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Abstract. We use numerical models to study the mechanical stability

of magma reservoirs embedded in elastic host rock. We quantify the over-

pressure required to open tensile fractures (the failure overpressure), as a func-

tion of the depth and the size of the reservoir, the loading by the volcanic

edifice and the pore-fluid pressure in the crust. We show that the pore-fluid

pressure is the most important parameter controlling the magnitude of the

failure overpressure rather than the reservoir depth and the edifice load. Un-

der lithostatic pore-fluid pressure conditions, the failure overpressure is on

the order of the rock tensile strength (a few tens MPa). Under zero pore-fluid

pressure conditions, the failure overpressure increases linearly with depth (a

few hundreds MPa at 5 km depth). We use our models to forecast the fail-

ure displacement (the cumulative surface displacement just before an erup-

tion) on volcanoes showing unrest: Sinabung and Agung (Indonesia) and Okmok

and Westdahl (Aleutian). By comparison between our forecast and the ob-

servation, we provide valuable constrain on the pore-fluid pressure conditions

on the volcanic system. At Okmok, the occurrence of the 2008 eruption can

be explained with a 1000 m reservoir embedded in high pore-fluid pressure,

whereas the absence of eruption at Westdahl better suggests that the pore-

fluid pressure is much lower than lithostatic. Our finding suggests that the

pore-fluid pressure conditions around the reservoir may play an important

role in the triggering of an eruption by encouraging or discouraging the fail-

ure of the reservoir.
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1. Introduction

The past decades have provided a wealth of observations of ground surface deformation1

before, during and after volcanic eruptions using GPS, tiltmeters, strainmeters or satellite2

radar interferometry (InSAR). Observed pre-eruption inflation ranges from a few cm prior3

to the 2006 Augustine eruption, Alaska [Cervelli et al., 2006] to several meters at Sierra4

Negra volcano, Galapagos Islands [Geist et al., 2008]. An important question for hazard5

assessment is whether detected inflation is a precursor for an eruption [Dzurisin, 2003;6

Moran et al., 2011; Chaussard et al., 2013; Biggs et al., 2014]. There are many observations7

of pre-eruptive inflation at basaltic volcanoes, e.g. at Krafla and Grimsvötn in Iceland8

[Björnsson et al., 1979; Ewart et al., 1991; Sturkell et al., 2006; Lengliné et al., 2008;9

Reverso et al., 2014], Kilauea in Hawaii [Dvorak and Dzurisin, 1993], Fernandina in the10

Galapagos Islands [Bagnardi and Amelung , 2012], Axial Seamount in the Pacific ridge11

[Nooner and Chadwick , 2009] and Okmok in Alaska [Lu et al., 1998, 2010]. For several12

andesitic and dacitic volcanoes arc-wide, InSAR surveys have documented pre-eruptive13

inflation [Pritchard and Simons , 2002, 2004; Chaussard and Amelung , 2012; Chaussard14

et al., 2013; Lu and Dzurisin, 2014]. In contrast, other volcanic systems can show unrest in15

form of ground deformation, earthquakes swarms, large heat and gas emissions for months16

to decades without eruption [Newhall and Dzurisin, 1988; Lowenstern et al., 2006; López17

et al., 2012; Mart́ı et al., 2013; Acocella et al., 2015]. This is the case of many silicic caldera18

volcanoes such as Long Valley [Hill , 1984; Newman et al., 2006], Santorini [Newman et al.,19

2012; Parks et al., 2012], Yellowstone [Wicks et al., 2006; Chang et al., 2007], Campi20

Flegrei [Orsi et al., 1999; Di Vito et al., 1999; Lundgren et al., 2001; Beauducel et al.,21
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2004; Gottsmann et al., 2006; Troise et al., 2007; Amoruso et al., 2007; Trasatti et al.,22

2008; Vilardo et al., 2009; Samsonov et al., 2014] or Laguna del Maule [Feigl et al., 2014;23

Le Mével et al., 2015].24

The inflation of the ground surface in volcanic areas results from stress changes in the25

crust due to the accumulation of magma or the exsolution of gas inside reservoirs or due to26

the propagation of magma through intrusions or conduits. Such surface displacements are27

often modeled at first order by analytical solutions such as point pressure sources [Mogi ,28

1958], finite spherical sources [McTigue, 1987] or dislocations [Okada, 1985] embedded in29

an elastic half-space. In a case by case approach, more realistic models based on numerical30

techniques have been also developed to better explain volcanic ground deformation. Such31

models can take into account the rheology of the crust, the heterogeneities of the rock32

properties and the topography of the volcano [De Natale et al., 1997; Del Negro et al.,33

2009; Currenti et al., 2010; Geyer and Gottsmann, 2010; Ronchin et al., 2015].34

In a simplified view, the magma injection from a reservoir is ”inflation predictable”35

[Segall , 2013], which means that an intrusion can be considered when the ground inflation36

reaches a critical value. Such value is related to the mechanism of failure of the magma37

reservoir [Tait et al., 1989; Burt et al., 1994; Gudmundsson, 1988; Pinel and Jaupart , 2000;38

Grosfils , 2007] and therefore will be referred to as the failure displacement in this paper.39

The magma reservoir, modeled as a pressurized cavity, remains intact as long as the sum40

of the tangential stresses affecting the reservoir’s wall does not exceed the strength of41

the host rocks. When the magma overpressure reaches a threshold, referred to as the42

failure overpressure in this paper, a tensile fracture is initiated from the reservoir and43

the magma can propagate as a hydrofracture [Rubin, 1995; Gudmundsson and Brenner ,44
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2001; Gudmundsson, 2002]. Then, the propagation of the intrusion continues as long as45

the strain energy release rate exceeds the fracture toughness of the material [Kilburn,46

2003; Gudmundsson, 2012; Rivalta et al., 2015].47

With knowledge on the elastic properties of the overlying host rock, failure models of48

magma reservoirs therefore provide constraints on failure overpressure and the associated49

failure displacement. The influence of various parameters of the volcanic system on the50

tensile failure of the reservoir has been already investigated, such as the depth and the51

shape of the reservoir [Grosfils , 2007; Mart́ı and Geyer , 2009; Albino et al., 2010], the52

mechanical properties of the host rocks [Gudmundsson, 2006; Long and Grosfils , 2009],53

thermal effects and host rock rheologies [Gerbault , 2012; Gregg et al., 2012; Currenti54

and Williams , 2014], the presence of existing structures [De Natale et al., 1997; Geyer55

and Mart́ı, 2009] and surface stress perturbations induced by edifice loading [Pinel and56

Jaupart , 2003; Hurwitz et al., 2009; Chestler and Grosfils , 2013], flank collapse [Manconi57

et al., 2009; Pinel and Albino, 2013] or ice cap melting [Albino et al., 2010; Geyer and58

Bindeman, 2011]. Moreover, depending on the pore-fluid pressure [Gudmundsson, 2012;59

Gerbault , 2012; Grosfils et al., 2015], the failure overpressure can be of the same magnitude60

as the tensile strength of rock (a few to ten MPa) [Gudmundsson, 2002, 2006; Pinel and61

Jaupart , 2005; Parfitt and Wilson, 2009] or be as high to exceed the confining pressure62

(a few tens to hundreds of MPa) as reservoir depth increases [Sammis and Julian, 1987;63

Grosfils , 2007; Hurwitz et al., 2009]. During a volcanic unrest, it is therefore crucial to64

characterize the pore-fluid pressure around the magma reservoir before quantifying the65

failure conditions. However, the magnitude of the pore-fluid pressure in volcanic systems66

is usually unknown [Fournier , 2007].67

D R A F T May 17, 2018, 4:13pm D R A F T



ALBINO ET AL.: THE ROLE OF PORE PRESSURE ON FAILURE X - 7

Several studies have examined the relationship between volcanic activity and pore-68

fluid pressure. On the one hand, the strain changes caused by magma pressurization69

during a volcanic unrest affect the groundwater level. Such intuitive effect has been70

observed and modelled on several volcanoes such as Krafla (Iceland), Usu (Japan) and71

Kilauea (Hawaii) [Stefansson, 1981; Shibata and Akita, 2001; Hurwitz and Johnston, 2003;72

Strehlow et al., 2015]. On the other hand, the change in pore-fluid pressure modifies the73

mechanical properties of the host rocks and could therefore influence the behavior of the74

volcanic system. For example, Farquharson et al. [2016] conducted triaxial laboratory75

experiments on rock samples to show that unrest-related pore-fluid pressure increase can76

lead to the development of fracture networks around volcanic conduits, known as pore77

pressure-induced embrittlement. In addition, Gressier et al. [2010] used analogue models78

to examine how pore fluid pressure controls the emplacement of magma intrusions in79

sedimentary basins. They showed that an increase of pore pressure prevents the vertical80

propagation of magma and favours the emplacement of deep horizontal intrusions. Both81

works show that the pore pressure conditions can influence both the initiation and the82

propagation of magma intrusions.83

In this paper, we investigate the failure overpressure conditions around magma reser-84

voirs using finite element modeling. First, we perform a sensitivity study to understand85

the effect of pore-fluid pressure and compare it to the effect of other parameters such as86

the depth and the radius of the reservoir or the morphology of the volcanic edifice. Then,87

we apply our modeling to Sinabung and Agung in Indonesia and Okmok and Westdahl88

in the Aleutian Islands. All these volcanic systems exhibited periods of prolonged ground89

inflation which at Sinabung and Okmok led to eruptions, but at Agung and Westdahl90
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did not, highlighting the limitations of ground inflation as eruption precursor. The main91

objective of this study is to understand why for similar ground inflation, some magmatic92

systems fail and initiate an eruption while some others remain stable without erupting.93

Stress threshold at which an intrusion is initiated from the magma reservoir varies between94

volcanoes. We will calculate for each volcano and for different pore-fluid pressure condi-95

tions this failure threshold taking into account the radius and the depth of the magma96

reservoir and the size of the volcanic edifice.97

2. Method

2.1. Failure criterion

The failure conditions of magma reservoirs have been investigated from the analogy98

of hydro-fractures occurring around boreholes or tunnels [Jaeger , 1979]. The approach99

consists to calculate stress at the wall of the cavity. Assuming that magma and host rock100

have the same density, the internal magma pressure Pm is equal to:101

Pm = −ρrgz + ∆Pm (1)

where ρr is the host rock density, g the gravitational acceleration and z the depth from102

the surface (negative values). Here, and in the entire study, we adopt by convention com-103

pressive stress as positive and tensile stress as negative. The first term in the equation104

counters the lithostatic load of the rock, creating a state of equilibrium with no deforma-105

tion in the surrounding host rock. The second term, ∆Pm is an excess uniform pressure106

in comparison with lithostatic pressure (also referred to as overpressure), which induces107

host rock deformation.108
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For 2D plane-strain geometry, analytical solutions of this problem have been given109

by Jeffery [1921] and been firstly used to quantify the pressure required to initiate a110

dyke intrusion from a cylindrical reservoir [Gudmundsson, 1988, 2006], considering that111

the dyke initiates from tensile fractures (mode I). The general formulation for the tensile112

criterion around a sphere is given by Timoshenko et al. [1951]. As we consider compressive113

stress as positive values, the failure criterion can be written as:114

−σt ≥ (PL − Pp + Ts) (2)

with σt the tangential stress at the wall, PL the lithostatic pressure (equal to −ρrgz),115

Pp the pore-fluid pressure and Ts the tensile strength of the rocks. As the medium is116

elastic, the tangential stress is proportional to the magma overpressure so we can introduce117

the ratio k, with k = −∆Pm
σt

. Therefore, the tensile failure will be initiated when the118

overpressure reaches a critical value referred to as the failure overpressure, ∆Pf , and119

defined as:120

∆Pf = k(PL − Pp + Ts) (3)

The value of ∆Pf is dependent on tensile strength of the rock, the pore-fluid pressure121

conditions and the lithostatic pressure. The tensile strength of rocks can be measured122

by uniaxial tensile testing of natural samples. From such experiments, Touloukian et al.123

[1981] report tensile strengths of 13.8 ± 2.1 MPa for granite and 8.6 ± 1.4 MPa for124

pristine basalt. However, these values have to be considered as upper limits because crustal125

processes such as faulting, fracturing or hydrothermal activity reduces the tensile strength126

[Schultz , 1995]. For example, in-situ measurements in Iceland provide strength values of127
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1-6 MPa [Haimson and Rummel , 1982]. Through the paper, we will use a constant value128

of 10 MPa for Ts and we will be aware that the failure overpressure calculated would129

correspond to an upper bound.130

There are different approaches to include the pore-fluid pressure conditions in models131

for reservoir failure [Gudmundsson, 2012; Gerbault , 2012; Grosfils et al., 2015]. A common132

approach considers that some fluids are present in the rock adjacent to the reservoir [Lister133

and Kerr , 1991; Rubin, 1995; McLeod and Tait , 1999]. In that case, the pore-fluid pressure134

equals the lithostatic pressure (Pp = PL) and the failure overpressure is of the magnitude135

of the tensile strength, ∆Pf = kTs [e.g., Gudmundsson, 2002, 2006; Pinel and Jaupart ,136

2005; Parfitt and Wilson, 2009]. An alternative approach considers that pre-existing fluids137

are negligible at the contact between the reservoir and the host rock. In that way, there is138

zero pore-fluid pressure (Pp = 0) and the failure overpressure becomes strongly dependent139

on the lithostatic stress ∆Pf = k(PL +Ts) [Sammis and Julian, 1987; Grosfils , 2007]. For140

zero pore-fluid pressure, the failure overpressure for a reservoir at 10 km depth will be141

almost twice larger than for a reservoir at 5 km depth.142

The solution of ∆Pf is well-known for a spherical reservoir embedded in an infinite143

space, in which the ratio k is constant along the wall and equal to 2 [Jaeger , 1979; Tait144

et al., 1989]. However, for more complex geometries and/or non-lithostatic stress field,145

the ratio k can not be easily determined and numerical models are therefore required to146

assess the failure conditions.147

2.2. Finite Element Modeling

Stress and strain are numerically calculated solving the equations for linear elastic-148

ity with the Finite Element Method, using the software COMSOL MULTIPHYSICS149
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(https://www.comsol.com). The geometry of the mechanical model is a 2D axi-150

symmetrical box of 100 x 100 km, with a mesh of about 10 000 triangular elements151

that is refined around the volcanic edifice and the magma reservoir. The width and the152

height of the box are located far enough from the magma reservoir to limit the influence153

of boundaries on the stress calculation. A condition of no-displacement in the normal154

direction is fixed to the right and bottom boundaries. The top boundary corresponds to155

the surface and is free to move and the left boundary is the axis of symmetry (Figure156

1). We consider homogeneous and isotropic elastic host rock, characterized by its shear157

modulus G and its Poisson’s ratio ν.158

In the absence of tectonic stress, the initial state in numerical models is assumed to159

be either a lithostatic stress field (σr = σφ = σz = PL) or a vertical uni-axial strain160

(σr = σφ =
ν

1− ν
σz) [e.g., Sartoris et al., 1990; Grosfils , 2007; Currenti and Williams ,161

2014]. In our study, we assume the initial stress as lithostatic (e.g. no deviatoric stress),162

which is considered as the most likely state of stress [e.g., McGarr , 1988], especially for163

mature portion of the crust where different processes such as deformation, faulting or164

fracturing tend to reduce deviatoric stresses. To model this state of stress, we therefore165

impose on each element of the host rock an internal body load per volume, ρrg and a166

pre-existing lithostatic stress.167

The first set of models reproduces the simplest case of a magma reservoir embedded in168

a lithostatic stress field (Figure 1a). The magma reservoir is modeled as a half spherical169

cavity with a radius R and a top depth Ht (depth considered as negative values). Total170

pressure inside the magma reservoir, Pm, is applied as a normal stress at the reservoir wall.171

It is composed of a depth-dependent component, −ρrgz, which compensates the weight172
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of the surrounding rock and an uniform overpressure, ∆Pm, which could be induced by173

different processes such as magma replenishment, volatile exsolution or fractional crystal-174

lization. When ∆Pm is set to zero, the magmatic reservoir is in a stress equilibrium with175

the surrounding medium and no deformation is generated.176

The second set of models takes into account the effect of the load of the volcanic edifice.177

The edifice is modeled as a cone, characterized by a radius Re and a height He (Figure178

1b). In that model, the top depth of the reservoir Ht is now calculated from the base179

of the edifice. The edifice is imposed as a body loaded volume without initial pre-stress.180

Below the edifice, the initial conditions (pre-stress and loading) are set the same as in181

the previous model. The edifice load will modify the initial lithostatic stress field and182

induce deformation in the crust beneath. This configuration simulates the case where183

the construction of an edifice is more rapid than the time-scale required to reach stress184

equilibrium. Parameters and variables used in our modeling are reported in Table 1.185

Failure overpressures are calculated numerically using the tensile failure criterion de-186

scribed in the section 2.1. As the failure conditions now vary along the wall of the reservoir,187

the equation (3) can be re-written as:188

∆P (θ) = k(θ)(PL(θ)− Pp(θ) + Ts) (4)

where θ is the angle between the location at the wall and the vertical axis (Figure 1),189

and the function k(θ), the ratio between the magma overpressure applied in the model190

and the induced tangential stress at the reservoir’s wall. Because the crust rheology is191

elastic, only one model run is needed to calculate numerically the function k(θ). This192

function is minimum at the location θ = θf , where θf corresponds to the failure location.193
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By using θf in the equation (4), we can estimate the magma overpressure required to194

cause the reservoir failure ∆Pf = ∆P (θf ).195

For the case with edifice loading, we require two models runs: (1) a model without edifice196

loading but with reservoir overpressure (previous case) and (2) a model with edifice loading197

but without reservoir overpressure (Pm = PL). Based on the superposition principle198

previously used in Pinel and Jaupart [2003] and Albino et al. [2010], we are able to199

calculate the overpressure required for failure below an edifice through the function:200

∆P (θ) = k(θ)(σte(θ)− Pp(θ) + Ts) (5)

where σte is the total tangential stress at the reservoir wall, which is composed of the pre-201

edifice lithostatic stress PL and the stress induced by the edifice loading. For each model,202

we take into account the two different pore-fluid pressure conditions discussed previously:203

zero pore pressure where Pp(θ) = 0 and lithostatic pore pressure where Pp(θ) = PL(θ). For204

simplicity, we assume that pore-pressure conditions are not affected by the edifice. This205

assumption is valid considering that (1) pore-fluid pressure changes induced by the elastic206

load are fully dissipated at present time and (2) the water table does not significantly207

change during the construction of the edifice.208

Figure 2 details how the failure overpressure is calculated at the reservoir’s wall for the209

two pore-fluid pressure cases. Solid and dashed color lines correspond to the case without210

edifice and with edifice, respectively. For each case, the minimum of the function ∆P (θ)211

is shown by a dot, which indicates the failure overpressure, ∆Pf , and the angle of failure,212

θf . For the zero pore-fluid pressure without edifice, the failure occurs at θf=5◦ with213

∆Pf=132.3 MPa. This is in good accordance with Grosfils [2007], who found that for his214
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corresponding case, the failure occurs at the top (equivalent to θf=0◦) for a normalized215

overpressure of 2 (equivalent to ∆Pf=2(PL+Ts) = 129.9 MPa) (see their Fig. 7b and 10b216

for details).217

For the lithostatic pore-fluid pressure without edifice, the failure occurs at θf=69◦ with218

∆Pf=18.6 MPa. The failure location found is in accordance with the value of 70.5◦
219

deduced from the analytical solution acos(
R

|Hc|
) given by Jeffery [1921] and McTigue220

[1987] (Hc being the center depth of the reservoir). This location corresponds to the point221

of tangency where the line must be tangent to the reservoir’s wall and intersects the free222

surface at the vertical axis.223

For the edifice model, ∆Pf=114.7 MPa and θf=0◦ in the case of zero-fluid pore pressure,224

and ∆Pf=4.8 MPa and θf=0◦ if pore-fluid pressure is considered lithostatic. The loading225

of the edifice focus the failure at the top of the spherical reservoir, as already suggested226

by Pinel and Jaupart [2003], Grosfils [2007] and Hurwitz et al. [2009]. Moreover, it is227

interesting to notice that for both pore pressure conditions, the decrease of the failure228

overpressure induced by the edifice load is identical and about 15 MPa.229

Based on this approach, we perform a parametric study by using three different model230

configurations. For the first configuration, the magma reservoir is embedded in an elastic231

half-space with lithostatic stress field (Figure 3). The second model configuration (topo-232

graphic loading model, Figure 4) includes the loading stress induced by a conical volcanic233

edifice. For these two configurations, the radius and the top depth of the reservoir vary.234

In the third model configuration (Figure 5), the radius and the top depth of the reservoir235

are kept constant but the edifice size varies.236
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3. Modeling results

3.1. Effect of the radius and the depth of the reservoir

To compare the results between the two pore-fluid pressure conditions, the failure over-237

pressures are normalized by the term (PL(θf )− Pp(θf ) + Ts). From the equation (4), the238

normalized failure overpressure correspond to the value k(θf ). Figure 3 shows k(θf ) and239

θf obtained in a lithostatic stress field for lithostatic pore-fluid pressure (Figure 3a,b) and240

zero pore-fluid pressure (Figure 3c,d). The reservoir radius and the reservoir top depth241

range from 100 to 2000 m and from -200 to -5000 m, respectively. Using step sizes of 100242

m and 200 m, respectively, we conduct 500 model runs.243

In both cases, the normalized failure overpressure increases with increasing reservoir244

depth and with decreasing reservoir radius. For the lithostatic case, normalized values245

range from 0.4 for large and shallow reservoirs (R=2000 m, Ht=-200 m) to 2 for small and246

deep reservoirs (R=100 m, Ht =-5000 m). For a reservoir radius of 1000 m, the failure247

overpressure increases from 16.9 MPa at 1 km depth to 19.9 MPa at 5 km depth, using248

Ts =10 MPa (Figure 3a). For the zero pore-fluid pressure case, normalized values range249

in the same order of magnitude from 0.25 to 2, according to reservoir depth. However,250

in that case, the failure overpressures are much higher than in the lithostatic pore-fluid251

pressure case. For the reservoir radius of 1000 m, the failure overpressure changes from252

70.8 MPa to 295.3 MPa from 1 to 5 km depth, using ρr = 2800 kg.m−3 (Figure 3c). The253

failure overpressure increases with depth by only 15% in the lithostatic case and by 75% in254

the zero pore-fluid pressure case. With zero pore-fluid pressure around the reservoir, the255

conditions of failure are strongly depth dependent and would require large overpressures256

to initiate an eruption.257
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Another difference between the two pore-fluid pressure assumptions is the location of258

the failure (Figure 3b,d). For lithostatic pore-fluid pressure, the location of the failure for259

a spherical reservoir is a function of the radius and the depth of the reservoir, with θf =260

acos(
R

|Ht|+R
). For top depth deeper than 1 km, the failure will occur at the periphery261

of the reservoir θf > 45◦ (Figure 3b). At the failure point, the direction of propagation262

is given by the maximum compressive stress, which is radial from the reservoir’s wall.263

Under lithostatic pore pressure, the failure will favor the emplacement of sub-horizontal264

intrusions. Under zero pore-fluid pressure, the failure occurs at the top of the reservoir for265

most of the cases (θf=0) and deviates of only 30-40◦ from the pole for shallow reservoirs266

(Figure 3d). Such pore pressure conditions will therefore favor the initiation of sub-vertical267

intrusions.268

3.2. Effect of the edifice loading

Figure 4 shows the failure overpressure for the two pore-fluid pressure assumptions269

in the second model configuration, taking into account the load of the volcanic edifice270

(Figure 1b). As we consider elastic rheology, the failure overpressure below a volcanic271

edifice (Figure 4a,d) is the sum of the failure pressure in a lithostatic stress field (Figure272

4b,e) and a term, δP , reflecting the effect of the loading stress due to the edifice (Figure273

4c,f). Positive (negative) δP indicates that the edifice loading prevents (enhances) failure.274

For the lithostatic pore-fluid pressure case, the failure overpressure is highest for small275

reservoirs located at shallow depth (Figure 4a). For increasing reservoir depth, ∆Pf276

decreases until a minimum is reached at intermediate depth between -2000 m and -3000277

m below the base of the cone (white line on Figure 4a). For the zero pore-fluid pressure278
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case, the failure overpressure is still largely dependent on the depth of the reservoir (Figure279

4d).280

However, the variation of failure overpressure due to edifice loading, δP , is similar in281

both cases (Figure 4c,f). The edifice loading discourages the failure for reservoirs shallower282

than 1000 m and encourages failure of reservoirs at greater depth. For Ht=-200 m, the283

failure overpressure increases by about 22 MPa for both pore-fluid pressure cases. In284

contrast, for Ht=-3000 m, the failure overpressure decreases by 15 MPa in both cases.285

The change is due to the transition of the horizontal normal stress induced by the edifice286

loading to the reservoir’s wall from compressive regime at shallow depth to tensile regime287

at deep depth [Pinel and Jaupart , 2003, 2004]. For both pore-fluid pressure conditions,288

the largest decrease in failure overpressure occurs for reservoirs located around 3000 m289

depth (white line in Figure 4c,f).290

In the third model configuration, the size and the depth of the reservoir are kept con-291

stant, but the edifice size varies. Edifice radius Re ranges from 500 to 10000 m, with a292

step size of 500 m and edifice slope θe from 2 to 30◦, with a step size of 2◦. The normalized293

failure overpressures are shown in Figure 5a,b as a function of the radius and height of the294

edifice, for the two pore-fluid pressure assumptions. In both cases, the failure overpres-295

sure increases with increasing edifice radius and decreases with increasing edifice height.296

With the load of the edifice, the failure occurs at the top of the reservoir for both pore-297

fluid pressure conditions, which will favor the initiation of sub-vertical intrusions leading298

eventually to summit eruptions. In the case of lithostatic pore-fluid pressure, there are299

negative failure overpressures for large edifice heights (Figure 5a), which mean that the300

reservoir is not mechanically viable under such edifices. Although the amplitude of the301
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failure overpressure is different between the two pore-fluid conditions, we notice that the302

patterns are the same (Figure 5c-d). Variations are mostly linear with +2.5 MPa/km for303

the radius (Figure 5c) and -12 MPa/km for the height (Figure 5d). These results under-304

line that the failure overpressure changes due to stress perturbations are independent of305

the conditions of pore-fluid pressure around the reservoir.306

4. Application of failure models to Sinabung, Agung, Westdahl and Okmok

volcanoes

In this section, we apply our failure models to real volcanoes. We select two pairs of307

volcanoes: Sinabung and Agung in Indonesia and Okmok and Westdahl in the Aleutian.308

The pair selection is based on the following characteristics: (1) both volcanoes showed309

sign of unrest, at one volcano the unrest is followed by an eruption but not at the other310

one. (2) eruptions are initiated by magma intrusions from a reservoir as a result of rock311

fracturing, and our mechanical models apply. (3) volcanoes are close enough in space to312

have similar geological and tectonic settings.313

We calculate the failure overpressure, taking into account the reservoir depth and the314

loading stress of the edifice. We investigate the failure overpressure considering lithostatic315

pore-fluid pressure (Pp = PL) and zero pore-fluid pressure (Pp = 0). With assumptions316

on the shear modulus, we then convert the failure overpressure to failure displacement,317

which corresponds to the maximum vertical surface displacement expected before the318

failure of the reservoir. The total ground displacements in our FEM model are the sum319

of two components: (i) subsidence by a few meters related to the implementation of the320

surface load (ii) inflation caused by the pressurization of the reservoir. With an elastic321

assumption, the subsidence occurs immediately or over a short period of time after the322
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occurrence of the surface load. For the calculation of our failure displacements, we do not323

consider this subsidence but only displacements related to the reservoir pressurization.324

4.1. Eruptions and ground deformation

4.1.1. Example 1: Sinabung and Agung325

Sinabung and Agung are located in the Indonesian subduction arc and are both associ-326

ated with a strike-slip setting [Hughes and Mahood , 2011; Acocella and Funiciello, 2010;327

Chaussard and Amelung , 2014]. Sinabung is a 2460-m-high andesitic-dacitic stratovolcano328

in northern Sumatra (Indonesia), 25 km north of Toba caldera (Figure 6a-top). Edifice329

flanks are composed of successive lava flows (Global Volcanism Program, 2013), which330

indicate past non-explosive eruption episodes. On August 27th 2010, Sinabung erupted331

after a period of steady inflation, producing a 5 km high Plinian ash cloud above the332

summit. A cumulative displacement of about 10 cm in line-of-sight (LOS) direction was333

detected by InSAR during 3.5 years preceding the eruption [Chaussard and Amelung ,334

2012; Chaussard et al., 2013]. The 2010 phreatic episode was the first eruption in modern335

times, except possibly an unconfirmed eruption in 1881 [Sutawidjaja et al., 2013].336

The 3000-m-high Agung stratovolcano in Bali is built on the caldera rim of neighbor-337

ing Batur volcano (Figure 6a-top). Three eruptions were reported during the last two338

centuries, in 1808, 1843 and 1963-1964. The latter was one of the largest eruptions of339

the 20th century and produced voluminous ashfall, pyroclastic flows and lahars, killing a340

total of 1138 people [Witham, 2005]. Between mid-2007 and 2009, Agung inflated by more341

than 13 cm in LOS direction but did not erupt [Chaussard and Amelung , 2012; Chaus-342

sard et al., 2013]. Quiescence over decades to centuries indicates the lack of permanent343

conduits to transport the magma to the surface at Sinabung and Agung in contrast to344
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persistently active volcanoes (e.g. Soufriere Hills, Popocatepetl or Merapi). An eruption345

would be initiated by fracturing a new path into the crust.346

4.1.2. Example 2: Okmok and Westdahl347

The two volcanoes are located at 260 km distance in the Aleutian subduction arc in sim-348

ilar tectonic settings [Zellmer , 2008; Hughes and Mahood , 2011; Acocella and Funiciello,349

2010; Chaussard and Amelung , 2014]. Okmok, a basaltic shield volcano (500 m) located350

on Umnak Island in the Aleutian arc (Figure 6a-bottom), is one of the most active Aleu-351

tian volcanoes with 11 known eruptions since 1900 [Global Volcanism Program, 2013].352

The summit is composed of two overlapping 10-km-wide calderas formed about 12,000353

and 2050 years ago [Larsen et al., 2007]. Subsequently, numerous small satellite cones354

and lava domes have developed on the caldera floor [Byers , 1959]. The more recent cones355

are basaltic and formed after the disappearance of a caldera lake. Intense hydrothermal356

activity with fumaroles and hot springs is often observed within the caldera. Historical357

eruptions have produced lava flows from the edge of the caldera rim. Between the last358

two eruptions in 1997 and 2008, the caldera floor inflated by almost 1 m, which was mod-359

elled by an inflated source with a cumulative change of 0.05 km3 [Lu et al., 2010; Lu and360

Dzurisin, 2014].361

Westdahl, a basaltic shield (1654 m) located on Unimak island (Figure 6a-bottom), is362

one of the largest volcanoes in the Aleutians. Westdahl had only 3 eruptions since 1900363

[Global Volcanism Program, 2013]. The last eruption in 1991 produced explosions and364

lava flows from a 8-km fissure. In January 2004, the Alaska Volcano Observatory (AVO)365

detected a strong seismic swarm associated with long-period events beneath the volcano,366

which could represent a failed eruption [Neal et al., 2005]. Westdahl volcano inflated367
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around 20-30 cm between the 1991-92 eruption and 2010 [Lu et al., 2000, 2003], but no368

eruption has yet occurred. Both volcanoes show that historical eruptions are associated369

with lava flows originate from different fissures. This implies that eruptions at Okmok370

and Westdahl are not fed by a permanent conduit but rather by successive emplacement371

of magma intrusions from the reservoir.372

4.2. Depth and volume change of the magma reservoirs

For the four cases, the volume change and the depth of the magma reservoir have been373

already deduced by the inversion of InSAR time series, using point source model [Mogi ,374

1958] or pressurized finite sphere embedded in elastic half-space [McTigue, 1987]. The375

Mogi analytical solution for vertical displacements at the surface is defined as Uz(r) =376

(1− ν)∆V | Hc |
π(r2 +H2

c )
3
2

, where ∆V is the volume change of the source, Hc the center depth of377

the source and r the radial distance from the source. In detail, the volume change is a378

function of the source radius R, the magma overpressure ∆Pm and the shear modulus of379

the host rock G through: ∆V = πR3∆Pm
G

. This means that to convert displacement to380

overpressure and vice versa, R and G have to be known. However, geodetic inversions381

only constrain Hc and ∆V .382

At Sinabung and Agung, the ground inflation has been attributed to pressurized spheres383

at 0.9 and 1.9 km depth below the average elevation of 0.7 and 0.5 km, respectively384

[Chaussard and Amelung , 2012; Chaussard et al., 2013]. The authors also suggested that385

the volume changes of the Agung and Sinabung reservoir were around 1 km3 and 0.1386

km3, respectively. The time series of LOS displacements of these two volcanoes given387

by Chaussard et al. [2013] are converted into vertical displacements assuming that the388

magma reservoir axes are located below the summits so that summit displacements are389
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purely vertical (Figure 7a,b). The corresponding maximum vertical displacements for390

Sinabung and Agung are 13 and 16 cm, respectively. At Sinabung and Agung, as we do391

not have ground deformation data before the year 2007, these values should be therefore392

considered as low bounds.393

At Okmok, the ground inflation can be explained by a point source at 2.6-3.2 km below394

sea level [Lu et al., 2003; Miyagi et al., 2004; Fournier et al., 2009]. A more realistic Earth395

model, taking into account the variability of elastic parameters in the crust, gave a source396

depth of 3.5 km below sea level [Masterlark et al., 2016]. At Westdahl, the point source397

is located deeper at 6 km below sea level [Lu and Dzurisin, 2014]. For both Aleutian398

volcanoes, the inferred cumulative volume change is 50.106 m3 [Lu and Dzurisin, 2014].399

The time series of volume change at Aleutian volcanoes given by Lu and Dzurisin [2014]400

are converted into vertical displacements at the center of the volcano (Figure 7c,d), using401

the approximation Uz(r = 0) =
3∆V

4πH2
c

. The maximal vertical displacements found are 88402

cm and 25 cm at Okmok and Westdahl, which, for Okmok, is the total inflation between403

the 1997 and 2008 eruptions.404

As we do not have constraints on the reservoir size, the radius will be considered as a405

free parameter. The parameters used in the modeling are summarized in Table 2.406

4.3. Morphological characteristics of the volcanic edifices

Elevation profiles show that the volcanic edifices are almost symmetrical, so that407

they can be approximated by 2D axis-symmetrical models (Figure 6b). The edifices408

of Sinabung, Agung and Westdahl are represented as cones defined by its radius and its409

height. The morphology of Okmok volcano is different than others as the edifice was de-410

stroyed by successive collapses. We model it as a cone truncated at 500 m above sea level411
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(Figure 6b). The edifice radius is deduced from the analysis of slope maps and shaded412

relief images and the edifice height is derived by averaging elevation profiles with different413

azimuth (Table 2). The average height is measured between the centred summit and the414

base .415

For the Indonesian volcanoes, the base of the edifice is taken as the regional average416

elevation masking the edifice area, which is respectively 0.7 km for Sinabung and 0.5 km417

for Agung. For the Aleutian islands, the choice of this base line is more questionable. The418

reference can be either the sea level or the bottom of the ocean, which strongly depends419

on which proportion of the volcano is under the sea. Based on the bathymetry map of the420

Aleutian islands [Zimmermann et al., 2013], volcanic centers are built on top of a 50 km421

width plateau, located at shallow depth (e.g. 100-500 m below sea level). It means that422

the basement of Okmok and Westdahl is close to the sea level and it is therefore more423

suitable to consider the sea level as reference rather than the bottom of the ocean.424

4.4. Shear modulus around the volcanic system

The elastic parameters of the rocks in volcanic environment are poorly constrained.425

Depending on the volcanic context, authors used in their models different values for the426

shear modulus, from 2 GPa at Piton de la Fournaise (Reunion island) and Nyamulagira427

(D.R. of Congo) [Fukushima et al., 2005; Peltier et al., 2008; Wauthier et al., 2013] to428

12-30 GPa at Icelandic volcanoes [Pagli et al., 2006; Pinel et al., 2007]. Furthermore, the429

elastic parameters vary vertically and laterally [Geyer and Gottsmann, 2008; Long and430

Grosfils , 2009; Masterlark et al., 2010; Auriac et al., 2014] and are temperature-dependent431

[e.g., Bakker et al., 2016]. Authors pointed out that high temperature may induce inelastic432

behavior around the magma reservoir associated with low shear modulus [Dragoni and433
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Magnanensi , 1989; Del Negro et al., 2009; Currenti et al., 2010; Currenti and Williams ,434

2014]. According to the values taken, the modeled displacements may change by an order435

of magnitude. In addition, values for the poisson’s ratio vary with the rock lithology436

and range from 0.24 to 0.32 for igneous rocks [e.g., Christensen, 1996]. However, the437

influence of the Poisson’s ratio in our model results will be much smaller than the effect438

of the shear modulus and it therefore can be neglected. For each volcano, the Poisson’s439

ratio, ν, is fixed at 0.25 and the shear modulus, Gs, is derived from seismic wave speed440

measurements:441

Gs =
(1− 2ν)

2(1− ν)
ρrV

2
p (6)

with ρr the rock density, and Vp the P-wave velocity.442

At Agung and Sinabung, because there is no local seismic tomography we use results443

from Toba and Merapi volcanoes. The measured P-wave speeds are 3 km.s−1 around the444

Toba magma chamber [Stankiewicz et al., 2010] and 3-4 km.s−1 for Merapi [Wagner et al.,445

2007]. Taking a homogeneous rock density of 2800 kg.m−3, the seismic shear modulus446

ranges from 8.4 to 14.9 GPa with a mean of 11.6 GPa.447

Using seismic tomography at Okmok, Masterlark et al. [2010] found P-wave velocities448

of 2.5 km.s−1 in the caldera structure and around the reservoir and 5.7 km.s−1 in the449

surrounding basement. Moreover, they suggested that there is a large contrast of rock450

density between the caldera (ρr=1800 kg.m−3) and the basement (ρr=2800 kg.m−3). The451

seismic shear moduli Gs calculated from Equation 6 are therefore 3.8 GPa below the452

caldera and 30.3 GPa for the basement.453

D R A F T May 17, 2018, 4:13pm D R A F T



ALBINO ET AL.: THE ROLE OF PORE PRESSURE ON FAILURE X - 25

At Westdahl, the velocity model of McNutt and Jacob [1986] used by the Alaska Volcano454

Observatory (AVO) is composed of four layers with velocities of 3.05, 3.44, 5.56 and 6.06455

km.s−1 for the [3000, 0], [ 0, -1790], [-1790, -3650] and [-3650 -6000] meters depth ranges.456

The corresponding shear moduli are 8.7, 11.0, 28.9 and 34.2 GPa, respectively.457

The shear modulus applicable for static mechanical models is lower than the shear458

modulus for seismic waves because of the presence of fluid-filled pores and cracks [e.g.,459

Gudmundsson, 1990; Wauthier et al., 2012; Zhao et al., 2016]. The frequency dependence460

of the modulus decreases with depth and confining pressure [Ciccotti and Mulargia, 2004].461

Adelinet et al. [2010] have shown using laboratory measurements of Icelandic basalt that462

in dry conditions the ratio between the low frequency and high frequency bulk moduli463

is independent of depth and around
2

3
. In saturated conditions, the ratio increases from464

0.25 at sea level to 1 at a confining pressure of 200 MPa.465

For each volcano, we consider models with three different shear moduli, 0.25 Gs, 0.5 Gs466

and Gs. For Agung and Sinabung, the models are homogeneous with three shear moduli:467

2.9, 5.8 and 11.6 GPa. For Okmok, we use different shear moduli for the caldera and for468

the surrounding basement. Following the study of Masterlark et al. [2010], the caldera469

domain is modeled as a semi-ellipse below the surface with horizontal and vertical axis of470

5 km and 2 km, respectively. For the caldera domain, the three values modeled are 0.9,471

1.9 and 3.8 GPa and for the basement 7.6, 15.15 and 30.3 GPa. For Westdahl, we use the472

four-layers model from the seismic tomography.473

4.5. Observed displacements vs. Failure displacements

By applying the failure overpressure ∆Pf at the wall of the magma reservoir, we can474

calculate the failure displacement Uzf . This value depends on the shear modulus, the475
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depth and the size of the reservoir. We use the geodetic reservoir depths and consider the476

reservoir size as a free parameter. Values for the reservoir radius range from 100 m to477

2000 m for the Aleutian volcanoes. At Sinabung and Agung volcanoes, as their reservoirs478

are located shallower than 2000 m (900 and 1900 m, respectively), the upper bound of479

the radius will be fixed at 800 and 1800 m, respectively.480

Figure 8 shows for the four volcanoes the failure displacement as a function of reservoir481

radius, shear modulus and pore-fluid pressure conditions. Zero pore-fluid pressure is482

indicated by green shadings and lithostatic pore-fluid pressure by red shadings. The figure483

shows that zero pore-fluid conditions produce significantly higher failure displacements484

than lithostatic pore fluid pressure conditions (independent of reservoir radius and shear485

modulus). This means that for increasing reservoir radius the failure displacement can be486

kept constant by increasing the pore-fluid pressure (to produce a decrease in overpressure).487

The figure also shows that a decrease in shear moduli results in an increase of the failure488

displacements (independent of reservoir radius and the pore-fluid pressure conditions).489

We are aware that the reservoir depth given for each volcano is known with some490

uncertainty, which may also influence the failure displacements calculated. Under zero491

pore pressure, the overpressure increases with the reservoir depth. As a consequence, a492

variation of 20% of the reservoir depth does not have significantly effect on the failure493

displacements (Figure S1 - Supplementary material). On contrary, under lithostatic pore494

pressure, the variations of the failure overpressure with depth are small, therefore the495

failure displacement largely decreases with the increase of the reservoir depth. In this496

case, an increase of 20% of the depth would have the same effect than an increase of the497

shear modulus by a factor of two (Figure S1 - Supplementary material). Uncertainties of498
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failure displacements due to reservoir depth are therefore very similar to the uncertainties499

already deduced from the shear modulus (Figure 8).500

At Sinabung, the observed displacement of 13 cm (prior to the 2010 eruption) is reached501

under zero pore-fluid pressure conditions for reservoirs with 350-640 m radius and under502

lithostatic pore-fluid pressure conditions for reservoirs with 520-800 m radius. The same503

failure displacement can be produced by a range of pore-fluid pressure conditions. This504

shows that the interpretation of the observed inflation in terms of the fluid pressure505

conditions (assuming that there was no inflation prior to 2007, i.e. that it equals the506

failure displacement) would require information on the reservoir radius and the shear507

modulus.508

Agung inflated by 16 cm but there was no eruption, which suggests that inflation509

remained below the failure displacement. Using Figure 8b we obtain a lower bound of510

the reservoir radius. Assuming a shear modulus of 0.5 Gs, we find that Agung’s reservoir511

radius must be larger than 560 and 1220 meter for zero and lithostatic pore-fluid pressure512

conditions, respectively.513

Okmok inflated by 88 cm between the 1997 and 2008 eruptions. The models show514

that under zero pore-fluid pressure conditions such failure displacement can be reached515

for reservoirs with radii between 600 and 950 m and under lithostatic pore-fluid pressure516

conditions for radii between 1050 and 1550 m. Fournier [2008] used GPS data and517

thermodynamic models to constrain the radius of the reservoir to be between 1 and 2 km.518

Combined with our modeling results, this would suggest lithostatic pore-fluid pressure519

conditions for this volcano.520
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Westdahl has inflated by 25 cm since the 1991-1992 eruption without any new eruption521

at the surface. As for Agung, this observation may suggest a combination of pore-fluid522

pressure conditions and reservoir radius so that the failure displacement is above this523

value. Using Figure 8d, we find that the pore-fluid pressure conditions should be lower524

than lithostatic and the reservoir radius must be larger than 700 m. However, the caveat525

for this interpretation is a seismic swarm in January 2004 [Neal et al., 2005], which could526

indicate that the system had reached a stress state sufficient to break rock after only527

20 cm of inflation. The swarm could represent a failed eruption (tensile failure of the528

reservoir wall without propagation of the intrusion to the surface). From Figure 8d, we529

find that for Pp=0 and G=0.5 Gs, a 850 m radius reservoir can produce the observed530

failure displacement of 20 cm. For lithostatic pore-fluid pressure conditions, the failure531

displacements modeled are always less than 20 cm, which can not explain the failed532

eruption.533

To summarize, for shallow reservoirs (less than 1 km), such as Sinabung, it is impossible534

to discriminate between the two pore-fluid pressure assumptions as failure overpressures535

are similar. However, for deeper magma reservoirs, the difference between failure dis-536

placements becomes significant. At Agung, the absence of eruption indicates that the537

radius of the reservoir must be larger than 560 m. At Okmok, the 2008 eruption seems538

to be associated with high pore-fluid pressure conditions whereas the failed eruption at539

Westdahl would suggest pore-pressure conditions much lower than lithostatic.540
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5. Discussion

5.1. Influence of magma reservoir, volcanic edifice and pore-fluid pressure on

failure conditions

Table 3 summarizes the main results of the parametric study (section 3) on the failure541

overpressure. An initial model without edifice with a magma chamber with R=1000 m at542

Ht=-2000 m is given as a reference. As the depth of the reservoir decreases, the failure543

overpressure decreases, which promotes the initiation of magma intrusions. The effect is544

nearly negligible for lithostatic pore-fluid pressure (a few MPa), but is significant for zero545

pore-fluid pressure as a 1 km reduction in reservoir depth leads to a decrease of the failure546

overpressure by 60 MPa.547

The load of the volcanic edifice also affects the failure conditions. A 1250 m high548

edifice with 5000 m radius reduces the failure overpressure by about 15 MPa from the549

reference model for both pore-fluid pressure conditions. Later, when the edifice widens,550

the failure overpressure increases (by 5 MPa for a 8000 m radius). When the edifice551

collapses and/or a caldera forms, the load of the edifice is suppressed and the failure552

overpressure is similar to the reference model. The effect of stress perturbations, such as553

the construction/destruction of an edifice, on failure overpressure is independent of the554

value of the pore-fluid pressure. It means that the studies focussing on the influence of555

external stress changes on reservoir failure do not need to take into account the pore-fluid556

pressure conditions.557

For lithostatic pore-fluid pressure, the failure overpressure is more sensitive to edifice558

loading than to reservoir depth. Indeed, the minimum failure overpressure is associated559

with the small edifice case (* in Table 3). In contrast, for zero pore-fluid pressure, the560
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failure overpressure is more sensitive to reservoir depth than to edifice loading. The561

minimum failure overpressure is found for a reservoir depth of 1 km ( * in Table 3).562

Although both reservoir depth and edifice loading have an effect on the failure over-563

pressure, the strongest effect is the pore-fluid pressure itself. For the reference model,564

the failure overpressure decreases from 132 to 19 MPa for a pore-fluid pressure increases565

from 0 to PL. The effect would even be larger for deeper magma reservoirs. Our study566

underlines that the effect of the pore-fluid pressure on the failure overpressure of spherical567

reservoirs is an order of magnitude larger than stress perturbations due to loading. The568

estimation of the overpressure to initiate an intrusion therefore requires knowledge about569

the pore-fluid pressure conditions and the reservoir depth.570

5.2. Model assumptions and limitations

In our study, we have neglected the anelastic effects associated with visco-elastic rheol-571

ogy, which describes the response of large and long-lived silicic magmatic systems [Jellinek572

and DePaolo, 2003; Simakin and Ghassemi , 2010; Gregg et al., 2012; de Silva and Gregg ,573

2014]. Studies have been conducted for Campi Flegrei [Bonafede et al., 1986; Dragoni574

and Magnanensi , 1989] and Long Valley [Newman et al., 2001, 2006]. Visco-elasticity575

affects both ground deformation and the conditions for failure of the reservoir. A pressur-576

ized magma reservoir embedded in a visco-elastic medium will be associated with more577

surface displacement than one embedded in an elastic medium due to the viscous relax-578

ation of the rocks. Following eruptions, visco-elasticity may lead to deflation, even if the579

magma chamber is replenished [Segall , 2016]. In addition, heated rocks become ductile580

and can support larger stress without fracturing [Jellinek and DePaolo, 2003; Gregg et al.,581

2012]. Gregg et al. [2012] demonstrate that visco-elasticity has little effect on the failure582
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overpressure for small reservoirs with volume less than a hundred cubic kilometer (which583

corresponds to a radius of almost 3 km). The reservoirs of Okmok, Sinabung and Agung584

are located at depths shallower than 3 km. Westdahl has a deeper source (6 km), but585

there is no evidence for a large magma reservoir. It is unlikely that the reservoir volumes586

of the four volcanoes studied are larger than 100 km3, strongly suggesting that the elastic587

assumption is valid. In such assumption, the conditions of failure discussed in our study588

do not depend on the rate of ground deformation.589

We have also neglected the effect of pore-fluid pressure on ground deformation estima-590

tion. In our modelling, host rock medium behaves elastically as pore pressure effect is591

only considered at the vicinity of the reservoir. This assumption is valid if we consider592

that the accumulation of fluid is localized around magma reservoirs. In this case, the593

poro-elastic medium will only be a ring around the magma reservoir.594

Previous studies have already shown that ellipticity of the reservoir influences the failure595

conditions both in location [Grosfils , 2007] and amplitude [Albino et al., 2010]. For exam-596

ple, for oblate ellipsoid, the failure overpressure is smaller compared to spherical reservoir,597

because tensile stress concentrates at the extremity of the horizontal axis, where the cur-598

vature is highest. As a consequence, the failure displacement would also be smaller. Only599

at Okmok, Lu et al. [2010] found from the inversion of InSAR data an ellipticity ratio of600

1.04, which nearly corresponds to a sphere.601

Our failure models provide the overpressure for the failure of a magma reservoir. How-602

ever, reservoir failure does not necessarily produce an eruption, as new intrusions can be603

stalled at depth due to a decrease in magma supply, magma freezing due to slow ascent,604

viscosity increases by magma degassing and heat loss or density barriers in the crust [Gud-605
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mundsson, 2002; Taisne et al., 2011; Moran et al., 2011]. As mentioned above, the 2004606

Westdahl seismic swarm could represent a failed eruption for which the overpressure was607

not sufficient to propagate the intrusions to the surface. Magma propagation is a complex608

problem (see Rivalta et al. [2015] for a review) and is not yet considered in our models.609

5.3. Pore-fluid pressure conditions around magma reservoirs

Experimental rock mechanics predict that the brittle frictional strength linearly in-610

creases with depth in the upper crust [Brace and Kohlstedt , 1980]. Such linear relation-611

ship is based on the assumption of hydrostatic pore-fluid pressure and implies that the612

crust is close to a critical state of failure. This is in good accordance with stress data613

from deep boreholes such as the KTB borehole in Germany [e.g., Townend and Zoback ,614

2000; Zoback , 2010]. The pore-fluid pressure is usually considered to be in a hydrostatic615

equilibrium equal to the weight of a column of water, PH = ρHgz with ρH the density of616

water. Zoback and Townend [2001] suggested that hydrostatic pore-fluid pressure could be617

sustained to a depth of as much as 12 km. However, in particular contexts, the pore-fluid618

pressure can be in excess of hydrostatic [e.g., Moos and Zoback , 1993]. Suprahydrostatic619

pore-fluid pressure can be due to an under-compaction during rapid burial of sediments,620

lateral compression, release of water from minerals, or expansion of the fluid volume621

[Hantschel and Kauerauf , 2009]. Evidence for suprahydrostatic pore-fluid pressure was622

also found around magmatic intrusions, mud volcanoes, hydrothermal vents, or faults,623

showing that pore-fluid pressure is spatially heterogeneous [Jamtveit et al., 2004]. Under624

undrained conditions, the pore-fluid pressure can be between hydrostatic and lithostatic.625

Under drained conditions with the fluids escaping from the pores, the pore-fluid pressure626

can be lower than hydrostatic.627
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There is little information about the pore-fluid pressure surrounding magma reservoirs.628

If fluids originating from the magma, the pore-fluid pressure in the rock adjacent would be629

similar to the magma pressure. Over a narrow zone of a few meters to tens of meters the630

fluid pressure decreases with a steep gradient to hydrostatic or sub-hydrostatic, depending631

on depth and the confining pressure and whether a hydrothermal system exists. Ductile632

flow near the brittle-plastic transition could act to reduce the permeability of the silicic633

rock, potentially providing a self-sealing mechanism [Fournier , 2007]. For Long Valley634

Caldera, the variability of the stress directions constrained by both borehole breakouts635

and earthquake focal mechanisms suggest near-lithostatic pore-fluid pressure conditions636

[Moos and Zoback , 1993].637

Therefore, the two approaches for the failure of magma reservoirs described in sec-638

tion 2.1 are both correct, but correspond to different drainage conditions [Grosfils et al.,639

2015; Gerbault , 2012; Gerbault et al., 2012]. The failure models discussed by Tait et al.640

[1989], Gudmundsson [2002] and Pinel and Jaupart [2005] considered the host rock as641

an undrained medium with lithostatic pore-fluid pressure. Grosfils [2007] considers a642

drained medium with zero pore-fluid pressure where all the fluids have escaped from the643

rock pores. These two approaches are end-members for the range of possible pore-fluid644

pressure conditions.645

At Okmok caldera, the inter-eruption displacement together with independent informa-646

tion about the size of the magma reservoir suggests near-lithostatic pore-fluid pressure647

whereas the inflation at Westdahl without eruption at the surface suggests pore-fluid pres-648

sures significantly lower than lithostatic. Knowing the failure pressure, we can derive the649

critical volume change required before an eruption. Considering lithostatic pore pressure,650
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the total volume change at Okmok before an eruption is 13.5x106 m3. Under zero pore651

pressure, the total volume change at Westdahl before an eruption is 52.3x106 m3. Due652

to the difference of pore pressure conditions, the failure of Westdahl’s reservoir requires653

a volume change four times larger than the one required for the failure of Okmok’s reser-654

voir. Under the assumption that both shallow reservoirs are supplied at the same magma655

supply rate from a deeper source, it means that the frequency of failure should be four656

times higher at Okmok in comparison with Westdahl. This is in accordance with the erup-657

tion records that reported 11 confirmed eruptions at Okmok and 3 eruptions at Westdahl658

between 1900-2017. Pore pressure difference can be therefore an explanation for the dif-659

ference of eruption frequency between these two Aleutian volcanoes. The development of660

high pore pressure at Okmok promotes the failure of the reservoir and the occurrence of661

frequent intrusions of small volume (Figure 9a). Under low pore-fluid pressure conditions662

such as at Westdahl, the failure of the reservoir requires a large volume change, which663

could explain the low frequency of eruptions (Figure 9b).664

The importance of pore-fluid pressure changes for earthquake generation is well-665

established [Bell and Nur , 1978; Talwani and Acree, 1984; Parotidis et al., 2003; Shapiro666

et al., 2003; Zoback and Gorelick , 2012]. An increase of pore-fluid pressure in the crust667

reduces the normal stress on faults, which favors Coulomb shear failure. It has been668

shown that the increase of pore-fluid pressure produced by heavy rainfall events (mon-669

soons, typhoons or hurricanes) can trigger earthquakes (see Costain and Bollinger [2010];670

Hainzl et al. [2006]). Our study shows that the pore-fluid pressure also affects the mode671

of transport of the magma by playing a role in the failure of magma reservoirs. In theory,672

a pore-fluid pressure increase could trigger an eruption without any increase of the reser-673
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voir pressure, which may be an explanation why some eruptions occur without significant674

pre-eruptive inflation.675

6. Conclusions

(1) We show that the two commonly used approaches to investigate the failure of magma676

reservoirs [Gudmundsson, 2012; Grosfils et al., 2015] are end-members in a framework that677

accounts for the pore-fluid pressure conditions in the host rock. The pore-fluid pressure678

around the reservoir has a strong influence on the magma overpressure required for tensile679

failure of the reservoir wall. It is stronger than the influence of the depth of the reservoir680

or the loading stress of the volcanic edifice.681

(2) Whereas the failure overpressure is dependent on the pore-fluid pressure conditions,682

the changes of the failure overpressure due to stress perturbations (e.g. growth of an683

edifice, caldera formation) are independent of the pore-fluid pressure conditions.684

(3) The ground surface inflation due to reservoir pressurization depends on the reservoir685

location, geometry and elastic properties of the rock. The interpretation of geodetically-686

detected inflation in terms of eruption potential thus requires knowledge about (i) the687

pore-fluid pressure conditions in the vicinity of a magma reservoir, (ii) the reservoir depth,688

(iii) the reservoir radius, and (iv) the shear modulus of the surrounding host rock.689

(4) From the four volcanoes studied, the inferred pore-fluid pressure conditions are690

likely supra-hydrostatic for the two erupted volcanoes (Sinabung and Okmok) and sub-691

hydrostatic for the non-erupted volcanoes (Agung and Westdahl). High pore-fluid pressure692

conditions favor the initiation of intrusions whereas low pore-fluid pressure conditions693

make the initiation of intrusions difficult and favor the growth of reservoirs.694
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Peltier, A., V. Famin, P. Bachèlery, V. Cayol, Y. Fukushima, and T. Staudacher (2008),

Cyclic magma storages and transfers at Piton de La Fournaise volcano (La Réunion
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tion due to tectonic, hydrothermal, gravity, hydrogeological, and anthropic processes in

the Campania Region (Southern Italy) from Permanent Scatterers Synthetic Aperture

Radar Interferometry, Remote Sens. Environ., 113 (1), 197–212.

Wagner, D., I. Koulakov, W. Rabbel, B.-G. Luehr, A. Wittwer, H. Kopp, M. Bohm,

G. Asch, and M. Scientists (2007), Joint inversion of active and passive seismic data in

Central Java, Geophys. J. Int., 170 (2), 923–932.

Wauthier, C., V. Cayol, F. Kervyn, and N. d’Oreye (2012), Magma sources involved in

the 2002 Nyiragongo eruption, as inferred from an InSAR analysis, J. Geophys. Res.

Solid Earth 1978–2012, 117 (B5).

Wauthier, C., V. Cayol, M. Poland, F. Kervyn, N. d’Oreye, A. Hooper, S. Samsonov,

K. Tiampo, and B. Smets (2013), Nyamulagira’s magma plumbing system inferred from

15 years of InSAR, Geol. Soc. Lond. Spec. Publ., 380 (1), 39–65, doi:10.1144/SP380.9.

Wicks, C. W., W. Thatcher, D. Dzurisin, and J. Svarc (2006), Uplift, thermal unrest and

magma intrusion at Yellowstone caldera, Nature, 440 (7080), 72–75.

D R A F T May 17, 2018, 4:13pm D R A F T



X - 54 ALBINO ET AL.: THE ROLE OF PORE PRESSURE ON FAILURE

Witham, C. S. (2005), Volcanic disasters and incidents: A new database, J. Volcanol.

Geotherm. Res., 148 (3), 191–233.

Zellmer, G. F. (2008), Some first-order observations on magma transfer from mantle wedge

to upper crust at volcanic arcs, Geol. Soc. Lond. Spec. Publ., 304 (1), 15–31.

Zhao, W., F. Amelung, M.-P. Doin, T. H. Dixon, S. Wdowinski, and G. Lin (2016), In-

SAR observations of lake loading at Yangzhuoyong Lake, Tibet: Constraints on crustal

elasticity, Earth Planet. Sci. Lett., 449, 240–245.

Zimmermann, M., M.M. Prescott, and C.N. Rooper (2016), Smooth Sheet Bathymetry of

the Aleutian Islands, US Department of Commerce, National Oceanic and Atmospheric

Administration, Marine Fisheries Service, Alaska Fisheries Science Center.

Zoback, M. D. (2010), Reservoir Geomechanics, Cambridge University Press.

Zoback, M. D., and S. M. Gorelick (2012), Earthquake triggering and large-scale geologic

storage of carbon dioxide, Proc. Natl. Acad. Sci., 109 (26), 10,164–10,168.

Zoback, M. D., and J. Townend (2001), Implications of hydrostatic pore pressures and high

crustal strength for the deformation of intraplate lithosphere, Tectonophysics, 336 (1),

19–30.

D R A F T May 17, 2018, 4:13pm D R A F T



ALBINO ET AL.: THE ROLE OF PORE PRESSURE ON FAILURE X - 55

Table 1. Model parameters and variables.

Parameters

ν Poisson’s ratio 0.25
Ts Tensile strength [MPa] 10
ρr Rock density [kg.m−3] 2800
g Constant gravity [m.s−2] 9.81

Variables

R Reservoir radius [m]
Ht Reservoir top depth [m]
Hc Reservoir center depth [m]
Re Edifice radius [m]
He Edifice height [m]
G Shear modulus [GPa]

Table 2. Model parameters used for studied cases (see Figure 6b)

Volcano name Magma reservoira Volcanic edificeb

R [m] Hc [m] Re [m] He [m]

Sinabung 100-800 900 2300 1250
Agung 100-1800 1900 4700 1800
Okmok 100-2000 3000 12500 500
Westdahl 100-2000 6000 12500 1600

a Reservoir depths taken from Chaussard et al. [2013] and Lu and Dzurisin [2014]. Values

are relative to the base of the volcano, which is assumed to be 0.7 km for Sinabung, 0.5 km for

Agung, and 0 km for Okmok and Westdahl.
b Calculated from the SRTM DEM.
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Table 3. Summary of how failure overpressures of a spherical magma reservoir vary with

reservoir depth, edifice loading and pore-fluid pressure. The initial model is without topography

and given as a reference. In the loading models, the size and the depth of the reservoir are the

same as the initial model. The symbol * indicates the minimum value for each pore-fluid pressure

conditions.
Model configuration Variables [m] Failure overpressure [MPa] N◦ Figure

Pp = PL Pp = 0
Reference model R=1000 Ht=-2000 19 132 4
Reservoir depth decrease R=1000 Ht=-1000 17 71* 4
Edifice loading

Small edifice Re=3000 He=1250 5* 116 4
Large edifice Re=8000 He=1250 11 122 5
Caldera Re=8000 He=500 17 128 5

a) without edifice b) with edifice
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Figure 1. Mechanical model used to calculate the failure overpressure required to initiate

an intrusion: a) without edifice and b) with edifice. In a) the stress field is lithostatic with

σr = σphi = σz = PL. In b) the pre-lithostatic stress field is modified by the edifice loading.

σz > σr = σphi with σz = PL + (ρrgHe)
Re − r
He

below the edifice.
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Figure 2. Overpressure required to initiate tensile fractures as a function of the angle θ in

the case of a spherical reservoir (R=1000 m, Ht=-2000 m) for zero pore-fluid pressure (green

lines) and lithostatic pore-fluid pressure (red lines). Solid lines: without edifice; dashed lines:

with conical edifice (Re=3000 m, He=1250 m). Here we assume Ts=10 MPa and ρr=2800

kg.m−3; dotted black lines: analytical solutions 2(PL + Ts) and 2Ts. For each model, the failure

overpressure ∆Pf is the local minimum showed by the dots. The location of the angle of failure,

θf , for the different cases are reported on the right sketch.
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Figure 3. Normalized failure overpressure k(θf ) (left) and location of the failure at the wall θf

(right), as function of the radius and the top depth of a spherical reservoir embedded in an elastic

half-space subject to a lithostatic stress field (Figure 1a) for (a,b) lithostatic pore-fluid pressure

and (c,d) zero pore-fluid pressure. Numbers are non-normalized overpressure values ∆Pf , for

R=1000 m and Ht=[-1000, - 3000, -5000] m, using Ts=10 MPa and ρr =2800 kg.m−3.
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Figure 4. Failure overpressure considering the topographic loading of a fixed edifice (Re=5000

m and He=1250 m). The final ∆Pf is a summation of the previous failure overpressure without

edifice (Figure 3) and a term δP . Calculation is done for lithostatic pore-fluid pressure (a,b,c)

and for zero pore-fluid pressure (d,e,f). White lines indicate depths where ∆Pf and δP are

minimum.
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Figure 5. Normalized failure overpressure of the reservoir as a function of the radius and the

height of the edifice for a spherical magma reservoir (R=1000 m, Ht=-2000 m) for a) lithostatic

pore-fluid pressure and b) zero pore-fluid pressure. c-d) The profiles A-B and C-D show ∆Pf as

a function of Re (He=1500 m) and He (Re=5000 m), respectively.
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Figure 6. a) Geographical location of the four volcanoes studied. b) E-W profiles showing

the topography of the edifices (deduced from the SRTM DEM) and the depth of the reservoirs

(inferred from InSAR time series). In addition, the surface topography used in our model is

shown by dashed lines.
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Figure 7. Time series of vertical displacement at Sinabung, Agung (modified from Fig. 5 and

7 of Chaussard et al. [2013]), Okmok and Westdahl (modified from Fig. 6.98 and 6.142 of Lu and

Dzurisin [2014]). Red vertical lines underline eruptions and the blue vertical line corresponds

to a seismic swarm. On each plot, the maximal displacements inferred from the time series are

indicated.
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Figure 8. Failure displacements calculated for a) Sinabung, b) Agung, c) Okmok and d)

Westdahl volcanoes as a function of the reservoir radius and the shear modulus for zero pore-

fluid pressure (green shaded area) and lithostatic pore-fluid pressure (red shaded area). The

center line of each area corresponds to the displacements associated with 0.5 Gs. Lower bound

and upper bound are respectively for Gs, and 0.25Gs as show in panel b). Horizontal lines

indicate for each volcano the cumulative displacements obtained from the InSAR time series

(Figure 7).
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Figure 9. Sketch explaining the difference of eruptive behavior based on the pore-fluid pressure

conditions of the host rock: a) a shallow magma reservoir embedded in a high pore-fluid pressure

host rock promotes the initiation of a magma intrusion, which may lead to an eruption; b) a deep

magma reservoir within a low pore-fluid pressure host rock favors the expansion of the reservoir

rather than the initiation of an intrusion.
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