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Abstract 

We investigate the impact of dipper status on cardiac structure with cardiovascular 

magnetic resonance (CMR). Ambulatory blood pressure monitoring and 1.5T CMR 

were performed in 99 tertiary hypertension clinic patients. Subgroup analysis by 

extreme dipper (n=9), dipper (n=39), non-dipper (n=35) and reverse dipper (n=16) 

status was performed, matched in age, gender and BMI. Left ventricular (LV) mass 

was significantly higher for extreme dippers than dippers after correction for 

covariates (100±6g/m2 vs 79±3g/m2, P=0.004). Amongst extreme dipper and dippers 

(n=48), indexed LV mass correlated positively with the extent of nocturnal blood 

pressure dipping (R=0.403, P=0.005). On post-hoc ANCOVA, the percentage of 

nocturnal dip had significant effect on indexed LV mass (P=0.008), but overall SBP 

did not (P=0.348). In the tertiary setting, we found a larger nocturnal BP drop was 

associated with more LV hypertrophy. If confirmed in larger studies, this may have 

implications on nocturnal dosing of anti-hypertensive medications. 

 

 

 

 

 

 

 

 

 



 

 

 

Text 

Introduction 

The global burden of systemic hypertension is immense, affecting an estimated 25% 

of the Worldwide adult population and the prevalence of the disease is estimated to 

reach 1.56 billion by 2025[1]. 24 hour ambulatory blood pressure monitoring (ABPM) 

is an important tool for risk stratification of individuals with arterial hypertension[2]. 

The pattern of nocturnal blood pressure (BP) relative to diurnal BP on ABPM can be 

categorized into i) dipper (≥10% reduction in average systolic blood pressure (SBP) at 

night) and ii) non-Dipper (<10% reduction in SBP at night) groups. Within the dipper 

group, there is a subset of subjects with exaggerated nocturnal BP dip (>20% 

reduction in SBP at night) termed extreme dippers. Likewise, there is a further 

subgroup within the non-dippers who demonstrate an increase in SBP overnight and 

these subjects are known as reverse dippers[3]. The nocturnal BP subtypes are 

associated with different levels of cardiovascular risk in hypertension, with non-

dipper status conferring the worse prognosis[4][5]. However, there remains debate 

about the impact of dipper status on target organ damage. For example, there is 

increasing evidence that extreme dipper status may result in increased 

cerebrovascular morbidity; extreme dippers had increased prevalence of ischaemic 

stroke in one study[6] and increased risk of intracerebral haemorrhage in another[7]. 

Studies assessing differences in cardiovascular structure and function have not 

yielded consistent results[8]. To date, the effect of dipper status subtypes on cardiac 

target damage has not been comprehensively investigated with cardiovascular 

magnetic resonance imaging (CMR), which is the current non-invasive gold-standard 



 

 

investigation to assess left ventricular (LV) volumes, mass and systolic function[9]. 

Consequently, we aimed to investigate the impact of nocturnal dipper status on 

cardiac structure and function using a comprehensive multi-parametric CMR 

protocol, assessing LV volumes and mass, burden of myocardial replacement fibrosis 

and myocardial deformational strain parameters. We hypothesized that non-dipper 

status would be associated with the most adverse cardiac remodeling/hypertrophy.  

 

Materials and methods 

Study population 

This was a prospective observational study. Inclusion criteria were consecutive 

patients being treated for hypertension referred for CMR with contemporaneous 

ABPM from the Bristol Heart Institute tertiary hypertension clinic between February 

2012 and April 2015. The local research ethics committee confirmed that the study 

conformed to the governance arrangements for research ethics committees. 

Subjects provided written consent. Baseline demographic and clinical characteristics 

were recorded, including prevalence of obstructive sleep apnea and number of 

nocturnal anti-hypertensive medications. Patients with any concomitant myocardial 

pathology that may confound the cardiac remodeling/hypertrophy were excluded. 

Exclusion criteria (Figure 1) consisted of: any evidence of moderate-severe valvular 

heart disease, acquired or inherited cardiomyopathy and suspected athlete’s heart, 

on the basis of clinical and International imaging consensus guidelines[10], and 

severely decreased estimated glomerular filtration rate (eGFR) <30ml/min/1.73m2. A 

history of myocardial ischaemia or infarction was not considered an exclusion 

criterion because both symptomatic and silent myocardial ischaemic are common in 



 

 

hypertensive patients with left ventricular hypertrophy, even in the absence of 

epicardial coronary artery disease and LVH itself is a recognized causes of myocardial 

ischaemia[11][12][13][14]. 

 

Ambulatory blood pressure monitoring 

Non-invasive 24-hour ABPM (Spacelabs, OSI Systems Company, USA) was performed 

during a weekday on the non-dominant arm with an automatic device[15]. The 

device obtained BP readings by the oscillometric method every 30 minutes for 24 

hours. The subjects were instructed to conduct their usual daily activities but remain 

still at the time of BP measurement. The International Database of Ambulatory 

Blood Pressure in relation to Cardiovascular Outcome (IDACO) criteria were used (10 

daytime measurements, 5 nighttime measurements) to determine satisfactory 

ABPM[16]. Nocturnal BP was defined as the mean BP readings from the time the 

patient went to bed until the time they got out of bed, with the remainder of the 

readings constituting the day time values. The ABPM data were analyzed with 

automated software to obtain mean overall/day-time/night-time systolic BP (SBP), 

diastolic BP (DBP) and mean arterial pressure (MAP). Dipper status was defined[3] as 

either:  

 

1) Dipper (≥10% and ≤20% reduction in average systolic blood pressure (SBP) at 

night),  

2) Extreme dipper (>20% reduction in SBP at night),  

3) Non-dipper (0-10% reduction in SBP at night) or  

4) Reverse dipper (<0% reduction in SBP at night, i.e. nocturnal increase in SBP). 



 

 

 

CMR cine protocol and analysis 

CMR was performed at 1.5T (Avanto, Siemens, Erlangen, Germany). Short-axis 

steady-state free precession (SSFP) cines with whole left ventricular (LV) coverage 

(8mm slice thickness, no slice gap, temporal resolution 38.1ms, echo time 1.07ms, 

in-plane pixel size 1.5 x 0.8mm) were used for the estimation LV mass (LVM) and 

volumes and indexed to body surface area as previously described[17]. In 

accordance with the Society of CMR guidelines[18], a validated[19] threshold-

detection software package (CMR42, Circle Cardiovascular Imaging Inc., Calgary, 

Canada) was used measure LVM, including papillary musculature and trabeculae in 

LVM estimation (Figure 1). LVH was defined as indexed LVM >95th percentile of 

established CMR reference ranges (men: 89-93g/m2 and women: 77-78g/m2 

depending on age)[17]. LV mass to volume ratio (M/V), akin to relative wall thickness 

on echocardiography, was calculated and an increased M/V defined as >95th gender-

specific percentile (men: >1.12g/ml and women: >1.14g/ml) from healthy 

volunteers, as described previously[20]. LV dilatation was defined as indexed EDV 

>95th percentile of the age and gender specific reference ranges. Left ventricular 

ejection fraction (LVEF) was reduced if <5th percentile of the same reference range. 

The CMR analysis was performed by an experienced CMR reader blinded to the 

ABPM data and CMR strain data.  

 

Defining patterns of left ventricular remodeling and hypertrophy 

Four patterns (Figure 2) of LV (left ventricular) remodeling / hypertrophy were 

defined as previously[21]: i) Normal = normal indexed LVM, normal indexed end-



 

 

diastolic volume (EDV) and normal mass to volume ratio (M/V), ii) LV remodeling = 

normal indexed LVM but increased M/V, iii) Concentric hypertrophy = increased 

indexed LVM, increased M/V, iv) Eccentric hypertrophy = increased LVM, increased 

indexed EDV, normal M/V and normal or reduced LVEF. 

 

CMR late gadolinium protocol and analysis 

Replacement myocardial fibrosis was assessed by late gadolinium enhancement 

(LGE) (Figure 1). An inversion-recovery fast gradient recall echo sequence performed 

10-15minutes following injection of 0.1mmol/kg intravenous gadobutrol (Gadovist, 

Bayer Pharma AG, Germany) as previously described[22]. The inversion time was 

personalized to achieve optimal myocardial nulling in each subject. LGE was visually 

assessed as a consensus between 2 expert CMR readers, blinded to the 

remodeling/hypertrophy, CMR strain and ABPM data.  

 

CMR strain imaging 

Strain imaging was performed off-line using 4-chamber, 2-chamber and short-axis 

stack SSFP cine images with voxel-tracking software (Tissue Tracking, CVM42, Circle 

Cardiovascular Imaging Inc., Calgary, Canada) as previously described[23] (Figure 1). 

The software defines the position of each myocardial voxel at end-diastole and 

tracks their location of the cardiac cycle in 2D. It is based on a previously described 

algorithm[24][25]. Briefly, endocardial and epicardial end-diastolic borders were 

defined excluding papillary muscles and trabeculae. The end-diastolic mitral valve 

annular plane was defined. Global longitudinal strain was the averaged strain from 4-

chamber and 2-chamber analysis. Circumferential strain was calculated as a mean 



 

 

value of mid myocardial segments from the short-axis cine 2D strain model, in order 

to minimize partial-volume averaging and through-plane motion at the base and 

apex. All strain analysis was performed by an experienced CMR reader blinded to the 

ABPM data and other CMR data. 

 

Statistical analysis 

Statistical analysis was performed using SPSS Version 21 (Armonk, NY, USA: IBM 

Corp). Normally distributed continuous variables were expressed as mean ± standard 

deviation and compared using one-way analysis of variance with Bonferroni post-hoc 

correction. Categorical variables were expressed as percentages and analysed using 

the Fisher’s exact test. Multiple linear regression was used to control for covariates 

of age, gender, body mass index, diabetes, day-time SBP, day-time DBP an day-time 

MAP with Bonferroni correction for multiple post-hoc comparisons. To determine 

the relative impact of day-time blood pressure levels and degree of nocturnal dip on 

indexed LV mass amongst dippers, linear regression analysis controlling for day-time 

systolic blood pressure was performed. Statistical significant was set at two-sided 

P<0.05. 

 

Results 

Study population 

One hundred and eleven hypertensive subjects were screened, 12 subjects were 

excluded due to concomitant cardiac pathology or inadequate CMR study (Figure 1), 

resulting in a final sample size of 99. The demographics and baseline clinical 



 

 

characteristics are displayed in Table 1. Dipper, extreme dipper, non-dipper and 

reverse dipper subgroups were matched in terms of age, gender and BMI. 

 

Blood pressure in dipper subgroups 

When all subjects with nocturnal dip <10% (non-dippers and reverse dippers, n = 51) 

were compared with all subjects with nocturnal dip ≥10% (dippers and extreme 

dippers, n = 48), the combined non-dipper and reverse dipper cohort had 

significantly higher mean overall ABPM SBP (157± 23 mmHg vs 147 ± 19 mmHg, P = 

0.008) and nocturnal ABPM SBP (155 ± 23 mmHg vs 130 ± 15 mmHg, P < 0.0001) 

compared to the combined dipper and extreme dipper cohort. However, when the 

individual dipper subgroups were compared, it was only the dipper subgroup (with 

nocturnal dip ≥10% and <20%) that exhibited significantly lower overall ABPM SBP 

compared to the non-dipper subgroup (with nocturnal dip 0-10%) (145 ± 18 mmHg 

vs 161 ± 23 mmHg, P = 0.009) (Table 1). The extreme dipper subgroup showed no 

significant difference in overall and day-time ABPM SBP compared with non-dipper 

and reverse dipper subgroups respectively.  

 

Cardiac structure and function in dipper subgroups  

When all subjects with nocturnal dip <10% (non-dippers and reverse dippers, n = 51) 

were compared with all subjects with nocturnal dip ≥10% (dippers and extreme 

dippers, n = 48), there was no significant difference in indexed LV mass (nocturnal 

dip ≥10%: 83±20 g/m2 vs nocturnal dip <10%: 89±25 g/m2, p = 0.208)(Figure 3). 

Contrary to the hypothesis, it was the extreme dippers whom demonstrated the 

highest prevalence of concentric LVH (67%) and had the highest indexed LV mass 



 

 

(103 ± 29 g/m2) (Table 2), despite the non-dippers and reverse dippers having similar 

overall and day-time ABPM SBP and significantly higher night-time ABPM DBP (Table 

1). Within the subgroup of patients with preserved nocturnal dip ≥10%, the extreme 

dipper cohort had significantly higher indexed LV mass than the dipper cohort (103 ± 

29 g/m2 vs dippers: 78 ± 15 g/m2, P = 0.021) (Table 2). However, there were no 

significant differences in systolic function in terms of LVEF, longitudinal strain and 

circumferential strain between the cohorts (Table 2 and Figure 3). The prevalence of 

myocardial replacement fibrosis was not significantly different between the 

subgroups (Table 2). 

 

Dipper versus extreme dipper 

To determine whether the increased indexed LV mass observed amongst the 

extreme dipper cohort compared to the dipper cohort was simply due to the 

association with higher day-time SBP, To determine whether the increased indexed 

LV mass observed amongst the extreme dipper cohort compared to the dipper 

cohort was simply due to the association with higher day-time SBP, a one-way 

analysis of covariance (ANCOVA) was performed to assess for persistent differences 

in indexed LV mass between extreme dipper and dippers, controlling for covariates 

of age, gender, BMI, diabetes, day-time SBP, day-time DBP and day-time MAP (Table 

3). Extreme dippers still demonstrated a significantly higher indexed LV mass 

compared to dippers (100 ± 6 g/m2 vs 79 ± 3 g/m2, P = 0.004) even after correcting 

for these covariates (Figure 3). 

 



 

 

Amongst dippers (n = 48), indexed LV mass correlated positively with percentage of 

nocturnal dip (R = 0.403, P = 0.005). Linear regression analysis was performed to 

assess the relationship between percentage nocturnal dip amongst dippers and 

indexed LV mass, controlling for day-time systolic blood pressure. A significant 

relationship persisted between indexed LV mass and percentage nocturnal dip (β = 

0.371, 95th confidence intervals: 0.479 – 3.477, p = 0.011) but not between indexed 

LV mass and day-time systolic blood pressure (β = 0.131, 95th confidence intervals: -

0.164 – 0.450, p = 0.352). Essentially, the exaggerated swing in SBP between day-

time and night-time is more likely to be the reason for more advances LV 

hypertrophic responses in extreme dippers compared to dippers, than higher day-

time SBP.  

 

Significant positive correlations with demonstrated between percentage nocturnal 

dip and: 1) peak circumferential strain (r = 0.412, p = 0.004) and 2) peak longitudinal 

strain (r = 0.345, p =0.016) but not with peak radial strain (r = -0.161, p = 0.276). 

Essentially, the greater the nocturnal dip, the worse the circumferential and 

longitudinal deformation, as these are negative indices by convention. Linear 

regression analysis was also performed to assess the relationship between LV strain 

indices and indexed LV mass, controlling for day-time systolic blood pressure. A 

significant relationship persisted between 1) peak circumferential strain (β = 0.393, 

95th confidence intervals: 0.099 – 0.599, p = 0.007) and 2) peak longitudinal strain (β 

= 0.321, 95th confidence intervals: 0.025 – 0.489, p = 0.031) with percentage 

nocturnal dip, but not with day-time systolic blood pressure in either of the 

statistical models respectively (β = 0.078, 95th confidence intervals: -0.037 – 0.065, p 



 

 

= 0.581), (β = 0.097, 95th confidence intervals: -0.32 – 0.063, p = 0.504). After 

correcting for day-time systolic blood pressure, there was no significant relationship 

between peak radial strain and percentage nocturnal dip (β = -0.215, 95th confidence 

intervals: -3.821 – 0.626, p = 0.155). Essentially, the exaggerated swing in SBP 

between day-time and night-time is more likely to be the reason for circumferential 

and longitudinal strain impairment in extreme dippers compared to dippers, rather 

than higher overall SBP. 

 

Discussion 

Summary of results  

We investigated the impact of dipper status on cardiac structure and function using 

CMR. We show that in the tertiary setting, extreme dippers exhibit the highest 

indexed LV mass, after correction for covariates of age, gender, BMI, diabetes, day-

time SBP/DBP/MAP, and that larger nocturnal drops in BP are associated with more 

advanced myocardial hypertrophy, independent of day-time SBP.  

 

Hypertensive LVH and dipper status  

The extreme dipper subgroup had the highest indexed LV mass and the highest 

prevalence of concentric LVH. There is heterogeneity in the literature regarding LV 

mass and dipper status. Importantly, it is only relatively recently that have dipping 

profiles have been subdivided into extreme dipper and reverse dipper subgroups. 

Ivanoic et al. did looked at all 4 dipper subgroups and demonstrated the highest 

prevalence of LVH in reverse dippers[26]. However, 69% of this cohort were 

untreated and LV mass was indexed to height2.7, which has been shown to 



 

 

systematically misclassify subjects regarding LVH presence [27]. The effect of drug 

treatment on the relationship of dipper status and cardiac function may be an 

important variable. For example, Muxfeldt et al. showed no significant differences in 

LV mass indexed to BSA amongst dipper, non-dipper, reverse dipper and extreme 

dipper subgroups in the context of resistant hypertension using 

echocardiography[28]. The current study differs from the previous studies by at least 

one of the following variables: 1) imaging modality for measuring LV mass (CMR), 2) 

definition of LVH (CMR specific cut-offs for age and gender indexed to BSA), 3) 

treatment status of patients (on treatment) and 4) type of patient (recruited from 

tertiary setting). Consequently, the current findings apply to a specific, but 

important, cohort of hypertensive patients. 

 

Mechanisms for LVH in extreme dippers 

Why extreme dippers develope the most LVH is not clear. Extreme dippers had 

comparable overall SBP levels compared to non-dippers and reverse dippers, 

suggesting a complex relationship beyond absolute BP level. 

 

An excessive early morning BP surge is associated with increased cardiovascular 

events[29]. The level of morning surge in BP has been demonstrated to be 

significantly associated with cardiovascular remodeling independent of 24 hour BP 

level, daytime BP variability and nocturnal BP decline in subjects >60 years old on 

antihypertensive medications[30]. Extreme dippers may be most prone to exhibit 

early morning surge in BP, which may account for the fact that extreme dipping has 

been associated with increased cardiovascular events[6][7]. A potential unifying 



 

 

explanation for these observations is that early morning surge may be a result of 

increased morning sympathetic activity[29]. Elevated day-time sympathetic nerve 

activity may result in not only day-time BP increases but also directly stimulate the 

myocardium potentially directly inducing LVH itself[31].  

 

Equally, the exaggerated fall in SBP at night may contribute to LVH in extreme 

dippers. Recently, we demonstrated that increased cerebrovascular resistance and 

reduced cerebral blood flow were present before the onset of increased muscle 

sympathetic nerve activity in the borderline hypertensive subjects, suggesting 

cerebral hypoperfusion may be a factor in triggering and exacerbating 

hypertension[32]. The exaggerated nocturnal drop in BP in extreme dippers could 

theoretically aggravate nocturnal cerebral perfusion and result in rebound increases 

in neurogenically-mediated sympathetic nerve activity. This relative nocturnal 

hypoperfusion may also help account for the increased cerebrovascular pathology 

identified in extreme dippers in some studies[6][7]. 

 

Extreme dipping may have direct cardiac effects. Theoretically, relative nocturnal 

hypotension may result in reduced myocardial perfusion pressure. If this were to fall 

below a critical threshold, it may trigger subclinical hypoperfusion/hypoxemia which 

itself will trigger low level myocardial inflammation and hypertrophy of the 

myocardium. Indeed, Kotsis et al.[33] previously demonstrated a significantly higher 

Gensini score (a computerized scoring system of coronary artery disease severity 

that depends on the degree of luminal narrowing, the geographic importance of 

each stenosis, the ejection fraction and possible collateral circulation of coronary 



 

 

arteries) in extreme dippers. Excessive sympathetic activity to the heart, for example 

via the aforementioned selfish brain hypothesis, may cause coronary 

vasoconstriction and potentially compound cardiac hypoperfusion during dipping.  

 

Clinical implications 

The post-hoc analysis of the current study suggests that it is the actual exaggerated 

nocturnal dip response that is associated with advanced LVH and not simply a higher 

daytime SBP. If the findings are validated in larger scale studies, this may have 

implications for anti-hypertensive regimens. It is common practice to suggest 

patients take their anti-hypertensive medications at night if they are developing pre-

syncopal symptoms during the day. Whilst several antihypertensive medications 

have appropriate pharmacodynamics and pharmacokinetics to allow single dosing, if 

the medications are taken at night, they may actually contribute to a larger 

nocturnal dip that could have pathological implications to the brain and heart as 

discussed above. More insight into this may be gained when the Hellenic Anglo 

Research into Morning Or Night antihypertensive drug deliverY (HARMONY) trial, a 

randomized cross-over trial of 100 participants comparing day-time and evening 

dosing of antihypertensive medications, reports its findings. Therefore, it is proposed 

that ABPM is performed, to define whether dipping occurs and to assess its extent, 

and the impact of long-acting and/or nocturnal anti-hypertensive regimens. 

 

 Limitations 

There are several limitations of this study. Firstly, the sample size is small. However, 

the increased precision, accuracy and reliability of CMR over 2-dimensional 



 

 

echocardiography increases the statistical power, reducing the sample size required 

to detect a statistically significant change in LV mass of 10g with 90% power (1 – β 

error) by 6-fold[34]. There is a relatively low prevalence of extreme and reverse 

dippers in our cohort but the proportions of these subgroups to the overall study 

size are comparable to previous echocardiographic studies[26][28]. However, one of 

the relative strengths of this study, in our opinion, is the real-world data captured by 

the study design, which was a prospectively maintained clinical database of 

consecutive hypertensive patients referred for CMR. The low prevalence of extreme 

dipper subgroups reflects our real world-practice. It represents a small but clinically 

important subgroup of patients with nocturnal dip >10%. We performed additional 

analyses looking at nocturnal blood pressure dip as a continuous variable, in addition 

to looking at pre-defined dipper subgroups. These findings provide further support 

to the notion that percentage of nocturnal dip is an important variable and mitigate 

against, although do not completely exclude, a type 1 error.  

 

This study was conducted in a specialist hypertension clinic. We, therefore, can only 

conclude that the findings are applicable in this tertiary setting. Further study is 

required to determine whether the same findings occur in, for example, untreated, 

newly diagnosed patients with hypertension in the primary care / community 

setting. 

 

Due to the prolonged subclinical course of the disease, it was not possible to 

accurately correct for the duration of subclinical and established hypertension. 

Finally, the dipper status of our subjects was only confirmed on a single ABPM 



 

 

reading, rather than two contemporaneous ABPM investigations. In addition, routine 

clinical CMR is likely to be inferior to echocardiography at assessing diastolic 

dysfunction and this has been previously investigated[35]. 

 

Conclusion 

 In the tertiary hypertension setting, extreme dippers with nocturnal dip >20% 

exhibit the most advanced hypertrophic response which appears to be independent 

of daytime BP and related to the relative swings in sympathetic activity and BP from 

night to day. This was contrary to the original hypothesis that non-dipper status 

would be associated with the most adverse cardiac remodeling/hypertrophy. If 

confirmed in larger studies, this may have implication on the recommendation of 

nocturnal dosing of anti-hypertensive medications. 

 

 

  



 

 

Acknowledgments  

We thank Mr Christopher Lawton, superintendent radiographer, and his team of 

specialist CMR radiographers from the Bristol Heart Institute for their expertise in 

performing the CMR studies. This work was supported by the NIHR Bristol 

Cardiovascular Biomedical Research, Bristol Heart Institute. The views expressed are 

those of the authors and not necessarily those of the National Health Service, 

National Institute for Health Research, or Department of Health. Dr Jonathan C L 

Rodrigues is funded by the Clinical Society of Bath Postgraduate Research Bursary 

and Royal College of Radiologists Kodak Research Scholarship. Dr Emma C Hart is 

funded by BHF grant IBSRF FS/11/1/28400. 

 

  



 

 

References 

1  Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J, et al. 

Global burden of hypertension: analysis of worldwide data. Lancet (London, 

England) 2005; 365:217–23. 

2  Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Böhm M, et al. 2013 

ESH/ESC guidelines for the management of arterial hypertension: the Task 

Force for the Management of Arterial Hypertension of the European Society 

of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur 

Heart J 2013; 34:2159–219. 

3  O’Brien E, Sheridan J, O’Malley K. Dippers and non-dippers. Lancet 1988; 

2:397. 

4  Ben-Dov IZ, Kark JD, Ben-Ishay D, Mekler J, Ben-Arie L, Bursztyn M. Predictors 

of all-cause mortality in clinical ambulatory monitoring: unique aspects of 

blood pressure during sleep. Hypertension 2007; 49:1235–41. 

5  Verdecchia P, Porcellati C, Schillaci G, Borgioni C, Ciucci A, Battistelli M, et al. 

Ambulatory blood pressure. An independent predictor of prognosis in 

essential hypertension. Hypertension 1994; 24:793–801. 

6  Kario K, Pickering TG, Matsuo T, Hoshide S, Schwartz JE, Shimada K. Stroke 

prognosis and abnormal nocturnal blood pressure falls in older hypertensives. 

Hypertension 2001; 38:852–7. 

7  Metoki H, Ohkubo T, Kikuya M, Asayama K, Obara T, Hashimoto J, et al. 

Prognostic significance for stroke of a morning pressor surge and a nocturnal 

blood pressure decline: the Ohasama study. Hypertens (Dallas, Tex  1979) 

2006; 47:149–54. 



 

 

8  Cuspidi C, Giudici V, Negri F, Sala C. Nocturnal nondipping and left ventricular 

hypertrophy in hypertension: an updated review. Expert Rev Cardiovasc Ther 

2010; 8:781–92. 

9  Pennell DJ. Ventricular volume and mass by CMR. J Cardiovasc Magn Reson 

2002; 4:507–13. 

10  Galderisi M, Cardim N, D’Andrea A, Bruder O, Cosyns B, Davin L, et al. The 

multi-modality cardiac imaging approach to the Athlete’s heart: an expert 

consensus of the European Association of Cardiovascular Imaging. Eur Heart J 

Cardiovasc Imaging 2015; 16:353. 

11  Dunn FG, Pringle SD. Left ventricular hypertrophy and myocardial ischemia in 

systemic hypertension. Am J Cardiol 1987; 60:19I–22I. 

12  Salcedo EE, Marwick TH, Korzick DH, Goormastic M, Go RT. Left ventricular 

hypertrophy sensitizes the myocardium to the development of ischaemia. Eur 

Heart J 1990; 11 Suppl G:72–8. 

13  Yurenev AP, DeQuattro V, Devereux RB. Hypertensive heart disease: 

relationship of silent ischemia to coronary artery disease and left ventricular 

hypertrophy. Am Heart J 1990; 120:928–33. 

14  Pringle SD, Dunn FG, Tweddel AC, Martin W, Macfarlane PW, McKillop JH, et 

al. Symptomatic and silent myocardial ischaemia in hypertensive patients with 

left ventricular hypertrophy. Br Heart J 1992; 67:377–82. 

15  O’Brien E, Beevers G, Lip GY. ABC of hypertension. Blood pressure 

measurement. Part III-automated sphygmomanometry: ambulatory blood 

pressure measurement. BMJ 2001; 322:1110–4. 

16  Thijs L, Hansen TW, Kikuya M, Björklund-Bodegård K, Li Y, Dolan E, et al. The 



 

 

International Database of Ambulatory Blood Pressure in relation to 

Cardiovascular Outcome (IDACO): protocol and research perspectives. Blood 

Press Monit 2007; 12:255–62. 

17  Maceira A, Prasad S, Khan M, Pennell D. Normalized Left Ventricular Systolic 

and Diastolic Function by Steady State Free Precession Cardiovascular 

Magnetic Resonance. J Cardiovasc Magn Reson 2006; 8:417–426. 

18  Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich 

MG, et al. Standardized image interpretation and post processing in 

cardiovascular magnetic resonance: Society for Cardiovascular Magnetic 

Resonance (SCMR) board of trustees task force on standardized post 

processing. J Cardiovasc Magn Reson 2013; 15:35. 

19  Childs H, Ma L, Ma M, Clarke J, Cocker M, Green J, et al. Comparison of long 

and short axis quantification of left ventricular volume parameters by 

cardiovascular magnetic resonance, with ex-vivo validation. J Cardiovasc 

Magn Reson 2011; 13:40. 

20  Buchner S, Debl K, Haimerl J, Djavidani B, Poschenrieder F, Feuerbach S, et al. 

Journal of Cardiovascular Magnetic Electrocardiographic diagnosis of left 

ventricular hypertrophy in aortic valve disease : evaluation of ECG criteria by 

cardiovascular magnetic resonance. 2009; 11:1–11. 

21  Rodrigues JCL, Amadu AM, Dastidar AG, Szantho G V, Lyen SM, Godsave C, et 

al. Comprehensive characterisation of hypertensive heart disease left 

ventricular phenotypes. Heart Published Online First: 3 June 2016. 

doi:10.1136/heartjnl-2016-309576 

22  Rodrigues JCL, Amadu AM, Dastidar AG, Hassan N, Lyen SM, Lawton CB, et al. 



 

 

Prevalence and predictors of asymmetric hypertensive heart disease: insights 

from cardiac and aortic function with cardiovascular magnetic resonance. Eur 

Heart J Cardiovasc Imaging Published Online First: 24 December 2015. 

doi:10.1093/ehjci/jev329 

23  Rodrigues JCL, Amadu AM, Ghosh Dastidar A, McIntyre B, Szantho G V, Lyen S, 

et al. ECG strain pattern in hypertension is associated with myocardial cellular 

expansion and diffuse interstitial fibrosis: a multi-parametric cardiac magnetic 

resonance study. Eur Heart J Cardiovasc Imaging Published Online First: 22 

June 2016. doi:10.1093/ehjci/jew117 

24  Bistoquet A, Oshinski J, Skrinjar O. Left ventricular deformation recovery from 

cine MRI using an incompressible model. IEEE Trans Med Imaging 2007; 

26:1136–53. 

25  Bistoquet A, Oshinski J, Skrinjar O. Myocardial deformation recovery from cine 

MRI using a nearly incompressible biventricular model. Med Image Anal 2008; 

12:69–85. 

26  Ivanovic BA, Tadic M V, Celic VP. To dip or not to dip? The unique relationship 

between different blood pressure patterns and cardiac function and structure. 

J Hum Hypertens 2013; 27:62–70. 

27  Chirinos JA, Segers P, De Buyzere ML, Kronmal RA, Raja MW, De Bacquer D, et 

al. Left ventricular mass: allometric scaling, normative values, effect of 

obesity, and prognostic performance. Hypertension 2010; 56:91–8. 

28  Muxfeldt ES, Cardoso CRL, Salles GF. Prognostic Value of Nocturnal Blood 

Pressure Reduction in Resistant Hypertension. Arch Intern Med 2009; 169:874. 

29  Biaggioni I. Circadian Clocks, Autonomic Rhythms, and Blood Pressure Dipping. 



 

 

Hypertension 2008; 52:797–798. 

30  Yano Y, Hoshide S, Inokuchi T, Kanemaru Y, Shimada K, Kario K, et al. 

Association Between Morning Blood Pressure Surge and Cardiovascular 

Remodeling in Treated Elderly Hypertensive Subjects. Am J Hypertens 2009; 

22:1177–1182. 

31  Rodrigues JCL, Dastidar AG, Paton JFR, MacIver DH. Precursors of 

Hypertensive Heart Phenotype Develop in Healthy Adults: An Alternative 

Explanation. JACC Cardiovasc Imaging 2016; 9:762–3. 

32  Warnert EAH, Rodrigues JCL, Burchell AE, Neumann S, Ratcliffe LEK, Manghat 

NE, et al. Is High Blood Pressure Self-Protection for the Brain?Novelty and 

Significance. Circ Res 2016; 119:e140–e151. 

33  KOTSIS V, PITIRIGA V, STABOULI S, PAPAMICHAEL C, TOUMANIDIS S, ROKAS S, 

et al. Carotid Artery Intima–Media Thickness Could Predict the Presence of 

Coronary Artery Lesions. Am J Hypertens 2005; 18:601–606. 

34  Myerson SG, Bellenger NG, Pennell DJ. Assessment of left ventricular mass by 

cardiovascular magnetic resonance. Hypertension 2002; 39:750–5. 

35  Cuspidi C, Michev I, Meani S, Valerio C, Bertazzoli G, Magrini F, et al. Non-

dipper treated hypertensive patients do not have increased cardiac structural 

alterations. Cardiovasc Ultrasound 2003; 1:1. 

 

 

 

 

  



 

 

Figure legends 

Figure 1. A flow chart showing the study exclusions. (HOCM = hypertrophic 

obstructive cardiomyopathy, LVNC = LV non-compaction cardiomyopathy, DCM = 

dilated cardiomyopathy, mod AR = moderate aortic regurgitation, AVR = aortic valve 

replacement, * = artefact from implantable loop recorder). Representative examples 

of the multi-parametric CMR protocol: A) Steady-state free precession left 

ventricular short-axis mid-cavity cines images at end-diastole with bloodpool 

threshold detection software analysis to define endocardial contours (red line) and 

manual definition of epicardial contours (green line) to estimate LV mass, LV 

volumes and LV ejection fraction (every other image shown for illustrative purposes), 

B) Voxel tracking software analysis, which is applied in a post-processing step to 

steady-state free precession images to derive estimates of longitudinal strain, 

circumferential strain and radial strain and C) Inversion-recovery late gadolinium 

enhancement left ventricular short-axis mid-cavity image at end-diastole 

demonstrating a cases of subtle replacement fibrosis at the right ventricular 

insertion points (solid white arrows). 

 

Figure 2. Different patterns of left ventricular remodeling and hypertrophy. 

 

Figure 3. Summary of key findings, including deformational strain (circumferential 

strain, longitudinal strain and radial strain) versus time graphs for the different 

dipper subgroups. *1one-way ANCOVA correction for covariates of age, gender, BMI, 

diabetes mellitus, day-time SBP, day-time DBP and day-time MAP. *2 Linear 

regression analysis. 



 

 

 

Tables 

Table 1. Demographic and ambulatory blood pressure data for dipper subgroups 

Table 2. Cardiovascular magnetic resonance for all subjects, dipper and non-dippers 

Table 3. Subgroup analysis of subjects with dipper status with correction for 

covariates 


