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Abstract
We show that the physicalmechanism for the equilibration of closed quantum systems is dephasing,
and identify the energy scales that determine the equilibration timescale of a given observable. For
realistic physical systems (e.g thosewith local Hamiltonians), our arguments imply timescales that do
not increase with the system size, in contrast to previously known upper bounds. In particular we
show that, for suchHamiltonians, thematrix representation of local observables in the energy basis is
banded, and that this property is crucial in order to derive equilibration times that are non-negligible
inmacroscopic systems. Finally, we give an intuitive interpretation to recent theorems on
equilibration time-scales.

1. Introduction

There is currently a renewed interest in the derivation of statisticalmechanics from the kinematics and dynamics
of a closed quantum system [1]. In this approach, instead of assuming a priori that the system is in somemixed
state, such as e.g. amicro-canonical ensemble, one describes it at all times using a pure state ty ñ∣ ( ) . One then
seeks to show that, under reasonable conditions, the systembehaves as if it were described by a statistical
ensemble. In this way the use of statisticalmechanics can be justifiedwithout introducing additional external
degrees of freedom, such as e.g. thermal ‘baths’.

A central part of this programme has been to understand the process of equilibration, i.e., how a constantly-
evolving closed quantum system can behave as if relaxing to a stable equilibrium. Themain insight relies on the
fact [2–4] that, ifmeasurements are limited to small subsystems or restricted sets of observables, then ‘typical’
pure states of large quantum systems are essentially indistinguishable from thermal states. It can then be shown
[5, 6] that under very general conditions on theHamiltonian and nearly all initial states, the systemwill
eventually equilibrate, in the sense that an (again, restricted) set of relevant physical quantities will remainmost
of the time very close tofixed, ‘equilibrium’ values. For example, given some observableA and a systemoffinite
but arbitrarily large size, if its expectation value A tá ñ( ) equilibrates, then itmust do so around the infinite time
average (see section 5.1 of [1])

A
T

A t tlim
1

d . 1
T

T

0
ò= á ñ

¥
( ) ( )

If the infinite-time average fluctuation of A tá ñ( ) around Ā is small, thenwe say that the observableA
equilibrates.

Onemajor open question is to understand the time scale at which equilibration occurs in a given system, and
in particular its scalingwith respect to systemparameters such as its size (number of degrees of freedom).
Various authors have tackled this question, e.g. [7–19], producing upper bounds that imply finite-time
equilibration in various contexts (see also the ‘supplementary information’ section in [17] for a brief survey of
the literature).
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Several of these results [8–13, 17, 18] are again obtained in a typicality framework: they estimate, in various
different senses, the average equilibration time of evolutions.While inmany cases these calculated averages can
have an impressive correspondence to experimentallymeasured equilibration times [17, 18], this approach also
has some inherent weaknesses. First of all, it is generally believed thatmany specific physical conditions that are
realisable inNature or in the lab can be very far from ‘typical’ (for example, the actualHamiltonians inNature
tend to have a locality structure thatmay be absent frommostmembers of amathematically generated ensemble
[18]). In addition, by averaging, one loses information about the physical properties that are relevant to the
equilibration time scale of any one specific evolution.

Bounds on equilibration timeswithout taking averages have also been obtained, but only for certain
restricted classes of evolutions or observables, e.g. inMalabarba et al [11], Farrelly [16], Goldstein et al [20],
Monnai [7], and Santos et al [19].

Finally, there are a fewworks by the Bristol group [14, 15] that derive general and rigorous bounds on the
equilibration times of arbitrary observables, systems and initial states, without any ensemble averaging.
However, the bound in [15] scales with the inverse of theminimumenergy difference (gap) in the system’s
spectrum. For physically realistic systems it therefore increase exponentially with the system size, and cannot be
a good estimate of the actual equilibration timescale—in particular since equilibrationwould then not occur in
the thermodynamic limit (see section 7 for details). In contrast, a bound derived in [14] can be independent of
the system’s size, however only in a regime that requires it to be initially in a nearly completelymixed state,
failing to give a physically reasonable estimate in the case of a closed system in a pure initial state.

In this work, we seek to identify the properties of a closed quantum systemwhich are relevant for the
equilibration timescale of a given (arbitrary) observable. Our approach ismore heuristic than rigorous, but it
allows us to estimate a timescale which, under reasonable circumstances, depends onlyweakly on the system
size, and thus seems to capture the relevant physics. Themain insight we rely on is that equilibration is due
primarily to a process of dephasing between different Fourier components of the dynamical evolution—a point
thatwas brieflymade in a classic [21], but that has apparently not been fully appreciated by the current
community.

Although our argument does not result in a rigorous bound such as those in [14, 15], nor in a definite average
evolution such as in [17, 18], we are able to discuss how the equilibration timescale of a given observableA
depends on the physical properties of the system. Specifically, wefind that the coherences of the observable of
interest in the energy basis, E A Ei já ñ∣ ∣ , play a fundamental role.More specifically, the equilibration time depends
critically on the range of energy gaps Ei− Ej for which these coherences have non-negligible values. In particular,
if this range remains roughly constant as the system size increases, the samewill be true for the equilibration
time. Aswe discuss below, this indeed happens formany observables of interest inmany-body systems.We
illustrate these results with numerical simulations of a spin chain, finding a reasonable qualitative agreement. It
should be noted that similar heuristicmethods and conclusions have also recently been proposed in
simultaneous, independent research byWilming et al [22].

This point of view also gives a new understanding of some existing results. For instance, it allows us to
identify the reason for the limitations of bounds and estimates such as those in [15, 20], which, while rigorous,
can vastly overestimate the time scale at which equilibration occurs in realistic systems. In section 7, we argue
that the reason for this behaviour is that these estimates ultimately rely on thewrong physicalmechanismof
equilibration, disregarding the crucial role played by dephasing.

Ourmain findings can be summarised as follows:

• In section 3we discuss qualitatively why dephasing is the underlyingmechanism of equilibration in closed
quantum systems.

• In section 4we develop a formalism based on the coarse-graining of functions in frequency space, which
allows us to apply basic tools fromFourier transform theory, such as uncertainty relations, to equilibration
related questions.

• In section 5we determine the relevant energy scales that govern the equilibration time for a given observable,
namely the energyfluctuations of the initial state and the bandwidth of thematrix of the observable in the
energy basis. In particular, we give an independent proof of the fact [23] that local observables have banded
matrices whenwritten in the energy basis of a short-ranged spinHamiltonian.

• In section 6we illustrate our results with a numerical simulation of theXXZmodel.

• In section 7we discuss some implications of our results. In section 7.1, we reinterpret existing results from the
point of view of our dephasing framework. In section 7.2we discuss implications for thefields of quantum
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chaos and integrability. In particular we present twomodels with identical eigenbases but different level
statistics that have indistinguishable dynamics over realistic time-scales.

2.General setting and definition of the problem

Let us consider a closed systemwhose state is described by a vector in aHilbert space of dimension dT andwhose
Hamiltonian has a spectral representation

H E P , 2
k

d

k k
1

E

å=
=

( )

where Ek are its energies andPk the projectors onto its eigenspaces. Note that the sum runs over dE�dT terms,
since some eigenspaces can be degenerate.

We denote the initial state by 0y ñ∣ ( ) . If theHamiltonian has degenerate energies, we choose an eigenbasis of
H such that 0y ñ∣ ( ) has non-zero overlapwith only one eigenstate Ekñ∣ for each distinct energy. Choosing units
such that ÿ=1, the state at time t is then given by

t c Ee , 3
k

k
E t

k
i kåy ñ = ñ-∣ ( ) ∣ ( )

with c E 0k k yº á ñ∣ ( ) . It is clear that ty ñ∣ ( ) evolves in the subspace spanned by Ekñ{∣ }as if it were acted on by the
non-degenerateHamiltonian H E E Ek k k k¢ = å ñá∣ ∣. In this case, if the system equilibrates, the equilibrium state
must be

c E E . 4
k

k k k
2åw = ñá∣ ∣ ∣ ∣ ( )

In this article, following a number of authors, [5, 6, 14, 15]wewill study equilibration by focusing on
observables. The idea is that a system can be considered in equilibrium if all experimentally relevant (typically,
coarse-grained) observablesA have equilibrated. In other words, wewill focus on understanding how the
expectation value A tá ñ( ) approaches its equilibrium value ATr w( ). Note that, in order to even talk about
equilibration time scales, wemust assume that such a condition holds, i.e., that this observable sooner or later
equilibrates.

Let us introduce the time signal ofA, given the initial state 0y ñ∣ ( ) , as the distance of A tá ñ( ) from equilibrium
at time t

g t t A t A

c A c

1
Tr

1
e , 5

A

A i j
j ji i

E E ti i j*å

y y w
D

á ñ -

=
D ¹

- -

( ) ≔ ( ( )∣ ∣ ( ) ( ))

( ) ( )( )

where A E A Eij i já ñ≔ ∣ ∣ are thematrix elements ofA in the energy eigenbasis, andΔA=amax−amin is the range
of possible outcomes, being amax min( ) the largest (smallest) eigenvalue ofA. The denominatorΔA is introduced
tomake the time signal dimensionless and satisfying g t 1∣ ( )∣ . Note that the time signals of two observablesA
andA′=b(A−a0) are identical for a b,0 Î .

We can conveniently rewrite the time signal as

g t v e , 6G ti


å=
a

a
Î

a( ) ( )

where i j i j d i j, : , 1, ,Ea Î = Î ¼ ¹{( ) { } } labels each energy gapGα=(Ej−Ei) appearing in the
system’s spectrum, andwhere

v v
c A c

. 7i j
j ji i

A
,

*
= =

D
a ( )( )

Wewill refer to the complex number vα as the amplitude of the corresponding gapGα, and to its normalised
squaremodulus q v v2 2åa a b b≔ ∣ ∣ ∣ ∣ as the relevance ofGα. Note that the set of relevances form a probability
distribution over  .

A physical interpretation of this normalisation factor can be given as follows [5, 6, 24]: note that, if the system
has non-degenerate gaps, then the time-averaged fluctuations of the time signal

g
T

t g t
1

d 8T

T
2

0

2òá ñ∣ ∣ ≔ ∣ ( )∣ ( )
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satisfy the limit

g g vlim . 9
T

T
2 2 2åá ñ á ñ =

a
a¥

¥
∣ ∣ ≔ ∣ ∣ ∣ ∣ ( )

In otherwords, this quantity gives the infinite time average of (the square of) the deviation of A tá ñ( ) from its
equilibrium value.We consider that the observableA equilibrates if this quantity is small, in the sense that

g
A

, 10
A

2
2

 d
á ñ

D
¥

⎛
⎝⎜

⎞
⎠⎟∣ ∣ ( )

where δA is the experimentally available resolution. Furthermore, note thatΔA/δA quantifies the the amount of
different possible outcomes of ameasurement and hence δA/ΔA is expected to bemuchmuch smaller than 1.
Fromnowon, without loss of generality and for the sake of simplicity wewill consider thatΔA=1 .

In [5, 6, 24], sufficient conditions for equilibration in the sense defined above are given by bounding the
average distance from equilibrium equation (9). In particular, in [24] it is shown that for anyHamiltonianwith
non-degenerate gaps,

v
d

1
, 112

eff

å
a

a∣ ∣ ( )

where the effective dimension is defined as d c1 1 Trk keff
4 2wå =≔ ( ∣ ∣ ) ( ), which roughly speaking tells us

howmany eigenstates of theHamiltonian participate in the superposition of the initial state. Thus, a large
effective dimension, which is usually the case inmany body systems (see appendix A and [25]), is sufficient to
guarantee that condition (10)will be satisfied. Concerning the assumption of theHamiltonian having non-
degenerate gaps, it is shown in [15] that as long as there are not exponentiallymany degeneracies the argument
stays the same.

3. Equilibration as dephasing

Let us consider a situation inwhich the initial state is out of equilibrium, i.e. the time signal of a given operator is

initially significantly larger than the equilibrium value: g g0 2á ñ¥∣ ( )∣ ∣ ∣ . For this to happen, the phases of the
complex numbers vα in the time signal equation (6)need to be highly synchronised. This case is presented
pictorially infigure 1 (left)where the vαʼs are depicted as points in the complex plane.

Result 1 (Equilibration is dephasing).Given a time signal g t v e G ti= åa a a( ) with v v ei = Îa a
qa∣ ∣ being the

initial amplitude of the gap G Îa , a necessary condition for the system to be initially out of equilibrium, i.e.,

g 0∣ ( )∣ significantly larger than the typical equilibrium fluctuation g 2á ñ¥∣ ∣ , is that the initial phases θα are not
isotropically distributed but significantly synchronised.More precisely, we quantify the distance from
equilibrium as

Figure 1. Illustration of the dephasing process of the complex terms v e G ti
a a (blue dots/black arrows) of a time signal g(t) (green

arrow), see equation (6). On the left, the system is far from equilibrium, a short time t = 0, having been initialised with all vα real, and g
(t) is substantial. Note that half of the complex terms have rotated clockwise, and the other half anti-clockwise, as expected from the
symmetry of the set of gapsGα. On the right, after a long time, the individual complex vectors have become spread out, and the system

has equilibrated, with g(t) becoming close to the typical fluctuation g 2á ñ¥∣ ∣ (red arrow).
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g g v v0 2 cos , 122 2 å q q- á ñ = -
a b

a b a b¥
<

∣ ( )∣ ∣ ∣ ∣ ∣∣ ∣ ( ) ( )

which becomes negligible when the phases θα are isotropically distributed.

Equation (12) follows from a straightforward calculation

g v v g v v0 2 cos . 132 2
*

å å å q q= = á ñ + -
a

a
b

b
a b

a b a b¥
<

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ( )∣ ∣ ∣ ∣ ∣∣ ∣ ( ) ( )

To see that isotropic randomly distributed phases give g g0 2 2á ñ¥∣ ( )∣ ∣ ∣ , let v v ei=a a
qa∣ ∣ be a set of independent

random complex variables with an isotropic probability distribution p r p r r r, 1

2
q d= = -a a p a( ) ( ) ( ), i.e. the

randomvariable vα hasfixedmodulus rα and a randomphase θα uniformly distributed around the circle. Then,
the variance of the randomvariable våa a is

v v v vvar var , 142 2å å å å= = á ñ =
a

a
a

a
a

a
a

a

⎛
⎝⎜

⎞
⎠⎟ ( ) ∣ ∣ ∣ ∣ ( )

wherewe have used the fact that the variance of a sumof independent randomvariables is the sumof variances
and thefirstmoments v 0á ñ =a . That is, if the phases of vα are uniformly distributed, then the typical initial value
of the time signal is g v v0 2 1 2= å åa a a a∣ ( )∣ ∣ ∣ ( ∣ ∣ ) .

In contrast, an out-of-equilibrium initial state, for a distribution of gaps with a non-zero dispersion and a
large enough system, will evolve to an equilibrium state, represented by an isotropic cloud of points centred at
the origin of the complex plane as shown infigure 1 (right). Thismechanism for equilibration, ormore generally
the vanishing amplitude of a signal over time, is usually called dephasing and is awell-known feature inmany
differentfields of physics [19, 26–32],

The time-scale necessary for the sum in equation (6) to dephase can be estimatedwith the following simple
argument. Suppose for simplicity that all terms have the same phase at t=0.Oneway to lower bound the time
needed for these phases to spread around thewhole range (0, 2π) is to use the time it takes for the difference
between the fastest and slowest phase to differ by 2π: tGmax−tGmin=2πwhich leads to
Teq∼2π/(Gmax−Gmin). However, the slowest and fastest gaps are not necessarily very relevant to the sum,
that is, they can have a relatively small amplitude vα. For this reason, a better estimate is obtained by replacing the
denominatorGmax−Gmin with 2σG, wherewe define the gap dispersionσG to be simply the standard deviation
of theGαwhenweighted by their respective relevances qα, i.e.

q G . 15G G
2 2ås m-

a
a a≔ ( ) ( )

Since for each gapG(i, j)=Ej−Ei there is alsoG( j,i)=−G(i,j), then by symmetry the average gap isμG=0, and
also v vi j j i, ,=∣ ∣ ∣ ∣( ) ( ) . By the argumentmade above, we can thus expect that, at least in cases where the distribution
Gα is of a unimodal type, the equilibration time can be estimated by

T . 16Geq p s~ ( )

Note that similar estimates aremade in the various fields where dephasing is relevant, e.g. in [29, 31, 32]. In the
next sectionwewill give amore detailed justification for this estimate using standard tools fromFourier
transform theory.

The physical properties that control the dispersion σG, and thus the equilibration timeTeq, can be identified

oncewe note that the probabilities qα are proportional to the v 2
a∣ ∣ . Since v c c E A Ei j i j*µ á ña ∣ ∣ (equation (7)), then

σG is determined by: (i) the probability distribution ci
2∣ ∣ for the energies; (ii) thematrix-elements of the

observableA in the energy basis; and (iii) the distribution of the values of the gapsGα=Ej−Ei themselves.
In section 5we identify the energy scales of the observable and the initial state which are relevant to

determine the dispersion of gapsσG. Let us now anticipate the requirements on the initial state and the
observable in order thatσG does not diverge in the thermodynamic limit, i.e. when the system size n  ¥ and
the equilibration timeTeq does not vanish.We can identify two regimeswhere this will happen:

• First, there are observablesA that equilibrate infinite time regardless of the details of the initial state. Note
that, for largemany-body systems, the variance of the density of states usually scales as n , and for generic
states thewidth of the distribution of ci

2∣ ∣ is as wide as the energy spectrum,which increases with n. This
implies that, unless restrictions are placed onA, the gap varianceσGwill have the same scaling andTeq will
vanish in the thermodynamic limit. In order to avoid this problem, the variance of the distribution of vα
should not increase with n. This requires that the distribution E A Ei já ñ∣ ∣ should decrease (or becomenull) for
large values ofEj−Ei—in other words,Aneeds to be banded in the energy basis.
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• Conversely, suppose the initial state has support over an energy range that does not scale with n. This can
happen, for example, in the case of a so-called ‘local quench’ [33], when a local subsystemoffixed dimension
is excited regardless of the full size of the system. In this case,σGwill also at worst be independent of n, and so
even observables with long-range coherence between very different energies, whichwould otherwise
equilibrate quickly, will now take afinite timeTeq.

Finally, it is also important tomention that the gap dispersion σGmay actually decay to zerowith n, leading to
equilibration times that become very long. As an example of this situation consider two subsystems of increasing
size n interacting through a spatially localised border offixed size. The coherence in the energy basis of the
interactionHamiltonian is bounded by the operator normof such an interaction,matchingwith the intuition
that the stronger the interaction between systems, the faster the relaxation, and vice versa. By rescaling the global
Hamiltonian, we can see that the interaction terms become relatively weaker as n grows and thereby the
equilibration slower.

4. Fourier description of the dephasing framework

In this sectionwe give further substance to the above heuristic argument to estimate the equilibration time-scale
bymeans of Fourier transform techniques.

Let usfirst give a general idea of our approach. Suppose the time-signal g(t)decayedmore or less steadily to
zero, and stayed there. If so, then a good estimate for the equilibration time scale would be given by a few
multiples of the standard deviationΔt defined by

t
g

t g t t
1

d 17t
2

2

2 2ò mD -
 

≔ ∣ ( )∣ ( ) ( )

with t g t t gdt
2

2òm  ≔ ∣ ( )∣ (see figure 2).
In such a case, following the spirit of our previous heuristic example, it would also be tempting to estimate

the order ofmagnitude ofΔt by taking the inverse of the spectral varianceΔω of the signal. Indeed, this can be
justified if we recall the standard uncertainty principle of Fourier analysis [34]

t 1 2. 18wD D· ( )

Of course, this is a lower bound, that is saturated exactly only in the case of aGaussian spectrum.However, it will
be nearly saturated (Δt·Δω=c1 , where c1 is a constant of order 1), when the spectrum is unimodal and
without long tails. In this case, we can also expect the time signal to decrease to a very small value after a time
c2Δt, for some smallmultiple c2 again of order 1. Taking bothmultiples together, we expect a good estimate for
the equilibration time to be of order c c

2
1 2~
wD
.This is satisfied by equation (16), whichwewill therefore continue to

take as our estimate.
Unfortunately, forfinite systems, our initial assumption of steady decay does not apply. The time signal has

recurrences, that is, a long time after the dephasing has occurred and the systemhas equilibrated, the phases get
again aligned (synchronised) in the complex plane, and the signal regains strength (figure 2). In order to avoid
this problem, in the next subsectionswe introduce a coarse-grained version of the signal spectrum,which
dampens out the recurrences. This allows us to exploit the uncertainty principle to estimate the equilibration
time-scales, as described above. Under somemild conditions, we show that the equilibration time-scale

Figure 2.Example of a time signal which has a recurrence time. In the absence of recurrences, a good estimate the equilibration time
scaleTeq would be a fewmultiples ofΔt defined in equation (17).
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estimated provided by this procedure coincides with the one previously given by the heuristic argument of
points dephasing in the complex plane.

4.1. The frequency signal
Wedefine the frequency signal, g w˜( ), as the Fourier transformof the time signal g(t)

g g g t t
1

2
e d 19ti òw w

p
= w

-¥

¥
-˜( ) ≔ [ ]( ) ( ) ( )

which roughly speaking tells us the relevancewithwhich every frequency contributes to the time signal.When
both the time and frequency signals are square-integrable (g g L, 2Î˜ ), the standard uncertainty principle of
equation (18) applies, where

g
g

1
d 202

2

2 2òw w w w mD - w 
≔

˜
∣˜( )∣ ( ) ( )

with g gd 2
2òm w w ww  ≔ ∣˜( )∣ ˜ .

However, in the case of time signals such as in equation (6), g t L2Î( ) , as can be seen from equation (9) (the
integral diverges proportional toT). The same is true for the frequency signal, since

g g v G , 21 åw w d w= = -
a

a a˜( ) [ ]( ) ( ) ( )

where δ(x) is theDirac delta distribution. Hence, the uncertainty principle in equation (18) cannot be directly
applied.

It is worth noting here that, due to the finite range of energies present in our system, there is an asymmetry
between the uncertainties in time and frequency of the signal g(t). On the one hand, the uncertainty in frequency
can still bewell-defined. To see how, recallfirst that, for g(t)ä L2, it is possible towrite themoments of a
frequency signal in terms of the corresponding time signal and its derivatives, e.g.

g t g t t

g t t

d

d
. 222

2

*ò

ò
wá ñ = -


-¥

¥

-¥

¥

( ) ( )

∣ ( )∣
( )

In our case, although each of these integrals diverges, their ratio does have awell-defined limit, in the sense that

g t g t t

g t t

v G

v
lim

d

d
. 23

T

T

T

T

T 2

2 2

2

* å

å
ò

ò
-


= a

a a

a
a¥

-

-

( ) ( )

∣ ( )∣

∣ ∣

∣ ∣
( )

Taking then this limit as the appropriate definition of 2wá ñ in this case, and noting that, in the same sense,

0wá ñ = , we obtain that 2w wD = á ñ is indeed precisely equal to the gap dispersionσG defined in
equation (15).

On the other hand, though, the value ofΔt diverges, evenwhen taking limits in the same sense above. This
can be understood physically due to the previouslymentioned recurrences in the time signal. Indeed, g(t) is a
quasi-periodic function that experiences, over an infinitely large time interval, an infinite number of recurrences
to a value arbitrary close to its initial one [35, 36].

4.2. The coarse-grained signal
Wenowdefine the notion of coarse-graining, inwhichwe introduce amicroscopic energy scale ò belowwhich
thefine-grained details of the spectrum arewashed out. Aswe showbelow, this is done by replacing the discrete
spectrumpresent in equation (21) by a suitable smooth version.

As previouslymentioned, such coarse graining of the frequency signal dampens the time signal g(t),
removing the recurrences seen infigure 2 andmaking g(t) and g w˜( ) belong to L2.We shall see later that it will
also allowus to exploit certain existing statements concerning the shapes of energy densities and density of states of
realistic initial states and short-ranged localHamiltonians [37], whichwill justify our assumption of quasi-
saturating the uncertainty bound.

An important issue in the coarse-graining is obviously the choice of the energy scale ò. This will be discussed
later in detail but we can already understand that in order to remove the recurrences, the discreteness of the
frequency signal has to be removed, which implies an òmuch larger than the separation between
consecutive gaps.

Mathematically, the coarse-graining is accomplished by convolving the frequency signal with an appropriate
window function hò(x), which is only nonzero over an interval of sizeO(ò). In our case, we find it convenient to
choose hò(x)=CNò(x), where

7

New J. Phys. 20 (2018) 033032 TRdeOliveira et al



N x
1

2
e 24

x2

2 2

ps
s

-
s( ) ≔ ( )

is the normalisedGaussian distribution centred at the origin andwith standard deviationσ, andC a constant
that is determined below.

With this spirit, the ò-coarse-grained version of the frequency signal is defined as

g h g h gd . 25*  òw w w w w w= ¢ ¢ - ¢
-¥

¥
˜ ( ) ≔ ( ˜)( ) ( ) ˜( ) ( )

If g w˜( ) is given by equation (21), then the ò-coarse-grained frequency signal is

g v h G . 26 åw w= -
a

a a˜ ( ) ( ) ( )

In otherwords, coarse-graining corresponds towidening eachDirac-δ in the original spectral function into a
Gaussian ofO(ò)width (figure 3). Note that, in doing this, we remove fine details of the spectrum such as the level
statistics. Furthermore, unlike g w˜( ), g w˜ ( ) is square integrable and lies in L2 :

g v v h h G G C v v N G Gd , 272

,

2

,
2* *   ò å åw w = * - = - < ¥

a b
a b a b

a b
a b a b∣ ˜ ( )∣ ( )( ) ( ) ( )

wherewe have used the fact that h h x C N x2
2  * =( )( ) ( ).

A coarse-grained frequency signal defines a coarse-grained time signal given by

g t g t h t g t
C

g t
2

e , 28t1 1 1
2

2 2   


p
= = =- - -( ) [ ˜ ]( ) [ ]( ) · ( ) ( ) ( )

wherewe have used the convolution theorem for Fourier transforms. The constantC isfixed by imposing that
the time signal is not affected by coarse-graining the frequency signal in time scales t=ò−1 i.e.gò(0)=g(0).
This leads to C 2p= and

h N2
1

e , 29
2

2 2


  w p w= = - w( ) ( ) ( )

g t g te . 30t1
2

2 2


= -( ) ( ) ( )

Even if the time signal g(t) equilibrates after some time, we know that itmust eventually have recurrences. To
determine the equilibration time-scale from gò(t), we need that ò

−1 ismuch greater than the equilibration
timescale, butmuch smaller than the recurrence timescale. In this way, we ensure that the coarse-grained time
signal will be indistinguishable from the original one during the equilibration process, but unlike the latter will
then decay to zero.

Figure 3. Illustration of the coarse-graining of a discrete gap spectrumwith aGaussianwindow function. The data here corresponds to
theXXZmodel that is studied in section 6, with n = 12 spins. The solid blue dots represent the amplitudes vα(Gα) of each gap (in this
particular case they are all real and positive). The dashed blue lines illustrate a few of the correspondingweightedGaussians vα
hò(ω−Gα), where we have chosen ò=0.4 (in arbitrary frequency units). The solid red curve represents the full coarse-grained
spectrum g w˜ ( ), obtained by summing theseweightedGaussians, according to equation (26). Note that, for this choice of ò, thewidth
Δω of the coarse-grained spectrum remains close to the dispersionσG of the original (discrete) gap spectrum. See figure 6 for a
comparison of the corresponding coarse-grained time signal gò(t)with the exact one. Notefinally that although, for simplicity, we use
here a single numerical scale on the vertical axis, the vα are adimensional, whereas the continuous curves have physical dimension of
time (with units that are the inverse of those used forω and ò).
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4.3. The coarse-grained density of relevant gaps
Wenow focus on the properties of the variance of gap valueswith respect to the coarse-grained frequency signal
g w˜ ( ), i.e.

g
g

1
d 312

2

2 2



òw w w w mD - w 

≔
˜

∣˜ ( )∣ ( ˜ ) ( )

with g gd 2
2 òm w w ww  ˜ ≔ ∣ ˜ ( )∣ ˜ .Wewill refer toΔωò as the ‘dispersion of relevant gaps’, and to theweight

g v v h G h G 322

,

*  åw w w= - -
a b

a b a b∣ ˜ ( )∣ ( ) ( ) ( )

as the density of relevant gaps.
Our goal is to show that, under awide range of choices of ò and of physically relevant circumstances: (i)Δωò

2

is very close to the gap dispersion σG
2 of the original signal, as defined in equation (15), and at the same time (ii)

the inverseΔωò
−1 is a good estimate for the equilibration time.

Notefirst that, by construction, for every gapGα=Ej−Ei in equation (6) (and, by extension,
equation (26)), its negative G E Ei j-a ≔¯ also appears, with v v=a a∣ ∣ ∣ ∣¯ . Hence the ‘average gap’ mw˜ vanishes for
any ò and the varianceΔω2 is equivalent to 2wá ñ, i.e.

g

g

d

d
. 332

2 2

2




ò
ò

w
w w w

w w
D =

∣ ˜ ( )∣
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After some straightforwardmanipulation, using equations (29) and (32), we obtain

v G v v G G
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It can be easily checked that, if 0  , this expression indeed reduces to equation (15).More specifically,
Δωò

2 will be very close toσG
2 for all G Gmin -a b ( ). Indeed, in this limit theGaussianwindow function hò(ω)

becomes negligibly thinwith respect to the smallest separation between gaps, and the coarse-grained spectrum
g w˜ ( ) resembles the original discrete spectrum g(ω). Precisely for this reason, however, this limit is of little use to
our goals. Anotherway of putting this is that, for such small values of ò the coarse-grained time signal
(equation (30)) does not have time to decay before the recurrence timescale of the original signal, which is of
order G Gmin 1-a b

-( ) .
Tomake further progress at this point, it is necessary to assume some features about the amplitudes vα.

Otherwise, afine tuning between phases andmodulus of vα canmake g w∣ ˜ ( )∣have an arbitrary behaviour,
preventing any general statement concerning the equilibration of gò(t).

Inspired by [25], wewill adopt a weak-typicality point of view: let us assume that the evolutionwe are
considering is drawn from an ensemble forwhich the vαʼs are describable by some smooth functions plus
stochastic fluctuations. Note that we do not assume a uniform ensemble over all states (or any one specific
ensemble), as is the case inmost typicality studies [8–13, 17, 18], merely one forwhich the resulting distribution
over the vαʼs has some very general features which are described below. In the spirit of statistical physics, we
basically replace complexity by apparent randomness. Inmost situations, the description of the gap relevances vα
in terms of a smooth function plus stochastic fluctuations is a consequence of the energy level populations ci and
thematrix-elements of the observableAijhaving this same behaviour. In the next sectionwe discuss under which
conditions this is indeed the case.

In the followingwe show that the process of coarse-graining removes the fluctuations andmakes the density
of relevant gaps g 2

 w∣ ˜ ( )∣ have a smooth behaviour.

Result 2 (Coarse-grained frequency signal). Let us consider the amplitudes vα of the gapsGα to be described by

v v G v , 35d= +a a a( ) ( )

where v r eiw w= q w( ) ( ) ( ), with r(ω) and θ(ω) two functionswith a Lipshitz constant upper bounded by some
K=ò−1, andwhere δvα are independent randomvariables that average to zero v 0dá ñ =a and

v v G2d d g dá ñ =a b a ab( ) . The variance γ2(ω) is a function that represents the strength of the fluctuations and also
has a Lipshitz constant upper bounded byK. Then, with a high probability m merf 1 exp 2 - -( ) ( ), the density
of relevant gaps fulfils the following bound

g v c K m2 , 361
1 4

  


w p w r w r w p
g w
r w

- +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ˜ ( ) ( ) ( )∣ ( ) ( )

( )
( )
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where c1>0 is a constant, N* r w r w=( ) ( )( ) is the coarse-grained density of gaps, with Gr w d w= å -a a( ) ( )
being the density of gaps. The coarse-grained density of gaps ρò(ω) describes howmany gaps are ò-close to the
frequencyω. That is, the process of coarse-grainingwashes out the fluctuations δvα turning the coarse-grained
frequency signal into a smooth function

g v2 , 37 w p w r w˜ ( ) ( ) ( ) ( )

where themeaning of the approximation ismade precise in equation (36).

The proof is tedious and non-illuminating sowe give it in appendix B.
Note that the error in (36) has two components. The termKò is due to the variation of the ‘smooth’ functions

with Lipshitz constant smaller thanKwithin an interval of widthO(ò). The second component  g w r w( ) ( ) is
thefluctuation that shrinks according to the central limit theoremwith  r w( ) , where ò ρò(ω) is the number of
gapsGαwithin an intervalO(ò).

In order for equation (36) to bemeaningful and the error bound small, an optimisation over ò is needed. It is
easy to see that for the error to be small, the parameter ò should bemuch larger than the spacing between
consecutive gaps andmuch smaller than the inverse of the Lipshitz constants of the continuous functions v(ω)
and γ(ω), i.e.

G G K . 381
1-a a+

-  ( )

Here ‘consecutive’ refers to gaps ordered by size, andwe use the informal notation ‘Gα+1’ as a shorthand for ‘the
gap immediately larger thanGα’. Note that, in practice, the lower bound above should be applied only for
consecutive relevant gaps, i.e., gaps that whose amplitudes vαmake a non-negligible contribution to the sum in
equation (6).

Formany-body systems, the number of gaps increases exponentially in the system size n, and energy
differences between consecutive gaps shrink exponentially to zero in n. If for example these gaps all have roughly
equal (exponentially small) relevances qα, then ò can also be taken exponentially to zero, as long as this is done at
a slower rate than the difference in gaps. Thismakes the time signal and its coarse-grained version
indistinguishable in any realistic time-scale.

In sum, if the gap relevances vα can be described by a continuous part plus afluctuating part, as in
equation (35), then the coarse-grained density of relevant gaps is a smooth function given by

g v2 . 392 2 2
 w p w r w∣ ˜ ( )∣ ∣ ( )∣ ( ) ( )

Thiswill be particularly useful in the following section, wherewe apply these ideas in the case ofmany body
systems described by short-rangedHamiltonians.

It is worth noting that the factorisation in equation (37) is also automatically obtained if one assumes, as is
often done, that in the thermodynamic limit n  ¥ the discrete gap spectrummay be replaced by a smooth
continuous gap density. i.e. taking

g t v ve e d . 40G t t
G

i iòå w r w w= 
a

a
wa( ) ( ) ( ) ( )

Comparingwith the definition in equation (19), we see that in this case the frequency signal is again
g v2 Gw p w r w=˜( ) ( ) ( ). This indicates that the assumptionswe havemade concerning the smoothness of vα
are not severe. However, the point of attaining this relation via coarse-graining, whilemaintaining a finite
dimension n, is that it allows us to control how the equilibration timescale scales with the system size, and in
particular to understand how this scaling depends on the energy scaling of the relevant observable.We turn to
this question in the next section.

5. Relevant energy scales and equilibration time scales for localHamiltonians

In this section, we focus on the particular but relevant case of short-rangeHamiltonians and initial states that
have afinite correlation length. For such systems, we express the density of relevant gaps in terms of the energy
density of the initial state and the function that describes thematrix-elements of the observable. By doing so, we
identify the energy scales that determine the dispersion of gaps.Wefind that there aremainly two relevant
energy scales: the energyfluctuations of the initial state and the bandwidth of thematrix of the observableA in
theHamiltonian eigenbasis. In the case of systems globally out of equilibrium, only those observables that are
banded in theHamiltonian basis can be observed out of equilibrium for a non-negligible time.

Local Hamiltonian. Let us define a short-ranged or localHamiltonian of a spin lattice system, i.e., acting on a
Hilbert space x V x = Î⨂ with ddim x =( ) , as
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H h , 41
u

u


å=
Î

( )

where the locality structure is given by a graph V , ( )with a vertex setV and edge set  . The number of terms of
theHamiltonian is denoted by n = ∣ ∣.We consider systems forwhich it is possible to define a sequence of
HamiltoniansHn of different sizes. This becomes trivial in the case of translational invariant systems and regular
lattices, but also includes systemswith disorder, and defects. The reason for introducing such a sequence of
HamiltoniansHn is that it allows us to define the thermodynamic limit. For simplicity, the subindex n is not
explicitly written fromnowon.

Energy density of the initial state. The energy density f (E) of an initial state c E0 i i iy ñ = å ñ∣ ( ) ∣ is defined by

f E c E E , 42
i

d

i i
1

2
E

å d -
=

( ) ≔ ∣ ∣ ( ) ( )

and, what ismore relevant for us, its coarse-grained version reads f E N f E* ( ) ≔ ( )( ).
For the case of localHamiltonians, the coarse-grained energy density of states with afinite correlation length

has been proven to approach aGaussian as the size n of the system increases (lemma 8 in [37]).More specifically,
for allE,

E f E Ed d
1

2
e , 43

E E

E

E E

E

1
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2
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where theGaussian hasmean H0 0Em y y= á ñ( )∣ ∣ ( ) and standard deviation H0 0E E
2 2s y m y= á - ñ( )∣( ) ∣ ( ) ,

andwhere the difference in these expressions falls, at worst, essentially as n1 . Inwhat follows, we onlymake
use of the energy density inside integrals, so in practice equation (43) allows us to replace the energy density
f E ¢( ) by the correspondingGaussian, with vanishing error.

Initial states that are globally out of equilibrium, e.g. globally quenched, have energy densities withmean and
standard deviation that scale in the system size as nEs µ andμE∝ n.

If the system is at criticality and the correlations decay in a power law, this Gaussian shape cannot be
guaranteed anymore. In any case, the energyfluctuations can still scale as nEs µ as long as the powerm of the
decay is sufficiently fast, i.e.m>D+1whereD is the spatial dimension of the lattice (see appendix A for
details).

Matrix-elements of an observable in the energy basis. Taking again aweakly stochastic approach, in the same
spirit of the argument used in result 2, we constrain ourselves to observables with off-diagonalmatrix-elements
in theHamiltonian basis that can be described by a ‘continuous’ function S(E,ω) plus some fluctuations δAij

A S
E E E E

A
2

,
2

, 44ij
i j i j

ij
2 d=

+ -
+

⎛
⎝⎜

⎞
⎠⎟∣ ∣ ( )

where this choice of writing the arguments of the function S(E,ω)will be shown to be convenient in the following
section. As in the previous section, the Lipshitz constant of S(E,ω) is assumed to be bounded byK.

Note that the so called eigenstate thermalisation hypothesis (ETH) [21] can be seen as a particular case of this
assumption (44). One popular version of the ETH [38] is an ansatz on thematrix-elements of an observableA in
theHamiltonian eigenbasis,

A E A E E E f E R, , 45ij i j ij ij
1

ETH d r w= á ñ = + -∣ ∣ ( ) ( ) ( ) ( )

where E=(Ei+Ej)/2 andω=(Ei−Ej)/2. The functions  and fETH (E,ω) are smooth functions of their
arguments, andRij are complex numbers randomly distributed, eachwith zeromean and unit variance. The
essential idea is that both in (44) and (45) the off-diagonalmatrix-elements of the observable can be described by
a smooth function plusfluctuations that vanishwhen coarse-graining.

Note that in our case, in contrast to ETH,we do not assume anything about the diagonal elements of the
observable in the energy basis. This is due to the fact that we are not concerned aboutwhat is the equilibrium
state of the system (whether is thermal or not), but only about how long the relaxation process takes.

Now that we have introduced the energy density fò(E) and the function S(E,ω) that describes the observable,
we are ready to express the density of relevant gaps in terms of these functions:

Result 3 (Density of relevant gaps).Given aHamiltonian and an initial state with populations ci
2∣ ∣ , letA be an

observable whosematrix-elements in theHamiltonian eigenbasis, Aij
2∣ ∣ , can be described bymeans of the

smooth function S(E,ω) plus some fluctuations as in equation (44). Then, up to errorsO(òK ), the density of
relevant gaps can bewritten as

g Ef E f E S E2 d 2 2 , . 462
   òw pr w w w w= - +

-¥

¥
∣ ˜ ( )∣ ( ) ( ) ( ) ( ) ( )
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Furthermore, if theHamiltonian is local and the initial state has afinite correlation length, such that the coarse-
grained energy density fò(E) is theGaussian (43), then

g N S2 , 472
2 E w p w w r w= s∣ ˜ ( )∣ ( ) ( ) ( ) ( )

where the function S(ω) is defined as

S E N E S Ed , , 48EE
2òw m w-s( ) ≔ ( ) ( ) ( )

withμE andσE themean and standard deviation of the energy density.

Proof. Let us introduce the density
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and plug in it the energy density f E c N E Ei
d

i i1
2E

 å -=( ) ≔ ∣ ∣ ( ). A straightforward calculation leads to
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+( )( ) ( ) ( ( )). By
considering that S (E,ω) is the smooth description of thematrix elements Aij

2∣ ∣ , we get, up to errors of order òK,
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Putting equations (49) and (51) together with result 3 implies (46). Now for initial states with aGaussian energy
density as in equation (43), simple algebra leads to the identity

f E f E N E N2 2 . 52E 2E
E2 w w m w- + = - ss( ) ( ) ( ) ( ) ( )

Plugging (52) in (46) completes the proof.

The function S(ω) describes the averagemagnitude of the off diagonalmatrix-elements Aij
2∣ ∣ at a distance

ω=Ei−Ej from the diagonal.
Result 3 and in particular equation (47) show that the density of relevant gaps g 2

 w∣ ˜ ( )∣ for localHamiltonians
and initial states with decaying correlations decomposes in the product of two densities: S(ω)ρò(ω) and
N 2 E

ws ( ). The density N 2 E
ws ( ) is aGaussianwith standard deviation controlled by the energyfluctuations of

the initial stateσE , and S(ω)ρò(ω) is the density of the off diagonal elements of the observableA.
The dispersion of relevant gapsσG, whichwe expect to estimate the equilibration time, is then controlled by

the smallest of the standard deviations of these two densities. In the case that the system is globally out of
equilibrium, e.g., a global quench, the variance of the energy density of the initial state is extensive with the
system size, and nEs µ . This implies the following statement:

Result 4 (Out of equilibriumobservables in global quenches).Given a localHamiltonian, and an initial state
with clustering of correlations letA be an observable that can be described by a smooth function S(E,ω). Then,
the only oneway to avoid that the dispersion of relevant gapsσG associated to an observableA diverges in the
macroscopic limit is that thematrix-representation of the observableA in the energy basis is banded.More
specifically, the density S(ω)ρò(ω) has a standard deviationσA that is independent of the system size

S
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whereμA is thefirstmoment.

Note that a divergent dispersion of relevant gapsσG is expected to imply an equilibration time that tends to
zero in the thermodynamic limit. In otherwords, observables which are not banded in their energy
representation are expected to be always equilibrated, since the amount of time that they can be out of
equilibrium is negligible.

It is worthmentioning that generic observables have aflat S(ω) and fulfil nAs µ due to the domination of
the density of gaps ρò(ω). Thus, theywill havemicroscopically short equilibration times [20]. Observables with
the property (53) turn out to be both rare and physically relevant.

In [39] it is shown for several concrete examples that indeed thematrix elements S(ω) decrease exponentially
or super-exponentially withω from a certain threshold independent of the system size (see also section 4.3.1.2 of
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[38]). In the following result, we show that this is a property of any local observable, that is, operators that only
act non-trivially on afinite region of the system.

Result 5 (Local operators are banded in the energy basis). Let us consider a localHamiltonian

H h 54
x x

x x
,

,


å=
¢ Î

¢ ( )
( )

( )

acting on aHilbert space x V x = Î⨂ with ddim x =( ) , with a locality structure given by a graphwith a
vertex setV and edge set  . Then, thematrix elements in the energy eigenbasis of a local operator E A Ei x já ñ∣ ∣
acting on a site x fulfil the condition

E A E A e , 55i x j x
c E E Jlog

Ei Ej
J i j

e

1á ñ - -a
-
+  ( )∣ ∣ ∣ ∣ ( )( )

( )
( )

where c log 1 1a= + -( ) is the decay rate, J hmax x x, = ¢ Î ¥ ( ) is the strength of the local interactions andα is
the lattice animal constant [40] of the graph V , ( ).

The proof of result 5 is presented in appendix C. In particular, note that the lattice animal constant
mentioned above is a parameter that captures the connectivity of the underlying graph of theHamiltonian. For
D-dimensional cubic lattices, it can be bounded as D2 ea (lemma 2 in [40]).

In the period offinishing thismanuscript we have been alerted to the existence of a result very similar to our
result 5, due toArad et al (theorem 2.1 in [23]). Both proofs are similar in spirit and give similar decay rates. For a
D-dimensional cubic lattice with interactions in the edges, they obtain a decay rate of D1 8( )while we get

D Dlog 1 2e 1 2e1+ - ( ( ) ) ( ). Themain difference is that while we bound the number of terms by counting
lattice animals, they use a combinatoric argument.

Of course, this behaviour of being banded in the energy basis extends to global operators that can be
decomposed into a sumof local terms, as well as for operators that are not local in real space but inmomentum
spacewhen theHamiltonian is also local in themomentum representation. Note that, indeed,most observables
considered in the literature are of this type.

Let us now consider the relevant scenario of a local quench [33], in which the system is brought out of
equilibrium in only a local region of the system. In such a case, thewidth of the energy density of the initial state
is independent of the system size and related to the operator normof the perturbation applied on the system.
Unlike the global quench scenario, now even the observables that are not banded (and are initially out of
equilibrium)will take afinite non-negligible time to relax. The equilibration timescale is then governed by
whichever energy scale is smallest: the energy fluctuations of the state, or the dispersion σA of the observable.
Note that our results also allow for having equilibration times that increase with the system size, as long as either
σA andσE shrinkwith it.

6.Numerical example: theXXZmodel

We illustrate our results using theXXZmodel in a transverse field andwith next-nearest-neighbour coupling.
We choose to use this particularmodel since it is not integrable, and hence does not have an exponential number
of degenerate gaps. The hamiltonian is H J S S S S S S J S S h Si i

x
i
x

i
y

i
y

i
z

i
z

i
z

i
z

z i
z

1 1 1 2 2= å + + D + ++ + + + . As our
equilibrating observable we choose themagnetisation density in the x direction, M S Nx

i i
x= å and, as our

initial state, the fullymagnetised state in the x direction. Infigure 4, we show the evolution of the time signal
g tM

2∣ ( )∣ of this observable, in the sense of equation (5). The calculations were done using full exact
diagonalization ofHwithΔ=0.5, J2=1.0 and hz=0.2, for various system sizes.

We expect gM(t) to go to zerowhen the system equilibrates. Indeed, this is what happens initially, for all
system sizes, andwe can notice that the equilibration time (the timewhen g tM

2∣ ( )∣ becomes negligible, just
before Jt=20) does not dependmuch on n. Furthermore, we can compare this valuewith our heuristic estimate
for the equilibration time, T Geq p s~ , wherewe use equation (15) to calculateσG from the numerically
obtained eigenvalues. The results are shown in table 1.We can see that the estimated equilibration times also
depend onlyweakly on n, and are in good agreementwith the timescale indicated by figure 4.

Of course, due to the small size of the simulated systems, the time signals gM(t) also exhibit strong
fluctuations.However, one can already see that, as n increases, the size of thesefluctuations tends to decrease,
and their onset happens later. Our numerical results therefore seem to corroborate our expectation that the
observableMx does indeed equilibrate in the limit of large n, and that this equilibration does happen at a
timescale roughly given byT Geq p s~ .

To better illustrate the dephasingmechanismbehind the equilibration process, infigure 5we plot the
amplitudes v e G ti

a a for this same situation, in the case n=10. Starting from an initial conditionwhere all the
amplitudes are in phase (in this case, all real and negative), one can see them rotating at different speeds and
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becomingmore spread out in the complex plane as time goes by, resulting in the decay seen infigure 4.Note that
the approximate four-way symmetry exhibited at Jt=20 (implying g(t);0 at this time) is already a symptom
of a future recurrence: clearly, after four times this interval, all of the amplitudes will have rotated approximately
back to their initial position. Indeed, one can see infigure 4 that a recurrence occurs at around Jt=80.

It is also instructive to compare the exact time evolution of themagnetisationwith coarse-grained versions
derived according to the procedures described in section 4. Infigure 6we plot again the exact time signal gM(t)
for the chainwith n=12 spins (the dark blue line infigure 4), represented here by the black dotted curve.We

Figure 4. Fluctuation in the totalmagnetisation in the x direction, g tM
2∣ ( )∣ , for theXXZmodel with next-nearest-neighbour coupling

and externalmagnetic field (Δ=0.5, J2=1.0 and hz = 0.2). The different curves are for chainswith different numbers n of spins.

Table 1.Estimated equilibration times Teq for theXXZmodel with next-nearest-neighbour
coupling and an externalmagneticfield (Δ=0.5, J2=1.0 and hz = 0.2). The gap dispersion
σGwas obtained by explicitly calculating equation (15) from the numerically obtained energy
spectrum.

n T Geq p s~

2 21

4 19

6 20

8 22

10 23

12 24

Figure 5.Evolution of each complex number v e G ti
a a for our simulation of theXXZmodel with n = 10. Fromupper left to the bottom

right, (adimensional) time Jt goes from0 to 20 in equal intervals.
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also plot two coarse-grained time signals g òM(t), with ò=0.4 (red line) and ò=0.02 (blue line). These curves
were obtained by Fourier transforming coarse-grained frequency spectra (such as the one infigure 3) that were
numerically calculated according to equation (26) (i.e., we did not simply dampen the exact time signal using
equation (30)). It can be seen that all three signals are essentially indistinguishable up to the equilibration time
(the slight deviation close to t= 0 is an artifact of our having discarded termswith vα<10−4 when calculating
the sum in equation (26)).We can see that, for small ò (=0.02), the signals remain indistinguishable up to and
including the recurrence time.However, by choosing a value of ò that is sufficiently large (0.4), the coarse-
grained signal faithfully reproduces the exact one during the equilibration phase, but suppresses later
recurrences. Note that òmust still be chosen sufficiently small (ò=σG ) in order to avoid suppressing the signal
even before equilibration has occurred. As discussed in previous sections, under these circumstances wemay use
thewidth of the (square-integrable) coarse-grained signal as ameasure of the equilibration time of the original
signal.

Finally, let us remark that we also obtained similar results for other values ofΔ and hz, and also for theXY
model. However, in the latter case, the fluctuations do not decrease exponentially with n, but only polynomially,
since there are an exponential number of degenerate gaps.

7.Discussion

7.1. Reinterpretation of previous results
It is useful now to reinterpret some previous results on equilibration times fromour dephasing point of view.
For example, Short and Farrelly [15] obtain a rigorous upper bound for the equilibration time of any observable
by studying the time-averaged fluctuations g T

2á ñ∣ ∣ in equation (8) above. They are able to determine a valueT0
dE/ΔE, whereΔE is the range of energies in the system, and dE the number of different energy levels, such that
averages taken over intervals longer thanT0 are negligible. This implies that the equilibration timemust be upper
bounded byT0. Unfortunately, for a typicalmany-body systemwith n degrees of freedom,ΔE scales only
polynomially with n, while dE scales exponentially with n—and thus so doesT0. In other words, although this
upper bound ismathematically sound, it vastly overestimates the actual equilibration time ofmost observables.
This suggests that its derivationmust be incomplete, in the sense ofmissing or disregarding an essential physical
ingredient [20].

We now argue that this ingredient is, in aword, dephasing. Roughly speaking, in the course of their
derivation, the authors bound g T

2á ñ∣ ∣ by separately bounding the absolute value of every term in its Fourier
expansion, disregarding the interference between different terms due to dephasing. Each of these terms, which
rotate according to G G Texp i -a b[ ( ) ]does gets individually dephased, due to the time averaging, but only on a
time scale tαβ∼1/(Gα−Gβ). The bound in [15] hence corresponds to the amount of time needed for the

Figure 6.Comparison of exact and coarse-grained time signals for themagnetisation. The exact time signal gM(t) (black dots) is the
same curve plotted infigure 4, for n = 12 spins. The full curves are coarse-grained time signals g òM(t), obtained by Fourier transforming
the coarse-grained frequency signals calculated according to equation (26), with ò=0.4 (red) and ò=0.02 (blue). By choosing a
value of ò that is sufficiently large (but not too large), the coarse-grained signal reproduces the exact one during the equilibration
phase, but suppresses later recurrences.
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slowest term in the Fourier sum to average out over time. Formany-body systems, the gapsGα, and also the
differences between different gaps, can be exponentially small in n, hence the exponentially long upper bound.

Although this bound is thereforemuch too large to be a reasonable estimate the equilibration time ofmost
observables, itmust be stressed that one can always construct a specific observableAwhich saturates it. This is
not entirely unexpected, as the bound itself is observable-independent. In fact, in [20], Goldstein et al construct
such an observable, by considering a direct sumof bandedmatrices in the energy basis, each of which has a
bandwidth that is exponentially small in the system size. From the dephasingmindset, it is straightforward to
understandwhat is going on in this example. Since each component ofA is bandedwith an (exponentially)
narrow bandwidth, with no coherences between different bands, the dispersion of relevant gaps,σG, is
exponentially small. In this case, our estimateπ/σG for the equilibration time becomes exponentially large, since
the small difference in angular speedsmeans that itmust take a long time until all points are dephased and
isotropically distributed in the complex plane. Analogously, in [20] it is also shown that one can always construct
an observable which equilibrates extremely fast, by defining anAwhich is far frombanded, having coherences
between vastly different energies. Again, the dephasing picture intuitively explains the reason for such quick
equilibration.

We can also understand some of the results obtained in another approach to the problem of relaxation of
many-body systems, namely the study of the survival probability given by the quantum fidelity

t t0 2 y yá ñ( ) ≔ ∣ ( )∣ ( ) ∣ , often in situations where the initial state 0y ñ∣ ( ) is generated after a sudden
displacement (‘quantum quench’) that brings the system out of equilibrium (see [19] and references therein
for a review). Note that the quantum fidelity is, up to an additive constant, equivalent to the time evolution of
the observable A 0 0y y= ñá∣ ( ) ( )∣. In this case, then, both the energy fluctuations of the initial state and the
bandwidth of the observable written in the energy basis are σE. Hence, our considerations within the
dephasing picture predict, for local interacting lattice systems, an equilibration time determined by σE, in
agreement with the results of [19].

Finally, our outlook and conclusions are also compatible, and in some senses complementary, to recent
remarkable results by Reimann et al [17, 18]. In these works, the time signal g(t) in equations (5) and (6) above is
rewritten as g(t)=c F(t)+ξ(t), where (using our notations)

F t
d d

1

1
e , 56

T T

G tiå=
- a

a( )
( )

( )

and c is a constant (=g(0)). Note that F(t) depends only on the gap spectrum, and on the dimension of the system,
but not on the initial condition, observable or eigenbasis of theHamiltonian. It is then proven that, if one
averages the time signal over certain ensembles ofHamiltonianswith fixed spectra (i.e. varying only their
eigenvectors) then both the average value and the standard deviation of ξ(t) become extremely small in the
thermodynamic limit. In other words, for anyfixed initial condition and observable of a quantum system, and
also any given fixed energy spectrum, the ‘typical’ time signal will always be of the form g(t)=cF(t), up to
negligible error. Comparingwith equation (6) above, we can see that the effect of the ensemble average is to
uniformize the different amplitudes vα, both in amplitude and in phase. As a result, the ‘typical’ equilibration
dynamics described by equation (56) becomes a pure dephasing process, i.e, a sumof uniform-length vectors in
the complex plane, all initially pointing along the positive real axis, which then rotate at different speeds.

Aswe have argued above, dephasing/equilibration should then occur on a timescale of orderπ/σG. Indeed,
this can be seen in the examples worked out in these references. For instance, one situation considered in [17] is a
systemdescribed by a continuous ‘microcanonical’ density of energy eigenstates, of the form

E y ce y k TBr - = -( ) , where y>0 and c is a normalisation constant. It is also assumed that the system’s initial
state has support restricted to a narrow energy band [E−ΔE, E]. In this case F(t) can be calculated exactly; in
particular it is shown that, forΔE?kBT, it has the formof a Lorentzian function,

F t
t

1

1
, 57

2g
=

+
( )

( )
( )

where γ=kB T / ÿ.
Let us now analyse this result from the point of view of our approach. First of all, as we have noted in

section 3, restricting the initial state to a finite energy band, and therefore afinite gap spectrum, ensures that, for
all observables, dephasing/equilibrationmust occur in afinite timescale.
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Wecan estimate this timescale from the (continuous) gap density for thismodel:
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where the last equality is valid forΔE?kBT. Given that here the amplitudes vα of each gap in the time signal are
uniform, this expression is also proportional to the gap spectrum (i.e., the Fourier transformof F(t)), andwe can
calculate directly the gap dispersion
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Hence, we estimate an equilibration timeT
k Teq

2 2

B

~ =p
g

p . It can be seen from equation (57), that, after
t=Teq, the signal has decreased by about∼95% from its initial value, showing that this is indeed a fair estimate
of the equilibration timescale. Note that for a time signal governed by equation (57), the standard deviationΔt
defined in equation (17) equals 1/γ, which is also the ‘half-width at halfmaximum’ of the Lorentzian6.Hence in
this case the uncertainty relation, equation (18) is not far frombeing saturated, which is the conditionwe are
relying on for our estimate.

As a final remark, it is also interesting to note that in this case the roles of the time signal and spectrum are
exactly reversed from thewell-known example of spontaneous decay of an excited atomic or nuclear state: there
it is the spectrum that is a Lorentzian, and the time signal that is an exponential decay.

7.2. Equilibration time-scales and level statistics
A consequence of the coarse-grainingmachinery introduced above is that thefine-grained details of the
spectrumdo not affect the dynamics of the systemup to very long time scales.More formally, the following
result states that if two coarse-grained frequency signals are close in the trace norm, then their corresponding
time signalsmust also be point-wise close for any t<O (ò−1):

Result 6 (Spectrumanddynamics). Let g(1)(t) and g(2)(t) be two time signals whose ò-coarse-grained Fourier
transforms satisfy

g g 591 2
1 1   d- ˜ ˜ ( )( ) ( )

for some δ1>0, and let some 0<δ2<2 set a distinguishably threshold. Then g(1)(t) and g(2)(t) are
indistinguishable up to times t 2  d , in the sense that

g t g t . 601 2
1 2d d- < +∣ ( ) ( )∣ ( )( ) ( )

Proof.By using twice the triangular inequality, we have

g t g t g t g t g t g t g t g t . 611 2 1 1 1 2 2 2
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Thefirst and third terms are analogous and are bounded by equation (30) and the fact that g t 1∣ ( )∣ .
Concerning the second term, we note that, since g L2

 w Î˜ ( ) , then the uniform continuity statement of
functional analysis allows us towrite

g g g t g t g gsup , 62
t
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and putting everything together, we get

g t g t 2 1 e . 63t1 2
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Finally, the bound (60) is respected as long as t1 2 log 1 22 2
2  d- -( ). The inequality x xln 1 - -( ) for

0<x<2 implies that t1 2 2 log 1 22 2
2 2  d d- -( ). Thus, equation (60) is guaranteed to hold for

times t 2  d .

Result 6 shows that two frequency signals that become very similar once they are ò-coarse-grained have
indistinguishable dynamics up to times ò−1. This is particularly relevant inmany-body systemswhere the
separation between consecutive energy levels shrinks exponentially in the system size7. One can then consider
the possibility of twomany-bodyHamiltonianswith qualitatively different level statistics, for example onewhere
the distribution of gaps Ei+1−Ei between consecutive energy levels follows a Poisson distribution, and

6
Note that hereΔt refers to the standard deviation of the square of Lorentzian, not that of the Lorentzian itself, which is divergent.

7
This is a consequence of the fact that in such systems the energy scales extensively (or even polynomially for some long range interactions)

with the number of particles, while the dimension of theHilbert space does so exponentially.
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another withWigner–Dyson statistics, giving rise to time signals that are nevertheless indistinguishable in
practice for time up to and beyond the equilibration time.

In appendixDwe present an example of this kind.We have estimated the one-normdistance between two
coarse-grained frequency signals evolving according to twoHamiltonianswith identical eigenbases but different
level statistics (one Poissonian and the otherWigner–Dyson). For this case wefind that

g g
C n

d
, 641 2

1

3

eff  -  ( )( ) ( )

whereC is a numerical constant, n is the system size, ò the coarse-graining parameter and deff the effective
dimension.

Note now that, assuming that deff increases exponentially in n (deff∼exp(cn), for some constant c), then
choosing ò∼exp(−cn/4) in equation (64) and using result 6 implies that the dynamics would not be affected up
to times t∼exp(cn/4). (Herewe are also assuming, as in the discussion following equation (38), ò?Ei+1−Ei,
which also decrease exponentially. This requires choosing deff to increase sufficiently slowly (c sufficiently
small)). If these conditions aremet, we obtain time signals originating from twoHamiltonianswith different
level-statistics but that for all practical purposes display the same dynamical behaviour.

Recall now that it is a well-known conjecture that a Poissonian nearest-neighbour gap distribution is a
manifestation of integrability, andWigner–Dyson statistics are a signature of quantum chaos. Our example
seems therefore to show that it is possible for both kinds ofHamiltonian to lead to identical time signals, with
identical equilibration times, at least some specific cases.

It is less clear whatwill happen in amore realistic example inwhich the twoHamiltoniansH1 andH2 with
different level statistics also have different eigenbases (as is in practice always the case). In these situations the two
Hamiltonians are related by a perturbationVwhich does not commutewith the integrableHamiltonianH1 and
where bothH1 andVhave a locality structure of the type in (41). In such a scenario, the coarse-grained energy
density of the initial state is not affected by the perturbation since it keeps theHamiltonian local. Thus, any
change in the one-normdistance between frequency signals, and thereby in the dynamical behaviour of the
system,must come from a drastic change in thematrix-elements of the observable. A question that arises beyond
the scope of this paper is then how integrability, non-integrability, and chaos can be identified in the behaviour
of thematrix-elements of the observable in the energy basis.

7.3. The dephasingmindset for quadraticHamiltonians
A relevant point to discuss is towhich extent the results presented in this paper are valid for integrablemodels. In
this respect, let us focus on quadratic (bosonic or fermionic)Hamiltonians that can be brought to a diagonal
form H k a ak k ke= å ( ) † , where ak

(†) are the annihilation (creation) operators that fulfil fermionic or bosonic
commutation relations and ke( ) is the dispersion relation. For such systems and quadratic observables, the time
signal can also bewritten in the formof equation (6), where the sumnowdoes not run over the gaps of the
Hamiltonian, but over the gaps of the dispersion relation ke( ). In [41] this is done in detail for theCaldeira–
Leggettmodel (a quadratic systemof harmonic oscillators). In sum,we see that the above formalism can also be
applied to quadraticHamiltonians, where, roughly speaking, theHilbert space has been substituted by the space
ofmodes.

8. Conclusions

In this workwe have argued that equilibration in closed quantum systems should be understood as a process of
dephasing of complex numbers in the complex plane. From thismechanism, we have heuristically estimated the
equilibration time-scale as roughly the inverse of the dispersion of the relevant gaps.We have seen that, under
physically relevant circumstances, the equilibration time-scale estimated in this way depends atmost weakly on
the system size, in agreementwith realistic situations. Although our argument does not result in a rigorous
bound, we claim that it captures the correct way inwhich the time-scale depends on the physical properties of
the system. In particular, we have seen that the coherences of the observables of interest in the energy basis,
E A Ei já ñ∣ ∣ , play a fundamental role: in order to attain afinite equilibration time for generic initial states, these
coherencesmust become small asEi−Ej increases.

We have also observed that the size of the systemonly plays a role in the typical size of the fluctuations, but
not in the time of equilibration, and thus small systems fail to equilibrate not because their equilibration time is
large, but because their fluctuations are big.We illustrate these results with numerical simulations of spins
chains.

Finally, we have applied the dephasingmindset to give an intuitive interpretation to earlier works on
equilibration times. Our results satisfactorily reproducemany particular cases of determining equilibration time
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scales found in the literature. Of course, further work is still required to put our claims on amore rigorous
foundation. For example, we conjecture that in a sufficiently wide range of locally interacting n-body systems,
the coarse-grained frequency signal g w˜ ( )may itself approach aGaussian in the limit of large n. In this case, the
Heisenberg-like uncertainty principle we have been using to heuristically estimate the equilibration timescale
would become close to saturated, andwould therefore indeed be a bona-fidemeasure for it.
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AppendixA. Energy density and effective dimension of the initial state for local
Hamiltonians

A.1. Energy uncertainty of the initial state
A standardway to bring quantum systems out of equilibrium is to initialise the system as the ground state of a
localHamiltonian, and change theHamiltonian of the system sufficiently fast such that the state is kept
unchanged. This procedure is called a quantum quench [33].

It is well known that the ground state of localHamiltonians exhibit a clustering of correlations [42]. In fact,
correlations between observables supported at different lattice points decay algebraically with the distance for
critical systems (gaplessHamiltonians) and exponentially for systems off criticality (gappedHamiltonians).

Consider a localHamiltonian of the type (41) and a quantum state yñ Î∣ with either exponentially or
algebraically decaying correlations such that

h h h h
c

d u v,
, A.1u v u v D 1

á ñ - á ñá ñ
+

∣ ∣
( )

( )

where c>0, d(u, v) is the graph distance between the edges u and v, andD is the spatial dimension inwhich the
graph can be embedded. Then, the variance of the energy distribution is upper bounded by H c nvar n  ¢y( )
with c′>0.

By using (A.1), it is easy to see that

h h h h c u. A.2
v E

u v u v å á ñ - á ñá ñ ¢ "
Î

( ) ( )

Hence, writing the variance in terms of the local terms of theHamiltonian, and using the previous bound, one
gets

H H H h h h h cnvar . A.3n
u v E

u v u v
2 2

,

å= á ñ - á ñ = á ñ - á ñ á ñy y y y y y
Î

( ) ( ) ( )

A.2. Effective dimension
The effective dimension tells us howmany eigenstates of theHamiltonian contribute in the superposition of the
initial state. In the previous sectionwe have argued that the energy uncertainty of the initial state scales with n
in the casewhere the system is brought out of equilibriumwith a global quench, and is independent of the system
size in the case where the system suffers a local quench.

LocalHamiltonians have an energy range that scales linearly in the system size while the dimension of the
Hilbert space does so exponentially. This implies that the density of states scales exponentially, and so does the
effective dimension.
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Appendix B. Proof of result 2: coarse-grained frequency signal

In this sectionwe provide the proof of result 2. The coarse grained Fourier transformof the time signal naturally
decomposes

g v G h G v h G . B.1  å åw w d w= - + -
a

a a
a

a a˜ ( ) ( ) ( ) ( ) ( )

The second term in the right-hand side is a randomvariable with variance given by

v v h G h G v h G Gvar var .2 2 2 2
   å å åd w d w w d w g- = - = -

a
a a

a
a a

a
a a

⎛
⎝⎜

⎞
⎠⎟( ) ≔ ( ) ( ) ( ) ( ) ( )

Bymeans of the density of gaps, the variance of thefluctuation term in equation (B.1) becomes

v Nd , B.22
2


 òd w

p
w w w r w g w= ¢ - ¢ ¢ ¢( ) ( ) ( ) ( ) ( )

wherewe have taken into account that h N2 1
2 w p w= -( ) ( ). Nowwe use the fact that γ(ω) is almost

constant in an interval ò, i.e. the Lipshitz constantK of γ is such thatKò= 1. The idea is to approximate δvò(ω)
2

by

v Nd . B.32 2
2

2
2 

  òd w
p
g w w w w r w

p
g w r w¢ - ¢ ¢ =( ) ( ) ( ) ( ) ( ) ( ) ( )

More precisely, such approximation has 2 steps. Thefirst step is to restrict the domain of integration aroundω,
where theGaussian N 2 w w- ¢( ) is centred. The error of such step can be upper bounded by

v Nd e , B.42
2 2

2 2 2

 
  

òd w
p

w w w r w g w
p
r w a- ¢ - ¢ ¢ ¢

w

w

-D

+D
- D( ) ( ) ( ) ( ) ( ) ( )

wherewe have used theChernoff bound of theGaussian distribution yN yd 2e
x

x2 2ò s
s¥ -( ) andα>0 is a

constant that depends on the density of gaps.
The second step is considering theworst case in the variation of γ(ω)within the interval of integration

[ω−Δ,ω+Δ]. To do so, let us consider two real positive functions a(x) and b(x), where b(x) has Lipschitz
constantK. Then, by using trivial calculus and the definition of Lipschitz constant, we get

xa x b x b x xa x b K xa xd max d d .
x ,

 ò ò òw + D
w

w

w w w

w

w

w

-D

+D

Î -D +D -D

+D

-D

+D⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( ( ) ) ( )

[ ]

A straight forward application of the former statement leads to

N N Kd d .2
2

2
2 2  ò òw g w w w r w g w w w w r w r w¢ ¢ - ¢ ¢ - ¢ - ¢ ¢ D

w

w

w

w

-D

+D

-D

+D
( ) ( ) ( ) ( ) ( ) ( ) ( )

By putting everything together, we get

v K2 e . B.52 2
2 2

2 2 2

 
  

d w
p
g w r w

p
r w a- + D- D( ) ( ) ( ) ( )( ) ( )

Finally, an optimisation overΔ gives

v K , B.62 2
2

1
2

   d w
p
g w r w a r w- ¢ -( ) ( ) ( ) ( ) ( )

whereα′>0 contains all the numerical factors. Equation (B.6) implies a relative error in the of the orderKò.
The standard deviation δvò(ω) sets the order ofmagnitude for the fluctuations of the randomvariable.We

will see that it is negligible in comparisonwith the first term in equation (B.1). Such a term can also bewritten in
terms of the density of gaps ρ(ω)

R v G h G v hd . B.7  òåw w w r w w w w- = ¢ ¢ ¢ - ¢
a

a a( ) ≔ ( ) ( ) ( ) ( ) ( ) ( )

The functionRò(ω) can be shown to be close to v2 p w r w( ) ( ).More precisely, by following an analogous
argument of the one above, it can be proven that

R v K2 , B.8  w p w r w br w-∣ ( ) ( ) ( )∣ ( ) ( )

whereβ>0 is an order one factor.
We are now ready to bound the difference g v2 w p w r w-˜ ( ) ( ) ( ). By using equation (B.1), definition

(B.7) and the triangular inequality, we get
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g v R v v h G2 2 . B.9     åw p w r w w p w r w d w- - + -
a

a a∣ ˜ ( ) ( ) ( )∣ ∣ ( ) ( ) ( )∣ ( ) ( )

Finally, from equations (B.3) and (B.8), the error is bounded by

g v K2 . B.10
1 4


  


w p w r w r w b
p g w

r w
- +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ˜ ( ) ( ) ( )∣ ( ) ( )

( )
( )

Here, we have used that K12 2  r w r w +( ) ( )( )whereK also upper-bounds the Lipshitz constant of
ρò(ω).

AppendixC. Proof of result 5: local operators are banded in the energy basis

In this sectionwe prove result 5.Wefirst introduce the imaginary time evolution of the observable

A Ae e . C.1x
H

x
Hb b b-( ) ≔ ( )

ByTaylor expanding of the exponentials, it can bewritten as

A A
m

H H A, , , C.2x x
m

m

x
1

åb
b

= + ¼ ¼
=

¥

( )
!

[ [ ] ] ( )

wherewe have used that H H A H A H, , x k
m m

k
k

x
m k

0¼ ¼ = å -=
-( )[ [ ] ] ( ) .

We use now the locality of theHamiltonian given by its underlying graph V , ( ). In order to do so and for
the sake of clarity, let us introduce some notation.We refer to edges l Î as letters, to the edge set  as an
alphabet, and call the sequences of edges aswords. For any sub-alphabet F Ì , we denote by F l the set of words
with letters in F and length l, where the length w∣ ∣of awordw is the total number of letters it contains. In turn, the
set of words with letters in F and arbitrary length l is defined as F Fl

l
0* =

¥≔ ⋃ . The size of a sub-alphabet F is
denoted by F∣ ∣and corresponds to the number of letters it contains.We call a sub-alphabet F an animal if it forms
a set of connected edges, and aword connected or cluster c *Î if the set of letters in c is an animal, i.e., connected.
That is, clusters are connected sequences of edges where the edges can also occurmultiple times, while animals
are connected sub-graphs (sets of connected edges without order or repetition). For w E*Î and any sub-
alphabet G Ì , wewrite G wÌ if every letter inG also occurs inw.When a sub-alphabet F contains at least
one edge adjacent to a vertex x, we denote it by F x .

With the above notation, the order n commutator can bewritten as

H H A h h A, , , , , C.3x
w

w w x
m

m1


å¼ ¼ = ¼ ¼
Î

[ [ ] ] [ [ ] ] ( )

wherewk is the kth letter of thewordw and hwk
the correspondingHamiltonian term.Note that the onlyway for

thew-commutator h h A, ,w w xn1
¼ ¼[ [ ] ] to be nonzero is ifw forms a single cluster with at least one of its letters

adjacent to the vertex x.More formally,

H H A h h A, , , , , C.4x
F w F

F w

w w x
: :

F n
F x

n
n1





å å¼ ¼ = ¼ ¼
Ì Î

Ì

[ [ ] ] [ [ ] ] ( )
∣ ∣

where thefirst sum runs over all the animals F that contain at least an edge adjacent to the vertex x and are
smaller or equal than n. Then, the imaginary time evolution of the observable can bewritten as

A A
w

h h A, , . C.5x x
F
F x

w F
F w

w

w w x
: :

w1

*


å åb
b

= + ¼ ¼
Ì Î

Ì

( )
∣ ∣!

[ [ ] ] ( )
∣ ∣

∣ ∣

Wecan upper bound the operator normof Ax(β) as

A A
J

w
1 , C.6x x

F
F x

w F
F w

w

: :*




å åb
b

+
Ì Î

Ì

   
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟( ) ( )

∣ ∣!
( )

∣ ∣

wherewe have used that for any operatorO, h O h O,w wk k
    [ ] , whose iteration implies

h h A A J, ,w w x x
w

w1
¼ ¼   [ [ ] ] ∣ ∣

∣ ∣ .We recall now lemma 5 from [43]which states that

J

w
e 1 C.7

w F F w

w
J F

:*
å b

= -b

Î Ì

∣ ∣
∣ ∣!

( ) ( )
∣ ∣

∣ ∣ ∣ ∣
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and implies

A A 1 e 1 . C.8x x
F
F x

J F

:




åb + -b

Ì
   

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟( ) ( ) ( )∣ ∣ ∣ ∣

By decomposing the sumover all animals which contain x according to their size, we get

A A 1 e 1 . C.9x x
l F

J F

1 :
F l
F x






ååb + -b

=

¥

Ì
=

   

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟
( ) ( ) ( )∣ ∣

∣ ∣

The number of lattice animals of size l is upper-bounded bymeans of the so called lattice animal constantα.
Given a graph V , ( ) and denoting by al the number of lattice animals of size l containing thefixed vertex x, then
the animal constantα is the smallest constant satisfying

a 1 . C.10l
F

l

:
F l
F x






å a
Ì
=

≔ ( )
∣ ∣

Regular lattices havefinite animal constants[44]. For example, the animal constant of aD-dimensional cubic
lattice can be bounded as D2 ea (lemma 2 in [40]), where e is Euler’s number.

Equation (C.10) allows us to bound (C.9) as

A A e 1 , C.11x x
l

J l

0

 åb a -b

=

¥

   ( ) ( ( )) ( )

which is a geometric series with common ratio e 1J2a -b( ). In order for the series to convergewe require thatβ
is such that e 1 1Ja - <b( ) , for which

A A
1

1 e 1
. C.12x x J

b
a- -b

   ( )
( )

( )

Wecompute the absolute value of thematrix-element E Ei já ñ∣·∣ in equation (C.1)

E A E E A E Ae C.13E E
i x j i x j x

i j b bá ñ = á ñb -  ∣ ∣ ∣ ∣ ∣ ∣ ( )∣ ∣ ( ) ( )( )

and, togetherwith equation (C.12), it implies that

E A E A
e

1 e 1
C.14i x j x

J E E J

J

i j


a

á ñ
- -

b

b

- -
 ∣ ∣ ∣ ∣

( )
( )

( )

for anyβ such that e 1 1Ja - <b( ) .
In order to get an explicit bound independent ofβ, we optimise overβ. Given some energy difference

Ei−Ej, we look for theβ thatminimises the upper bound of equation (C.14). To do so, it is useful to rewrite the
bound in terms of a newparameter z e J= b such that E A E A f zi x j xá ñ  ∣ ∣ ∣ ∣ ( )with

f z
z z

1

1
C.15

1a a+ - w-
( ) ≔

( )
( )

andω=(Ei−Ej)/J. Bymeans of an optimisation over z, wefind theminimumat z
1

1= w
w

a
a+
+ which fulfils

the convergence condition 1<z<1+α−1 as long asω>α. Theminimumvalue of f (z*) becomes

f z
1

1 1
1

1

1
e 1 , C.161 1

* w
a

w
w

a
w
a

a=
+
+ +

+
+
+

+
w

w w
-

- - - -
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )

where the inequality comes from the fact that 1 ew w + w-( ( )) . Thematrix element E A Ei x já ñ∣ ∣ ∣ ∣ is then
bounded by

E A E A e , C.17i x j x
c E E Jlog

Ei Ej
J i j

e

1á ñ - -a
-
+  ( )∣ ∣ ∣ ∣ ( )( )

( )
( )

where c log 1 1a= + -( ) is the decay rate.

AppendixD.One-normdistance between coarse-grained frequency signals of two
systemswhich only differ in the level statistics

TwoHamiltoniansH(1) andH(2)with identical eigenstates but eigenvalues with different level statistics give rise
to time signals for equal initial states and observables given by
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g t v e , D.1G t1 i 1å=
a

a a( ) ( )( ) ( )

and analogously for g(2)(t). Here,Gα
(1) are the gaps associated the spectrumofH1, and the relevances vα are the

same for both systems. These time-signals have Fourier transforms

g v G D.21 1åw d w= -
a

a a˜ ( ) ( ) ( )( ) ( )

that once coarse grained read

g v h G . D.31 1
 åw w= -

a
a a˜ ( ) ( ) ( )( ) ( )

The one-normdistance between the frequency signals g 1
̃
( ) and g 2

̃
( ) is defined by

g g g gd . D.41 2
1

1 2
  ò w w w- - ˜ ˜ ≔ ∣ ( ) ( )∣ ( )( ) ( ) ( ) ( )

Let us now introduce the function

u h h2 sinh . D.5
 

 w w d
d w

=d ⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( ) ( )

By plugging (D.3), we canwrite the difference in frequency signals as

g g v u G , D.6G
1 2 åw w w- = -

a
a d aa( ) ( ) ( ¯ ) ( )( ) ( )

wherewe have used that u G h G h GG
1 2

 w w w- = - - -d a a aa ( ¯ ) ( ) ( )( ) ( ) with G G G1 2d = -a a a
( ) ( )

and G G G 21 2= +a a a¯ ( )( ) ( ) .
In order to understand how the variables Ga¯ and δGα behave, let us introduce the spectrumofH1 (with

Poisson level statistics) by Ek k
d1

1
E
={ }( ) , and the one ofH2 (withWigner–Dyson level statistics) by Ek k

d2
1

E
={ }( ) . The

energy levels can be iteratively constructed as

E E s , D.7k k k1 = ++ ( )

where sk k" are i.i.d. randomvariables sampled from aPoisson distribution in the integrable case and from a
Wigner–Dyson distribution in the chaotic case. Both distributions are assumed to have the samemeanμs and
standard deviation sm . The gaps read then

G E E s , D.8j i
k i

j

k

1

å= - =a
=

-

( )

wherewe have assumed i<j. For i=jwe can apply the central limit theorem and obtain that the gaps are
randomvariables

G N j i j i, , D.9s sm m~ - -a ( ( ) ( ) ) ( )

whereN(μ,σ) is theGaussian distributionwithmeanμ and standard deviationσ. The difference of gaps
generated by different probability distributions

G G G N j i, 0, 2 . D.10s
1 2d m- ~ -a a a≔ ( ( ) ) ( )( ) ( )

Note the standard deviation increasingwith the separation of the energy levels. This is indeed the behaviour of
δGα if both sk

(1) and sk
(2) are independent randomvariables. However, in our example the spectrum Ek

(2) is built
fromEk

(1)with the single goal of changing its level-statistics. This can bemade shifting the energy levels by an
amount independent of the separation between them.Oneway to achieve so is to group the energy levels
Ek k

d1
1={ }( ) in different sets Ek k j L

j L1 1 1
=
+ -{ }( ) ( ) of consecutive L energy levels, where j labels the different sets. Then, the

first and the last energy levels of every set are kept fixed and the other energy levels are shifted according to the
other level-statistics. In such a case, the random variable δGα is bounded by

G K D.11Sd ma ( )

with K L2= a constant independent of the system size.
One strategy to bound the one point distance between the coarse-grained frequency signals would be to use

the triangular inequality as follows

g g v u G D.12G
1 2
   åw w w- -

a
a d aa∣ ( ) ( )∣ ∣ ∣∣ ( ¯ )∣ ( )( ) ( )

and the one normdistance

g g v u Gd . D.13G
1 2

1   òå w w- -
a

a d aa  ∣ ∣ ∣ ( ¯ )∣ ( )( ) ( )
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In order to estimate the scaling of the va∣ ∣ in the system size, let us consider that there are deff energy levels
with a non-negligible occupation in the initial state. Thus, let us note that

v d v
d

1
, D.142

eff
2 2

eff

å ~
a

a a∣ ∣ ∣ ∣ ( )

and therefore v deff
3 2~a

-∣ ∣ .
By splitting the integrals and a convenient change of variables,

u h h

h

d 2 d d

2 d
2

. D.15

2 2

2

2



 

 

ò ò ò

ò

w w w w w w

w w
s

= -

=

s
-¥ -¥

-

-

s s

s

s

∣ ( )∣ ( ) ( )

( ) ( )

Note that for G K sd ma withμs∼n / deff, the individual terms of the sumbehave as K n deff
2( ). However,

the sumoverα contains deff
2 many terms, and therefore the bound becomes useless. The reason for that is that, as

it happened for the time signal, the quantity g g1 2w w-∣ ( ) ( )∣( ) ( ) is small due to the cancellations between its
different contributions u G wd a ( ).

Instead, let us exploit interference by applying the triangular inequality as follows

g g v u G , D.16
k G I

G
1 2

k

 å åw w w- -a d a
Îa

a∣ ( ) ( )∣ ( ¯ ) ( )( ) ( )

¯

where I k k, 1k dw dw+≔ [ ( ) ).
For given k, the contribution to the one-normbehaves as

v u G d v u
K d

d
d d , D.17

G I
G k k c

k s

eff
3

k

s 
ò òåw w w w

m
- ~ á ña d a a m

Îa
a( ¯ ) ∣ ( )∣ ( )

¯

where d G Ik kÎa≔ ∣{ ¯ }∣ is the number of gaps in the interval Ik andwe have used v deff
3 2~a

-∣ ∣ and
equation (D.15). Note that in (D.17) and due to interference between different u GG w -d aa ( ¯ ) the scalingwith
the number of gapswithin an interval Ik is dk and not dk. This behaviour has been inferred fromnumerical
simulations and can be understood bymeans of the central limit theorem.

Finally, let us note that the amount of gaps in an interval Ik scales as dk∼Ck deff
2 where deff

2 is the total number
of gaps, n the the system size, andCk the fraction of gaps in the interval Ik. Thus, adding all the contributions of
every interval

g g
C n

d
, D.181 2

1

3

eff  -  ( )( ) ( )

wherewe have used that the average level spacingμs scales asμs∼K2n / deff withC andK2 positive constants
independent of the system size.
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