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Abstract

Background: Prenatal smoke exposure is known to be robustly associated with DNA

methylation among offspring in early life, but whether the association persists into adult-

hood is unclear. This study aimed to investigate the long-term effect of maternal smoke

exposure on DNA methylation in 754 women (mean age 30 years); to replicate findings in

the same women 18 years later and in a cohort of 230 men (mean age 53 years); and to

assess the extent to which a methylation score could predict prenatal smoke exposure.

Methods: We first carried out an epigenome-wide association analysis for prenatal

smoke exposure and performed replication analyses for the top CpG sites in the other

samples. We derived a DNA methylation score based on previously identified CpG sites

and generated receiver operating characteristic (ROC) curves to assess the performance

of these scores as predictors of prenatal smoke exposure.

Results: We observed associations at 15 CpG sites in 11 gene regions: MYO1G, FRMD4A,

CYP1A1, CNTNAP2, ARL4C, AHRR, TIFAB, MDM4, AX748264, DRD1, FTO (false discovery

rate<5%). Most of these associations were specific to exposure during pregnancy, were

present 18 years later and were replicated in a cohort of men. A DNA methylation score

could predict prenatal smoke exposure (30 years previously) with an area under the

curve of 0.72 (95% confidence interval 0.69, 0.76).

Conclusions: The results of this study provide robust evidence that maternal smoking in

pregnancy is associated with changes in DNA methylation that persist in the exposed off-

spring for many years after prenatal exposure.

Key words: prenatal smoking, ALSPAC, DNA methylation, epigenetics, long-term, prediction, epigenome-wide

association study, longitudinal
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Introduction

Cigarette smoke exposure during pregnancy is an environ-

mental stressor that has a profound effect on DNA methyl-

ation in the exposed offspring.1 Previous work has

determined genome-wide changes in DNA methylation in

response to smoke exposure in utero,2 with a recent

epigenome-wide association study (EWAS) meta-analysis

of methylation in newborn cord blood identifying over

6000 differentially methylated CpG sites (of which 568

CpG sites surpassed the strict Bonferroni threshold).3

It is of interest to investigate the persistence of methyla-

tion marks into later life, as this presents the opportunity

to use methylation as an archive of historical exposure,

particularly if methylation patterns can be robustly mod-

elled over time.4–6 In addition, persistent changes in DNA

methylation might mediate at least some of the associa-

tions between smoke exposure in pregnancy and later-life

health outcomes.7

Several studies have identified prenatal smoke exposure

associated changes in methylation in childhood and adoles-

cence in global methylation,8 candidate gene8–10 and

EWAS.3,4,6,11–13 However, few studies have investigated

the persistence of methylation change into adulthood.14–17

Three such studies have been conducted in the New York

City birth cohort, where prospectively assessed maternal

smoking during pregnancy was found to be positively asso-

ciated with global methylation in leukocytes of individuals

at age 43 years assessed using a methyl acceptance assay,14

inversely associated with levels of Sat2 methylation15 and

most recently associated with methylation at 17 CpG sites

on the Illumina Infinium HumanMethylation450 array,17

which remained even after adjustment for adult smoking

status of the offspring. However, previous studies were

limited by low power due to small sample sizes and a more

comprehensive assessment of the long-term impact of

prenatal tobacco smoke exposure on genome-wide methyl-

ation is warranted.

In this study, we aimed to assess the long-term impact

of prenatal tobacco smoke on DNA methylation in the

context of the Avon Longitudinal Study of Parents and

Children (ALSPAC)18,19—a prospective birth cohort with

data on reported maternal smoke exposure in pregnancy

and genome-wide DNA methylation levels of offspring in

adulthood. We first conducted an analysis to investigate

associations between reported prenatal smoke exposure

and DNA methylation in peripheral blood among women

in ALSPAC (mean age 30 years). We next attempted to rep-

licate prenatal smoking-associated DNA methylation dif-

ferences in peripheral blood of the women 18 years later

(mean age 48 years) and in men from the same study (the

partners of these women) (mean age 52 years). Finally, we

aimed to assess the extent to which a prenatal smoking

score, based on methylation at CpG sites previously shown

to be associated with prenatal smoke exposure, could pre-

dict whether the mothers of the ALSPAC women smoked

during pregnancy.

Methods

Cohort and selection of participants

ALSPAC is a large, prospective cohort study based in the

south-west of England. A total of 14 541 pregnant women

resident in Avon, UK, with expected dates of delivery 1

April 1991 to 31 December 1992 were recruited and de-

tailed information has been collected on these women and

their offspring at regular intervals.18,19 The study website

contains details of all the data that are available through a

fully searchable data dictionary (http://www.bris.ac.uk/

alspac/researchers/data-access/data-dictionary/). Written

informed consent has been obtained for all ALSPAC

Key Messages

• We investigated the long-term impact of maternal smoking in pregnancy on epigenetic changes in the offspring by

assessing differences in DNA methylation levels in adulthood.

• We observed associations at 15 CpG sites in 11 gene regions; most of these associations were specific to exposure

during pregnancy, were found to persist until at least 48 years and were present in both men and women.

• A prenatal smoking score, derived by combining methylation values, could adequately predict whether the mothers

of the adults smoked during pregnancy.

• The results of this study provide robust evidence that maternal smoking in pregnancy is associated with changes in

DNA methylation that persist in the exposed offspring for many years after their prenatal exposure.

• These findings could have useful applications in epidemiological studies, e.g. by using DNA methylation signatures

as a biosocial archive for exposure when data on maternal smoking during pregnancy are absent.
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participants. Ethical approval for the study was obtained

from the ALSPAC Ethics and Law Committee and the

Local Research Ethics Committees.

We examined offspring DNA methylation in relation to

reported maternal smoking during pregnancy in ALSPAC

using methylation data from the Illumina Infinium

HumanMethylation450 (HM450) BeadChip assay

(Illumina, San Diego, CA, USA). We used data from

women enrolled ALSPAC (n¼ 754) in the main analysis

and looked to replicate findings in the same women ap-

proximately 18 years later (n¼ 656) and in men enrolled in

ALSPAC (n¼ 230).

Prenatal exposure variables

After recruitment of pregnant women into the ALSPAC

study, information was collected on both the women and

their partners, including details of their mothers’ smoking

behaviour. If the men and women reported that their

mothers had smoked, they were asked whether their moth-

ers had smoked when they were pregnant with them and

were given the responses yes/no/don’t know from which to

select. These data were analysed assuming that, for all

those who said don’t know, their mothers did smoke dur-

ing pregnancy, as has been done previously.20 We carried

out further sensitivity analysis excluding those individuals

who were unsure of their mothers’ smoking status during

pregnancy and compared findings.

DNA methylation assessment

We examined offspring DNA methylation in peripheral

blood in ALSPAC men and women. As part of the

Accessible Resource for Integrated Epigenomics Studies

(ARIES) project,21 the HM450 BeadChip22 has been used

to generate epigenetic data on 1018 mother–offspring pairs

in the ALSPAC cohort. A web portal has been constructed

to allow openly accessible browsing of aggregate ARIES

DNA methylation data (ARIES-Explorer) (http://www.arie

sepigenomics.org.uk/). Additional HM450 data have been

generated on ALSPAC men (the partners of the women en-

rolled in ARIES) (n¼ 312). Details of sample handling and

DNA methylation profiling are outlined in the

Supplementary Material, available as Supplementary data

at IJE online.

Covariates

Maternal age at birth and head of household social class

were included as covariates in these analyses, as they were

found to be most strongly associated with smoking status

during pregnancy in a previous study.4 In addition, 10

surrogate variables and cell count fractions were included

as additional covariates to adjust for technical batch and

cell-type mixture (see Supplementary Material, available as

Supplementary data at IJE online, for further details), al-

though we did not find strong evidence for associations be-

tween prenatal smoke exposure and derived cell types

(Supplementary Table 1, available as Supplementary data

at IJE online).

In order to evaluate the potential influence of own

smoking, which might explain the persistence in methyla-

tion signatures associated with intrauterine exposure, in-

formation on the ALSPAC women’s own smoking status

was obtained from a questionnaire administered at 18

weeks’ gestation. Women were asked whether they had

smoked regularly pre-pregnancy, from which a dichoto-

mous variable for any tobacco smoking before pregnancy

was derived. To assess the impact of passive smoke expo-

sure, women were also asked whether their partners

smoked at the same time point and whether their fathers

(as well as their mothers) had smoked previously.

For the replication analysis, information on the wom-

en’s smoking status was also gathered in a questionnaire

administered approximately 18 years later. Furthermore,

information on the partner’s smoking status was obtained

from a questionnaire administered to the partners approxi-

mately 21 years after the pregnancy. At these later time

points, the men and women were asked whether they cur-

rently smoked or whether they had smoked every day

when a smoker in the past. From these data, a dichoto-

mous variable for any previous tobacco smoking was

derived.

Statistical analysis

We first performed an epigenome-wide association analysis

in our largest sample: the ALSPAC women with methyla-

tion measured in peripheral blood taken at the time of en-

rolment in the study (n¼ 754). CpG level methylation

[untransformed b-values, which is the ratio of the methyl-

ated probe intensity and the overall intensity and ranges

from 0 (no cytosine methylation) to 1 (complete cytosine

methylation)] was regressed against prenatal smoke expo-

sure (any maternal smoking during pregnancy) with adjust-

ment for covariates (maternal age, parental social class,

offspring age, top 10 SVs in the main model). We then

assessed whether associations were robust to adjustment

for own smoking status (including own smoking status as a

further covariate and also running the EWAS stratified by

own smoking status) and passive smoke exposure

(reported partner smoking).

To evaluate the specificity of the intrauterine effect and

potential bias in our findings due to the role of passive
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smoke exposure out of pregnancy or residual confounding,

we conducted two negative control tests23–25: (i) perform-

ing a comparison of the associations between parental

smoking (any paternal smoking and any maternal smok-

ing) and methylation levels at the top CpG sites and (ii)

comparing associations between maternal smoking outside

of pregnancy and methylation levels with maternal smok-

ing during pregnancy and methylation levels at the same

sites.

We next performed replication analyses for the top

CpG sites [false discovery rate (FDR)< 0.05] in the other

samples, by conducting EWAS of maternal smoking in the

ALSPAC women 18 years later and ALSPAC men, adjusted

for the same covariates as in the main model for the

ALSPAC women at enrolment, and performing a look-up

of the CpGs identified in the main analysis. We also

assessed the association between prenatal smoke exposure

and methylation at the identified sites in cord blood in the

ALSPAC cohort that has been investigated previously3,4

(Supplementary Table 2, available as Supplementary data

at IJE online). We next performed Pearson’s correlation

analysis in order to compare consistency in effect estimates

between the main analysis and the replication analysis.

We also investigated the association between prenatal

exposure to smoking and DNA methylation for the 568

CpG sites previously found to be robustly associated with

prenatal smoke in a cord blood meta-analysis at

Bonferroni significance (n¼ 6685),3 in each of the adult

cohorts. We assessed the degree of inflation of association

signal (lambda value) for these CpG sites compared with

that seen genome-wide across the samples and performed a

Wilcoxon rank sum test to assess enrichment.

Furthermore, we generated a DNA methylation score26

for prenatal smoking based on these independently identi-

fied 568 CpG sites and compared its ability to predict

whether the mothers of the ALSPAC adults had smoked

during pregnancy with a score based on 19 CpG sites that

reached Bonferroni significance in an EWAS of prenatal

smoking conducted in peripheral blood of older children

(n¼ 3187)3 and a score for own smoking, consisting of

2623 CpG sites that reached Bonferroni significance in the

largest EWAS of own smoking to date (n¼ 9389 current vs

never smokers).27 Details of these studies and how the

scores were generated are outlined in Supplementary Table

2, available as Supplementary data at IJE online, and the

Supplementary Material, available as Supplementary data

at IJE online.

We generated receiver operating characteristic (ROC)

curves for the prenatal and own smoking methylation

scores and calculated the area under the curve (AUC) in or-

der to assess the performance of these predictors using the

pROC package in R. Given the overlap of CpG sites

associated with both prenatal smoking and own smoking

(Supplementary Figure 1, available as Supplementary data

at IJE online), we also assessed the performance of the pre-

natal smoking score adjusted for the own smoking score.

We compared the AUC of pairs of ROC curves using the

Delong test for difference computed by the roc.test func-

tion as part of the pROC package.

We also investigated the extent to which the prenatal

smoking scores could predict maternal smoking in preg-

nancy independently of own smoking status. This was

done by comparing methylation scores between four differ-

ent groups of participants, determined based on their own

smoking status and that of their mothers during pregnancy:

non-smokers whose mothers never smoked in pregnancy,

smokers whose mothers never smoked in pregnancy, non-

smokers whose mothers smoked in pregnancy and smokers

whose mothers smoked in pregnancy. Pairwise compari-

sons between the groups were performed using two-tailed

t-tests and a p-value for difference in methylation scores

obtained. In addition, a p-value for trend was obtained

from the linear regression of the methylation score on

smoking status, where the four groups were included in an

ordered categorical variable.

Analysis was performed using Stata (version 14) and R

(version 3.3.1).

Results

The cohort-specific summary statistics for this analysis are

presented in Table 1. The ALSPAC women in our main

analysis had a mean age of 30 years, whereas their mean

age at follow-up was 48 years and the ALSPAC men had a

mean age of 53 years. Maternal ages at birth were similar

between the ALSPAC men and women, as were parental

social class and rates of prenatal smoke exposure. Rates of

own smoking varied quite substantially, from 16.9% in the

ALSPAC women at the first time point to 33.8% in the

ALSPAC men. There was limited evidence for an associa-

tion between prenatal smoke exposure and own smoking

in the three study groups (Supplementary Table 3, avail-

able as Supplementary data at IJE online).

We observed associations between 15 CpG sites and

prenatal smoking exposure in women at age 30 at

FDR< 5% and 9 CpG sites that surpassed Bonferroni cor-

rection (Table 2). These sites were located in 11 gene

regions and all but 2 have been previously identified in

EWAS for maternal smoking at birth3 and into later

life3,4,6,10–12,17 and all agree on direction of effect

(Supplementary Table 4, available as Supplementary data

at IJE online).

Associations at CpG sites located near ARL4C

(cg05204104 and cg15016771), MDM4 (cg08241939)
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and DRD1 (cg22807681) appear to be novel, although the

sites at ARL4C were present in the extended list of FDR

significant sites in the previous cord blood EWAS.3 In con-

trast to findings in cord blood, where smoking during preg-

nancy has been associated approximately equally with

hyper and hypomethylation,3 the majority (14 out of 15

CpGs) showed long-term hypermethylation in this

analysis.

Whereas, in most EWAS for cord blood methylation,

AHRR (cg05575921) is the CpG site most consistently as-

sociated with prenatal smoke exposure,3,4,28,29 this site did

not survive adjustment for multiple tests in our persistence

analysis (p¼ 0.0005, FDR>5%). Rather, associations at

four sites at MYO1G (cg22132788, cg12803068,

cg04180046 and cg19089201) did survive multiple testing

adjustment, with the MYO1G site cg22132788 having the

strongest association (P¼ 1.7�10–13), which is consistent

with findings in children and adolescents.4,6,12

Results were robust to the additional inclusion of de-

rived cell counts as covariates, with 14 of the 15 CpG sites

surpassing the FDR< 5% threshold and the other CpG

site at DRD1 (cg22807681) with p¼ 5.22� 10–6

(Supplementary Table 5, available as Supplementary data

at IJE online). In sensitivity analysis where those partici-

pants who were unsure of their mothers’ smoking status

during pregnancy were removed (n¼ 651 remained in the

Table 1. Descriptive characteristics of participant groups in this study

ALSPAC adult females

(Time Point 1)

ALSPAC adult females

(Time Point 2)

ALSPAC

adult males

N 754 656 230

Maternal age at birth (years) (SD) 27.6 (5.7) 27.8 (5.7) 28.2 (5.7)

Social class (manual) (N, %) 347 (46.0) 301 (45.9) 92 (40.0)

Prenatal smoke exposure (yes) (N, %) 216 (28.7) 179 (27.3) 73 (31.7)

Age at follow-up (years) (SD) 30.3 (4.3) 48.1 (4.2) 53.4 (5.1)

Sample type(s) Whole blood/white cells White cells/PBLs White cells/PBLs

Own smoking (N, %)a 127 (16.9) 144 (28.9) 75 (33.8)

aThe sample size of individuals who reported own smoking was slightly smaller with N¼ 752, N¼ 498 and N¼ 222 for ALSPAC adult females (Time Point 1),

ALSPAC adult females (Time Point 2) and ALSPAC adult males (Time Point 3), respectively.

Table 2. DNA methylation changes associated with prenatal smoke exposure in ALSPAC women (Time Point 1)

CpG site Chromosome Gene

region

Position Basic model (N¼754a) Adjusted modelb (N¼752)

Effect

size

Standard

error

P-value FDR Effect

size

Standard

error

P-value FDR

cg22132788 7 MYO1G 45002486 0.062 0.008 1.70E-13 8.26E-08 0.058 0.008 9.77E-13 4.75E-07

cg12803068 7 MYO1G 45002919 0.111 0.015 9.82E-13 2.38E-07 0.097 0.014 1.71E-11 4.16E-06

cg11813497 10 FRMD4A 14372879 0.038 0.006 1.25E-10 2.02E-05 0.036 0.006 4.85E-10 7.85E-05

cg04180046 7 MYO1G 45002736 0.041 0.006 2.53E-10 3.07E-05 0.037 0.006 3.43E-09 3.33E-04

cg05549655 15 CYP1A1 75019143 0.007 0.001 1.21E-08 0.001 0.007 0.001 8.82E-10 1.07E-04

cg25949550 7 CNTNAP2 145814306 –0.005 0.001 1.48E-08 0.001 –0.004 0.001 2.41E-07 0.015

cg19089201 7 MYO1G 45002287 0.038 0.007 1.75E-08 0.001 0.034 0.007 1.88E-07 0.013

cg05204104 2 ARL4C 235403141 0.023 0.004 2.30E-08 0.001 0.023 0.004 4.12E-08 0.003

cg17924476 5 AHRR 323794 0.045 0.008 6.24E-08 0.003 0.040 0.008 5.33E-07 0.029

cg11429111 5 TIFAB 134813329 0.022 0.004 2.62E-07 0.013 0.019 0.004 2.90E-06 0.108

cg08241939 1 MDM4 204700816 0.022 0.004 5.04E-07 0.022 0.019 0.004 3.40E-06 0.110

cg11641006 2 AX748264 235213874 0.040 0.008 5.62E-07 0.023 0.029 0.006 1.27E-06 0.051

cg15016771 2 ARL4C 235403218 0.008 0.002 1.01E-06 0.036 0.007 0.002 3.35E-06 0.110

cg22807681 5 DRD1 174622933 0.023 0.005 1.04E-06 0.036 0.023 0.005 1.02E-06 0.045

cg26681628 16 FTO 54210550 0.037 0.008 1.27E-06 0.041 0.029 0.006 8.94E-06 0.193

Effect size¼ difference in methylation level (beta) between adult offspring of smokers and non-smokers in pregnancy.

Entries in bold represent sites that surpassed the Bonferroni threshold.
aN¼ 216 smoked during pregnancy, N¼ 538 no smoking during pregnancy.
bModel includes adjustment for own smoking.
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analysis, n¼ 103 were excluded), 12 CpG sites were found

to be associated with prenatal smoke exposure at

FDR< 5% in this smaller dataset (Supplementary Table 6,

available as Supplementary data at IJE online). Nine of

these CpG sites were overlapping with those in the main

analysis, with the remaining three CpG sites located in sim-

ilar gene regions [AHRR (cg05575921), TIFAB

(cg01952185) and FRMD4A (cg25464840)].

One concern related to the identification of these signals

is that they might reflect non-specific smoke exposure of

the offspring over the life course rather than a ‘critical pe-

riod’ effect of smoke exposure in utero.30 In particular, 11

out of the 15 CpGs have been identified in relation to cur-

rent vs never smoking status at FDR< 0.05 in a recent

EWAS of own smoking27 (Supplementary Table 4, avail-

able as Supplementary data at IJE online). To account for

this, we first examined whether past cigarette smoking by

the adult themselves influenced these associations by in-

cluding own smoking as a covariate in the model.

Adjustment for own smoking attenuated associations at

five CpG sites [TIFAB (cg11429111), MDM4

(cg08241939), AX748264 (cg11641006), ARL4C

(cg15016771) and FTO (cg26681628)] that no longer

reached the FDR cut-off for significance (Table 2 and

Figure 1), although, on the whole, the magnitude of effect

was only slightly reduced with this adjustment.

Furthermore, whereas methylation of CpG sites at

MYO1G, CNTNAP2 and AHRR have been consistently

identified in relation to own smoking, no such associations

have been found with CpG sites at FDRM4A, CYP1A1,

MDM4 or DRD1 in the largest EWAS of own smoking to

date.31 Findings were similar when analyses were stratified

by own smoking status, i.e. with consistent effect estimates

even among those women who had not previously smoked

regularly themselves (Supplementary Table 7, available as

Supplementary data at IJE online), although there was

some evidence for a difference in effect sizes between

smokers and non-smokers at ARL4C (cg05204104), where

the effect was larger among smokers than among non-

smokers (p for interaction¼ 0.001). Furthermore, results

were consistent when reported partner smoking was in-

cluded as a covariate as an indicator of passive smoke ex-

posure (Supplementary Table 8, available as

Supplementary data at IJE online).

For the negative control tests, the parental comparison

showed consistently larger effect estimates for maternal

smoking than for paternal smoking, although confidence

intervals overlapped for some of the sites [FRMD4A

(cg25464840), CYP1A1 (cg05549655), ARL4C

(cg05204104), AHRR (cg17924476) and MYO1G

(cg04180046)] (Supplementary Figure 2, available as

Supplementary data at IJE online). For the comparison of

associations between the offspring of women who smoked

during pregnancy and the offspring of women who smoked

outside of pregnancy, effect estimates were consistently

larger for those reporting maternal smoking during preg-

nancy, this time without overlapping confidence intervals

(Supplementary Figure 3, available as Supplementary data

at IJE online). Whereas, for MYO1G (cg12803066) and

MYO1G (cg22132766), there was some evidence of asso-

ciation between maternal smoking outside of pregnancy

with methylation levels, suggestive of either residual con-

founding in the intrauterine associations or a postnatal

smoking effect, these findings may also be explained by

misreporting of maternal smoking during pregnancy that

was based on retrospective reports by the offspring in

adulthood. This latter explanation is more likely given that

the paternal smoking estimates at these sites were consis-

tent with the null (Supplementary Figure 2, available as

Supplementary data at IJE online).

Effects at the top CpGs surpassing FDR correction in

the ALSPAC women were found to be consistent in direc-

tion although slightly attenuated in the follow-up analysis

approximately 18 years later (Pearson’s correlation coeffi-

cient, r¼ 0.92) (Figure 2 and Supplementary Figure 4,

available as Supplementary data at IJE online).

Furthermore, there was remarkable consistency in the di-

rection and magnitude of effects at these CpGs in blood

samples of the ALSPAC men (r¼0.77), with the exception

of DRD1, where effects were not as consistently replicated.

We also compared for reference the effect of any maternal

smoking on cord blood methylation in the ALSPAC birth

Figure 1. Manhattan plot for EWAS of prenatal smoke exposure in

ALSPAC women (Time Point 1)*. *N¼ 752, adjusted for own smoking.

Solid horizontal line represents Bonferroni threshold; dotted horizontal

line represents FDR correction (p< 0.05) threshold.
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Figure 2. Replication of CpG sites observed below FDR (p< 0.05) threshold in ALSPAC women at a later time point (Time Point 2) and in ALSPAC

men,* and comparison with effect of prenatal smoking on cord blood methylation in ALSPAC children. *Adjusted for own smoking in adult samples.

N¼ 860 ALSPAC cord blood (reference), N¼ 752 ALSPAC women (Time Point 1), N¼ 498 ALSPAC women (Time Point 2), N¼ 222 ALSPAC men.

Figure 3. Receiver operating characteristic (ROC) curves of prenatal and own smoking methylation scores for discriminating maternal smoking in

pregnancy. Total N¼ 922; NB: sample size in the main analysis is smaller due to inclusion of additional covariates into those models that were miss-

ing for some of the participants. Prenatal smoking methylation score (older children)¼ score derived from 19 CpG sites associated with maternal

smoking in older children in an independent study.3 Prenatal smoking methylation score (newborns)¼ score derived from 568 CpG sites associated

with maternal smoking in newborns in an independent study.3 Own smoking methylation score¼ score derived from 2623 CpG sites associated with

smoking status in adults in an independent study.31 Scores were applied to methylation data from ALSPAC adult females at Time Point 1.
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cohort at these CpGs and, again, both magnitude and di-

rection of effect were similar (r¼ 0.92) with the exception

of sites at ARL4C (cg05204104), AHRR (cg17924476)

and DRD4 (cg22807681). At these sites, the difference in

methylation was greater in the ALSPAC women than in

the newborns (Figure 2 and Supplementary Figure 4, avail-

able as Supplementary data at IJE online).

In addition, we found that, among women with a mean

age of 30 years (N¼ 754), there was a strong signal of as-

sociation above that expected by chance at CpG sites previ-

ously associated with prenatal smoke exposure in

newborns [lambda¼ 2.62 vs 1.14 for all CpG sites on the

Illumina Infinium HumanMethylation450 (HM450)

BeadChip; Wilcoxon rank sum test p-value< 2.2� 10–16]

(Supplementary Figure 5, available as Supplementary data

at IJE online). Similarly, inflation of signals for prenatal

smoke exposure was seen in these women 18 years later

(lambda¼ 1.54, p-value¼ 5.6� 10–15) and in the ALSPAC

men (lambda¼1.19, p-value¼ 2.2� 10–4), compared with

all CpG sites on the HM450 BeadChip (Supplementary

Figure 5, available as Supplementary data at IJE online).

A prenatal smoking methylation score, derived by com-

bining methylation values at 568 CpG sites associated with

prenatal smoke exposure in cord blood of newborns in a

previous study,3 could predict whether the mothers of the

ALSPAC women smoked during pregnancy with an AUC

0.69 [95% confidence interval (CI) 0.67, 0.73]. This was

comparable with a score derived from 19 CpG sites previ-

ously associated with prenatal smoking in peripheral blood

of older children,3 which had an AUC 0.72 (95% CI 0.69,

0.76; P for difference¼ 0.97) (Figure 3).

To determine the extent to which methylation associa-

tions with prenatal smoking were different from own

smoking associations, we constructed a similar score de-

rived from 2623 CpG sites previously associated with own

smoking in adulthood.27 Whereas being strongly predictive

of own smoking status in the ALSPAC women (AUC 0.88,

95% CI 0.85, 0.91), this score was only weakly associated

with prenatal smoking compared with the 19-CpG prena-

tal smoking score (AUC 0.57, 95% CI 0.53, 0.61; P for dif-

ference¼ 3.0� 10–11) (Figure 3). In addition, the 19-CpG

prenatal smoking methylation score was able to predict

with the same accuracy prenatal smoke exposure when ad-

justed for the offspring smoking methylation score (AUC

0.71, 95% CI 0.68, 0.75; P for difference¼ 0.06)

(Figure 3).

The prenatal smoking methylation scores were higher in

individuals (both smokers and non-smokers) exposed to

prenatal smoking compared with non-smokers who were

not exposed prenatally (i.e. the ‘OS.MS’ and ‘ONS.MS’

group vs the ‘ONS.MNS’ baseline group; p-value for

trend< 2.0� 10–16) (Figure 4). The prenatal smoking

methylation score derived from 568 CpG sites identified in

newborns3 was not able to distinguish between non-

smokers whose mothers smoked in pregnancy compared

with smokers whose mothers did not smoke during preg-

nancy (difference in score between the ‘ONS.MS’ group

and the ‘OS.MNS’ group¼ –0.07, p¼ 0.61) (Figure 4a).

However, the score derived from 19 CpG sites which were

shown to persist in relation to prenatal smoke exposure

based on an EWAS in older children3 was higher in non-

smokers whose mothers smoked in pregnancy compared

Figure 4. Box plots to assess differences in prenatal smoking methylation scores. Prenatal smoking methylation score (newborns)¼ score

derived from 568 CpG sites associated with maternal smoking in newborns in an independent study.3 Prenatal smoking methylation score

(older children)¼ score derived from 19 CpG sites associated with maternal smoking in older children in an independent study.3 ONS,

MNS¼offspring non-smoker, mother never smoked in pregnancy (N¼ 522); OS, MNS¼offspring smoker, mother never smoked in pregnancy

(N¼ 112); ONS, MS¼offspring non-smoker, mother smoked in pregnancy (N¼222); OS, MS¼offspring smoker, mother smoked in pregnancy

(N¼ 66). NB: sample size in the main analysis is smaller due to inclusion of additional covariates into those models that were missing for some of the

participants.

8 International Journal of Epidemiology, 2018, Vol. 0, No. 0

Downloaded from https://academic.oup.com/ije/advance-article-abstract/doi/10.1093/ije/dyy091/5026413
by University Library user
on 11 July 2018

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy091#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy091#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy091#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy091#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy091#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy091#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyy091#supplementary-data


with smokers whose mothers did not smoke in pregnancy

(difference in score between the ‘ONS.MS’ group and the

‘OS.MNS’ group¼ 0.01, p¼ 0.001) (Figure 4b).

Discussion

In a large longitudinal cohort with genome-wide methyla-

tion data, we identified 15 CpG sites that were differen-

tially methylated in the peripheral blood of women over

30 years after exposure to prenatal smoking. Most of these

signals remained in sensitivity analyses adjusted for own

smoking and passive smoke exposure, and showed stron-

ger associations in relation to maternal smoke exposure in

pregnancy compared with smoke exposure outside of preg-

nancy (by both mothers and fathers) indicating specificity

of the intrauterine effect. Furthermore, we observed a per-

sistent methylation signal related to prenatal smoke expo-

sure in peripheral blood 18 years later (i.e. at around the

age of 48 years) and replicated in peripheral blood among

men in the ALSPAC cohort.

Many of these CpG sites have been previously identified

in relation to prenatal smoke exposure in the offspring at

birth3 and the majority showed long-term hypermethyla-

tion among the offspring of smokers. Findings are also

consistent with a recent report that highlighted persistence

of DNA methylation levels related to prenatal smoke expo-

sure into adulthood,17 which identified associations the

same CpG sites located in MYO1G and CYP1A1, and

other CpG sites in FTO and AHRR.

For all of the study samples, there was also a strong sig-

nal of association above that expected by chance at 568

CpG sites previously associated with prenatal smoke expo-

sure in newborns from an independent study.3 In addition,

we found that a prenatal smoking score, derived by com-

bining methylation values at these CpG sites, could ade-

quately predict whether the mothers of the adults in

ALSPAC smoked during pregnancy with an AUC 0.69

(95% CI 0.67, 0.73). A recent study identified a much

stronger predictive ability of a prenatal smoking methyla-

tion score with AUC of 0.90 in a test set of cord blood

obtained from newborns in the MoBa cohort.32 The differ-

ence in predictive ability is therefore likely attributed to the

30-year difference in time since exposure and the genera-

tion of this methylation score using CpG sites identified in

cord blood rather than adult peripheral blood. We also de-

rived a methylation score based on CpGs that showed evi-

dence of a persistent difference in methylation in

peripheral blood of older offspring exposed to prenatal

smoking3 who had a marginally higher AUC of 0.72 (95%

CI 0.67, 0.73) and was also able to distinguish non-

smokers whose mothers smoked in pregnancy from smok-

ers whose mothers did not smoke during pregnancy.

Strengths of our study include the large sample size of

women with reported maternal smoking in pregnancy for

performing our initial EWAS analysis, the ability to adjust

for own smoking status, the longitudinal assessment of dif-

ferential methylation in a follow-up sample of these

women and the replication analysis in men from the same

study.

Although there was evidence of persistence for methyla-

tion differences even after adjusting for own smoking sta-

tus in the adult offspring, there are limitations to

performing this type of adjustment analysis. As

parental smoking is strongly associated with their off-

spring’s smoking initiation,33 own smoking serves as a pos-

sible mediator on the path between prenatal smoking and

offspring DNA methylation. This method of adjusting for

a potential mediator in standard regression models to esti-

mate the direct effect of an exposure may produce spurious

conclusions.34,35 Whereas an alternative method of using

life-course models previously provided more evidence for

the hypothesis that maternal smoking in pregnancy is the

‘critical period’ for influencing persistent offspring methyl-

ation profiles,4 this method could not be applied here given

the limited amount of information on maternal smoking

reported by the ALSPAC men and women.

A further limitation relates to cell-type heterogeneity,

given that the ALSPAC samples were obtained from a vari-

ety of sources [white cells, whole blood and peripheral

blood lymphocytes (PBLs)]. To account for this, we incor-

porated surrogate variables into our models to account to

adjust for technical batch and cell-type mixture in order to

harmonize cellular variability of the samples36 and carried

out sensitivity analysis that also adjusted for derived cell

counts.37,38

In addition, information on prenatal smoke exposure in

the ALSPAC men and women was recorded retrospectively

by the adult offspring, rather than by prospective assess-

ment, and so may be subject to more misreporting.

Furthermore, in the ALSPAC men and women, rates of

maternal smoking in pregnancy were reported to be high

in comparison with contemporary populations. This draws

to question the relevance of identified associations.

However, we have shown that many of the signals identi-

fied in adults were also present in cord blood of offspring

measured prospectively in a more contemporary cohort

with lower rates of maternal smoking in pregnancy.4

Overall, the results of this study provide robust evidence

that maternal smoking in pregnancy is associated with

changes in DNA methylation that persist in the exposed

offspring for many years after their prenatal exposure.

Furthermore, these associations largely remain after adjust-

ing for the previous smoking history of the adults them-

selves and are in accordance with earlier studies
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investigating prospectively assessed maternal smoking dur-

ing pregnancy in relation to global DNA methylation

levels.14,15

Conclusion

These findings could have useful applications in epidemio-

logical studies, e.g. by using DNA methylation signatures

as a biosocial archive for historical exposure.5

Furthermore, persistent changes in DNA methylation

might mediate at least some of the associations between

smoke exposure in pregnancy and later-life health out-

comes.39 However, distinguishing mediation from other

association-driving mechanisms40 warrants further evalua-

tion with the integration of analytical techniques such as

two-step Mendelian randomization,41,42 transcriptomic

analysis and the profiling of target tissues.43
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Supplementary data are available at IJE online.
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