 

account. 

 The Helmholtz decomposition theorem states that any vector field can be separated 

in zero-curl (irrotational) and zero-divergence (solenoidal) components, 

 

𝐹 (𝑟 ) = 𝐹 𝑆𝑜𝑙(𝑟 ) + 𝐹 𝐼𝑟𝑟(𝑟 )       (15) 

 

   ∇ ∙ 𝐹 𝑆𝑜𝑙 = 0         (16) 

 

∇ × 𝐹 𝐼𝑟𝑟 = 0         (17) 

 

Within the context of Coulomb gauge QED, which typically employs the PZW Hamiltonian 

[35-37], irrotational parts of the EM fields disappear and the remaining transverse fields are 

defined as being orthogonal to 𝑘⃗  (and specifically not with respect to the spatial coordinate 

𝑟 ). Nevertheless, at the quantum mechanical level, the description of the field in terms of its 

components is quite different in the near-zone compared to the far-zone. In the near-zone, 

the emitted virtual photon is still close to the source, and hence because of the high degree 

of certainty in the photon’s position, Heisenberg’s Principle dictates that there is an 

associated high degree of uncertainty in the momentum; including its direction. This means 

that in summing over all modes of the virtual photons, as well as transverse fields, there will 

be associated longitudinal fields, with respect to the displacement vector 𝑟 . As the photon 

moves away from the source, entering the far-zone, its momentum becomes well defined 
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and the longitudinal components disappear, leaving only transverse components of the 

electric and magnetic fields.  

 Consequently, when considering near-field photonic interactions, it is important to 

think about longitudinal as well as transverse components of the EM fields. [38-40] As will 

be shown in subsequent sections of this review, the spherical wave description of the 

mediating photons allows one to decompose the fields in transverse and longitudinal 

components naturally, whereas in the case of the plane-wave description a judicious choice 

of Cartesian coordinates is usually required.  

 

2.4.  The plane-wave (PW) description of light 

In the plane wave description, the solution of Eq. (1) is: 

 

𝑋 = 𝑋 0exp i[𝑘⃗ ∙ 𝑟 − 𝜔𝑡]                                                   (18) 

 

where 𝑋 0 is a constant amplitude factor,  the angular frequency and 𝑘⃗  the wave vector. 

In the PW description of light, neglecting time-dependence, the exponential function is 

combined with a polar unit vector, 𝑒 ̂1𝑛, to represent the field direction and the exponential 

is expanded in the well-known manner, as shown in Eq. (19): 

 

𝑒 ̂1𝑛exp[i𝑘⃗ ∙ 𝑟 ] =  𝑒 ̂1𝑛 [1 + i𝑘⃗ ∙ 𝑟 + 
(i𝑘⃗ ∙ 𝑟 )𝟐

2!
+ 

(i𝑘⃗ ∙ 𝑟 )𝟑

3!
+ ⋯ ]                 (19) 

 

Here the subscript n represents the direction of polarization, and the 1 indicates that this 

vector has three (n = ±1,0) components. This expression for the expansion can be exploited 

either analytically or numerically, and utilized for calculational purposes, within the context 

of classical or quantum electrodynamics. As detailed below, the expression (19) can be used 

to identify multipole terms directly, and appropriate truncation of the series will depend on 

the particular application.  

 

2.5. The spherical-wave (SW) description of light 

In the SW description, again neglecting time-dependence, the exponential function is 

usually, though not invariably, combined with an axial unit vector,  𝑒 ̂1𝑛, to represent the 
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field direction and, for radiation propagating in a general direction characterised by the polar 

angles  and . The exponential is expanded according to Eq. (20) [41]: 

 

𝑒 ̂1𝑛exp[i𝑘⃗ ∙ 𝑟 ] = 4𝜋 ∑ ∑ ∑ i𝑙
𝑀𝑙𝐽

𝑗𝑙(𝑘𝑟)|𝑙,𝑚(𝛼, 𝛽) > 

< 𝑙1𝑚𝑛|𝐽𝑀 > |𝐽, 𝑙, 𝑀(𝜗, 𝜑) >            (20)  

 

Here jl(kr) is a spherical Bessel function, |l,m()> a normalised scalar spherical harmonic 

(SSH), |J,l,M()> a normalized VSH [42, 43] and <l1mn|JM> a Clebsch-Gordan 

coefficient or Wigner 3j symbol [27, 41]. For the description of the field surrounding an 

electric or magnetic multipole one obtains, depending upon the detailed structure of the 

multipole, expressions in which the angular VSH’s are combined with radial Hankel 

functions, hl
(1)(r) and hl

(2)(r) which, in combination with a time factor of exp(–it), describe 

out-going and in-coming waves respectively [44]. 

 With regard to the use of expansion Eq. (20), the following general points may be 

made: (1) Its apparent complexity is largely an illusion since, in any particular application, 

only one value of M and one or two values of J are involved, and l can never be other than 

J or J1.  (2) The integer values of the parameters of the 3j symbol which result in a non-

vanishing coefficient are strictly limited by the laws governing the addition of angular 

momenta, and values have been extensively tabulated, e.g. [45, 46].  

 That said, it is clear that Eq. (20) is directly applicable only to spherically 

symmetrical situations, which accounts for its predominant use in nuclear physics. Where it 

can be applied, it gives angular intensity distribution and retarded radial functions 

automatically [44]. Furthermore, when the molecular systems possess some degree of 

symmetry, the connection between the VSHs and the irreducible representations (IRs) of 

the group of all rotations, SO3, [21, 27, 42] can be extended to the IRs of lower point groups, 

which is important in the potential extension of the spherical wave description of EMR to 

molecular problems. We expand upon this point in Section 5 of this paper.  

 

2.6. A note on the issue of gauge invariance  

All theories of radiation-matter interactions should be gauge invariant. While this is 

not key to this review, readers concerned with the deeper underlying principles of the QED 

description of the interaction of electromagnetic radiation with atoms and molecules may 

be concerned to know whether the expressions which we describe and apply here are gauge 
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invariant. Griffith [77, p. 43] has examined this problem in detail and has shown, in very 

general terms, that the wavefunctions are changed only by a phase factor when the 

interaction Hamiltonian, has been modified by the addition of the gauge function to the 

scalar and vector potentials. Such a transformation therefore makes no difference at all to 

the observable results of the calculation. Moreover, Griffith has also proved [appendix 5 of 

reference 77] for the Coulomb gauge, which we also use here, that the first and second order 

perturbation expressions which arise in applications of the theory are also gauge invariant. 

In that context he makes the important observation that when applying the second-order 

perturbation theory it is essential to consider the second-order term which arises in the first-

order calculation. The question of gauge invariance within the context of multipole 

transitions is addressed by Grant,47 while Glushkov et al. addresses relativistic corrections 

within a gauge invariant context.48  

 

3.  The different descriptions of light for atomic interactions 

3.1.  Term-by-term comparison of PW and SW descriptions of light 

 Our discussion begins with an examination of the individual terms in the expansions 

(19) and (20) as they are applied, in particular, to the calculation of the transition moment 

between atomic or molecular electronic states [49]. Our perspective is from the point-of-

view of molecular quantum electrodynamics, [16, 50] whereby we focus on the calculation 

of quantum amplitudes between initial and final states, and hence it is sufficient to consider 

time-independent standing waves in the z-direction for which Eq. (19) becomes: 

𝑒 ̂1𝑛exp[i𝑘𝑧] =  𝑒 ̂1𝑛 [1 + i𝑘𝑧 − 
(𝑘𝑧)𝟐

2!
− 

i(𝑘𝑧)𝟑

3!
+ ⋯ ] 

 (19a) 

and expression (20) reduces [20] to:  

 

𝑒 ̂1𝑛exp[i𝑘𝑧] = 𝑒 ̂1𝑛 ∑ i𝑙(2𝑙 + 1)𝑗𝑙(𝑘𝑟)𝑃𝑙(𝑐𝑜𝑠𝜗) .
𝑙

 

(20a) 

In expression (20a), Pl(cos) is Legendre polynomial with  = cos–1(z/r) and jl(kr) is the 

spherical Bessel function of half-integral order appropriate for the description of standing 

waves [49]. This is the form of Bessel function required to calculate the transition moment 

between two electronic states and hence the transition probability and rate. 
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 In the context of transition moments, expressions (19) and (19a) are particularly 

important in that successive terms are used as the basis for assigning the order of polarity of 

the radiation involved in the transition. In particular, when kz is rapidly diminishing (i.e. kz 

<< 1), the different terms are used to define the type of transition, i.e. dipolar, quadrupolar, 

octapolar, etc [52, 32]. Thus, if the first term in the series provides a coupling between two 

atomic or molecular electronic states, with a consequent absorption or emission of radiation, 

that radiation is said to be electric dipolar (E1) radiation, and the transition between the two 

states is an electric dipole transition. If it is necessary to go to the second term before a non-

zero coupling is found, then the associated radiation is electric quadrupolar (E2) and/or 

magnetic dipolar (M1) radiation and the transition is described as an electric quadrupole or 

magnetic dipole transition; or as an indeterminate combination of the two. Higher moments 

appear to have been discussed only very rarely in atomic and molecular physics, e.g. [53], 

though more commonly in nuclear gamma-ray spectroscopy [54]. Since the multipolarity is 

intimately connected with the angular momentum (AM) of the radiation and the coupled 

states, the assignment of polarity (i.e. the order of truncation of the multipole) also implies 

an assignment of AM to the transition and the radiation. 

In the case of expressions (20) and (20a), the AM of the radiation is given immediately by 

the parameters of the VSH in the form [42]: 

 

𝐽|𝐽𝑙𝑀 > = 𝐽(𝐽 + 1)ℏ2|𝐽𝑙𝑀 > 

(21) 

and 

𝐽𝑧|𝐽𝑙𝑀 > = 𝑀ℏ|𝐽𝑙𝑀 > . 

 (22) 

Since both expressions, (19) and (20), assign polarity and AM to their successive terms, it 

is useful to determine under what conditions there is term-by-term equality of the two series. 

For that purpose it is sufficient to compare the right-hand sides of (19a) and (20a), neglecting 

the polarization vector. Recalling that z = rcos, we find the following expressions for the 

first few terms in the expansion of (20a): 

𝑙 = 0  →   1 −
(𝑘𝑟)2

3!
+

(𝑘𝑟)4

5!
−

(𝑘𝑟)6

7!
+ ⋯ 

(23a) 

𝑙 = 1  →   i𝑘𝑧 −
3i𝑘𝑧(𝑘𝑟)2

5 × 3!
+

3i𝑘𝑧(𝑘𝑟)4

7 × 5!
− ⋯ 
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(23b) 

𝑙 = 2  →  −
(𝑘𝑧)2

2!
+

(𝑘𝑟)2

3!
+

30(𝑘𝑧)2(𝑘𝑟)2

7 × 5!
− ⋯ 

(23c) 

Comparison of equations (23a-c) with (19a) now shows that the both the PW and SW series 

tend to term-by-term equality, when the second and subsequent terms in the PW series are 

neglected, i.e. as kr  0 (the long-wavelength approximation). This is precisely the criterion, 

in electronic spectroscopy, upon which the assignment of polarity and AM to the individual 

terms of equation 1 rests [55, 32]. 

Motivated by the specific results above, we now assume that kr << 1 which allows us to 

describe a more general analysis by approximating the spherical Bessel function as: 

 

𝑗𝑙(𝑘𝑟)  ≅  
(𝑘𝑟)𝑙

(2𝑙 + 1)(2𝑙 − 1)(2𝑙 − 3)⋯1
 ≡  

(𝑘𝑟)𝑙

(2𝑙 + 1)‼
 . 

(24) 

 

Expressing jl(kr) in this way and expanding the Legendre polynomial we obtain from 

equation (20a) the expression: 

 

exp(i𝑘𝑟) =  ∑
1

2𝑙(2𝑙 − 1)‼𝑙
∑ (−1)𝑚

≤(
𝑙

2
)

𝑚=0

(2𝑙 − 2𝑚)!

(𝑙 − 𝑚)! (𝑙 − 2𝑚)!𝑚!
(i𝑘𝑧)𝑙 (

𝑟

𝑧
)
2𝑚

≡ ∑ ∑ 𝛺𝑙,𝑚

≤(
𝑙

2
)

𝑚=0𝑙
 

(25) 

 

Table 1 lists some early terms in this expression, and we note that the terms in the m = 0 

column are precisely those of expansion (19a), but that higher terms are present for l  2. 

 

Table 1. Terms l,m  in Equation 25 

 m = 0 m = 1 m = 2 

l = 0 1   

l = 1 +ikz   

l = 2 –(1/2)(kz)2 +(1/6)(kr)2  
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l = 3 –(i/6)(kz)3 +(i/10)(kz)(kr)2  

l = 4 +(1/24)(kz)4 –(1/28)(kz)2(kr)2 +(1/280)(kr)4 

l = 5 +(i/120)(kz)5 –(i/108)(kz)3(kr)2 +(i/504)(kz)(kr)4 

 

When considering the emission of a photon as a consequence of a change of state of an atom, 

it appears intuitively reasonable to regard Eq. (20), based as it is upon VSH’s centred at the 

atomic nucleus, as the most suitable description of the very early stages of that process. 

Naturally, by the time the emitted photon has travelled a few nanometres from the atom and, 

a fortiori, has reached any physically realisable measuring instrument, the corresponding 

electromagnetic wave can be regarded, to a very good approximation, as a plane wave as 

described by Eq. (19). However, as r, the distance of the emitted photon from the emitter, 

approaches , the wavelength of the emitted light, the assumption that kr  0 becomes less 

valid, the terms for m > 0 can no longer be neglected and the term-by-term equality of the 

Eq. (19) and (20) is lost. But the exact value of the photon AM, given by the quantum 

number J of the VSH, |J,l,n()>, of Eq. (20), is unaffected by increasing r. This implies 

that the individual terms of expression (19) can no longer be regarded as precise descriptions 

of the photon AM and that this description of the AM carried by the photon is progressively 

degraded as the distance of the photon from its source increases. This result has a clear 

resonance with the work of Andrews [56] who has concluded, as a result of a PW-based 

analysis, that ‘any photon emitted by multipolar decay, with the sole exception of dipole 

emission, carries away from its source an angular momentum that acquires as it propagates 

beyond the near-zone a progressively broader spectrum of integer values’. This suggests 

that the angular momentum of the photon becomes increasingly undefined as it moves away 

from its source. But the implication of the SW results is not that the angular momentum of 

the photon changes; but rather that the description provided by the PW analysis becomes 

less valid as r increases. 

The exception of dipole emission noted by Andrews would appear, in the present 

interpretation, to be a consequence of the fact that, within the limits set by the assumption 

kr << 1, the dipole term (23a) has no dependence on r (or z), whereas the subsequent terms 

(23b and 23c) do.  

 

3.2.  Selection rules and transition moments 
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Clearly, the most important test in comparing the PW and SW descriptions of EMR is to 

demonstrate that the methods give the same quantitative results. This has been done in detail 

in the case of atomic transition moments [49]. Though the results of the SW and PW 

calculation of atomic transition moments are in exact agreement, they do raise a very 

fundamental question: How do the results differ with regard to a particular multipole 

transition? That is to say, can one expect to get convergence of results between the two 

mathematical descriptions of the photonic fields for dipolar, quadrupolar, octupolar, ... 

emission. In fact it has been shown that there is a lack of one-to-one correspondence of the 

consecutive terms in the expansions (19) and (20), [49] presumably indicating that at least 

one of the descriptions is inadequate for describing the emission from a particular l-pole.  

 As a specific illustration, consider the calculation of the transition moment matrix 

element, T, for the stimulated electronic transition from the 1s atomic orbital of hydrogen to 

the 2p+1. Both calculations lead to exactly the same algebraic expression (26) for T [49, 16]: 

 

𝑇 ≡ ⟨2𝑝+1; (𝑛 − 1)(𝑘, 𝑒1+1)| (
𝑒

𝑚
) 𝐴 ∙ 𝑝 |1𝑠, 𝑛(𝑘, 𝑒1+1)⟩ 

= −𝑁1𝑠𝑁2𝑝 (
𝑛ℏ

2𝜀𝑜𝑐𝑘𝑉
)
½

∙
iℏ𝜋

𝑚
∙
16√2

3
(
2𝑎0

3
)
3

∑ (−1)𝑛
∞

0
(𝑛 + 1) (

2𝑘𝑎0

3
)
2𝑛

 . 

 

 (26) 

Here, N1s and N2p are the normalization factors for the hydrogen 1s and 2p orbitals 

respectively, 𝐴  the vector potential associated with the photon, 𝑝  the linear momentum 

operator of the electron, k the wavenumber, V the quantization volume, a0 the Bohr radius, 

c the velocity of light, m the mass and e the charge of the electron. 

 It is important to note that the exact equality of the PW and SW results is only found 

when the complete PW expansion of the exponential is used, not merely the first term as is 

normally the case when using the long-wavelength approximation. The difference between 

the full and approximate PW result is described clearly by Craig and Thirunamachandran 

[16, page 105]. 

However, though the algebraic results are identical, as of course they must be, the 

interpretation of the terms in the summation is not and can lead to ambiguity when 

considering the multipolar contributions to the emission process.  In the case of the PW 

calculation, the terms in the sum arise from the successive terms in the expansion of the 

exponential in Eq. (19), and can therefore, for consistency with the definition of dipolar, 
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quadrupolar,… transitions, be regarded as representing small multipolar corrections to the 

dominant (n = 0) dipolar term. But, in the SW calculation the identical series arises as the 

summed results of integrating two expressions of the form, [49] 

 

∫ exp (−
𝑟

𝛼
) 𝑗𝑛

∞

0
(𝑘𝑟)𝑟3𝑑𝑟        (27) 

with n = 0 and 2 and  = 2a0/3, each of which corresponds to an uptake of exactly √2ℏ units 

of angular momentum by the atom, i.e. an E1 transition. Accordingly, there is not a one-to-

one correspondence between the definitions of multipolar transitions in the PW and SW 

descriptions though, as we have shown above, the correspondence becomes increasingly 

close as kr . This is quite consistent with the general ethos of the application of the PW 

theory to the calculation of transition probabilities in atomic spectroscopy where the long-

wavelength approximation is almost invariably applied. The neglect of higher terms in the 

expansion 1 also accounts for the combining of E2 and M1 transitions in the PW description, 

whereas they are rigorously separated in the SW calculation where the long-wavelength 

approximation offers no computational advantage. 

 

3.3.  The polarisation of atomic emission spectra 

 A PW solution of this problem was published by Rubinowicz in 1929/30 [57]. 

Condon and Shortley [55] describe the application to quadrupole transitions in some detail 

and Huff and Houston give the results for octupoles [58]. 

 In the SW method [44] the parameters (J, l, M) of the VSH description of the photon 

emitted in any particular atomic process are determined by the selection rules for that 

transition [59]. The VSH, |J, l, M>, is then expressed in terms of the unit vectors of the 

spherical polar co-ordinate system,  𝑅⃗ ̂, ⃗⃗ ̂,  and ⃗⃗⃗ ̂ in the form: 

 

|𝐽, 𝑙,𝑀 > =  𝐽,𝑙,𝑀⃗⃗ ̂  +𝐽,𝑙,𝑀⃗⃗⃗ ̂ + 𝑅𝐽,𝑙,𝑀𝑅⃗ ̂ ,     (28) 

 

where J,l,M, J,l,M and RJ,l,M are complex numerical coefficients which are simple functions 

of J, l and M. When this has been done, if the imaginary part of the quotient J,l,M/J,l,M is 

negative we have emission of left elliptically polarized light (LEP) and when it is positive, 

right elliptically polarized light (REP) [49]. When Im{J,l,M /J,l,M} =  1 the emitted light 

is circularly polarized.  At the extremes; if the quotient is infinite we have light linearly 
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polarized along ⃗⃗⃗ ̂, designated  in atomic spectroscopy, and when it is zero we have linear 

polarization along ⃗⃗ ̂,  i.e. . General expressions for the coefficients J,l,M, J,l,M and RJ,l,M  

are available as simple functions of the three parameters, J, l and M, and the direction in 

which the photon is emitted (values of  and )  [44] and it is therefore an easy task to 

investigate the emission for any transition, even where there are large changes of AM. The 

problem is much more difficult in the case of a PW analysis following Rubinowicz [57] and, 

to our knowledge, no general expressions for that purpose have been published. 

 

3.4  The calculation of E- and B-fields of a multipolar source 

 A PW examination of electric and magnetic fields from dipolar and quadrupolar 

sources has been described by Rice et al., [60] who calculated their interaction with a test 

dipole. They were able to obtain results of a very general nature, it being only necessary to 

specify the nature of the source, i.e. dipole or quadrupole. The SW approach requires a more 

detailed model so, in order to make a comparison, we specify a quadrupolar source 

comprising four charges, oscillating between +q and –q, and positioned as follows at x and 

z co-ordinates (q, x, z):  (+q,+½s,+½s);  (–q,–½s,+½s); (+q,–½s,–½s);  (–q,+½s,–½s). Such 

a model might represent the transition electron density of an atomic 1s  3dxz transition. 

In the SW description the longitudinal or radial E-field is directed along the unit vector 𝑅⃗ ̂ 

[56], 

𝐸|| =
3i𝑞𝑠2𝑘4

40𝜋𝜀𝑜
{ℎ1

(1)(𝑘𝑅) + ℎ3
(1)(𝑘𝑅)}𝑠𝑖𝑛2𝜗 𝑐𝑜𝑠𝜑𝑅⃗ ̂. 

=
3i𝑞𝑠2𝑘4

8𝜋𝜀𝑜
exp(i𝑘𝑟) {

i

(𝑘𝑅)2
−

3

(𝑘𝑅)3
−

3i

(𝑘𝑅)4
} 𝑠𝑖𝑛2𝜗 𝑐𝑜𝑠𝜑𝑅⃗ ̂. 

(29) 

 

In the PW description, for the ith Cartesian component of the parallel E-field of a general 

quadrupolar emission we have, [60], 

 

𝐸|| =
3i𝑘4

4𝜋𝜀𝑜
exp(i𝑘𝑟)𝑄𝑗𝑘𝑅̂𝑖𝑅̂𝑗𝑅̂𝑘 {

i

(𝑘𝑅)2
−

3

(𝑘𝑅)3
−

3i

(𝑘𝑅)4
}. 

(30) 

 

where the tensor convention of summation over the repeated suffixes j and k is implied.  

Page 16 of 40AUTHOR SUBMITTED MANUSCRIPT - EJP-103421.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



~ 17 ~ 
 

In order to make a comparison conversion from Cartesian to polar co-ordinates is first 

required, and for an out-going wave we have: 

⃗⃗ ̂  = 𝑐𝑜𝑠𝜗 𝑐𝑜𝑠𝜑 𝑥 ̂ + 𝑐𝑜𝑠𝜗 𝑠𝑖𝑛𝜑 𝑦 ̂ − 𝑠𝑖𝑛𝜗 𝑧 ̂      (31a) 

⃗⃗⃗ ̂  = −𝑠𝑖𝑛𝜗 𝑥 ̂ + 𝑐𝑜𝑠𝜑 𝑦 ̂        (31b) 

𝑅⃗ ̂  = 𝑠𝑖𝑛𝜗 𝑐𝑜𝑠𝜑𝑥 ̂ + 𝑠𝑖𝑛𝜗 𝑠𝑖𝑛𝜑 𝑦 ̂ + 𝑐𝑜𝑠𝜗 𝑧 ̂ .      (31c) 

 

Various different formulas for calculating the quadrupole moment of a charge distribution 

can be found in the literature. Rice et al. [60] employed Eq. (32) which is the form 

appropriate for that calculation [71]. 

 

𝑄𝛼𝛽 =
1

6
∑ (3𝛼𝑛𝛽𝑛 − 𝑟𝑛

2𝛿𝛼𝛽)𝑞𝑛
𝑛

 

(32) 

Using Eq. (32) we find that the only non-vanishing quadrupole moments are Qxz = Qzx = 

½qs2, giving: 

 

𝑄𝑗𝑘𝑅⃗ ̂𝑖𝑅⃗ ̂𝑗𝑅⃗ ̂𝑘 = 𝑄𝑥𝑧 {
2𝑥2𝑧

𝑟3 𝑥 ̂ +
2𝑥𝑦𝑧

𝑟3 𝑦 ̂ +
2𝑥𝑧2

𝑟3
𝑧 ̂} =  ½𝑞𝑠2𝑠𝑖𝑛2𝜗 𝑐𝑜𝑠𝜑 𝑅⃗ ̂ .  (33) 

 

And, 

 

𝐸|| =
3i𝑞𝑠2𝑘4

8𝜋𝜀𝑜
exp(i𝑘𝑟) {

i

(𝑘𝑅)2
−

3

(𝑘𝑅)3
−

3i

(𝑘𝑅)4
} 𝑠𝑖𝑛2𝜗 𝑐𝑜𝑠𝜑𝑅⃗ ̂.    (34) 

 

incomplete agreement with the SW result. 

For the transverse E-field in the SW formulation we have [49], 

 

𝐸 =
i𝑞𝑠2𝑘4

40𝜋𝜀𝑜
{3ℎ1

(1)(𝑘𝑅) − 2ℎ3
(1)(𝑘𝑅)} {𝑐𝑜𝑠2𝜗 𝑐𝑜𝑠𝜑 ⃗⃗ ̂ − 𝑐𝑜𝑠𝜗 𝑠𝑖𝑛𝜑 ⃗⃗⃗ ̂} 

=
i𝑞𝑠2𝑘4

8𝜋𝜀𝑜
exp(i𝑘𝑟) {−

1

𝑘𝑅
−

3i

(𝑘𝑅)2
+

6

(𝑘𝑅)3
+

6i

(𝑘𝑅)4
} {𝑐𝑜𝑠2𝜗 𝑐𝑜𝑠𝜑 ⃗⃗ ̂ − 𝑐𝑜𝑠𝜗 𝑠𝑖𝑛𝜑 ⃗⃗⃗ ̂} 

           (35) 

 

And for the ith component of that field in the PW formulation [58] 
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𝐸𝑖 = −
i𝑘4

8𝜋𝜀𝑜
exp(i𝑘𝑟)𝑄𝑗𝑘𝑅⃗ ̂𝑘(𝑅⃗ ̂𝑖𝑅⃗ ̂𝑗 − 𝛿𝑖𝑗) {−

1

𝑘𝑅
−

3i

(𝑘𝑅)2
+

6

(𝑘𝑅)3
+

6i

(𝑘𝑅)4
} 

           (36) 

where summation over repeated suffixes is again implied. 

 

Conversion from Cartesian to polar co-ordinates gives, 

𝑄𝑗𝑘𝑅⃗ ̂𝑘 (𝑅⃗ ̂𝑖𝑅⃗ ̂𝑗 − 𝛿𝑖𝑗) =  {[
2𝑥2𝑧

𝑟3
−

𝑧

𝑟
] 𝑥 ̂ + [

2𝑥𝑦𝑧

𝑟3
] 𝑦 ̂ + [

2𝑥𝑧2

𝑟3
−

𝑥

𝑟
] 𝑧 ̂} 

= 𝑄𝑥𝑧 {−𝑐𝑜𝑠2𝜗 𝑐𝑜𝑠𝜑 ⃗⃗ ̂  +  𝑐𝑜𝑠𝜗 𝑠𝑖𝑛𝜑 ⃗⃗⃗ ̂} 

           (37) 

and, since the only non-vanishing quadrupole moments are Qxz = Qzx, we now have: 

 

 

𝐸 = −
i𝑘4

4𝜋𝜀𝑜
exp(i𝑘𝑟)𝑄𝑥𝑧 {−

1

𝑘𝑅
−

3i

(𝑘𝑅)2
+

6

(𝑘𝑅)3
+

6i

(𝑘𝑅)4
} × 

{𝑐𝑜𝑠2𝜗 𝑐𝑜𝑠𝜑 ⃗⃗ ̂  −  𝑐𝑜𝑠𝜗 𝑠𝑖𝑛𝜑 ⃗⃗⃗ ̂} , 

           (38) 

and inserting the value of Qxz from above: 

𝐸 = −
i𝑞𝑠2𝑘4

8𝜋𝜀𝑜
exp(i𝑘𝑟) {−

1

𝑘𝑅
−

3i

(𝑘𝑅)2
+

6

(𝑘𝑅)3
+

6i

(𝑘𝑅)4
} × 

{𝑐𝑜𝑠2𝜗 𝑐𝑜𝑠𝜑 ⃗⃗ ̂  −  𝑐𝑜𝑠𝜗 𝑠𝑖𝑛𝜑 ⃗⃗⃗ ̂} .  

           (39) 

As for E||, in complete quantitative agreement with the SW result. 

 

4. Molecular interactions and resonance energy transfer 

4.1 Electronic couplings 

 In the previous section, the focus was on atomic radiative processes. Now we 

consider general molecular systems that can be orientated in space, with respect to each 

other and a coordinate system. The ability to express easily the fully-retarded electric or 

magnetic field of a specific multipole, as illustrated in Section 3, also offers a route to the 

calculation of multipole-multipole interactions. In particular resonance energy transfer 

(RET), which involves the movement of an electronically excited state from a donor 

molecule to an acceptor molecule. There have been many studies of these problems within  
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a quantum electrodynamical context; notably by Avery [62], Power and Thirunamachandran 

[63-65], Craig and Thirunamachandran [16] and later by Andrews, Salam, and others [50, 

66-71].  

Quantum amplitudes, which characterize interactions between electronic species with a 

quantum electrodynamical context, are strongly dependent on the distance between 

chromophores, as well as the relative orientation of their transition moments. In the case of 

RET, the matrix element defining the electronic coupling between molecules is found to be 

[16, 50], 

 

𝑉𝑖𝑗
±(𝑘, 𝑅⃗ ) = 𝜎𝑖𝑗(𝑘, 𝑅⃗ ) + 𝑖𝜏𝑖𝑗(𝑘, 𝑅⃗ )    (40) 

where

   

𝜎𝑖𝑗(𝑘, 𝑅⃗ ) = (4𝜋𝜀0𝑅
3)−1{(𝑐𝑜𝑠𝑘𝑅 + 𝑘𝑅𝑠𝑖𝑛𝑘𝑅[𝛿𝑖𝑗 − 3𝑅̂𝑖𝑅̂𝑗] − 𝑘2𝑅2𝑐𝑜𝑠𝑘𝑅[𝛿𝑖𝑗 − 𝑅̂𝑖𝑅̂𝑗])} 

 

𝜏𝑖𝑗
±(𝑘, 𝑅⃗ ) = (4𝜋𝜀0𝑅

3)−1{∓(𝑠𝑖𝑛𝑘𝑅 − 𝑘𝑅𝑐𝑜𝑠𝑘𝑅[𝛿𝑖𝑗 − 3𝑅̂𝑖𝑅̂𝑗] ± 𝑘2𝑅2𝑠𝑖𝑛𝑘𝑅[𝛿𝑖𝑗 − 𝑅̂𝑖𝑅̂𝑗])} 

 

Different approaches have been adopted in deriving this equation, including contour 

integration within the complex plane [66], and the use of judicious substitutions [71]. In 

both cases, non-physical, as well as the correct solutions emerge from the calculation. This 

lead to ambiguity in the sign of the imaginary part of the quantum amplitude Eq. (40). 

Andrews et al. point out that as it is the square of a matrix element that is associated with a 

quantum mechanical observable, ascribing the sign to a particular process (emission or 

absorption) is a moot point. Interestingly, because the integral is completely absent from the 

SW calculation the ambiguity in the sign of the imaginary contribution to the coupling is 

immediately seen to be simply related to the choice of in-coming or out-going waves and 

the time-dependence factor of the radiation; exp(+it) or exp(–it).  

 The final results of the SW calculation are in complete agreement with the particular 

PW result, which is now accepted as correct [71]. Furthermore, the SW theory, being 

expressed in spherical polar co-ordinates, intrinsically separates the transverse components 

of the photon’s fields directed along Θ and Φ from the radial or longitudinal factors directed 

along R and thus clarifies the orientational dependence of the interaction. Therefore, since 

only the latter, the radial terms, are affected by retardation, the transverse terms can be 

clearly related to the classical electrodynamic expressions, in which retardation does not 
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feature, and use can be made of this connection in many calculations as we shall illustrate 

below. 

 Comparison of expansions (19) and (20) immediately reveals some of the relative 

strengths and weaknesses of the PW and SW descriptions of electromagnetic radiation and 

its interaction with matter. One of the most important of these is the clear separation of 

longitudinal (radial) and transverse components, which is intrinsic to the SW description 

because of the use of polar co-ordinates. That is to say, if we envisage a series of detectors 

isotropically arranged around a source, and a photon is detected at a fixed distance, , from 

the source, we can use the coordinate system defined by the photon. This makes the SW 

coordinate system more versatile for photon counting experiments, where directionality of 

the photon is important. An example of where this may be important is in mapping emission 

profiles for a particular transition, for example in identifying near field effects of 

nanoantennas, where higher order multi-poles may play a role. [72] 

 

4.2  Dipole-dipole interaction 

 Because, in the spherical wave analysis, the interaction separates naturally into 

transverse (MR´,  M´ and M´) and longitudinal (functions of kR) parts we can, write the 

real and imaginary parts of a dipole-dipole interaction, W, in the form [73]:  

 

𝑊(𝑅𝑒) = −
𝑘3

4𝜋𝜀𝑜

{2Μ𝑅
′ + ΜΘ

′ + ΜΦ
′ } [

sin𝑘𝑅

(𝑘𝑅)2
+

cos𝑘𝑅

(𝑘𝑅)3
] +

𝑘3

4𝜋𝜀𝑜

{ΜΘ
′ + ΜΦ

′ } [
cos𝑘𝑅

𝑘𝑅
] 

 

= −
𝑘3

4𝜋𝜀𝑜
{[2Μ𝑅

′ + ΜΘ
′ + ΜΦ

′ ] [
sin𝑘𝑅

(𝑘𝑅)2
+

cos𝑘𝑅

(𝑘𝑅)3
] − [ΜΘ

′ + ΜΦ
′ ] [

cos𝑘𝑅

𝑘𝑅
]}, 

(41) 

and 

𝑊(𝐼𝑚) = −
𝑘3

4𝜋𝜀𝑜

{2Μ𝑅
′ + ΜΘ

′ + ΜΦ
′ } [−

cos𝑘𝑅

(𝑘𝑅)2
+

sin𝑘𝑅

(𝑘𝑅)3
] +

i𝑘3

4𝜋𝜀𝑜

{ΜΘ
′ + ΜΦ

′ } [
sin𝑘𝑅

𝑘𝑅
] 

 

= −
𝑘3

4𝜋𝜀𝑜
{[2Μ𝑅

′ + ΜΘ
′ + ΜΦ

′ ] [−
cos𝑘𝑅

(𝑘𝑅)2
+

sin𝑘𝑅

(𝑘𝑅)3
] − [ΜΘ

′ + ΜΦ
′ ] [

sin𝑘𝑅

𝑘𝑅
]}. 

(42) 
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From this we see that for kR  0 (very long wavelength or very small R) coskR  1 and 

sinkR  kR. And then 

−
cos𝑘𝑅

(𝑘𝑅)2
+

sin𝑘𝑅

(𝑘𝑅)3
≈ −

1

(𝑘𝑅)2
+

1

(𝑘𝑅)2
 ≈ 0 

      (43) 

 

and the imaginary contribution to the interaction is approximately: 

 

𝑊(𝐼𝑚) ≈
𝑘3

4𝜋𝜀𝑜

[ΜΘ
′ + ΜΦ

′ ] [
sin𝑘𝑅

𝑘𝑅
]  ≈

𝑘3

4𝜋𝜀𝑜

[ΜΘ
′ + ΜΦ

′ ], 

(44) 

 

i.e. a transverse interaction with a very small dependence upon R!  

 This formulation is also valuable in that it allows a ready exploration of the relative 

significance of the two contributions. The longitudinal component tends to be neglected 

in far-field applications, though it can be very important where the coupling chromophores 

are close together. The case of anthracene provides an interesting example. In solution, 

the molecule shows a strong *   transition at ca. 250 nm with an oscillator strength 

which corresponds to a transition dipole moment of 3.7×10–29 Cm. In the crystal there are 

two molecules per unit cell and the interaction between them splits this transition into two 

bands; the Davydov splitting. This was studied by Craig and Hobbins [74] who used their 

experimental data on the splitting, and especially the polarization of the resulting bands, 

to assign the transition to the long-axis polarized  B3u  Ag (in D2h) transition of the 

molecule. Unfortunately, the peak of the higher-energy band of the Davydov pair could 

not be identified since it lay outside of the range of possible measurement. Furthermore, 

since the absorption bands are very broad and complicated by numerous other effects no 

precise measurement of the magnitude of the splitting is possible, even if measurements 

in the required region are made. But in a further paper on this subject [75], Craig notes 

that the Davydov splitting of the intense transitions of the aromatic hydrocarbons,  “… 

may amount to some thousands of wavenumbers …”. In our calculations we find an 

interaction of ~15×10–3 Eh  3,300 cm–1 which would produce a splitting of ca. 6,600 cm–

1. This may be an overestimate, but the important point in the present context is the 

following. 
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 The centres of the two molecules in the unit cell are 51.8 nm apart and the two 

transition dipoles lie at ~61o and ~70o to the line of centres and subtend an angle of ~15o. 

When separated into parallel and transverse parts it is found that the longitudinal field 

contributes almost as much to the splitting as the transverse; 44% and 56% respectively. 

And calculations for increased intermolecular distances show that the transverse field 

coupling, though dominant at large r, does not rise above twice the longitudinal-field 

coupling until r/ exceeds 0.3. 

 This persistence of the effect of the longitudinal field can be even more marked. 

In some cases which we have studied the coupling due to the transverse field does not 

significantly exceed that due to the longitudinal field until r/ exceeds 0.8. 

 

4.3  Dipole-quadrupole interaction 

 Since only the radial terms are affected by retardation, the transverse terms can be 

easily related to the classical electrodynamic expressions and in many cases use can be made 

of this connection. Indeed, it is immediately clear from classical electrodynamics that, in 

the case of the calculation of dipole-quadrupole interaction two theoretical approaches are 

available. One is based upon the energy, W, of a dipole, , in the field of a quadrupole, EQ, 

and the other upon the equation given by Jackson [61] for the energy, W, of a quadrupole, 

Q, in the gradient of the field of a dipole, ED, Eq. (45).  

 

𝑊 = −
1

6
∑ ∑ 𝑄𝛼,𝛽

𝛽𝛼

𝜕𝐸𝛼
𝐷

𝜕𝛽
 . 

(45) 

 This flexibility could prove useful in practical problems. In order to illustrate the 

wider possibilities of the SW description we now outline the calculation of the interaction 

between a dipole and a quadrupole by these two methods.  

 For the calculation of the energy of a dipole in the electromagnetic field of a 

quadrupole we first need to define the quadrupoles. Six quadrupoles are specified in order 

to accommodate all six components of the quadrupole moment tensor, which is assumed to 

be symmetric, i.e. Q= Q. They are of two types. Square planar, XY, XZ and YZ with, 

in each case, a charge of +q in the positive quadrant of the axes specified. XY is illustrated 

below. Linear, X2, Y2 and Z2 with charges disposed as for the Z2 illustrated in Figure 1. The 

centre of each quadrupole lies at the origin of co-ordinates. 
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Figure 1. Illustrative Dipoles and Quadrupoles.  

 

Here, the quadrupole moments are calculated using the formula used by Scholes and 

Andrews, [69]: 

𝑄𝛼𝛽 = 
1

2
∑ 𝛼𝑛𝛽𝑛𝑞𝑛

𝑛
 , 

(46) 

This equation was used for a PW calculation, the results of which we to compare our SW 

results, below. The non-zero quadrupole moments found using Eq. (46) can be found in 

Table A1, where s is the distance of each individual charge centre from the quadrupole 

centre at the origin. The centre of the dipole lies at the point P designated by the polar co-

ordinates r,  and , and the distance between the two charges, q´, is l so that the dipole 

moment  = q´l. The dipole is specified in terms of its magnitude and orientation, or of its 

Cartesian components. 

 In the case of the dipole in the field of the quadrupole, the interaction energy, W, is 

obtained by taking the negative of the scalar product of the vectors 𝜇  and 𝐸⃗  : 

 

𝑊 = −𝜇 ∙ 𝐸⃗ =  −[𝜇𝑅𝐸𝑅 + 𝜇𝐸 + 𝜇𝐸] .  

(47) 

The quadrupole fields are obtained in terms of the polar vectors, ⃗⃗ , ⃗⃗⃗   and 𝑅⃗ , and hence 

we express the Cartesian dipole components in the same manner. For a wave out-going from 

the quadrupole and R are related to x, y and z by the usual transformation 

between the two coordinate systems: 

𝜇 = 𝑐𝑜𝑠𝜗𝑐𝑜𝑠𝜑 𝜇𝑥 + 𝑐𝑜𝑠𝜗𝑠𝑖𝑛𝜑 𝜇𝑦 − 𝑠𝑖𝑛𝜗 𝜇𝑧 

 

-q +q

+q -q

X

Y
+q'

-q'

O

P

dc

b a

Z

+q+q -2q
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𝜇 = −𝑠𝑖𝑛𝜑 𝜇𝑥 + 𝑐𝑜𝑠𝜑 𝜇𝑦 

 

𝜇𝑅 = 𝑠𝑖𝑛𝜗𝑐𝑜𝑠𝜑 𝜇𝑥  + 𝑠𝑖𝑛𝜗𝑠𝑖𝑛𝜑 𝜇𝑦 + 𝑐𝑜𝑠𝜗 𝜇𝑧 . 

(48) 

 

The quadrupole fields, 𝐸⃗ 𝑄 , may be determined in the way described previously. The 

components can be found in Table A2. 

 This result clearly separates the radial (longitudinal, F||) term from the transverse 

(F) term, and the greater “reach” of the latter is already apparent in that it contains the only 

(kr)–1 contribution to the coupling. This clear separation, which is less clear in the PW 

description, is one of the most useful aspects of the spherical wave approach. 

A separation of these expressions into real and imaginary parts is also of interest; we find: 

 

𝑅𝑒[𝐹∥(𝑟)] =  −
sinkr

(𝑘𝑟)2
−

3𝑐𝑜𝑠𝑘𝑟

(𝑘𝑟)3
+

3𝑠𝑖𝑛𝑘𝑟

(𝑘𝑟)4
 ,  

(49a) 

 

𝐼𝑚[𝐹∥(𝑟)] =  
coskr

(𝑘𝑟)2
−

3𝑠𝑖𝑛𝑘𝑟

(𝑘𝑟)3
−

3𝑐𝑜𝑠𝑘𝑟

(𝑘𝑟)4
 ,  

(49b) 

 

𝑅𝑒[𝐹⊥(𝑟)] = −
𝑐𝑜𝑠𝑘𝑟

𝑘𝑟
+

3𝑠𝑖𝑛𝑘𝑟

(𝑘𝑟)2
+

6𝑐𝑜𝑠𝑘𝑟

(𝑘𝑟)3
−

6𝑠𝑖𝑛𝑘𝑟

(𝑘𝑟)4
 

(50a) 

and 

𝐼𝑚[𝐹⊥(𝑟)] = −
𝑠𝑖𝑛𝑘𝑟

𝑘𝑟
−

3𝑐𝑜𝑠𝑘𝑟

(𝑘𝑟)2
+

6𝑠𝑖𝑛𝑘𝑟

(𝑘𝑟)3
+

6𝑐𝑜𝑠𝑘𝑟

(𝑘𝑟)4
 . 

(50b) 

 

Having chosen a basic quadrupole, or a combination of these to represent the specific 

quadrupole of a particular problem, the final step of the calculation is the implementation 

of Eq. (47); the combination of the dipole moment components Eq. (48) with the fields of 

Table A2. If, for example, we have an XY quadrupole then Eq. (47) becomes: 
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𝑊 = −3𝐾𝐹∥(𝑟)𝑠𝑖𝑛
2𝜗 𝑠𝑖𝑛2𝜑 [𝑠𝑖𝑛𝜗𝑐𝑜𝑠𝜑 𝜇𝑥  + 𝑠𝑖𝑛𝜗𝑠𝑖𝑛𝜑 𝜇𝑦 + 𝑐𝑜𝑠𝜗 𝜇𝑧 ] 

 

               −𝐾𝐹⊥(𝑟)𝑠𝑖𝑛𝜗 𝑐𝑜𝑠𝜗 𝑠𝑖𝑛2𝜑 [𝑐𝑜𝑠𝜗𝑐𝑜𝑠𝜑 𝜇𝑥 + 𝑐𝑜𝑠𝜗𝑠𝑖𝑛𝜑 𝜇𝑦 − 𝑠𝑖𝑛𝜗 𝜇𝑧] 

 

                            −𝐾𝐹⊥(𝑟)𝑠𝑖𝑛𝜗 𝑐𝑜𝑠2𝜑 [−𝑠𝑖𝑛𝜑 𝜇𝑥 + 𝑐𝑜𝑠𝜑 𝜇𝑦]. 

(52) 

 

The second method we employ is based upon the Eq. (45), given by Jackson [61] for the 

energy, W, of a quadrupole, Q, in the gradient of the field of a dipole, ED. In the interest 

of brevity we confine our attention to the near zone (kR << 1) which, as Scholes and 

Andrews [67] have pointed out, is the region in which higher multipole interactions are most 

likely to be significant. We calculate the elements of the quadrupole tensor using Eq. (32) 

[16], but it should be noted that, because expression (8) for the quadrupole moment is one-

sixth of that used by Jackson [61], the factor of 1/6 in his expression is omitted, i.e. 

 

𝑊 = − ∑ ∑ 𝑄𝛼𝛽

𝜕𝐸𝛼
𝐷

𝜕𝛽𝛽𝛼
 . 

(53) 

For an out-going wave, the Cartesian components of the electric field of the dipole are 

related to the polar components in the following manner: 

 

𝐸⃗ ̂𝑥 = 𝑐𝑜𝑠𝜗𝑐𝑜𝑠𝜑𝐸⃗ ̂𝛩    −   𝑠𝑖𝑛𝜑𝐸⃗ ̂   +   𝑠𝑖𝑛𝜗𝑐𝑜𝑠𝜑𝐸⃗ ̂𝑅     (54a) 

 

𝐸⃗ ̂𝑦 = 𝑐𝑜𝑠𝜗𝑠𝑖𝑛𝜑𝐸⃗ ̂𝛩  +   𝑐𝑜𝑠𝜑𝐸⃗ ̂  +   𝑠𝑖𝑛𝜗𝑠𝑖𝑛𝜑𝐸⃗ ̂𝑅     (54b) 

 

𝐸⃗ ̂𝑧 = −𝑠𝑖𝑛𝜗𝐸⃗ ̂𝛩    +   𝑐𝑜𝑠𝜗𝐸⃗ ̂𝑅        (54c) 

 

And the three Cartesian components of a dipole, 𝜇 , generate an electric field with 

components along the polar vectors as shown in the Table A3. 

 

 

Thus, 
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𝐸⃗ 𝑥 = 𝑐𝑜𝑠𝜗𝑐𝑜𝑠𝜑𝐸⃗ 𝛩    −   𝑠𝑖𝑛𝜑𝐸⃗    +   𝑠𝑖𝑛𝜗𝑐𝑜𝑠𝜑𝐸⃗ 𝑅 

 

𝐸⃗ 𝑥 =
1

4𝜋𝜀𝑜𝑅3
{𝑐𝑜𝑠𝜗𝑐𝑜𝑠𝜑[−𝜇𝑥𝑐𝑜𝑠𝜗𝑐𝑜𝑠𝜑 − 𝜇𝑦𝑐𝑜𝑠𝜗𝑠𝑖𝑛𝜑 + 𝜇𝑧𝑠𝑖𝑛𝜗] 

−𝑠𝑖𝑛𝜑[𝜇𝑥𝑠𝑖𝑛𝜑 − 𝜇𝑦𝑐𝑜𝑠𝜑] + 2𝑠𝑖𝑛𝜗𝑐𝑜𝑠𝜑[𝜇𝑥𝑠𝑖𝑛𝜗𝑐𝑜𝑠𝜑 + 𝜇𝑦𝑠𝑖𝑛𝜗𝑠𝑖𝑛𝜑 + 𝜇𝑧𝑐𝑜𝑠𝜗]} 

 

=
1

4𝜋𝜀𝑜𝑅3
{𝜇𝑥[3𝑠𝑖𝑛

2𝜗𝑐𝑜𝑠2𝜑 − 1] + 3𝜇𝑦𝑠𝑖𝑛
2𝜗𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑 + 3𝜇𝑧𝑠𝑖𝑛𝜗𝑐𝑜𝑠𝜗𝑐𝑜𝑠𝜑} . 

(55a) 

In the same manner we can obtain: 

 

𝐸⃗ 𝑦 =
1

4𝜋𝜀𝑜𝑅3
{3𝜇𝑥𝑠𝑖𝑛

2𝜗𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑 + 𝜇𝑦[3𝑠𝑖𝑛
2𝜗𝑠𝑖𝑛2𝜑 − 1] + 3𝜇𝑧𝑠𝑖𝑛𝜗𝑐𝑜𝑠𝜗𝑠𝑖𝑛𝜑} 

(55b) 

and 

 

𝐸⃗ 𝑧 =
1

4𝜋𝜀𝑜𝑅3
{3𝜇𝑥𝑠𝑖𝑛𝜗𝑐𝑜𝑠𝜗𝑐𝑜𝑠𝜑 + 3𝜇𝑦𝑠𝑖𝑛𝜗𝑐𝑜𝑠𝜗𝑠𝑖𝑛𝜑 + 𝜇𝑧[3𝑐𝑜𝑠

2𝜗 − 1]} .  

(55c) 

 

We now have to convert to Cartesian co-ordinates because Jackson’s formula depends upon 

a Taylor expansion in Cartesian co-ordinates. Carrying out the conversion and 

differentiating with resect to the Cartesian co-ordinates we obtain the contributions of the 

components of the dipole to the derivatives of the fields, as shown in Table A4. Converting 

back to spherical polar co-ordinates the derivatives can also be obtained, as shown in Table 

A5.  

On p. 5382 of their paper, Scholes and Andrews [69] give expressions for the multipole 

couplings in the near zone where the QED equations asymptote to the classical results. They 

also show how orientation factors for the couplings may be obtained in their PW treatment. 

In the following we compare their results for the near zone with those deduced by the 

procedures described above. As far as the dipole-quadrupole coupling is concerned, we are 

interested in the equation: 

 

𝑀𝑑𝑎
𝐶𝑜𝑢𝑙 = (𝜇𝛼

0𝑛𝑄𝛽𝛾
𝑚0 − 𝑄𝛽𝛾

0𝑛𝜇𝛼
𝑚0)𝑉𝛼𝛽𝛾 .      (56) 
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Where, in the near zone, the interaction tensor, V, becomes: 

 

𝑉𝛼𝛽𝛾 = 
1

4𝜋𝜀𝑜𝑅4 [15𝑅⃗ ̂𝛼𝑅⃗ ̂𝛽𝑅⃗ ̂𝛾 −  3 (𝛿𝛼𝛽𝑅⃗ ̂𝛾 + 𝛿𝛼𝛾𝑅⃗ ̂𝛽 + 𝛿𝛽𝛾𝑅⃗ ̂𝛼)]  .    (57) 

 

Orientation factors are obtained by making the substitutions: 

 

𝛿𝛼𝛽  →  𝛼 ̂ ∙ 𝛽 ̂  and  𝑅⃗ ̂𝛼  →  𝛼 ̂ ∙ 𝑅⃗ ̂,       (58) 

where𝛼 ̂ denotes a unit vector in the direction of the tensor component  of the transition 

moment and 𝑅⃗   is the centre-to-centre vector. We compare the formula for Vfrom [69] 

with Table A4 in which the substitution R2 = x2 + y2 +z2 has been made, as is shown in 

Table A6. Each entry in the table describes the interaction, through the dipole-field gradient, 

between the component of the dipole at the head of the column with the quadrupole 

component at the beginning of each row. We can see that there are only three types of entry 

for 𝜇𝛼
0𝑛𝑄𝛽𝛾

𝑚0. 

 

𝑉𝛼𝛽𝛾 = 
1

4𝜋𝜀𝑜𝑅4
[15𝑅⃗ ̂𝛼𝑅⃗ ̂𝛽𝑅⃗ ̂𝛾 −  3 (𝛿𝛼𝛽𝑅⃗ ̂𝛾 + 𝛿𝛼𝛾𝑅⃗ ̂𝛽 + 𝛿𝛽𝛾𝑅⃗ ̂𝛼)]  . 

(59) 

 

Case 1.  =  = . For example, in the case where  =  =  = x.  

 

𝑉𝑥𝑥𝑥 = 
1

4𝜋𝜀𝑜𝑅4
[15𝑅⃗ ̂𝑥𝑅⃗ ̂𝑥𝑅⃗ ̂𝑥 −  9𝛿𝑥𝑥𝑅⃗ ̂𝑥] =  

1

4𝜋𝜀𝑜𝑅4
[15 (𝑥 ̂ ∙ 𝑅⃗ ̂)

3

−  9(𝑥 ̂ ∙ 𝑥 ̂) (𝑥 ̂ ∙ 𝑅⃗ ̂)] 

 

= 
3

4𝜋𝜀𝑜𝑅4
[5 (𝑥 ̂ ∙ 𝑅⃗ ̂)

3

−  3 (𝑥 ̂ ∙ 𝑅⃗ ̂)] =  
3

4𝜋𝜀𝑜𝑅4
[5(

𝑥 ̂ ∙ 𝑅⃗ 

𝑅
)

3

−  3 (
𝑥 ̂ ∙ 𝑅⃗ 

𝑅
)] 

 

= 
3

4𝜋𝜀𝑜𝑅7
[5(𝑥 ̂ ∙ 𝑅⃗ )

3
−  3𝑅2(𝑥 ̂ ∙ 𝑅⃗ )] =  

3(𝑥 ̂ ∙ 𝑅⃗ )

4𝜋𝜀𝑜𝑅7
[5(𝑥 ̂ ∙ 𝑅⃗ )

2
−  3𝑅2] 

 

But, 𝑥 ̂ ∙ 𝑅⃗ = 𝑥  and we can therefore write: 
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𝑉𝑥𝑥𝑥 =  
3

4𝜋𝜀𝑜𝑅7
 𝑥[5𝑥2 −  3𝑅2] 

           (60) 

 

which is the negative of the top-left entry in Table A6. The negative sign is no problem, 

because it simply reflects the relative orientations of the dipole and the quadrupole. 

 

Case 2.  =  only. For example, for the case where  =  = x,  = y. 

 

𝑉𝑥𝑥𝑦 = 
1

4𝜋𝜀𝑜𝑅4
[15𝑅⃗ ̂𝑥𝑅⃗ ̂𝑥𝑅⃗ ̂𝑦 −  3 (𝛿𝑥𝑥𝑅⃗ ̂𝑦 + 𝛿𝑥𝑦𝑅⃗ ̂𝑥 + 𝛿𝑥𝑦𝑅⃗ ̂𝑥)]

=  
3

4𝜋𝜀𝑜𝑅4
[5 (𝑥 ̂ ∙ 𝑅⃗ ̂)

2

(𝑦 ̂ ∙ 𝑅⃗ ̂) − (𝑥 ̂ ∙ 𝑥 ̂) (𝑦 ̂ ∙ 𝑅⃗ ̂)] 

 

= 
3

4𝜋𝜀𝑜𝑅4
[5 (

𝑥 ̂ ∙ 𝑅⃗ 

𝑅
)

2

(
𝑦 ̂ ∙ 𝑅⃗ 

𝑅
) − (

𝑦 ̂ ∙ 𝑅⃗ 

𝑅
)] =

3

4𝜋𝜀𝑜𝑅7
[5(𝑥 ̂ ∙ 𝑅⃗ )

2
(𝑦 ̂ ∙ 𝑅⃗ ) − 𝑅2(𝑦 ̂ ∙ 𝑅⃗ )] 

and we have: 

𝑉𝑥𝑥𝑦 = 
3

4𝜋𝜀𝑜𝑅7
𝑦[5𝑥2 − 𝑅2] 

           (61) 

Case 3. ,  and  all different. For example, x ,  = y and  = z.  

 

𝑉𝑥𝑦𝑧 = 
1

4𝜋𝜀𝑜𝑅4
[15𝑅⃗ ̂𝑥𝑅⃗ ̂𝑦𝑅⃗ ̂𝑧] =  

3

4𝜋𝜀𝑜𝑅4
[5 (𝑥 ̂ ∙ 𝑅⃗ ̂) (𝑦 ̂ ∙ 𝑅⃗ ̂) (𝑧 ̂ ∙ 𝑅⃗ ̂)] =  

3

4𝜋𝜀𝑜𝑅7
[5𝑥𝑦𝑧] 

           (62) 

 

Which agrees exactly with the PW results of the Scholes and Andrews for dipole-quadrupole 

interaction. 

 

5. Group Theory and Spherical Symmetry 

5.1  The symmetry species of the |JlM> 

 There are few, if any, examples of the application of the VSH description of the 

interaction of light with matter to molecules. The d-d transitions of transition metal ion 
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complexes and the f-f and f-d transitions of the lanthanides [76, 77] have been widely 

studied and they provide very good examples of the way in which the scope of the VSH 

calculus can be augmented by combination with point-group theory. The development 

follows the ligand field theory very closely [78, 79]. We note that there are some recent 

studies investigating higher order multipole effects in these systems [80, 81] 

 The symmetry of the SSHs, |lm>, which we encounter in atomic orbital functions, 

are determined by the quantum numbers l and m [82]. They are widely tabulated [83]. 

Similarly, the symmetries of the VSHs, |Jl> are determined by J and [Va] and SSH 

tables can be used directly for the VSHs. The parity, , of |lm> is determined by l, |lm> = 

(–1)l |lm>, and for VSHs, |Jl>  (l = J, J 1), formed from unit vectors, 𝑒 ̂1𝒏, having axial 

symmetry, |Jl> = (–1)l|Jl> also. 

The selection rules which determine the values of J, l and inYJlfor a non-zero value of 

the matrix element <YGH|YJl•|YAC> are [49] {We use the alternative symbol, YJl |Jl>, 

here to avoid problems with notation.}: 

1)  |G– A|  J  (G+ A) 2)  = H– C with  |J 3)  l + A + G must be odd. 

As examples, the symmetry species of these matrix elements for the possible d-d, f-f and f-

d transitions of metal ions in a variety of environments are shown in Tables B1-B6. We 

tabulate the symmetry species of YJl, and their scalar product, YJl •. 

 

Selection rules for d – d transitions; YJl. 1  J    4, | J,  l must be odd. 

Table A.1 includes the five transitions between two identical d orbitals. They can be 

eliminated by removing the value for  = 0 from each column. However, such transitions 

are not unrealisable [84]: though they may not contribute to the intensity, one can envisage 

a transition between two molecular orbitals each of which contains a contribution from the 

same d-orbital. 

 

5.2 The symmetries of electric and magnetic fields 

Electric fields are characterised by a single value of J and M and two values of l [44]. Since 

the values of l differ by 2, the two contributions to the field have the same parity (–1)l, as 

must obviously be the case. Magnetic fields are characterised by single values of J, M and l 

[44]. Thus, particular symmetry species may be assigned to electric and magnetic fields 

generated in molecular environments and the well-known methods of group theory can be 

Page 29 of 40 AUTHOR SUBMITTED MANUSCRIPT - EJP-103421.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



~ 30 ~ 
 

applied to the determination of, for example, the combination of the dipoles of surrounding 

molecules or ligands with which a central field can interact. 

 

5.3  Advanced use of point-group theory 

It was recognised in the early 1960’s, especially by Griffith [83] and by Koster et al. [86] 

building on the work of Wigner [87] and Racah [88, 89, 90], that the concepts relating to 

the coupling of angular momenta, well-known under spherical symmetry (SO3), could be 

extended to the irreducible representations of the point groups of lower symmetry. These 

methods, sometimes known as Wigner-Racah calculus, have been developed, explored 

thoroughly and systematized from the mathematical standpoint, by Butler [91, 92]. His 

particular and precise approach has been exploited and illustrated with many examples by 

Piepho and Schatz [93], who have shown how remarkably powerful these methods can be 

in the solution of problems in molecular spectroscopy. Thus, the tables above can be used 

as they stand for comparatively simple problems and they also form the basis upon which 

more advanced calculations can be performed. Natural circular dichroism provides an 

example of the former. 

As is well-known [16], circular dichroism, the differential absorption of left and right 

circularly polarised light, is seen in the transition m  0 when the scalar product of the 

electric and magnetic dipole transition moments of m  0 has a finite value. The magnetic 

moment is characterised by the VSH Y11and the electric moment by √(2/3)Y10 + 

√(1/3)Y12[34], and these VSHs will belong to the same irreducible representations of any 

symmetry point group because this depends only upon J. However, their parities, 

determined by (–1)l, are u and g respectively. Accordingly, in any environment in which a 

distinction between u and g can be made, i.e. where a plane or centre of symmetry exist, 

there can be no circular dichroism. In systems which lack these symmetry elements, Cn, Dn, 

T, O and I (n > 2) circular dichroism may be observed. For the sake of completeness we add 

the additional requirement that an optically active molecule must also be devoid of an 

alternating rotation-reflexion axis of symmetry [94], though this has no bearing upon the 

present discussion. 

 

6.  Outlook  

We begin with an important generalization. The intrinsic separation of radial and angular 

terms in an SW calculation has two significant and valuable consequences. Firstly, the 

Page 30 of 40AUTHOR SUBMITTED MANUSCRIPT - EJP-103421.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



~ 31 ~ 
 

angular terms in any calculation are unchanged from those of the corresponding classical 

electrodynamical theory and full use of well-established classical results can be made. 

Secondly, all the effects of retardation are rigorously confined to the radial terms which 

makes the calculation and the formulation of the results simpler. These points are illustrated 

well by the SW calculation of the dipole-dipole interaction energy and energy-transfer, 

recently described in detail [73], where the SW approach removes completely the 

requirement for a problematic integration over wave vectors and shows clearly the origin of 

the ambiguous sign in the imaginary contribution to the coupling. 

In the case of selection rules in atomic spectroscopy the following might also be added to 

the points made above. Whereas in the PW description E2 and M1 transitions arise together 

as the second term in the expansion of the exponential, they are completely distinct in the 

SW description since the parameters which define them differ in the value of l; J = 2, l = 1 

and 3 for E2 and J = 2, l = 2 for M1 [49]. 

 With regard to the description of emitted radiation the first point to be noted is the 

generality of the PW approach, in this particular aspect of its application, where it is only 

necessary to specify the multipolarity of the source, dipole, quadrupole, …. This degree of 

generality is not readily possible with the SW method in which it is expedient to consider 

the emission from a defined atomic-spectral process. This fixes the quantum number 

parameters, J, l and M, of the description of the radiation in terms of the product of a radial 

function, a Hankel function of the first kind hl
(1)(kr), and an angular function, a vector 

spherical harmonic |JlM()> [42], which describes not only the angular distribution of the 

emerging photon, in terms of the polar coordinates and ,  but also, through ⃗⃗ ̂ and ⃗⃗⃗ ̂,  its 

polarization, i.e. the orientation of the associated electric and magnetic fields. Thus, the SW 

technique, while lacking in generality, gives more information about the functional form of 

the emitted radiation, which can be written down immediately once the parameters J, l and 

M have been fixed. And this is true for any degree of multipolarity so that the level of extra 

work and complexity increase only slowly with increasing J, though a second calculation is 

required if electric and magnetic field strengths as a function of a specified multipole 

moment are required. Furthermore, since the combined functions, |JlM()>×hl
(1)(kr) are 

solutions of Maxwell’s equations they are fully retarded. But the reliance on spherical 

symmetry is an important limitation to application and suggests a reason for the complete 

absence of application in molecular, though not in atomic spectroscopy. Nevertheless, 

preliminary investigations, some of them outlined in Section 5 above, demonstrate that the 
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group-theoretical algebra, which has been applied so successfully to molecular spectroscopy, 

especially to the ligand field theory of transition metal ions [83, 91], can be similarly used 

with the angular functions, |JlM()>, offering a significant broadening of the SW method 

into important new areas of application. 

 Perhaps one of the important advantages of the SW description, over that of the PW 

description is the way longitudinal and transverse field components naturally arise in the 

SW description. The SW approach effectively eliminates the need to define an external 

coordinate system, with the emitting multipole defining a natural origin. Future work may 

involve attempting to unify the SW approach to models for structured light, with the aim of 

studying angular momentum transfer, a subject that has been recently considered by the 

authors [95].  
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Appendix A: Tables relating to dipole and quadrupole interactions 

Table A1. Quadrupole moments calculated using equation 10 

 Qxx Qyy Qzz Qxy = Qyx Qxz = Qzx Qyz = Qzy 

XY    s2q   

XZ     s2q  

YZ      s2q 

X2 s2q      

Y2  s2q     

Z2   s2q    

 

Table A2. Quadrupole fields 
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 𝐸⃗  𝐸⃗  𝐸⃗ 𝑅 

XY 𝐾𝐹(𝑟)𝑠𝑖𝑛𝜗 𝑐𝑜𝑠𝜗 𝑠𝑖𝑛2𝜑 ⃗⃗  𝐾𝐹(𝑟)𝑠𝑖𝑛𝜗 𝑐𝑜𝑠2𝜑 ⃗⃗⃗  3𝐾𝐹𝑅(𝑟)𝑠𝑖𝑛2𝜗 𝑠𝑖𝑛2𝜑 𝑅⃗  

XZ 𝐾𝐹(𝑟)𝑐𝑜𝑠2𝜗 𝑐𝑜𝑠𝜑 ⃗⃗  −𝐾𝐹(𝑟)𝑐𝑜𝑠𝜗 𝑠𝑖𝑛𝜑 ⃗⃗⃗  3𝐾𝐹𝑅(𝑟)𝑠𝑖𝑛2𝜗 𝑐𝑜𝑠𝜑 𝑅⃗  

YZ 𝐾𝐹(𝑟)𝑐𝑜𝑠2𝜗 𝑠𝑖𝑛𝜑 ⃗⃗  𝐾𝐹(𝑟)𝑐𝑜𝑠𝜗 𝑐𝑜𝑠𝜑 ⃗⃗⃗   3 2    RKF r sin sin R  .  

X2    22      KF r sin cos cos      2      KF r sin sin cos    

  2 RKF r   

 2 23   1sin cos R     

Y2    22      KF r sin cos sin      2      KF r sin sin cos    

  2 RKF r   

 2 23   1sin sin R     

Z2   2     KF r sin cos   0    22 3 1RKF r cos R    

 

Where  

 
2 4 4

    
8 8o o

iqs k iQk
K

 
   

 

Table A3. Dipole field components in spherical polar co-ordinates 

Dipole, , along  E   E   RE  

X  
3

 cos  cos

4 oR

  


   

3

 sin

4 oR

 


   

3

 sin  cos

2 oR

  


  

Y  
3

cos sin

4 oR

  


   

3

 cos

4 oR

 


   

3

sin sin

2 oR

  


  

Z 

 
 

3

 sin

4 oR

 


  

0 

 
 

3

 cos

2 oR

 


  

 

. 

Table A4. Dipole field derivatives in Cartesian co-ordinates. Each cell is to be multiplied 

by 3/4oR
7 

 x y z 
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Ex/x x[–2x2+ 3y2+ 3z2] y[–4x2+ y2+ z2] z[–4x2+ y2+ z2] 

Ey/y x[x2– 4y2+ z2] y[3x2–2y2+3z2] z[x2– 4y2+ z2] 

Ez/z x[x2+ y2– 4z2] y[x2+ y2– 4z2] z[3x2+ 3y2– 2z2] 

Ex/y y[–4x2+ y2+ z2] x[x2– 4y2+ z2] –5xyz 

Ex/z z[–4x2+ y2+ z2] –5xyz x[x2+ y2– 4z2] 

Ey/x y[–4x2+ y2+ z2] x[x2– 4y2+ z2] –5xyz 

Ey/z –5xyz z[x2– 4y2+ z2] y[x2+ y2– 4z2] 

Ez/x z[–4x2+ y2+ z2] –5xyz x[x2+ y2– 4z2] 

Ez/y –5xyz z[x2– 4y2+ z2] y[x2+ y2– 4z2] 

 

Table A5. Dipole field derivatives in spherical polar co-ordinates. Each cell is to be 

multiplied by 3/4oR
4 

 x y z 

Ex/x sincos [3 –5sin2cos2] sinsin [1 – 5sin2cos2] cos [1 – 5sin2cos2] 

Ey/y sincos [1– 5sin2sin2] sinsin [3– 5sin2sin2] cos [1– 5sin2sin2] 

Ez/z sincos [1– 5cos2] sinsin [1– 5cos2] cos [3– 5cos2] 

Ex/y sinsin [1 – 5sin2cos2] sincos [1– 5sin2sin2] –5sin2cossincos 

Ex/z cos [1 – 5sin2cos2] –5sin2cossincos sincos [1– 5cos2] 

Ey/x sinsin [1 – 5sin2cos2] sincos [1– 5sin2sin2] –5sin2cossincos 

Ey/z –5sin2cossincos cos [1– 5sin2sin2] sinsin [1– 5cos2] 

Ez/x cos [1 – 5sin2cos2] –5sin2cossincos sincos [1–5cos2] 

Ez/y –5sin2cossincos cos [1– 5sin2sin2] sinsin [1– 5cos2] 

 

Table A6. Quadrupole field gradients in Cartesian co-ordinates. Each cell is to be multiplied 

by 3/4or
7. 

Q Gradient x y z 

Qxx Ex/x x[3R2–5x2] y[R2–5x2] z[R2–5x2] 

Qyy Ey/y x[R2– 5y2] y[3R2– 5y2] z[R2– 5y2] 

Qzz Ez/z x[R2– 5z2] y[r2– 5z2] z[3R2– 5z2] 

Qyx Ex/y y[ R2–5x2] x[R2–5y2] –5xyz 
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Qzx Ex/z z[R2–5x2] –5xyz x[R2–5z2] 

Qxy Ey/x y[R2–5x2] x[R2–5y2] –5xyz 

Qzy Ey/z –5xyz z[R2–5y2] y[R2–5z2] 

Qxz Ez/x z[R2–5x2] –5xyz x[R2–5z2] 

Qyz Ez/y –5xyz z[R2–5y2] y[R2–5z2] 

 

 

Appendix B: Tables relating VSH multipolarity to atomic transitions. 

Below are a series of tables overviewing transitions for d-d, f-d and f-f transitions within 

different symmetry configurations. Note that, although we list where E0 photons would be 

placed, for completion of the tables, they do not exist in reality.  

 

Table B.1: The spatial symmetry species and multipolarities of the possible d-d transitions 

of a transition metal ion in an octahedral (Oh) environment. 

The selection 

rules give 

J, l 0, 1 1, 1 2, 1/3 3, 3 4, 3/5  

YJl Y010 Y11 Y21 Y23 Y33 Y43 Y45 t1u 

Transition type  E0* M1 E2 M3 E4 × t1u 

S
y
m

m
et

ry
 S

p
ec

ie
s 

A1u       T1g 

A2u       T2g 

Eu       Eg, T1g, T2g   

T1u       
A1g, Eg, T1g, 

T2g 

T2u       
A2g, Eg, T1g, 

T2g 

 

Table B.2:  The spatial symmetry species and multipolarities of the possible d-d transitions 

of a transition metal ion in a tetrahedral (Td) environment.* E0 photons do not exist. 

The selection 

rules give 

J, l 0, 1 1, 1 2, 1/3 3, 3 4, 3/5  

YJl Y010 Y11 Y21 Y23 Y33 Y43 Y45 t2 

Transition type  E0* M1 E2 M3 E4 × t2 

S y m m e t r y
 

S p e c i e s A1       T2 
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A2        

E       T1, T2 

T1       A2, E, T1, T2 

T2       A2, E, T1, T2 

 

 

 

Table B.3:  The spatial symmetry species and multipolarities of the possible d-d transitions 

of a transition metal ion in a square-planar (D4h) environment.* E0 photons do not exist. 

The selection 

rules give 

J, l 0, 1 1, 1 2, 1/3 3, 3 4, 3/5  

YJl Y010 Y11 Y21 Y23 Y33 Y43 Y45  (eu + a2u) 

Transition 

type 
 E0* M1 E2 M3 E4 × (eu + a2u) 

S
y
m

m
et

ry
 S

p
ec

ie
s 

A1u       Eg, A2g 

A2u       Eg, A1g 

B1u       Eg, B2g 

B2u       Eg, B1g 

Eu       A1g, A2g, B1g, B2g, Eg 

 

 

Selection rules for f – d transitions; YJl. 1   J   5,  | J,  l must be even. 

 

Table B.4:  The spatial symmetry species and multipolarities of the possible f-d transitions 

of a transition metal ion in an octahedral (Oh) environment. 

The selection 

rules give 

J, l 1, 0/2 2, 2 3, 2/4 4, 4 5, 4/6  

YJl Y10 Y12 Y22 Y32 Y34 Y44 Y54 Y56 t1u 

Transition type  E1 M2 E3 M4 E5 × t1u 

S
y
m

m
et

ry
 

S
p
ec

ie
s 

A1g       T1u 

A2g       T2u 

Eg       T1u, T2u 

T1g       A1u, Eu,T1u, T2u 
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T2g       A2u, Eu,T1u, T2u 

 

 

 

Table B.5.  The spatial symmetry species and multipolarities of the possible f-d transitions 

of a lanthanide ion in a C3h environment. 

The selection 

rules give 

J, l 1, 0/2 2, 2 3, 2/4 4, 4 5, 4/6  

YJl Y10 Y12 Y22 Y32 Y34 Y44 Y54 Y56  (e' + a'') 

Transition type  E1 M2 E3 M4 E5 × (e' + a'') 

S
y
m

m
et

ry
 

S
p
ec

ie
s 

A´       E', A'' 

E´       E', 2A, E'' 

A´´       E'', A' 

E´´       E'', 2A''', E' 

 

Selection rules for f – f transitions; YJl. 0   J    6,  J,  l must be odd. 

 

Table B.6:  The spatial symmetry species and multipolarities of the possible f-f transitions 

of a lanthanide ion in a C3h environment.* E0 photons do not exist. 

The selection 

rules give 

J, l 0,1 1, 1 2, 1/3 3, 3 4, 3/5 5, 5 6, 5/7  

YJl Y010 Y11 
Y21 

Y23 
Y33 

Y43 

Y45 
Y55 

Y65

Y67 
 (e' + a'') 

Transition type  E0* M1 E2 M3 E4 M5 E6 × (e' + a'') 

S
y
m

m
et

ry
 

S
p
ec

ie
s 

A´         E', A'' 

E´         E', 2A', E'' 

A´´         E'', A' 

E´´         E'', 2A'', E' 
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