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Abstract

We show that the physical mechanism for the equilibration of closed quantum systems is dephasing,
and identify the energy scales that determine the equilibration timescale of a given observable. For
realistic physical systems (e.g those with local Hamiltonians), our arguments imply timescales that do
not increase with the system size, in contrast to previously known upper bounds. In particular we
show that, for such Hamiltonians, the matrix representation of local observables in the energy basis is
banded, and that this property is crucial in order to derive equilibration times that are non-negligible
in macroscopic systems. Finally, we give an intuitive interpretation to recent theorems on
equilibration time-scales.

1. Introduction

There is currently a renewed interest in the derivation of statistical mechanics from the kinematics and dynamics
of a closed quantum system [1]. In this approach, instead of assuming a priori that the system is in some mixed
state, such as e.g. a micro-canonical ensemble, one describes it at all times using a pure state 1) (¢)). One then
seeks to show that, under reasonable conditions, the system behaves as if it were described by a statistical
ensemble. In this way the use of statistical mechanics can be justified without introducing additional external
degrees of freedom, such as e.g. thermal ‘baths’.

A central part of this programme has been to understand the process of equilibration, i.e., how a constantly-
evolving closed quantum system can behave as if relaxing to a stable equilibrium. The main insight relies on the
fact [2—4] that, if measurements are limited to small subsystems or restricted sets of observables, then ‘typical’
pure states of large quantum systems are essentially indistinguishable from thermal states. It can then be shown
[5, 6] that under very general conditions on the Hamiltonian and nearly all initial states, the system will
eventually equilibrate, in the sense that an (again, restricted) set of relevant physical quantities will remain most
of the time very close to fixed, ‘equilibrium’ values. For example, given some observable A and a system of finite
but arbitrarily large size, if its expectation value (A (t)) equilibrates, then it must do so around the infinite time
average (see section 5.1 of [1])

— . 1 T
Z = lim ¥f0 (A@) dt. (1)

T—o00

If the infinite-time average fluctuation of (A (¢)) around A is small, then we say that the observable A
equilibrates.

One major open question is to understand the time scale at which equilibration occurs in a given system, and
in particular its scaling with respect to system parameters such as its size (number of degrees of freedom).
Various authors have tackled this question, e.g. [7—19], producing upper bounds that imply finite-time
equilibration in various contexts (see also the ‘supplementary information’ section in [17] for a brief survey of
the literature).

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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Several of these results [8—13, 17, 18] are again obtained in a typicality framework: they estimate, in various
different senses, the average equilibration time of evolutions. While in many cases these calculated averages can
have an impressive correspondence to experimentally measured equilibration times [17, 18], this approach also
has some inherent weaknesses. First of all, it is generally believed that many specific physical conditions that are
realisable in Nature or in the lab can be very far from ‘typical’ (for example, the actual Hamiltonians in Nature
tend to have a locality structure that may be absent from most members of a mathematically generated ensemble
[18]). In addition, by averaging, one loses information about the physical properties that are relevant to the
equilibration time scale of any one specific evolution.

Bounds on equilibration times without taking averages have also been obtained, but only for certain
restricted classes of evolutions or observables, e.g. in Malabarba et al[11], Farrelly [16], Goldstein et al[20],
Monnai [7], and Santos etal [19].

Finally, there are a few works by the Bristol group [14, 15] that derive general and rigorous bounds on the
equilibration times of arbitrary observables, systems and initial states, without any ensemble averaging.
However, the bound in [15] scales with the inverse of the minimum energy difference (gap) in the system’s
spectrum. For physically realistic systems it therefore increase exponentially with the system size, and cannot be
a good estimate of the actual equilibration timescale—in particular since equilibration would then not occur in
the thermodynamic limit (see section 7 for details). In contrast, abound derived in [14] can be independent of
the system’s size, however only in a regime that requires it to be initially in a nearly completely mixed state,
failing to give a physically reasonable estimate in the case of a closed system in a pure initial state.

In this work, we seek to identify the properties of a closed quantum system which are relevant for the
equilibration timescale of a given (arbitrary) observable. Our approach is more heuristic than rigorous, but it
allows us to estimate a timescale which, under reasonable circumstances, depends only weakly on the system
size, and thus seems to capture the relevant physics. The main insight we rely on is that equilibration is due
primarily to a process of dephasing between different Fourier components of the dynamical evolution—a point
that was briefly made in a classic [21], but that has apparently not been fully appreciated by the current
community.

Although our argument does not result in a rigorous bound such as those in [14, 15], nor in a definite average
evolution such asin [17, 18], we are able to discuss how the equilibration timescale of a given observable A
depends on the physical properties of the system. Specifically, we find that the coherences of the observable of
interest in the energy basis, (Ej|A|E;), play a fundamental role. More specifically, the equilibration time depends
critically on the range of energy gaps E; — E; for which these coherences have non-negligible values. In particular,
if this range remains roughly constant as the system size increases, the same will be true for the equilibration
time. As we discuss below, this indeed happens for many observables of interest in many-body systems. We
illustrate these results with numerical simulations of a spin chain, finding a reasonable qualitative agreement. It
should be noted that similar heuristic methods and conclusions have also recently been proposed in
simultaneous, independent research by Wilming et al [22].

This point of view also gives a new understanding of some existing results. For instance, it allows us to
identify the reason for the limitations of bounds and estimates such as those in [15, 20], which, while rigorous,
can vastly overestimate the time scale at which equilibration occurs in realistic systems. In section 7, we argue
that the reason for this behaviour is that these estimates ultimately rely on the wrong physical mechanism of
equilibration, disregarding the crucial role played by dephasing.

Our main findings can be summarised as follows:

+ Insection 3 we discuss qualitatively why dephasing is the underlying mechanism of equilibration in closed
quantum systems.

+ Insection 4 we develop a formalism based on the coarse-graining of functions in frequency space, which
allows us to apply basic tools from Fourier transform theory, such as uncertainty relations, to equilibration
related questions.

+ Insection 5 we determine the relevant energy scales that govern the equilibration time for a given observable,
namely the energy fluctuations of the initial state and the bandwidth of the matrix of the observable in the
energy basis. In particular, we give an independent proof of the fact [23] that local observables have banded
matrices when written in the energy basis of a short-ranged spin Hamiltonian.

« Insection 6 we illustrate our results with a numerical simulation of the XXZ model.

+ Insection 7 we discuss some implications of our results. In section 7.1, we reinterpret existing results from the
point of view of our dephasing framework. In section 7.2 we discuss implications for the fields of quantum
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chaos and integrability. In particular we present two models with identical eigenbases but different level
statistics that have indistinguishable dynamics over realistic time-scales.

2. General setting and definition of the problem

Let us consider a closed system whose state is described by a vector in a Hilbert space of dimension drand whose
Hamiltonian has a spectral representation
dg
H =) EPs )
k=1

where Ej are its energies and Py the projectors onto its eigenspaces. Note that the sum runs over dg < drterms,
since some eigenspaces can be degenerate.

We denote the initial state by |1/ (0)). If the Hamiltonian has degenerate energies, we choose an eigenbasis of
H such that [t/ (0)) has non-zero overlap with only one eigenstate | Ey) for each distinct energy. Choosing units
suchthat s = 1, the state at time ¢ is then given by

V(@) =D e B|Ey), (3)
k

with ¢ = (Eg|t0(0)). Itis clear that [t/ (#)) evolves in the subspace spanned by {|E) } as if it were acted on by the
non-degenerate Hamiltonian H' = Y, Ex|Ex X Ex|- In this case, if the system equilibrates, the equilibrium state
must be
w = Sl B @
k

In this article, following a number of authors, [5, 6, 14, 15] we will study equilibration by focusing on
observables. The idea is that a system can be considered in equilibrium if all experimentally relevant (typically,
coarse-grained) observables A have equilibrated. In other words, we will focus on understanding how the
expectation value (A (¢)) approaches its equilibrium value Tr(Aw). Note that, in order to even talk about
equilibration time scales, we must assume that such a condition holds, i.e., that this observable sooner or later
equilibrates.

Let us introduce the time signal of A, given the initial state |1/ (0)), as the distance of (A (¢)) from equilibrium
attimet

g(t) = Ai«wu) AIG(6)) — Tr(Aw)
A

1

=X Yo (Ajicye (ETE (5)
A

i=j

where Aj; := (Ej|A|E)) are the matrix elements of A in the energy eigenbasis, and Ay = @pax — @min is the range
of possible outcomes, being amax(min) the largest (smallest) eigenvalue of A. The denominator A4 is introduced
to make the time signal dimensionless and satisfying |g ()| < 1. Note that the time signals of two observables A
and A’ = b(A — ag) areidentical for ag, b € R.
We can conveniently rewrite the time signal as
gt) = > el (6)
aeg
where o € G = {(, j): 4, j € {1, ... dg}, i = j}labels each energy gap G, = (E; — E;) appearingin the
system’s spectrum, and where
C]*A ji Ci
Ay

We will refer to the complex number v,, as the amplitude of the corresponding gap G,,, and to its normalised
square modulus g, = |[* / Z‘glv‘gl2 as the relevance of G,,. Note that the set of relevances form a probability
distribution over G.

A physical interpretation of this normalisation factor can be given as follows [5, 6, 24]: note that, if the system
has non-degenerate gaps, then the time-averaged fluctuations of the time signal

T
(IgP)r = % [ dgop ®)

)

Vo = Vi) =
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Im[v,] Im[v,]

Re[v,] Relv,.]

Figure 1. Illustration of the dephasing process of the complex terms v, ¢'%* (blue dots/black arrows) of a time signal g(t) (green
arrow), see equation (6). On the left, the system is far from equilibrium, a short time ¢ = 0, having been initialised with all v, real, and g
(t) is substantial. Note that half of the complex terms have rotated clockwise, and the other half anti-clockwise, as expected from the
symmetry of the set of gaps G,,. On the right, after along time, the individual complex vectors have become spread out, and the system

has equilibrated, with g(f) becoming close to the typical fluctuation +/{|g|* )~ (red arrow).

satisfy the limit
(Igl)o = Tlim‘(|g|2>T =D Inl* )

«
In other words, this quantity gives the infinite time average of (the square of) the deviation of (A (¢)) from its
equilibrium value. We consider that the observable A equilibrates if this quantity is small, in the sense that

s SAY
(181*)oc S(AA) > (10)

where 0A is the experimentally available resolution. Furthermore, note that A 4 /6A quantifies the the amount of

different possible outcomes of a measurement and hence 6A/A 4 is expected to be much much smaller than 1.

From now on, without loss of generality and for the sake of simplicity we will consider that A, = 1.

In [5, 6, 24], sufficient conditions for equilibration in the sense defined above are given by bounding the
average distance from equilibrium equation (9). In particular, in [24] it is shown that for any Hamiltonian with
non-degenerate gaps,

Sl < -, (11)
dett

«

where the effective dimension is defined as deg == 1/(3;|ckl*) = 1/ Tr(w?), which roughly speaking tells us
how many eigenstates of the Hamiltonian participate in the superposition of the initial state. Thus, a large
effective dimension, which is usually the case in many body systems (see appendix A and [25]), is sufficient to
guarantee that condition (10) will be satisfied. Concerning the assumption of the Hamiltonian having non-
degenerate gaps, it is shown in [ 15] that as long as there are not exponentially many degeneracies the argument
stays the same.

3. Equilibration as dephasing

Let us consider a situation in which the initial state is out of equilibrium, i.e. the time signal of a given operator is
initially significantly larger than the equilibrium value: |g (0)| > /(|g]* )~ - For this to happen, the phases of the
complex numbers v,, in the time signal equation (6) need to be highly synchronised. This case is presented
pictorially in figure 1 (left) where the v,,’s are depicted as points in the complex plane.

Result 1 (Equilibration is dephasing). Given a time signal g (t) = 3 v, €% with v, = [vlei% € C being the
initial amplitude of the gap G, € R, anecessary condition for the system to be initially out of equilibrium, i.e.,
|g (0)|significantly larger than the typical equilibrium fluctuation /|g|*)s , is that the initial phases 0, are not
isotropically distributed but significantly synchronised. More precisely, we quantify the distance from
equilibrium as
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I8P — (Ig)e =2 > [allvl cos(6a — 65), (12)

a<f

which becomes negligible when the phases 8., are isotropically distributed.

Equation (12) follows from a straightforward calculation

a<f

g = (Z Vz})[z Vf] (I8} + 2 > Iallvsl cos(6s — 65). 13)

To see that isotropic randomly distributed phases give [ (0)|* =~ (|g|*)sc, let 1, = |v,|e?% be a set of independent
random complex variables with an isotropic probability distribution p, (r, §) = p,(r) = ZL& (r — 1), 1.e. the
random variable v, has fixed modulus r,, and a random phase 6, uniformly distributed around the circle. Then,
the variance of the random variable )~ v, is

var(Z va) = var(n) = Z (Ial?) Zw (14)

where we have used the fact that the variance of a sum of independent random variables is the sum of variances
and the first moments (1,) = 0. That s, if the phases of v,, are uniformly distributed, then the typical initial value
of the time signal is |g (0)| = [>°, val = (X, Iwl)!/2.

In contrast, an out-of-equilibrium initial state, for a distribution of gaps with a non-zero dispersion and a
large enough system, will evolve to an equilibrium state, represented by an isotropic cloud of points centred at
the origin of the complex plane as shown in figure 1 (right). This mechanism for equilibration, or more generally
the vanishing amplitude of a signal over time, is usually called dephasing and is a well-known feature in many
different fields of physics [19, 26-32],

The time-scale necessary for the sum in equation (6) to dephase can be estimated with the following simple
argument. Suppose for simplicity that all terms have the same phase at = 0. One way to lower bound the time
needed for these phases to spread around the whole range (0, 27) is to use the time it takes for the difference
between the fastest and slowest phase to differ by 27: tGax — tGin = 27 which leads to
Teq ~ 27/(Gmax — Gmin)- However, the slowest and fastest gaps are not necessarily very relevant to the sum,
that is, they can have a relatively small amplitude v,,. For this reason, a better estimate is obtained by replacing the
denominator Gpax — Gmin With 20, where we define the gap dispersion o to be simply the standard deviation
of the G, when weighted by their respective relevances q,,, i.e.

0g=q,(Gy — pg)> 15)
«
Since for each gap G; j, = E; — Ejthereisalso G;; = —Gjj, then by symmetry the average gapis jic = 0,and
also | j| = |vj,il- By the argument made above, we can thus expect that, at least in cases where the distribution
G, is of aunimodal type, the equilibration time can be estimated by
Teq ~ /oG (16)

Note that similar estimates are made in the various fields where dephasing is relevant, e.g. in [29, 31, 32]. In the
next section we will give a more detailed justification for this estimate using standard tools from Fourier
transform theory.

The physical properties that control the dispersion o, and thus the equilibration time Tz, can be identified
once we note that the probabilities g, are proportional to the |v,[?. Since v, o ci*cj (EilA|E;) (equation (7)), then
0 is determined by: (i) the probability distribution |c;|? for the energies; (ii) the matrix-elements of the
observable A in the energy basis; and (iii) the distribution of the values of the gaps G, = E; — E;themselves.

In section 5 we identify the energy scales of the observable and the initial state which are relevant to
determine the dispersion of gaps 0. Let us now anticipate the requirements on the initial state and the
observable in order that o does not diverge in the thermodynamic limit, i.e. when the system size 1 — oo and
the equilibration time T does not vanish. We can identify two regimes where this will happen:

+ First, there are observables A that equilibrate in finite time regardless of the details of the initial state. Note
that, for large many-body systems, the variance of the density of states usually scales as </71, and for generic
states the width of the distribution of |¢;|? is as wide as the energy spectrum, which increases with . This
implies that, unless restrictions are placed on A, the gap variance o will have the same scaling and T;q will
vanish in the thermodynamic limit. In order to avoid this problem, the variance of the distribution of v,,
should not increase with 7. This requires that the distribution (E;|A|E;) should decrease (or become null) for
large values of E; — E;—in other words, A needs to be banded in the energy basis.

5
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lg@®I?

At

! 1 L I L L 1 A 1

trecurence

Figure 2. Example of a time signal which has a recurrence time. In the absence of recurrences, a good estimate the equilibration time
scale T.q would be a few multiples of At defined in equation (17).

+ Conversely, suppose the initial state has support over an energy range that does not scale with n. This can
happen, for example, in the case of a so-called ‘local quench’ [33], when a local subsystem of fixed dimension
is excited regardless of the full size of the system. In this case, o will also at worst be independent of 1, and so
even observables with long-range coherence between very different energies, which would otherwise
equilibrate quickly, will now take a finite time Tq.

Finally, it is also important to mention that the gap dispersion o may actually decay to zero with 1, leading to
equilibration times that become verylong. As an example of this situation consider two subsystems of increasing
size n interacting through a spatially localised border of fixed size. The coherence in the energy basis of the
interaction Hamiltonian is bounded by the operator norm of such an interaction, matching with the intuition
that the stronger the interaction between systems, the faster the relaxation, and vice versa. By rescaling the global
Hamiltonian, we can see that the interaction terms become relatively weaker as n grows and thereby the
equilibration slower.

4. Fourier description of the dephasing framework

In this section we give further substance to the above heuristic argument to estimate the equilibration time-scale
by means of Fourier transform techniques.

Let us first give a general idea of our approach. Suppose the time-signal g(t) decayed more or less steadily to
zero, and stayed there. If so, then a good estimate for the equilibration time scale would be given by a few
multiples of the standard deviation At defined by

1
gl
with p, = fdtlg(t) |2t/||g||2 (see figure 2).
In such a case, following the spirit of our previous heuristic example, it would also be tempting to estimate

the order of magnitude of Arby taking the inverse of the spectral variance Aw of the signal. Indeed, this can be
justified if we recall the standard uncertainty principle of Fourier analysis [34]

At [angre = p? (17)

At Aw > 1/2. (18)

Of course, this is alower bound, that is saturated exactly only in the case of a Gaussian spectrum. However, it will
be nearly saturated (At - Aw = ¢, where ¢, is a constant of order 1), when the spectrum is unimodal and
without long tails. In this case, we can also expect the time signal to decrease to a very small value after a time

6, At, for some small multiple ¢, again of order 1. Taking both multiples together, we expect a good estimate for
the equilibration time to be of order ~ 2C1ACZJ .This is satisfied by equation (16), which we will therefore continue to
take as our estimate.

Unfortunately, for finite systems, our initial assumption of steady decay does not apply. The time signal has
recurrences, that is, along time after the dephasing has occurred and the system has equilibrated, the phases get
again aligned (synchronised) in the complex plane, and the signal regains strength (figure 2). In order to avoid
this problem, in the next subsections we introduce a coarse-grained version of the signal spectrum, which
dampens out the recurrences. This allows us to exploit the uncertainty principle to estimate the equilibration
time-scales, as described above. Under some mild conditions, we show that the equilibration time-scale
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estimated provided by this procedure coincides with the one previously given by the heuristic argument of
points dephasing in the complex plane.

4.1. The frequency signal
We define the frequency signal, §(w), as the Fourier transform of the time signal g(¥)

i) =A@ = = [ e ar (19)

which roughly speaking tells us the relevance with which every frequency contributes to the time signal. When
both the time and frequency signals are square-integrable (g, § € L?), the standard uncertainty principle of
equation (18) applies, where

) 1

Aw? = —— [dwl@)Pw — ) (20)
12 [I2 f

with 1, = fdwlg(w) |2w/||g~ II2-
However, in the case of time signals such as in equation (6), g (t) € L%, as can be seen from equation (9) (the
integral diverges proportional to T). The same is true for the frequency signal, since

W) = Flglw) = > wb(w — Gy, 1)

where §(x) is the Dirac delta distribution. Hence, the uncertainty principle in equation (18) cannot be directly
applied.

Itis worth noting here that, due to the finite range of energies present in our system, there is an asymmetry
between the uncertainties in time and frequency of the signal g(f). On the one hand, the uncertainty in frequency
can still be well-defined. To see how, recall first that, for g(¥) € L2itis possible to write the moments of a
frequency signal in terms of the corresponding time signal and its derivatives, e.g.

- [ gwg'

3 = 22
T T s ey

In our case, although each of these integrals diverges, their ratio does have a well-defined limit, in the sense that

212
j;TT g*(t)g”(t) dr zﬂ:lval Ga

lim — . (23)
T—o0 T 2 Vo 2
[lewpar 2l
Taking then this limit as the appropriate definition of {w?) in this case, and noting that, in the same sense,
(w) = 0, we obtain that Aw = ,/(w?) isindeed precisely equal to the gap dispersion o defined in
equation (15).

On the other hand, though, the value of At diverges, even when taking limits in the same sense above. This
can be understood physically due to the previously mentioned recurrences in the time signal. Indeed, g(t) isa
quasi-periodic function that experiences, over an infinitely large time interval, an infinite number of recurrences
to avalue arbitrary close to its initial one [35, 36].

4.2. The coarse-grained signal

We now define the notion of coarse-graining, in which we introduce a microscopic energy scale e below which
the fine-grained details of the spectrum are washed out. As we show below, this is done by replacing the discrete
spectrum present in equation (21) by a suitable smooth version.

As previously mentioned, such coarse graining of the frequency signal dampens the time signal g(¢),
removing the recurrences seen in figure 2 and making g(¢) and §(w) belong to L. We shall see later that it will
also allow us to exploit certain existing statements concerning the shapes of energy densities and density of states of
realistic initial states and short-ranged local Hamiltonians [37], which will justify our assumption of quasi-
saturating the uncertainty bound.

An important issue in the coarse-graining is obviously the choice of the energy scale €. This will be discussed
later in detail but we can already understand that in order to remove the recurrences, the discreteness of the
frequency signal has to be removed, which implies an e much larger than the separation between
consecutive gaps.

Mathematically, the coarse-graining is accomplished by convolving the frequency signal with an appropriate
window function h(x), which is only nonzero over an interval of size O(¢). In our case, we find it convenient to
choose h(x) = CN.(x), where
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Figure 3. [llustration of the coarse-graining of a discrete gap spectrum with a Gaussian window function. The data here corresponds to
the XXZ model that is studied in section 6, with n = 12 spins. The solid blue dots represent the amplitudes v,(G,,) of each gap (in this
particular case they are all real and positive). The dashed blue lines illustrate a few of the corresponding weighted Gaussians v,,

h{w — G,), where we have chosen ¢ = 0.4 (in arbitrary frequency units). The solid red curve represents the full coarse-grained
spectrum § (w), obtained by summing these weighted Gaussians, according to equation (26). Note that, for this choice of ¢, the width
Aw of the coarse-grained spectrum remains close to the dispersion o of the original (discrete) gap spectrum. See figure 6 for a
comparison of the corresponding coarse-grained time signal g.(f) with the exact one. Note finally that although, for simplicity, we use
here a single numerical scale on the vertical axis, the v,, are adimensional, whereas the continuous curves have physical dimension of
time (with units that are the inverse of those used for wand ¢).

1 Xz
N, (x) = = e o (24)
yiNex

is the normalised Gaussian distribution centred at the origin and with standard deviation ¢, and Ca constant
that is determined below.
With this spirit, the e-coarse-grained version of the frequency signal is defined as

2@ =W = [ doh@ - w3, 25)

If g(w) is given by equation (21), then the e-coarse-grained frequency signal is
gf (W) = Z Vou hf (w - Ga) (26)

In other words, coarse-graining corresponds to widening each Dirac-¢ in the original spectral function into a
Gaussian of O(e) width (figure 3). Note that, in doing this, we remove fine details of the spectrum such as the level
statistics. Furthermore, unlike g(w), ¢ (w) is square integrable and lies in L%

deIi(w)l2 = > vavi (he ¥ h)(Gy — Gg) = C* Y vavi Nz e(Go — Gp) < 00, (27)
o3 o3

where we have used the fact that (h, * h.)(x) = C2N 3. (x).
A coarse-grained frequency signal defines a coarse-grained time signal given by

() =F g1t = FhI®) -gt) = Ji_ﬂe*%*’zgm, (28)

where we have used the convolution theorem for Fourier transforms. The constant C'is fixed by imposing that

the time signal is not affected by coarse-graining the frequency signal in time scales t < ¢ 'i.e. g.(0) = g(0).
Thisleadsto C = /27 and

he (@) = VITN, (W) = ~e 52, 29)
€
g (1) =e (1), (30)

Even if the time signal g(#) equilibrates after some time, we know that it must eventually have recurrences. To
determine the equilibration time-scale from g.(t), we need that ¢ "' is much greater than the equilibration
timescale, but much smaller than the recurrence timescale. In this way, we ensure that the coarse-grained time
signal will be indistinguishable from the original one during the equilibration process, but unlike the latter will
then decay to zero.
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4.3. The coarse-grained density of relevant gaps
We now focus on the properties of the variance of gap values with respect to the coarse-grained frequency signal
g (w),ie.

Aw? = — fdu)lgF (W) P(w — f1,)? (31)
12 Il2
with fi, := f dwl|g (w)Pw / &, |l.- We will refer to Aw, as the ‘dispersion of relevant gaps’, and to the weight
|g~5 (w)|2 = Z Vavghf (W - Ga)he (UJ - GS) (32)
a,

as the density of relevant gaps.

Our goal is to show that, under a wide range of choices of e and of physically relevant circumstances: (i) Aw?
is very close to the gap dispersion og of the original signal, as defined in equation (15), and at the same time (ii)
theinverse Aw, ' is a good estimate for the equilibration time.

Note first that, by construction, for every gap G, = E; — E;in equation (6) (and, by extension,
equation (26)), its negative G, := E; — Ejalso appears, with |[v5| = |v,|. Hence the ‘average gap’ fi , vanishes for
any e and the variance Aw? is equivalent to (w?), i.e.

, g ) Pdo

[ ~ 2 . (33)
J1g @)Pdw
After some straightforward manipulation, using equations (29) and (32), we obtain
(Ga—Gp)?
) Zalvalz (Gj + 52/2) + izaigva Vj (G + GS)Z + 262] e a2
Aw? = — (34

(Ga—Gp)?
Salval + Eoogtavi e w2

It can be easily checked that, if ¢ — 0, this expression indeed reduces to equation (15). More specifically,
Aw? will be very close to ogforall ¢ < min(G, — Gg). Indeed, in this limit the Gaussian window function h(w)
becomes negligibly thin with respect to the smallest separation between gaps, and the coarse-grained spectrum
& (w) resembles the original discrete spectrum g(w). Precisely for this reason, however, this limit is of little use to
our goals. Another way of putting this is that, for such small values of € the coarse-grained time signal
(equation (30)) does not have time to decay before the recurrence timescale of the original signal, which is of
order min (G, — Gg) .

To make further progress at this point, it is necessary to assume some features about the amplitudes v,,.
Otherwise, a fine tuning between phases and modulus of v, can make |§_(w)| have an arbitrary behaviour,
preventing any general statement concerning the equilibration of g.(%).

Inspired by [25], we will adopt a weak-typicality point of view: let us assume that the evolution we are
considering is drawn from an ensemble for which the v,,’s are describable by some smooth functions plus
stochastic fluctuations. Note that we do not assume a uniform ensemble over all states (or any one specific
ensemble), as is the case in most typicality studies [8—13, 17, 18], merely one for which the resulting distribution
over the v,’s has some very general features which are described below. In the spirit of statistical physics, we
basically replace complexity by apparent randomness. In most situations, the description of the gap relevances v,
in terms of a smooth function plus stochastic fluctuations is a consequence of the energy level populations ¢; and
the matrix-elements of the observable A;;having this same behaviour. In the next section we discuss under which
conditions this is indeed the case.

In the following we show that the process of coarse-graining removes the fluctuations and makes the density
of relevant gaps |§. (w) |* have a smooth behaviour.

Result 2 (Coarse-grained frequency signal). Let us consider the amplitudes v,, of the gaps G,, to be described by
Voo = V(Ga') + 6Vm (35)

where v(w) = r(w)e? @, with r(w) and #(w) two functions with a Lipshitz constant upper bounded by some

K < ¢ ', and where 6v,, are independent random variables that average to zero (é,) = 0and

(6v,6v3) = v*(Gy) 8- The variance v*(w) is a function that represents the strength of the fluctuations and also

has a Lipshitz constant upper bounded by K. Then, with a high probability erf(m) > 1 — exp(—m?), the density

of relevant gaps fulfils the following bound

2.(@) — VIrv@)p @) < g )| ake + m/am 2| (36)

Jep.(w)
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where¢; > Oisaconstant, p. (w) = (p*N,)(w) is the coarse-grained density of gaps, with p(w) = 3, 6(w — G,)
being the density of gaps. The coarse-grained density of gaps p.(w) describes how many gaps are e-close to the
frequency w. That is, the process of coarse-graining washes out the fluctuations év,, turning the coarse-grained
frequency signal into a smooth function

g (W) ~ 2mv(w)p (W), (37)

where the meaning of the approximation is made precise in equation (36).

The proofis tedious and non-illuminating so we give it in appendix B.
Note that the error in (36) has two components. The term Ke is due to the variation of the ‘smooth’ functions
with Lipshitz constant smaller than K within an interval of width O(e). The second component ~y (w) / Jep (w) is

the fluctuation that shrinks according to the central limit theorem with .,/ ¢p. (w) , where € p(w) is the number of
gaps G, within an interval O(e).

In order for equation (36) to be meaningful and the error bound small, an optimisation over € is needed. Itis
easy to see that for the error to be small, the parameter € should be much larger than the spacing between
consecutive gaps and much smaller than the inverse of the Lipshitz constants of the continuous functions v(w)
and y(w), i.e.

Gor1— Gy < e< KL (38)

Here ‘consecutive’ refers to gaps ordered by size, and we use the informal notation ‘G, 1 as a shorthand for ‘the
gap immediately larger than G,,’. Note that, in practice, the lower bound above should be applied only for
consecutive relevant gaps, i.e., gaps that whose amplitudes v, make a non-negligible contribution to the sum in
equation (6).

For many-body systems, the number of gaps increases exponentially in the system size #, and energy
differences between consecutive gaps shrink exponentially to zero in n. If for example these gaps all have roughly
equal (exponentially small) relevances g, then € can also be taken exponentially to zero, as long as this is done at
aslower rate than the difference in gaps. This makes the time signal and its coarse-grained version
indistinguishable in any realistic time-scale.

In sum, if the gap relevances v,, can be described by a continuous part plus a fluctuating part, as in
equation (35), then the coarse-grained density of relevant gaps is a smooth function given by

g (W)* = 27|v(w) >, (w)*. (39)

This will be particularly useful in the following section, where we apply these ideas in the case of many body
systems described by short-ranged Hamiltonians.

It is worth noting that the factorisation in equation (37) is also automatically obtained if one assumes, as is
often done, that in the thermodynamic limit # — oo the discrete gap spectrum may be replaced by a smooth
continuous gap density. i.e. taking

g(1) = weitel — fv(w)ei"”pc(w)dw. (40)

Comparing with the definition in equation (19), we see that in this case the frequency signal is again

§w) =21 v(w) P (w). This indicates that the assumptions we have made concerning the smoothness of v,,
are not severe. However, the point of attaining this relation via coarse-graining, while maintaining a finite
dimension #, is that it allows us to control how the equilibration timescale scales with the system size, and in
particular to understand how this scaling depends on the energy scaling of the relevant observable. We turn to
this question in the next section.

5. Relevant energy scales and equilibration time scales for local Hamiltonians

In this section, we focus on the particular but relevant case of short-range Hamiltonians and initial states that
have a finite correlation length. For such systems, we express the density of relevant gaps in terms of the energy
density of the initial state and the function that describes the matrix-elements of the observable. By doing so, we
identify the energy scales that determine the dispersion of gaps. We find that there are mainly two relevant
energy scales: the energy fluctuations of the initial state and the bandwidth of the matrix of the observable A in
the Hamiltonian eigenbasis. In the case of systems globally out of equilibrium, only those observables that are
banded in the Hamiltonian basis can be observed out of equilibrium for a non-negligible time.

Local Hamiltonian. Let us define a short-ranged or local Hamiltonian of a spin lattice system, i.e., actingon a
Hilbertspace H = Q)xevH, with dim(H,) = d,as

10
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H=> hy (41)
ueé
where the locality structure is given by a graph (V, £) with a vertex set Vand edge set £. The number of terms of
the Hamiltonian is denoted by n = |£|. We consider systems for which it is possible to define a sequence of
Hamiltonians H,, of different sizes. This becomes trivial in the case of translational invariant systems and regular
lattices, but also includes systems with disorder, and defects. The reason for introducing such a sequence of
Hamiltonians H,, is that it allows us to define the thermodynamic limit. For simplicity, the subindex 7 is not
explicitly written from now on.
Energy density of the initial state. The energy density f (E) of an initial state |1/ (0)) = 3=, ¢;|E;) is defined by
g
f(E) =) |cil*6(E — Ey, (42)
i=1
and, what is more relevant for us, its coarse-grained version reads f. (E) := (N.*f)(E).
For the case of local Hamiltonians, the coarse-grained energy density of states with a finite correlation length
has been proven to approach a Gaussian as the size n of the system increases (lemma 8 in [37]). More specifically,
forall E,

Capra) - [Foap—e (43)
— e WE 43
L/:oo ff j:oo \/27TUE ’

where the Gaussian has mean 1, = ((0)|H|¢(0)) and standard deviation o = (¥(0)|(H — 15)*[1(0)),
and where the difference in these expressions falls, at worst, essentially as 1,/+/7. In what follows, we only make
use of the energy density inside integrals, so in practice equation (43) allows us to replace the energy density

f. (E") by the corresponding Gaussian, with vanishing error.

Initial states that are globally out of equilibrium, e.g. globally quenched, have energy densities with mean and
standard deviation that scale in the system size as oy x /n and pip o n.

If the system is at criticality and the correlations decay in a power law, this Gaussian shape cannot be
guaranteed anymore. In any case, the energy fluctuations can still scale as og o< /7 aslong as the power m of the
decay is sufficiently fast,i.e. m > D + 1 where D is the spatial dimension of the lattice (see appendix A for
details).

Matrix-elements of an observable in the energy basis. Taking again a weakly stochastic approach, in the same
spirit of the argument used in result 2, we constrain ourselves to observables with off-diagonal matrix-elements
in the Hamiltonian basis that can be described by a ‘continuous’ function S(E, w) plus some fluctuations 6A;;

E,‘-l-Ej E,'—Ej

|A;* = S( 5 ) + 6Aj;, (44)
where this choice of writing the arguments of the function S(E, w) will be shown to be convenient in the following
section. As in the previous section, the Lipshitz constant of S(E, w) is assumed to be bounded by K.

Note that the so called eigenstate thermalisation hypothesis (ETH) [21] can be seen as a particular case of this
assumption (44). One popular version of the ETH [38] is an ansatz on the matrix-elements of an observable A in

the Hamiltonian eigenbasis,
Aij = (EIAIE) = A(E)&j + p(E) e (B, w)Ry, (45)

where E = (E; + Ej)/2andw = (E; — E,)/2. The functions A and fgry (E, w) are smooth functions of their
arguments, and R;; are complex numbers randomly distributed, each with zero mean and unit variance. The
essential idea is that both in (44) and (45) the off-diagonal matrix-elements of the observable can be described by
asmooth function plus fluctuations that vanish when coarse-graining.

Note that in our case, in contrast to ETH, we do not assume anything about the diagonal elements of the
observable in the energy basis. This is due to the fact that we are not concerned about what is the equilibrium
state of the system (whether is thermal or not), but only about how long the relaxation process takes.

Now that we have introduced the energy density f.(E) and the function S(E, w) that describes the observable,
we are ready to express the density of relevant gaps in terms of these functions:

Result 3 (Density of relevant gaps). Given a Hamiltonian and an initial state with populations |c;|?, let A be an
observable whose matrix-elements in the Hamiltonian eigenbasis, |A;;|* , can be described by means of the
smooth function S(E, w) plus some fluctuations as in equation (44). Then, up to errors O(e K), the density of
relevant gaps can be written as

2 @P =2mp@) [ dBE(E = w/Df(E + w/DSE ). (46)
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Furthermore, if the Hamiltonian is local and the initial state has a finite correlation length, such that the coarse-
grained energy density f.(E) is the Gaussian (43), then

g (W =27 N 75, (w)S(w)p. (W), (47)

where the function S(w) is defined as
S(w) = f dE Nez (E — 1) S(E, w), (48)

with pipand o the mean and standard deviation of the energy density.

Proof. Let us introduce the density

R, () = fjc dE .(E — w/Df.(E + w/2)S(E, w) (49)
and plugin it the energy density f, (E) := Z?E: 1|c,~|2I\I}(E — E;). A straightforward calculation leads to
R@) = NG @ — (B = EDapPleP [dES(E, w)NfE(E - y) (50)
ij
where wehave used that N.(E + w — E)N.(E — w — Ej) = N\% (E — #)Nﬁf(w — (E; — Ej)).By

considering that S (E, w) is the smooth description of the matrix elements |A;; [?

R (w) = ZlV(JFNﬁf(w = Gy) = [v(w) |2pﬁf(w)' (51)

, we get, up to errors of order € K,

Putting equations (49) and (51) together with result 3 implies (46). Now for initial states with a Gaussian energy
density as in equation (43), simple algebra leads to the identity

fL(E—w/2f (E+ w/2) = N%(E — pp)N 70 (). (52)
Plugging (52) in (46) completes the proof.

The function S(w) describes the average magnitude of the off diagonal matrix-elements |A;;|* at a distance
w = E; — Ejfrom the diagonal.

Result 3 and in particular equation (47) show that the density of relevant gaps | (w)|* for local Hamiltonians
and initial states with decaying correlations decomposes in the product of two densities: S(w)p (w) and
N /30;(w). The density N /3, (w) is a Gaussian with standard deviation controlled by the energy fluctuations of
the initial state o, and S(w)p(w) is the density of the off diagonal elements of the observable A.

The dispersion of relevant gaps o, which we expect to estimate the equilibration time, is then controlled by
the smallest of the standard deviations of these two densities. In the case that the system is globally out of
equilibrium, e.g., a global quench, the variance of the energy density of the initial state is extensive with the

system size, and o o< /7. This implies the following statement:

Result 4 (Out of equilibrium observables in global quenches). Given alocal Hamiltonian, and an initial state
with clustering of correlations let A be an observable that can be described by a smooth function S(E, w). Then,
the only one way to avoid that the dispersion of relevant gaps o associated to an observable A diverges in the
macroscopic limit is that the matrix-representation of the observable A in the energy basis is banded. More
specifically, the density S(w)p.(w) has a standard deviation o4 that is independent of the system size

lim 0 = lim =< )
n—o00 n—00 j; dw S(w)pf(w)

00, (53)

where 14 is the first moment.

Note that a divergent dispersion of relevant gaps o is expected to imply an equilibration time that tends to
zero in the thermodynamic limit. In other words, observables which are not banded in their energy
representation are expected to be always equilibrated, since the amount of time that they can be out of
equilibrium is negligible.

It is worth mentioning that generic observables have a flat S(w) and fulfil o4 &< /7 due to the domination of
the density of gaps p.(w). Thus, they will have microscopically short equilibration times [20]. Observables with
the property (53) turn out to be both rare and physically relevant.

In [39]itis shown for several concrete examples that indeed the matrix elements S(w) decrease exponentially
or super-exponentially with w from a certain threshold independent of the system size (see also section 4.3.1.2 of

12
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[38]). In the following result, we show that this is a property of any local observable, that is, operators that only
actnon-trivially on a finite region of the system.

Result 5 (Local operators are banded in the energy basis). Let us consider alocal Hamiltonian

H= Y hux (54)

(x,x"e&

acting on a Hilbert space H = Qe vH, with dim(H,) = d, with alocality structure given by a graph with a
vertex set Vand edge set £. Then, the matrix elements in the energy eigenbasis of a local operator (E;|A,|E;)
acting on a site x fulfil the condition

eEi-E)Y o o
(EAALE) | < || Al eloe (it ) —e(Er-B)/ (55)

where ¢ = log(1 4+ ') isthe decay rate, ] = max(y y)c¢ |1 || is the strength of the local interactions and o is
the lattice animal constant [40] of the graph (V, £).

The proof of result 5 is presented in appendix C. In particular, note that the lattice animal constant
mentioned above is a parameter that captures the connectivity of the underlying graph of the Hamiltonian. For
D-dimensional cubic lattices, it can be bounded as @ < 2 De (lemma 2 in [40]).

In the period of finishing this manuscript we have been alerted to the existence of a result very similar to our
result 5, due to Arad et al (theorem 2.1 in [23]). Both proofs are similar in spirit and give similar decay rates. For a
D-dimensional cubic lattice with interactions in the edges, they obtain a decay rate of 1 /(8 D) while we get
log(1 + (2eD)~!) =~ 1/(2eD). The main difference is that while we bound the number of terms by counting
lattice animals, they use a combinatoric argument.

Of course, this behaviour of being banded in the energy basis extends to global operators that can be
decomposed into a sum of local terms, as well as for operators that are not local in real space but in momentum
space when the Hamiltonian is also local in the momentum representation. Note that, indeed, most observables
considered in the literature are of this type.

Let us now consider the relevant scenario of a local quench [33], in which the system is brought out of
equilibrium in only a local region of the system. In such a case, the width of the energy density of the initial state
is independent of the system size and related to the operator norm of the perturbation applied on the system.
Unlike the global quench scenario, now even the observables that are not banded (and are initially out of
equilibrium) will take a finite non-negligible time to relax. The equilibration timescale is then governed by
whichever energy scale is smallest: the energy fluctuations of the state, or the dispersion o4 of the observable.
Note that our results also allow for having equilibration times that increase with the system size, as long as either
o4 and o shrink with it.

6. Numerical example: the XXZ model

We illustrate our results using the XXZ model in a transverse field and with next-nearest-neighbour coupling.
We choose to use this particular model since it is not integrable, and hence does not have an exponential number
of degenerate gaps. The hamiltonianis H = J=; S*S7% + S}'S7,, + ASFSf | + LhS?Sf, + h.S7. Asour
equilibrating observable we choose the magnetisation density in the x direction, M* = >, S/ /N and, as our
initial state, the fully magnetised state in the x direction. In figure 4, we show the evolution of the time signal
|, () |* of this observable, in the sense of equation (5). The calculations were done using full exact
diagonalization of Hwith A = 0.5, ], = 1.0and h, = 0.2, for various system sizes.

We expect gp(t) to go to zero when the system equilibrates. Indeed, this is what happens initially, for all
system sizes, and we can notice that the equilibration time (the time when |g,, () | becomes negligible, just
before Jt=20) does not depend much on n. Furthermore, we can compare this value with our heuristic estimate
for the equilibration time, Toq ~ 7 /0g, where we use equation (15) to calculate o from the numerically
obtained eigenvalues. The results are shown in table 1. We can see that the estimated equilibration times also
depend only weakly on 11, and are in good agreement with the timescale indicated by figure 4.

Of course, due to the small size of the simulated systems, the time signals gy,(?) also exhibit strong
fluctuations. However, one can already see that, as n increases, the size of these fluctuations tends to decrease,
and their onset happens later. Our numerical results therefore seem to corroborate our expectation that the
observable M does indeed equilibrate in the limit of large n, and that this equilibration does happen ata
timescale roughly given by T,y ~ m/0g.

To better illustrate the dephasing mechanism behind the equilibration process, in figure 5 we plot the
amplitudes v, e!%" for this same situation, in the case n = 10. Starting from an initial condition where all the
amplitudes are in phase (in this case, all real and negative), one can see them rotating at different speeds and
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Figure 4. Fluctuation in the total magnetisation in the x direction, |g,, (#) %, for the XXZ model with next-nearest-neighbour coupling
and external magnetic field (A = 0.5,], = 1.0and h, = 0.2). The different curves are for chains with different numbers n of spins.
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Figure 5. Evolution of each complex number v, ei%* for our simulation of the XXZ model with n = 10. From upper left to the bottom
right, (adimensional) time J¢ goes from 0 to 20 in equal intervals.

Table 1. Estimated equilibration times T¢q for the XXZ model with next-nearest-neighbour
coupling and an external magnetic field (A = 0.5,], = 1.0and h, = 0.2). The gap dispersion
o was obtained by explicitly calculating equation (15) from the numerically obtained energy

spectrum.

n Teq ~ /oG
2 21

4 19

6 20

8 22

10 23

12 24

becoming more spread out in the complex plane as time goes by, resulting in the decay seen in figure 4. Note that
the approximate four-way symmetry exhibited at Jt = 20 (implying g(f) =~ 0 at this time) is already a symptom
of a future recurrence: clearly, after four times this interval, all of the amplitudes will have rotated approximately
back to their initial position. Indeed, one can see in figure 4 that a recurrence occurs at around Jt = 80.

Itis also instructive to compare the exact time evolution of the magnetisation with coarse-grained versions
derived according to the procedures described in section 4. In figure 6 we plot again the exact time signal g,(#)
for the chain with n = 12 spins (the dark blue line in figure 4), represented here by the black dotted curve. We
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Figure 6. Comparison of exact and coarse-grained time signals for the magnetisation. The exact time signal gy,(t) (black dots) is the
same curve plotted in figure 4, for n = 12 spins. The full curves are coarse-grained time signals gy(t), obtained by Fourier transforming
the coarse-grained frequency signals calculated according to equation (26), with ¢ = 0.4 (red) and ¢ = 0.02 (blue). By choosing a
value of e that is sufficiently large (but not too large), the coarse-grained signal reproduces the exact one during the equilibration
phase, but suppresses later recurrences.

also plot two coarse-grained time signals gy,(f), with € = 0.4 (red line) and ¢ = 0.02 (blue line). These curves
were obtained by Fourier transforming coarse-grained frequency spectra (such as the one in figure 3) that were
numerically calculated according to equation (26) (i.e., we did not simply dampen the exact time signal using
equation (30)). It can be seen that all three signals are essentially indistinguishable up to the equilibration time
(the slight deviation close to ¢ = 0 is an artifact of our having discarded terms with v, < 10~ * when calculating
the sum in equation (26)). We can see that, for small € (= 0.02), the signals remain indistinguishable up to and
including the recurrence time. However, by choosing a value of € that is sufficiently large (0.4), the coarse-
grained signal faithfully reproduces the exact one during the equilibration phase, but suppresses later
recurrences. Note that e must still be chosen sufficiently small (e < 0 ) in order to avoid suppressing the signal
even before equilibration has occurred. As discussed in previous sections, under these circumstances we may use
the width of the (square-integrable) coarse-grained signal as a measure of the equilibration time of the original
signal.

Finally, let us remark that we also obtained similar results for other values of A and h,, and also for the XY
model. However, in the latter case, the fluctuations do not decrease exponentially with #, but only polynomially,
since there are an exponential number of degenerate gaps.

7. Discussion

7.1.Reinterpretation of previous results

Itis useful now to reinterpret some previous results on equilibration times from our dephasing point of view.
For example, Short and Farrelly [15] obtain a rigorous upper bound for the equilibration time of any observable
by studying the time-averaged fluctuations (|g|? )7 in equation (8) above. They are able to determine a value T;>
dp/ AE, where AE is the range of energies in the system, and dg the number of different energy levels, such that
averages taken over intervals longer than T are negligible. This implies that the equilibration time must be upper
bounded by Tj. Unfortunately, for a typical many-body system with n degrees of freedom, AE scales only
polynomially with n, while dj; scales exponentially with n—and thus so does Tj. In other words, although this
upper bound is mathematically sound, it vastly overestimates the actual equilibration time of most observables.
This suggests that its derivation must be incomplete, in the sense of missing or disregarding an essential physical
ingredient [20].

We now argue that this ingredient is, in a word, dephasing. Roughly speaking, in the course of their
derivation, the authors bound (|g|* )7 by separately bounding the absolute value of every term in its Fourier
expansion, disregarding the interference between different terms due to dephasing. Each of these terms, which
rotate according to exp[i(G, — Gj) T'] does gets individually dephased, due to the time averaging, but onlyona
timescalet, 3 ~ 1/(G, — Gp). Thebound in [15] hence corresponds to the amount of time needed for the

15



10P Publishing

NewJ. Phys. 20 (2018) 033032 T Rde Oliveira et al

slowest term in the Fourier sum to average out over time. For many-body systems, the gaps G, and also the
differences between different gaps, can be exponentially small in 1, hence the exponentially long upper bound.

Although this bound is therefore much too large to be a reasonable estimate the equilibration time of most
observables, it must be stressed that one can always construct a specific observable A which saturates it. This is
not entirely unexpected, as the bound itself is observable-independent. In fact, in [20], Goldstein et al construct
such an observable, by considering a direct sum of banded matrices in the energy basis, each of which has a
bandwidth that is exponentially small in the system size. From the dephasing mindset, it is straightforward to
understand what is going on in this example. Since each component of A is banded with an (exponentially)
narrow bandwidth, with no coherences between different bands, the dispersion of relevant gaps, o, is
exponentially small. In this case, our estimate 7/ for the equilibration time becomes exponentially large, since
the small difference in angular speeds means that it must take a long time until all points are dephased and
isotropically distributed in the complex plane. Analogously, in [20] it is also shown that one can always construct
an observable which equilibrates extremely fast, by defining an A which is far from banded, having coherences
between vastly different energies. Again, the dephasing picture intuitively explains the reason for such quick
equilibration.

We can also understand some of the results obtained in another approach to the problem of relaxation of
many-body systems, namely the study of the survival probability given by the quantum fidelity
F(t) = {1 (0)|1(t)) |*, often in situations where the initial state |1/ (0)) is generated after a sudden
displacement (‘quantum quench’) that brings the system out of equilibrium (see [ 19] and references therein
for areview). Note that the quantum fidelity is, up to an additive constant, equivalent to the time evolution of
the observable A = [1/(0))(¢)(0)|. In this case, then, both the energy fluctuations of the initial state and the
bandwidth of the observable written in the energy basis are og. Hence, our considerations within the
dephasing picture predict, for local interacting lattice systems, an equilibration time determined by o, in
agreement with the results of [19].

Finally, our outlook and conclusions are also compatible, and in some senses complementary, to recent
remarkable results by Reimann et al[17, 18]. In these works, the time signal g(¥) in equations (5) and (6) above is
rewritten as g(t) = c F(t) + £(t), where (using our notations)

1 .
F E IGut’ 56
(t) dT(dT — 1) ¢ ( )

«

and cis a constant (=g(0)). Note that F(#) depends only on the gap spectrum, and on the dimension of the system,
but not on the initial condition, observable or eigenbasis of the Hamiltonian. It is then proven that, if one
averages the time signal over certain ensembles of Hamiltonians with fixed spectra (i.e. varying only their
eigenvectors) then both the average value and the standard deviation of £(¢) become extremely small in the
thermodynamic limit. In other words, for any fixed initial condition and observable of a quantum system, and
also any given fixed energy spectrum, the ‘typical’ time signal will always be of the form g(¥) = cF(t), up to
negligible error. Comparing with equation (6) above, we can see that the effect of the ensemble average is to
uniformize the different amplitudes v,,, both in amplitude and in phase. As a result, the ‘typical’ equilibration
dynamics described by equation (56) becomes a pure dephasing process, i.e, a sum of uniform-length vectors in
the complex plane, all initially pointing along the positive real axis, which then rotate at different speeds.

As we have argued above, dephasing/equilibration should then occur on a timescale of order 7/o¢. Indeed,
this can be seen in the examples worked out in these references. For instance, one situation considered in [17] is a
system described by a continuous ‘microcanonical’ density of energy eigenstates, of the form
p(E — y) = ce /T wherey > 0and cis a normalisation constant. It is also assumed that the system’s initial
state has support restricted to a narrow energy band [E — AF, EJ. In this case F(t) can be calculated exactly; in
particular it is shown that, for AE > kgT, it has the form of a Lorentzian function,

1

F )
®) 1+ (t)?

(57)

wherey = kz T/ h.

Let us now analyse this result from the point of view of our approach. First of all, as we have noted in
section 3, restricting the initial state to a finite energy band, and therefore a finite gap spectrum, ensures that, for
all observables, dephasing/equilibration must occur in a finite timescale.
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We can estimate this timescale from the (continuous) gap density for this model:

2,—AE/~y _ 2
WKW)Z‘fPU?MKE’+a®dE’::chz ﬁnh[AE “”]rvlgf—WVn (58)
Y

where the last equality is valid for AE >> kpT. Given that here the amplitudes v,, of each gap in the time signal are
uniform, this expression is also proportional to the gap spectrum (i.e., the Fourier transform of F()), and we can
calculate directly the gap dispersion

f wp (w) dw 7y

A = —.
Yo pr(w)dw V2

. e 2 27
Hence, we estimate an equilibration time T.q ~ ™2 WkJ_T

t = Teq, the signal has decreased by about ~95% from its initial value, showing that this is indeed a fair estimate
of the equilibration timescale. Note that for a time signal governed by equation (57), the standard deviation At
defined in equation (17) equals 1/, which is also the ‘half-width at half maximum’ of the Lorentzian®. Hence in
this case the uncertainty relation, equation (18) is not far from being saturated, which is the condition we are
relying on for our estimate.

As a final remark, it is also interesting to note that in this case the roles of the time signal and spectrum are
exactly reversed from the well-known example of spontaneous decay of an excited atomic or nuclear state: there
itis the spectrum that is a Lorentzian, and the time signal that is an exponential decay.

It can be seen from equation (57), that, after

7.2. Equilibration time-scales and level statistics

A consequence of the coarse-graining machinery introduced above is that the fine-grained details of the
spectrum do not affect the dynamics of the system up to very long time scales. More formally, the following
result states that if two coarse-grained frequency signals are close in the trace norm, then their corresponding
time signals must also be point-wise close forany t < O (¢ "):

Result 6 (Spectrum and dynamics). Let ¢(¢) and g®(#) be two time signals whose e-coarse-grained Fourier
transforms satisfy

1g" - g2 <& (59)

forsome 6; > 0,andletsome0 < 6, < 2 setadistinguishably threshold. Then g(l)(t) and g(z)(t) are
indistinguishable up to times ¢ < \/672 /€, 1in the sense that

gV — gP(O)] < b1 + 6o (60)
Proof. By using twice the triangular inequality, we have
gD — g@)] < g1 — gD + 1871 — g2 W] + 18P 1) — g0, (61)

The first and third terms are analogous and are bounded by equation (30) and the fact that [ (¢)| < 1
Concerning the second term, we note that, since g (w) € L2, then the uniform continuity statement of
functional analysis allows us to write

g — 9 [l = suplg”®) — gP®1 < gV — g?|h < 6, (62)
t

and putting everything together, we get
g0 — gPM] <21 — e + 6 (63)

Finally, the bound (60) is respected aslongas 1/2¢%? < —log(1 — &, /2). Theinequality x < —In(1 — x) for
0 < x < 2impliesthat1/2¢%% < 8,/2 < —log(1 — 8,/2). Thus, equation (60) is guaranteed to hold for

times t < \/?2/6.

Result 6 shows that two frequency signals that become very similar once they are e-coarse-grained have
indistinguishable dynamics up to times ¢ "', This is particularly relevant in many-body systems where the
separation between consecutive energy levels shrinks exponentially in the system size”. One can then consider
the possibility of two many-body Hamiltonians with qualitatively different level statistics, for example one where
the distribution of gaps E; , 1 — E;between consecutive energy levels follows a Poisson distribution, and

Note that here At refers to the standard deviation of the square of Lorentzian, not that of the Lorentzian itself, which is divergent.

This is a consequence of the fact that in such systems the energy scales extensively (or even polynomially for some long range interactions)
with the number of particles, while the dimension of the Hilbert space does so exponentially.
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another with Wigner—Dyson statistics, giving rise to time signals that are nevertheless indistinguishable in
practice for time up to and beyond the equilibration time.

In appendix D we present an example of this kind. We have estimated the one-norm distance between two
coarse-grained frequency signals evolving according to two Hamiltonians with identical eigenbases but different
level statistics (one Poissonian and the other Wigner—Dyson). For this case we find that

C | n
@ _ 5@ < = , (64)
g — &7 Ih < i

where Cis a numerical constant, 7 is the system size, € the coarse-graining parameter and d.¢ the effective
dimension.

Note now that, assuming that d.gincreases exponentially in 71 (d.gr ~ exp(cn), for some constant ¢), then
choosing € ~ exp(—cn/4)in equation (64) and using result 6 implies that the dynamics would not be affected up
to times t ~ exp(cn/4). (Here we are also assuming, as in the discussion following equation (38),¢ > E; , 1 — E,
which also decrease exponentially. This requires choosing d.gto increase sufficiently slowly (¢ sufficiently
small)). If these conditions are met, we obtain time signals originating from two Hamiltonians with different
level-statistics but that for all practical purposes display the same dynamical behaviour.

Recall now that it is a well-known conjecture that a Poissonian nearest-neighbour gap distribution is a
manifestation of integrability, and Wigner—Dyson statistics are a signature of quantum chaos. Our example
seems therefore to show that it is possible for both kinds of Hamiltonian to lead to identical time signals, with
identical equilibration times, at least some specific cases.

It isless clear what will happen in a more realistic example in which the two Hamiltonians H, and H, with
different level statistics also have different eigenbases (as is in practice always the case). In these situations the two
Hamiltonians are related by a perturbation V which does not commute with the integrable Hamiltonian H; and
where both H; and V' have alocality structure of the type in (41). In such a scenario, the coarse-grained energy
density of the initial state is not affected by the perturbation since it keeps the Hamiltonian local. Thus, any
change in the one-norm distance between frequency signals, and thereby in the dynamical behaviour of the
system, must come from a drastic change in the matrix-elements of the observable. A question that arises beyond
the scope of this paper is then how integrability, non-integrability, and chaos can be identified in the behaviour
of the matrix-elements of the observable in the energy basis.

7.3. The dephasing mindset for quadratic Hamiltonians

A relevant point to discuss is to which extent the results presented in this paper are valid for integrable models. In
this respect, let us focus on quadratic (bosonic or fermionic) Hamiltonians that can be brought to a diagonal
form H = Y (k) a,j ar, where af” are the annihilation (creation) operators that fulfil fermionic or bosonic
commutation relations and ¢ (k) is the dispersion relation. For such systems and quadratic observables, the time
signal can also be written in the form of equation (6), where the sum now does not run over the gaps of the
Hamiltonian, but over the gaps of the dispersion relation ¢ (k). In [41] this is done in detail for the Caldeira—
Leggett model (a quadratic system of harmonic oscillators). In sum, we see that the above formalism can also be
applied to quadratic Hamiltonians, where, roughly speaking, the Hilbert space has been substituted by the space
of modes.

8. Conclusions

In this work we have argued that equilibration in closed quantum systems should be understood as a process of
dephasing of complex numbers in the complex plane. From this mechanism, we have heuristically estimated the
equilibration time-scale as roughly the inverse of the dispersion of the relevant gaps. We have seen that, under
physically relevant circumstances, the equilibration time-scale estimated in this way depends at most weakly on
the system size, in agreement with realistic situations. Although our argument does not result in a rigorous
bound, we claim that it captures the correct way in which the time-scale depends on the physical properties of
the system. In particular, we have seen that the coherences of the observables of interest in the energy basis,
(EilA|E;), play a fundamental role: in order to attain a finite equilibration time for generic initial states, these
coherences must become small as E; — E;increases.

We have also observed that the size of the system only plays a role in the typical size of the fluctuations, but
not in the time of equilibration, and thus small systems fail to equilibrate not because their equilibration time is
large, but because their fluctuations are big. We illustrate these results with numerical simulations of spins
chains.

Finally, we have applied the dephasing mindset to give an intuitive interpretation to earlier works on
equilibration times. Our results satisfactorily reproduce many particular cases of determining equilibration time
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scales found in the literature. Of course, further work is still required to put our claims on a more rigorous
foundation. For example, we conjecture that in a sufficiently wide range of locally interacting n-body systems,
the coarse-grained frequency signal § (w) may itself approach a Gaussian in the limit of large 7. In this case, the
Heisenberg-like uncertainty principle we have been using to heuristically estimate the equilibration timescale
would become close to saturated, and would therefore indeed be a bona-fide measure for it.
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Appendix A. Energy density and effective dimension of the initial state for local
Hamiltonians

A.1.Energy uncertainty of the initial state

A standard way to bring quantum systems out of equilibrium is to initialise the system as the ground state of a
local Hamiltonian, and change the Hamiltonian of the system sufficiently fast such that the state is kept
unchanged. This procedure is called a quantum quench [33].

It is well known that the ground state of local Hamiltonians exhibit a clustering of correlations [42]. In fact,
correlations between observables supported at different lattice points decay algebraically with the distance for
critical systems (gapless Hamiltonians) and exponentially for systems off criticality (gapped Hamiltonians).

Consider alocal Hamiltonian of the type (41) and a quantum state [¢)) € H with either exponentially or
algebraically decaying correlations such that

|<huhv> - <hu><hv>| < <

S——57 A.1)
d(u, V)D-H (
where ¢ > 0, d(u, v) is the graph distance between the edges 1 and v, and D is the spatial dimension in which the
graph can be embedded. Then, the variance of the energy distribution is upper bounded by var,(H,) < ¢'n
withd > 0.
By using (A.1), itis easy to see that

ST (hahy) — (h) (b)) < 'Y (A.2)

veE

Hence, writing the variance in terms of the local terms of the Hamiltonian, and using the previous bound, one
gets

vary(Hy) = (H%)y — (H)}, = Y (huhy)y — (hu)y (hy)y) < cn. (A.3)

u,veE

A.2. Effective dimension
The effective dimension tells us how many eigenstates of the Hamiltonian contribute in the superposition of the
initial state. In the previous section we have argued that the energy uncertainty of the initial state scales with /7
in the case where the system is brought out of equilibrium with a global quench, and is independent of the system
size in the case where the system suffers alocal quench.

Local Hamiltonians have an energy range that scales linearly in the system size while the dimension of the
Hilbert space does so exponentially. This implies that the density of states scales exponentially, and so does the
effective dimension.
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Appendix B. Proof of result 2: coarse-grained frequency signal

In this section we provide the proof of result 2. The coarse grained Fourier transform of the time signal naturally
decomposes

g W) =) v(Gh (w— Go) + ) Svhe(w — Gy). (B.1)

0%

The second term in the right-hand side is a random variable with variance given by
6VE (w)2 = Var(z 61’(1 hE (w — Ga)) = Z hgz (w — Ga)Var((SVa) = Z hgz (w — Gu)’Yz(Ga)-
By means of the density of gaps, the variance of the fluctuation term in equation (B.1) becomes

@ = 2T [dN, (@ — NP @), (B.2)

where we have taken into account that h, (w)? = V7 € !N,/ /3 (w). Now we use the fact that y(w) is almost
constant in an interval ¢, i.e. the Lipshitz constant K of s such that Ke < 1. The idea is to approximate 6v.(w)*
by

T T
() =~ Ty w) JawN m@ = whp) = @ 5. (B3)
More precisely, such approximation has 2 steps. The first step is to restrict the domain of integration around w,

where the Gaussian N, /7 (w — w') is centred. The error of such step can be upper bounded by

w+A
vy~ T [ AN = )P W) | < gpf/ (W)ae /e, (B.4)

€ w—

o0

where we have used the Chernoff bound of the Gaussian distribution ; dyN (y) < 2¢ /7 anda > Oisa
constant that depends on the density of gaps.

The second step is considering the worst case in the variation of y(w) within the interval of integration
[w — A,w + A]. Todoso, let us consider two real positive functions a(x) and b(x), where b(x) has Lipschitz
constant K. Then, by using trivial calculus and the definition of Lipschitz constant, we get

w+A w+A w+A
f dxa(x)b(x) <( max b(x)) f dxa(x) < (b(w) + KA) f dxa ().
A w—A w—A

x€lw—A,w+A]

w—

A straight forward application of the former statement leads to
wtA wtA
f dw 2 (W)Ne/ 3 (W — W) pW) = 7* (W) f dw'N. /7w — WNpW) < p.) 3 (WKA.,
w—A w—A

By putting everything together, we get

v (w)? — gvz(w)pf/@(w)’ < gﬁf/ﬁ(w)(zae*mz/ < 4 KA). (B.5)
Finally, an optimisation over A gives

JT
‘ o (w)? — Twz(w)pf/xz(w)‘ < de'p, 5(W)Ke, (B.6)

where @ > 0 contains all the numerical factors. Equation (B.6) implies a relative error in the of the order Ke.

The standard deviation év.(w) sets the order of magnitude for the fluctuations of the random variable. We
will see that it is negligible in comparison with the first term in equation (B.1). Such a term can also be written in
terms of the density of gaps p(w)

R (W) =) v(G)h (w — Gy) = f dw'p (v (WHhe(w — W). (B.7)

The function R.(w) can be shown to be close to /27 v(w) p. (w). More precisely, by following an analogous
argument of the one above, it can be proven that

IR (w) — V27 v(w)p. (W)] < Bp. (w)Ke, (B.8)

where 6 > 01isan order one factor.
We are now ready to bound the difference § (w) — 27 v(w) p. (w). By using equation (B.1), definition
(B.7) and the triangular inequality, we get
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3. (w) — V2rv(w)p (W) < R (W) — V21 v (W) p )| + | 3 dvhe(w — Go) ‘ (B.9)
Finally, from equations (B.3) and (B.8), the error is bounded by
/
12, @) — VITv(@p @] < o (w){ﬂKe + %) (B.10)

Here, we have used that p, 7w < o, zW(A + Ke) where K also upper-bounds the Lipshitz constant of
pe(w).

Appendix C. Proof of result 5: local operators are banded in the energy basis

In this section we prove result 5. We first introduce the imaginary time evolution of the observable
A (B) = ePHA e PH, (C.1

By Taylor expanding of the exponentials, it can be written as
0 m
A(B) = Ay + Y W[H’m [H, Al -0 ] (C2)
m=1 :

where we have used that [H, ... [H, A,] ... ] = kazo(r;: )HkAx(—H)m*k.

We use now the locality of the Hamiltonian given by its underlying graph (V, £). In order to do so and for
the sake of clarity, let us introduce some notation. We refer to edges A € & as letters, to the edge set £ asan
alphabet, and call the sequences of edges as words. For any sub-alphabet F C £, we denote by F' the set of words
with letters in Fand length [, where the length |w| of a word w is the total number of letters it contains. In turn, the
set of words with letters in Fand arbitrary length lis defined as F* == [ J;°, F'. The size of a sub-alphabet Fis
denoted by |F| and corresponds to the number of letters it contains. We call a sub-alphabet F an animal if it forms
a set of connected edges, and aword connected or cluster c € £* if the set of letters in cis an animal, i.e., connected.
That s, clusters are connected sequences of edges where the edges can also occur multiple times, while animals
are connected sub-graphs (sets of connected edges without order or repetition). For w € E* and any sub-
alphabet G C &, wewrite G C w ifeveryletter in G also occurs in w. When a sub-alphabet F contains at least
one edge adjacent to a vertex x, we denote itby F 5 x.

With the above notation, the order n commutator can be written as

[H, ... [H, A oo 1= 3 [y oo [y Al oo ], (C.3)

weem
where wy is the kth letter of the word wand h,,, the corresponding Hamiltonian term. Note that the only way for

the w-commutator [h,,,, ... [hy,, A] ... ]tobenonzeroisif w forms a single cluster with at least one ofits letters
adjacent to the vertex x. More formally,

(H, ... [H, Al . 1= D0 > Thups oo [ Al o 1, (C.4)
FC& weF™
|Flsn FCw
F>x
where the first sum runs over all the animals F that contain at least an edge adjacent to the vertex x and are
smaller or equal than #. Then, the imaginary time evolution of the observable can be written as

8wl

A(B) =Ac + ) (B oo [Hayp Al o0 ] (C.5)
FCE&: weF*: |W|'
F>x Fcw
We can upper bound the operator norm of 4,(3) as
16)I
@l < lad 1+ ¥ ¥ 90 ©9)
£CEwers  [wl!
F>x Fcw

where we have used that for any operator O, || [h,, O] < || hy, || ||O]], whose iteration implies
[Py - [ As) <o 1] < [|Ag || J™). We recall now lemma 5 from [43] which states that

5 G110 _ on _ pym (C.7)

weF*:FCw |W|'
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and implies

[AxB) < [[A«][ |1 + FE;(e'ﬁ" - DAL (C.8)
cé:

F>x

By decomposing the sum over all animals which contain x according to their size, we get

[Ax B < [[A |1+ 20> @7 —DiFtf. (C.9)

1=1FC&:
|Fl=1
Fax
The number of lattice animals of size [ is upper-bounded by means of the so called lattice animal constant c.
Givenagraph (V, £)and denoting by a; the number of lattice animals of size / containing the fixed vertex x, then
the animal constant o is the smallest constant satisfying
a=Y 1< (C.10)
FCE:

|FI=1
F>x

Regular lattices have finite animal constants[44]. For example, the animal constant of a D-dimensional cubic
lattice can be bounded as @ < 2De (lemma 2 in [40]), where e is Euler’s number.
Equation (C.10) allows us to bound (C.9) as

4@ < 1A« ]l D2 (ae” — 1), (C.11)
1=0

which is a geometric series with common ratio a(e?? — 1). In order for the series to converge we require that 3
issuch that a(e? — 1) < 1, for which

e e €12)
We compute the absolute value of the matrix-element (Ej|-|E;) in equation (C.1)
PECE)(EALE) | = [{ElA(B)E;)| < [[A<(B)]] (C.13)
and, together with equation (C.12), it implies that
EIAIE)] < A, ——— (C.14)
1—aE? —1)

for any Bsuch that a(e” — 1) < 1.

In order to get an explicit bound independent of 3, we optimise over 3. Given some energy difference
E; — Ej, welook for the 3 that minimises the upper bound of equation (C.14). To do so, it is useful to rewrite the
bound in terms of a new parameter z = e” such that [(E}|A,|E;)| < ||Ax || f (z) with

@) = ! (C.15)

ol + a7l — 2)z¢

andw = (E; — E;)/J. By means of an optimisation over z, we find the minimum at z = wi : a;” L which fulfils

the convergence condition 1 < z < 1 + a 'aslongasw > «. The minimum value of f(z,) becomes
1 e 1

w + ( w ) (14 o< @t

a+1\w+1 a+1

where the inequality comes from the fact that (w/(w + 1)) < e. The matrix element | (E|A,|E;) | is then
bounded by

fze) = e(l + ah™™, (C.16)

e(E;—E;)
(EIALE) < 4] e (isa) <8/ (C.17)

where ¢ = log(1 + a~!)is the decay rate.

Appendix D. One-norm distance between coarse-grained frequency signals of two
systems which only differ in the level statistics

Two Hamiltonians H" and H* with identical eigenstates but eigenvalues with different level statistics give rise
to time signals for equal initial states and observables given by
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gV() = e’ (D.1)

and analogously for g(z)(t). Here, G are the gaps associated the spectrum of Hj, and the relevances v, are the
same for both systems. These time-signals have Fourier transforms

§0W) = wbw - G (D.2)
that once coarse grained read
gVwW) =3 vah (w— GD). (D.3)

«

The one-norm distance between the frequency signals g:l) and g((z) is defined by

187 = &2 = f dwlg®(w) — gPW)l. (D.4)
Let us now introduce the function
us(W) = 2¢h, (w)hg(é)sinh(éﬂ). (D.5)
€ €

By plugging (D.3), we can write the difference in frequency signals as
gPW) — g9 W) =Y v us, (w — Go), (D.6)

where we have used that usg, (w — G,) = h (w — G") — h.(w — GP)with 6G, = GV — G
and G, = (G" + G?) /2.

In order to understand how the variables G, and 6G,, behave, let us introduce the spectrum of H; (with
Poisson level statistics) by {E,El)} ZF: »and the one of H, (with Wigner—Dyson level statistics) by {E,Ez)} iﬁz ;- The
energy levels can be iteratively constructed as

Exi1= Ex + s (D.7)

where s, V' k arei.i.d. random variables sampled from a Poisson distribution in the integrable case and from a
Wigner—Dyson distribution in the chaotic case. Both distributions are assumed to have the same mean (i, and
standard deviation /1. . The gaps read then

j—1
Go=E —E =) s (D.8)
k=i

where we have assumed i < j. Fori < jwe can apply the central limit theorem and obtain that the gaps are

random variables
Go ~ N(p,(j — 1), Jus(j— 1)), (D.9)

where N(u, o) is the Gaussian distribution with mean yp and standard deviation o. The difference of gaps
generated by different probability distributions

6G, == GV — G, ~N (0, 2(j — D) u,)- (D.10)

Note the standard deviation increasing with the separation of the energy levels. This is indeed the behaviour of
8G,, ifboth s and s’ are independent random variables. However, in our example the spectrum E? isbuilt
from E{" with the single goal of changing its level-statistics. This can be made shifting the energy levels by an
amount independent of the separation between them. One way to achieve so is to group the energy levels
{E(M}{_ | in different sets { E{"} ij:Jrle)Lfl of consecutive L energy levels, where jlabels the different sets. Then, the
first and the last energy levels of every set are kept fixed and the other energy levels are shifted according to the
other level-statistics. In such a case, the random variable 6G,, is bounded by

8§Go < K JTis (D.11)

with K = +/2L a constant independent of the system size.
One strategy to bound the one point distance between the coarse-grained frequency signals would be to use
the triangular inequality as follows

|g:1)(w) - gfz)(w)l < Iallus, (w — Go) (D.12)

«

and the one norm distance

I8 = @1 < Llwl [ deluse, @ — Gal. (D.13)
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In order to estimate the scaling of the |v,| in the system size, let us consider that there are d.genergy levels
with a non-negligible occupation in the initial state. Thus, let us note that

1
Dol ~ dighalr < —, (D.14)
«a deﬁ

—3/2
and therefore |1,| ~ dg/~.

By splitting the integrals and a convenient change of variables,

fdwlug(w)l =2 f% dwh, (w) — fﬁg dwhf(w)‘
—2| " duhow)| < 22 (D.15)

Note that for 6G, < K /p; with pi; ~ 1/ deg, the individual terms of the sum behave as K/ /(¢ dZ). However,
the sum over a contains d- many terms, and therefore the bound becomes useless. The reason for that is that, as
it happened for the time signal, the quantity |gV(w) — g®(w)|is small due to the cancellations between its
different contributions usg, (w).

Instead, let us exploit interference by applying the triangular inequality as follows

gV (W) — gPW)I <Y | D s, (w — Ga) |, (D.16)

k G,,le

where I := [kéw, (k + 1)éw).
For given k, the contribution to the one-norm behaves as

/d
fdw > wausg(w — Go) | ~ va fdwluc W) < ;,us (D.17)

G{kEIk

where d; == |{G,, € I}|isthe number of gaps in the interval I, and we have used |v,| ~ deg 3/2 and

equation (D.15). Note thatin (D.17) and due to interference between different s (w — u) the scaling with
the number of gaps within an interval I is \/d7k and not dy. This behaviour has been inferred from numerical
simulations and can be understood by means of the central limit theorem.

Finally, let us note that the amount of gaps in an interval I; scales as dy, ~ Cj d2ewhere d2¢is the total number
of gaps, n the the system size, and Cy the fraction of gaps in the interval I;. Thus, adding all the contributions of
every interval

C |n?
g — &P lh < =,/ (D.18)
degr

where we have used that the average level spacing p scales as pi; ~ Kyn / degwith Cand K, positive constants
independent of the system size.
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