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ABSTRACT Zika virus (ZIKV) has reemerged in the population and caused unprece-
dented global outbreaks. Here, the transcriptomic consequences of ZIKV infection
were studied systematically first in human peripheral blood CD14� monocytes and
monocyte-derived macrophages with high-density RNA sequencing. Analyses of the
ZIKV genome revealed that the virus underwent genetic diversification, and differen-
tial mRNA abundance was found in host cells during infection. Notably, there was a
significant change in the cellular response, with cross talk between monocytes and
natural killer (NK) cells as one of the highly identified pathways. Immunophenotyp-
ing of peripheral blood from ZIKV-infected patients further confirmed the activation
of NK cells during acute infection. ZIKV infection in peripheral blood cells isolated
from healthy donors led to the induction of gamma interferon (IFN-�) and CD107a—
two key markers of NK cell function. Depletion of CD14� monocytes from peripheral
blood resulted in a reduction of these markers and reduced priming of NK cells dur-
ing infection. This was complemented by the immunoproteomic changes observed.
Mechanistically, ZIKV infection preferentially counterbalances monocyte and/or NK
cell activity, with implications for targeted cytokine immunotherapies.

IMPORTANCE ZIKV reemerged in recent years, causing outbreaks in many parts of
the world. Alarmingly, ZIKV infection has been associated with neurological compli-
cations such as Guillain-Barré syndrome (GBS) in adults and congenital fetal growth-
associated anomalies in newborns. Host peripheral immune cells are one of the first
to interact with the virus upon successful transmission from an infected female
Aedes mosquito. However, little is known about the role of these immune cells dur-
ing infection. In this work, the immune responses of monocytes, known target cells
of ZIKV infection, were investigated by high-density transcriptomics. The analysis
saw a robust immune response being elicited. Importantly, it also divulged that
monocytes prime NK cell activities during virus infection. Removal of monocytes
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during the infection changed the immune milieu, which in turn reduced NK cell
stimulation. This study provides valuable insights into the pathobiology of the virus
and allows for the possibility of designing novel targeted therapeutics.

KEYWORDS NK cells, RNA-seq, Zika virus, immune response, monocytes,
transcriptomes

Zika virus (ZIKV) gained global attention in 2015 to 2016 when the virus suddenly
reemerged in the human population and caused major viral outbreaks across the

world with a large disease burden (1). Although ZIKV has been causing sporadic
outbreaks since it was first reported in Uganda �60 years ago (2), very little is known
about the biology of the virus and the host response to infection. ZIKV is an arthropod-
borne flavivirus that causes Zika fever—a disease that for the majority of patients has
few or no symptoms (3). However, in severe cases, ZIKV infection may be responsible
for neurological complications such as Guillain-Barré syndrome (GBS) in adults (4) and
congenital fetal growth-associated anomalies in newborns (5). The host response to
ZIKV infection may be one of the main drivers of the different disease phenotypes.

Recent studies have established that ZIKV can infect peripheral blood monocytes
(6–9). However, despite ongoing intensive investigative efforts to understand ZIKV-
related neuropathogenesis, knowledge regarding the mechanisms of ZIKV infection in
peripheral immune cells is lacking. Given that ZIKV is transmitted into the dermis via the
bite from a virus-infected mosquito, monocytes would be one of the first immune cells
in the blood to interact with the virus when it reaches the circulatory system. Therefore,
the interplay between ZIKV and monocytes will be crucial in determining the outcome
of infection (10).

This study focused on characterizing the primary ex vivo response of human donor
blood monocytes and monocyte-derived macrophages (MDMs) to ZIKV infection. Sys-
tematically, RNA sequencing (RNA-seq) was first used to identify and quantify the
abundance of host mRNA and characterize viral RNA. This information was subse-
quently used to map the host response to ZIKV infection in the two different ex vivo cell
types. These data also provided insights into the potential adaptation of the virus
during viral replication in these cells. Immunophenotyping of peripheral blood cells
isolated from patients infected with ZIKV independently was executed to validate the
predictions obtained from the differential gene expression analysis. Depletion of
CD14� monocytes in peripheral blood was then performed ex vivo to functionally
understand the cross talk between monocytes and priming of NK cells during ZIKV
infection. Last, a multiplex assay was carried out to further understand host cell
immunoproteomic changes during ZIKV infection. This global analysis of the host
immune response provides a novel understanding of the pathobiology of the virus,
leading to the possibility of targeted therapeutic interventions in severe cases.

RESULTS
ZIKV targets human peripheral blood monocytes and macrophages. CD14�

monocytes have been reported to be the main targets of ZIKV during infection (6–9).
In this study, human primary CD14� monocytes were first isolated from fresh peripheral
blood mononuclear cells (PBMCs) to enrich this cell type to �90% of the total cell
population (Fig. 1A). In addition, isolated monocytes from the same donors were
differentiated into monocyte-derived macrophages (MDMs) over 5 days (Fig. 1B).
Purified cells were then infected ex vivo with ZIKV, and their permissiveness to ZIKV
infection and growth was determined at 24 and 72 h postinfection (hpi) (Fig. 1A). The
24-hpi time point was chosen to represent the acute infection phase, and the 72-hpi
time point was chosen to represent a stage by which a substantial host-virus interaction
would have taken place (11). Data obtained showed that ZIKV infection of MDMs was
more significant than infection of monocytes in all five donors (~40% compared to
~20% at 72 hpi, respectively) (Fig. 1C). A decrease in viral load was observed in the
virus-infected MDMs between the two time points, whereas the viral load remained
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FIG 1 Primary human MNCs and MDMs are targets of ZIKV infection. Isolated human primary MNCs and MDMs (2 � 106 cells each) were infected with ZIKV
at an MOI of 10 and harvested at 24 and 72 hpi. (A and B) Flow cytometry gating on monocytes (MNCs) (A) and MDMs (B). Gating for positive infection was
set using the mock-infected samples. For the dot plots, cells positive for ZIKV antigen (Ag) are shown in red. For the histogram, ZIKV-infected samples (red)
were overlaid on mock-infected samples (black). Gating of live cells was performed on single cells. SSC, side scatter; FSC, forward scatter. (C and D) Compiled
results for infection (ZIKV Ag) (C) and viral load detected in MNCs and MDMs obtained from five healthy donors (D). All data are presented as means � standard
deviations. **, P � 0.05, by Mann-Whitney U test, two-tailed. Viral load data were not statistically significant between 24 and 72 hpi in MNCs by Mann-Whitney
U test, two-tailed.
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consistent in infected monocytes over time (Fig. 1D). RNA-seq was then performed to
assess global mRNA abundance in these cells.

Genome variation in ZIKV during infection of the peripheral blood. In order to
compare the amounts of virus between the different cell types and determine whether
ZIKV underwent genetic diversification during infection, viral sequence reads (obtained
from the RNA-seq) were mapped and compared to that of the progenitor virus stock
(PF/ZIKV/HPF/2013). These data indicated that for MDMs, 4.53% and 0.43% of total
sequence reads (~10 to 140 million reads) mapped to the ZIKV genome at 24 hpi and
72 hpi, respectively, while 24% and 0.8% of sequence reads (~50 to 120 million reads)
generated from monocytes mapped to the ZIKV genome at 24 hpi and 72 hpi,
respectively.

Due to the inherent error-prone nature of viral RNA replication, nucleotide variants
may become established in the viral genome during ZIKV infection in different cell
types. To investigate this hypothesis, consensus genome information for each sample
and the frequency of minor variants at each nucleotide position in the progenitor stock
were determined and compared to the genome of virus present in the infected samples
utilizing previously developed workflows (12, 13). The ZIKV consensus genome se-
quence derived from the progenitor stock was 10,570 nucleotides in length and
contained minor variants (as a measure of quasispecies) spread throughout the ge-
nome (see Fig. S1A in the supplemental material). Of the 11 valid consensus sequences
derived from the virus-infected samples, the virus recovered in cells from five donors
(D1 to D5) had the same consensus sequence as the input stock (PF/ZIKV/HPF/2013).
However, some donor samples contained viral genomes that had additional nucleotide
differences at six different positions (Table S1). These nucleotide differences (Table S1)
were visualized as a maximum likelihood phylogenetic tree, where the input stock was
used as the reference sample (Fig. S1B). There were only eight high-frequency transition
mutations to choose from (log108 � 0.9 [Fig. 2A]), increasing the likelihood of these
changes appearing several times. Of these eight transition mutations, six appeared as
major variants and thus changed the overall consensus sequence. The nucleotide
positions of these six transition mutations (Table S2) indicated that all the changes in
the consensus sequence were already present at relatively high frequency as minor
variants in the input stock and were subsequently amplified during viral replication.
Changes at nucleotide positions 2815 and 4211 were the most common, being found
in ~35% of reads mapping to the virus genome. Had these changes been found in
�50% of reads, they would have been classified as major variants and thus changed the
consensus sequence (Table S2).

Transcriptomic profiling reveals key cellular responses to ZIKV infection. RNA-
seq was used to identify and quantify global mRNA abundance in ZIKV-infected
peripheral monocytes and MDMs at 24 and 72 hpi. For monocytes, mock- and ZIKV-
infected cells at both 24 and 72 hpi exhibited minimal changes in host transcript
abundance. For MDMs, the abundances of transcripts that mapped to 1,736 and 545
genes at 24 and 72 hpi, respectively, were significantly different (false discovery rate
[FDR] of �0.05) between the mock- and ZIKV-infected samples.

Ingenuity pathway analysis (IPA) was used to interrogate and group the differen-
tially expressed genes into functional pathways (Fig. 2A). Of all the canonical pathways
identified, 27 were common in ZIKV-infected MDMs at 24 and 72 hpi (Fig. 2A). This
analysis found that genes associated with the interferon response were significantly
upregulated at both time points. In addition, signaling pathways involved in the
pathogenesis of multiple sclerosis and key pathways involved in monocyte-derived
dendritic cell (moDC) and NK cell processes were also shared between the two time
points (Fig. 2A). Overall, the top three common pathways activated in MDMs were
interferon signaling, multiple sclerosis pathogenic pathways, and cross talk pathways
between moDCs and NK cells (Fig. 2A). The specific genes with the most abundant
transcripts within these three pathways were analyzed and, compared to the mock-
infected controls, were all increased in abundance after ZIKV infection (Fig. 2B).
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FIG 2 Transcriptomic profiling of host cells during ZIKV infection. Primary human MNCs and MDMs (2 � 106 cells per infection) were
infected with ZIKV at an MOI of 10, harvested at 24 and 72 hpi for transcriptomic analysis by RNA-seq, and then compared to mock-infected

(Continued on next page)
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Virus-infected MDMs exhibit reduced cellular responsiveness. Transcriptomic
profiles of various ZIKV-infected MDMs were compared to evaluate the transition of the
cellular host response over the course of ZIKV infection. The percent overlap of the
identified transcripts between ZIKV-infected MDMs was assessed at 24 hpi and 72 hpi
within the three targeted pathways described above (Fig. 3). Interestingly, the percent-
age of overlapping transcripts identified at 72 hpi was lower for all three pathways,
which may reveal a reduced activation status of these pathways at this stage of the
infection. The identification of different transcripts associated with 72 hpi may indicate
the different signaling cascades present or the activation status of these cells (Fig. 3A).
Global assessment of all identified transcripts revealed that transcripts mapping to 251
genes were in fact present in virus-infected MDMs at both time points. Transcripts that
mapped to 1,485 genes were specific to 24 hpi, of which 54.81% exhibited increased
abundance compared to the mock controls. By comparison, transcripts that mapped
to 294 genes were unique to 72 hpi, with 63.36% of them having increased mRNA
abundance compared to the mock controls (Fig. 3B). Within the 251 common genes,
transcripts mapping to 218 genes had an increased fold change value compared to the
mock-infected controls, indicating that these transcripts were increased in abundance
in all ZIKV-infected MDMs. Further inquiry of these transcripts revealed that 60.1% of
them were increased in abundance at 72 hpi compared to 24 hpi. Likewise, of the
remaining transcripts that mapped to 33 genes and showed decreased abundance,
84.85% were further reduced at 72 hpi.

NK cells are activated in ZIKV-infected patients. IPA predicted robust cross talk
between NK cells and moDCs in peripheral blood upon ex vivo ZIKV infection (Fig. 2 and
3). The IPA prediction that NK cells were activated in the peripheral blood of ZIKV-
infected patients was, therefore, investigated by comprehensive immunophenotyping
of blood samples taken from ZIKV-infected patients. These patients were recruited from
the first endemic ZIKV outbreak in Singapore in 2016 (7, 14). Blood aliquots were
obtained from ZIKV-infected patients (n � 9) during the acute disease phase (between
1 and 7 days post-illness onset [PIO]) and were subjected to a whole-blood staining
protocol that targeted CD56� cells, predominantly NK cells (15) (Fig. 4A). Blood from
healthy donors (n � 5) was collected and processed in parallel as a control group.
Gated cells were further grouped with the C-type lectin receptor CD94, giving three
CD56� populations: CD56bright CD94hi, CD56dim CD94hi, and CD56dim CD94lo (16). The
activation status of these populations was then assessed based on the percentage of
each subset expressing CD16 and CD69 (Fig. 4B). A higher level of CD16 was observed
across all CD56� subsets in ZIKV-infected patients than in the healthy controls. A higher
percentage of the subsets also expressed CD69, a known cellular activation marker (17).

CD14� monocytes prime NK cell activity during ZIKV infection. Given that
peripheral NK cells were activated in ZIKV-infected patients and monocytes are pre-
cursors of MDMs, the functional relationship between monocytes and NK cells was
assessed. CD14� monocytes were depleted from human primary PBMCs, with an
average efficiency of �95% (Fig. S2A). Lipopolysaccharide (LPS; 10 ng/ml) was used as
a positive control to simulate priming of CD56� CD94� Lineage� NK cells (Fig. S2B) by
monocytes (18). A significant reduction in the activity of NK cells was observed when
CD14-depleted PBMCs were stimulated with LPS compared to LPS stimulation of
PBMCs containing CD14� monocytes (Fig. S3A). This effect was evidenced by the
reduced levels of the surface markers CD69, CD107a, and intracellular gamma inter-
feron (IFN-�) in depleted cells, verifying that this approach was an efficient strategy for
investigating priming of NK cells by CD14� monocytes.

FIG 2 Legend (Continued)
controls. (A) Venn diagram illustrating the proportion of upregulated signaling pathways identified by IPA in ZIKV-infected MDMs.
Upregulation intensities of the 27 common canonical pathways are shown in a heat map. Asterisks within the boxes represent the calculated
P values associated with each identified pathway compared to the mock-infected samples. (B) The five most upregulated genes within the
top three signaling pathways (interferon pathway, multiple sclerosis pathway, and cross talk between moDCs and NK cells) at 24 and 72 hpi
are shown. Data presented were obtained from a total of five donors.
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PBMCs were then isolated from seven healthy donors and subjected to CD14
depletion before being either infected with ZIKV or stimulated with LPS in parallel to
serve as a control to determine activation of NK cells. ZIKV infection in nondepleted
PBMCs resulted in high levels of CD107a and IFN-� (Fig. 5A) in CD56� CD94� Lineage�

NK cells at 36 hpi—an optimal time point to detect NK cell priming (19). The opposite
effect, however, was observed in ZIKV-infected PBMCs depleted of CD14� monocytes,
as the levels of both CD107a and IFN-� were significantly reduced (Fig. 5B). Although
monocyte depletion did not affect the expression of NK cell activation receptor NKG2A

FIG 3 Transition of the host cellular response over the course of ZIKV infection. The host cellular response was analyzed and
investigated by RNA sequencing, and significant transcriptomic differences were identified. (A) Transitional analysis (percent-
age of genes overlapping) of the top three common canonical signaling pathways was performed using IPA of infected MDMs.
Venn diagrams indicate the top five common and time-point-specific genes associated with each canonical pathway. (B)
Proportion of common and differentially expressed genes within ZIKV-infected MDMs at 24 and 72 hpi. Data presented were
obtained from a total of five donors.
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or NKG2D, a general reduction in NKG2D-expressing NK cells was observed during ZIKV
infection (Fig. S3B). Surprisingly, the activation marker CD69 was not increased upon
ZIKV infection in this study (Fig. S3C). ZIKV viral loads were comparable between the
two conditions (Fig. 5C). Interestingly, levels of CD107a and IFN-� remained high at

FIG 4 Activation of CD56� cells in patients infected with ZIKV. (A) Gating strategy of CD56� cell subsets and their expression of CD16
and CD69. Lymphocytes were first gated to exclude the neutrophils. Subsequently, CD56� cells were identified and further gated into
three populations based on the expression of surface marker CD94: CD94hi CD56bright (blue), CD94hi CD56dim (green), and CD94lo

CD56dim (red). The data presented correspond to a representative patient infected with ZIKV. Cells from a healthy control are overlaid
and depicted as the black population (Q8). CD56 gating was performed on single cells. (B) Compiled data on the percentage of gated
subsets that are positive for CD16 (Q5 and Q6) and CD69 (Q6 and Q7). Patients (n � 9) are depicted as filled circles, and healthy
controls (n � 5) are depicted as open circles. All data are presented as means � standard deviations. *, P � 0.05, by Mann-Whitney
U test, two-tailed.
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72 hpi in nondepleted infected PBMCs compared to depleted infected PBMCs
(Fig. S3D).

To delve further into the mechanism, the profile of secreted immune mediators from
ZIKV-infected PBMCs was quantified using a 45-plex microbead-based immunoassay
(20). Levels of 11 mediators were significantly affected by the depletion of CD14�

monocytes (Fig. 6A and S4A), while 8 mediators were affected upon ZIKV infection
(Fig. S4B). Interestingly, depletion of CD14� monocytes and ZIKV infection did not
affect the levels of epidermal growth factor (EGF), interleukin 9 (IL-9), IL-17A, macro-
phage inflammatory protein 1� (MIP-1�), and MIP-1� (Fig. S4C). The effect of CD14�

monocyte depletion was observed in the levels of stem cell factor (SCF) and tumor

FIG 5 Role of monocytes in NK cell activity. Full PBMCs and CD14-depleted PBMCs (2 � 106 cells per infection) were infected with Zika virus (ZIKV) at an MOI
of 10 and harvested at 36 hpi. (A) Gating strategy of CD94� CD56� Lineage� NK cells and their expression of CD69, CD107a, and IFN-�. Plots from one
representative donor are shown. The red circle indicates the presence or absence of CD14� monocytes. (B) Compiled percentages of CD107a- and IFN-�-positive
NK cells (depicted in panel A) as normalized to the respective mock sample. (C) Viral load in the infected cells. Data shown were derived from seven donors.
Lineage markers CD3, CD19, CD20, and CD14 have been included to rule out the presence of non-NK cells. All data are presented as means � standard
deviations. *, P � 0.05; **, P � 0.01, by Mann-Whitney U test, two-tailed. Viral load data were not statistically significant between the two conditions by
Mann-Whitney U test, two-tailed.
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necrosis factor alpha (TNF-�) only after ZIKV infection (Fig. S4D). Importantly, levels of
monocyte chemoattractant protein 1 (MCP-1), IL-1RA, and vascular endothelial growth
factor A (VEGF-A) were affected by both CD14� monocyte depletion and ZIKV infection
(Fig. 6B). To further investigate the capacity of the cytokine milieu to prime NK cells,
freshly isolated human primary PBMCs were then treated with the same culture
supernatants from ZIKV-infected PBMCs and CD14� monocyte-depleted PBMCs. Stim-
ulation with culture supernatant from ZIKV-infected nondepleted PBMCs led to a
significant upregulation in expression of CD107a, IFN-�, and NKG2D in the CD94�

CD56� NK cells (Fig. 6C), confirming the importance of monocytes in NK cell priming
during ZIKV infection. To rule out priming of NK cells by viruses present in the culture
supernatant, a UV treatment procedure was performed to inactivate the virus prior to

FIG 6 Immune profiling of ZIKV-infected PBMCs. (A) Immune mediators in the culture supernatant of ZIKV-infected PBMCs and CD14-depleted PBMCs were
quantified with a 45-plex microbead assay. Concentrations were scaled between 0 and 1. (B) Bar charts of three cytokines, levels of which were significantly
affected by both the depletion of CD14� monocytes and ZIKV infection. (C) Stimulatory capacity of the culture supernatants was further evaluated with freshly
isolated PBMCs. Culture supernatant was added in a ratio of 1:10, and cells were harvested at 36 h poststimulation. Compiled percentages of CD107a-, IFN-�-,
and NKG2D-positive CD94� CD56� NK cells are shown as normalized to the respective mock sample. Data displayed were derived from seven donors. Lineage
markers CD3, CD19, CD20, and CD14 have been included to rule out the presence of non-NK cells. All data are presented as means � standard deviations. *,
P � 0.05; **, P � 0.01; ***, P � 0.001, by Mann-Whitney U test, two-tailed.
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the stimulation assay. Expectedly, while UV inactivation successfully inactivated ZIKV
(Fig. S5A), it also affected the quality of the cytokines and led to reduced priming of NK
cells (Fig. S5B).

DISCUSSION

Myeloid cells are targets of active ZIKV infection (6–9, 21–23) and can elicit immune
responses with detrimental outcomes (6, 8). Both monocytes and macrophages exhibit
extensive heterogeneity (24, 25). While it is difficult to obtain tissue-resident macro-
phages for experimental purposes, human blood is a readily accessible, valuable source
of these cells. Transcriptomic profiling of ex vivo human blood monocytes and MDMs
has revealed marked differences between these cell types (26, 27). In this study, human
primary monocytes were naturally differentiated into MDMs without any bias for an M1
or M2 macrophage phenotype (28). Given that these cells are targets of ZIKV infection
(8), investigations into their cellular immune responses during infection will open
avenues to exploit their function for therapeutic benefits.

The level of ZIKV infection (as assessed by the amount of ZIKV antigen and genome
copy number) was higher in MDMs than monocytes, which corroborates previous
observations (8). Transcriptomic differences between monocytes and MDMs (26, 27)
would be a plausible explanation for the differential susceptibility of these cells to ZIKV
infection. It is also noteworthy that higher ZIKV infection levels were found in purified
primary cell populations than in PBMCs, perhaps due to the presence of other immune
subsets in PBMCs that may dampen the overall infection level. ZIKV RNA was detected
at the two time points, 24 and 72 hpi, and the virus was present as quasispecies
postinfection in human primary myeloid cells. The virus consensus sequence and minor
variant mapping revealed an overrepresentation of transition mutations at highly
variable nucleotide positions in the sequence reads. The proportion of these minor
variants indicated a shift toward becoming major variants. A recent study that se-
quenced ZIKV genomes isolated from infected patients provided important information
pertaining to ZIKV transmission (29). These data highlighted the degree of divergence
in sequenced genomes and placed further emphasis on understanding virus evolution
and transmission effectiveness (30). As not all recovered ZIKV RNA samples contained
the same mutations, it will be interesting to determine how different host immune
responses can lead to ZIKV quasispecies that acquire different combinations of muta-
tions.

ZIKV infection led to the differential abundance of host transcripts mapping to
numerous cellular genes in MDMs but not in monocytes, likely due to higher levels of
infection observed in MDMs. Furthermore, it has been reported that different donors
could account for significant differences in cellular responses (31, 32). However, this
differential effect does not necessarily signify that ZIKV-infected monocytes do not elicit
any cellular response to infection but rather that the differences were not measurable
by RNA-seq at the read depths used in this analysis. In fact, transcript abundances of
numerous genes were different between the mock- and ZIKV-infected monocytes;
however, the statistical threshold of an FDR of �0.05 was not reached and thus these
findings were excluded from further analyses. Using IPA data mining, these differen-
tially expressed genes were involved in 133 and 63 canonical cellular pathways (27 of
them being shared) in MDMs at 24 and 72 hpi, respectively. The reduced number of
cellular pathways identified in ZIKV-infected MDMs at the later 72-hpi time point
suggests that certain cellular functions may be shut down postinfection (33). This effect
could signify that (i) the host cells conserve energy to focus only on essential pathways
for survival and/or (ii) the host cells have succumbed to ZIKV infection, which leads to
transcriptional shutdown in host cells.

Unsurprisingly, the IFN response was the most highly expressed signaling pathway
of these common pathways at both time points because of the virus trigger (34). This
observation was further complemented by the presence of few other IFN-related
pathways. Observations were found for the next two most expressed pathways—
pathogenesis of multiple sclerosis and cross talk between NK cells and moDCs— both
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of which involve NK cells. Although ZIKV infection has not been previously associated
with multiple sclerosis due to the relatively new disease spectrum, other viral infections
such as those with Epstein-Barr virus (35) and measles virus (36) have been linked.

CXCL9, CXCL10, CXCL11, and CCL5 (identified as the top genes in the pathway) are
chemokines known to stimulate NK cell activation (37, 38). The increased transcript
abundance of these immune mediators, coupled with others such as IL-15, is a strong
indication that ZIKV-infected macrophages are primed to “communicate” with NK cells.
Other recent studies have also provided evidence of cross talk between macrophages
and NK cells (18). The increased abundance of TNFSF10 and Fas transcripts in ZIKV-
infected MDMs could indicate priming of NK cell-mediated apoptosis (39). Interestingly,
levels of typical NK cell-activating cytokines, such as IL-12 (40, 41) and IL-18 (42, 43),
were not differentially expressed in this study. However, mRNA levels of IL-23 and IL-27,
two cytokines belonging to the family of IL-12 (44) with roles in NK cell activation (45,
46), were increased.

Immunophenotyping of whole-blood samples from ZIKV-infected patients revealed
the presence of CD69� CD56� immune cells (predominantly the CD56� NK cells) (15),
suggesting the possible priming of NK cells in ZIKV infection. Similar observations were
also reported in dengue virus (DENV) patients (47), as well as in volunteers vaccinated
with the yellow fever virus (YFV) vaccine (48). The involvement of NK cells was thus
explored ex vivo in human primary PBMCs. Interestingly, ex vivo culture alone led to an
increase in the basal expression level of CD69 in CD56� CD94� NK cells, as previously
reported (49). Furthermore, ZIKV infection resulted in reduced levels of CD69, which is
a phenomenon also reported for the flavivirus tick-borne encephalitis virus infection in
healthy donor NK cells (50). Moreover, NK cells behave differently ex vivo and in vivo
(51), which may explain the different levels of CD69 detected in patients and in ex vivo
ZIKV-infected NK cells. It was also reported in CD69-deficient mice that the activity of
NK cells remains functional (52). High levels of key NK activation markers, including the
degranulation marker CD107a and intracellular cytokine IFN-�, indicate the higher
activation status of NK cells. The activity of NK cells was directly dependent on the
presence of CD14� monocytes. ZIKV infection of PBMCs depleted of CD14� monocytes
significantly downregulated the expression of the various NK cell markers, demonstrat-
ing the functional role of monocytes as one of the key players for NK cell stimulation.
The data presented in this study are further supported by a recent publication in which
ZIKV patients had high levels of IL-18, TNF-�, and IFN-� (20)—immune mediators
associated with NK cell function. The use of SJL mice, which lack NK cells (53), as a
model of ZIKV infection also suggested a protective role for these immune cells given
that these animals succumbed to cortical malformations (54). Likewise, the NK cell-
mediated immune response was significantly increased in healthy volunteers receiving
a YFV vaccination (55). Thus, the role of NK cells during ZIKV infection should be
explored.

Interestingly, multiplex quantification of secreted immune mediators from ex vivo
ZIKV-infected PBMCs provided an alternate perspective. IL-18 and IFN-�, two NK
cell-related cytokines, were below the detection limit. However, freshly isolated PBMCs
stimulated with culture supernatants from ZIKV-infected PBMCs resulted in increased
priming of NK cells, clearly indicating that the concoction of immune mediators is
capable of driving NK cell activation.

Nonetheless, the, depletion of CD14� monocytes would abrogate this activation as
observed by the low levels of MCP-1, IL-1RA, VEGF-A, eotaxin, growth-related oncogene
alpha (GRO�), IFN-�, stromal cell-derived factor 1� (SDF-1�), IFN-�-induced protein 10
(IP-10), IL-6, IL-1�, IL-1�, IL-8, IL-21, and IL-10. The reduced levels of MCP-1 could also
have a detrimental effect on NK cell recruitment and priming (37, 56), although MCP-1
and VEGF-A have been reported to drive the production of each other (57–59). The high
levels of secreted IL-1RA from ZIKV-infected PBMCs could also have participated in the
increased priming of NK cells, as IL-1RA is known to potentiate the effect of IL-2
stimulation of NK cells (60). Thus, the loss of detectable IL-2 after ZIKV infection in
CD14-depleted PBMCs would further reduce NK cell priming. The presence of other
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immune mediators, such as IL-6, IL-8, IL-10, IP-10, SDF-1�, GRO�, IL-1�, and IL-1�, in
ZIKV-infected nondepleted PBMCs would further provide an inflammatory condition for
cellular activation. While the levels of these immune mediators have been reported to
be high in ZIKV patients (20), IL-10 and IP-10 have been demonstrated to contribute to
cytolysis and activation of NK cells (37, 61). Levels of leukemia inhibitory factor (LIF) (62),
IL-22 (63), and IL-31 (64) were high upon ZIKV infection, indicating their roles in
regulating T cells during ZIKV infection (65). T cells could regulate NK cell activity (66),
and monocytes could indirectly mediate NK cell functions through the T lymphocytes.
Though it was not exhibited in this work, monocytes are known to physically “com-
municate” with T cells, regulating their activities in the process (67). This is thought to
occur via the interaction between CD80/86 and CD28 expressed on the infected
monocytes and T cells, respectively (68). Likewise, monocytes could also activate NK
cells via physical interactions (69). Interestingly, it was recently reported that NK cells
were activated by monocyte-derived dendritic cells in a contact-dependent manner
during DENV infection (70). This further highlights the complexity of immune cell
interactions in different contexts.

To conclude, through a systematic investigative workflow combining approaches
exploring host cell transcriptomes and immunoproteomes, it was demonstrated that
monocytes and macrophages do not act alone but in conjunction with other immune
cells to orchestrate a series of host immune responses and drive disease progression.
As such, a comprehensive understanding of immune cell interaction will have impor-
tant clinical implications for the design of novel therapeutics that can either dampen
down or enhance a response as appropriate.

MATERIALS AND METHODS
Ethics approval and consent to participate. Whole-blood samples were collected from ZIKV-

infected patients who were referred to the Communicable Disease Centre, Tan Tock Seng Hospital,
Singapore. Blood was obtained from patients who provided written informed consent. The study
protocol was approved by the SingHealth Centralized Institutional Review Board (CIRB; reference no.
2016/2219). Blood samples were collected from healthy donors with written consent in accordance with
guidelines from the Health Sciences Authority of Singapore (study approval number NUS IRB 10-250).

Patient whole-blood samples. This study utilized whole-blood samples obtained from patients (n �
9) admitted to the Communicable Disease Centre at Tan Tock Seng Hospital, Singapore, from 27 August
to 18 October 2016. Samples included in this study were collected during the acute phase (1 to 7 days
post-illness onset [PIO]) of ZIKV infection. These patients were confirmed to be infected with ZIKV by
reverse transcription-PCR (RT-PCR) performed on serum and urine samples obtained during their first visit
to the clinic. Patients were screened negative for DENV exposure by RT-PCR and serology. Whole-blood
samples were collected in EDTA Vacutainer tubes (Becton, Dickinson). Whole-blood samples were also
obtained from healthy volunteers (n � 5) as controls, which were confirmed to be negative for ZIKV RNA
by RT-PCR.

Virus preparation. The ZIKV strain (GenBank accession number KJ776791.2) used in this study was
originally isolated from the French Polynesia outbreak in 2013 (71). The virus was propagated as
previously described (8). Briefly, the virus was propagated by multiple passages in Vero-E6 cells (ATCC;
CRL-1587) and precleared by centrifugation before storage at �80°C. The ZIKV stock contained approx-
imately 1.2 � 107 PFU/ml of infectious virus when titrated on Vero-E6 cells and approximately 3.5 � 109

ZIKV viral RNA copies/ml by the quantitative RT-PCR method described below. The virus titer was
determined using standard plaque assays with Vero-E6 cells. Vero-E6 cells were regularly tested for
mycoplasma contamination and were grown and passaged in Dulbecco’s modified Eagle’s medium
(DMEM; HyClone) supplemented with 10% (vol/vol) fetal bovine serum (FBS). UV inactivation of ZIKV was
performed with the CL-1000 UV cross-linker (UVP) at an intensity of 100 mJ/cm2 for 10 min.

Isolation and depletion of monocytes from human PBMCs. Monocytes were prepared from fresh
human PBMCs as previously described (8) and by gradient centrifugation using Ficoll-Paque density
gradient medium (GE Healthcare). Subsequently, monocytes were isolated using an indirect magnetic
labeling system (monocyte isolation kit II; Miltenyi Biotec). A direct magnetic labeling system (human
CD14� monocyte isolation kit 2; StemCell) was used for depletion of monocytes from PBMCs. The
manufacturers’ protocols were strictly adhered to for these procedures.

Differentiation of monocytes into MDMs. Isolated monocytes were differentiated into MDMs by
plating in complete Iscove’s modified Dulbecco’s medium (IMDM) (HyClone) supplemented with 10%
(vol/vol) heat-inactivated human serum (HS) (Sigma-Aldrich), which was replaced every 2 days. ZIKV
infections were performed on monocytes and MDMs 5 days later, as described below.

Virus infection. ZIKV infections in monocytes and MDMs (n � 5 each) were performed at a
multiplicity of infection (MOI) of 10. Each infection mixture consisted of a virus suspension prepared in
serum-free IMDM (HyClone). The cells were incubated with the infection mixture at 37°C and allowed to
adsorb for 2 h with intermittent shaking before the virus inoculum was removed and replaced with
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complete IMDM supplemented with 10% (vol/vol) HS (Sigma-Aldrich). Cells were incubated at 37°C until
harvesting at 24 and 72 hpi. The harvested cells for downstream total RNA isolation were stored at
�80°C. A total of 140 �l of the infected-cell suspension was used to quantify the viral load. For
assessment of monocyte function in NK cell activation during ZIKV infection, total human PBMCs (n �
7) and donor-corresponding CD14-depleted PBMCs (n � 7) were infected with ZIKV at an MOI of 10. In
parallel, both PBMC fractions were stimulated with 10 ng/ml lipopolysaccharide (LPS; Sigma) as a positive
control to measure NK cell activation. Cells were subsequently treated with 1� brefeldin (eBioscience)
and stained with CD107a (BD Pharmingen) 6 h before harvesting at 36 hpi. The viral load was quantified
from 140 �l of the infected-cell suspension. Negative controls (n � 7) were cells undergoing the same
infection conditions in the absence of infectious ZIKV particles. These controls are referred to as
mock-infected samples.

PBMC stimulation assay. Fresh PBMCs were isolated as described above and subjected to stimu-
lation with ZIKV-infected culture supernatants (n � 7) in a final ration of 1:10 in fresh IMDM (HyClone)
supplemented with 10% (vol/vol) HS (Sigma-Aldrich). Cells were subsequently treated with 1� brefeldin
(eBioscience) and stained with CD107a (BD Pharmingen) 6 h before harvesting at 36 h for downstream
antibody staining.

Viral RNA extraction and viral load analysis. Viral RNA was extracted using a QIAamp viral RNA
minikit (Qiagen), according to the manufacturer’s instructions. Quantification of ZIKV NS5 RNA was
determined by quantitative real-time PCR (qRT-PCR) TaqMan assay (72) using a QuantiTect Probe RT-PCR
kit (Qiagen) in a 12.5-�l reaction volume. All reactions were performed on a 7900HT Fast real-time PCR
system machine (Applied Biosciences).

Total RNA extraction. Total RNA was extracted using an RNeasy minikit (Qiagen) according to the
manufacturer’s instructions. The extracted total RNA was quantified on a NanoDrop 1000 spectropho-
tometer (Thermo Fisher Scientific).

Flow cytometry and antibodies. Detection of ZIKV antigen was carried out in a two-step indirect
intracellular labeling process. Briefly, harvested cells were first fixed and permeabilized with fluorescence-
activated cell sorting (FACS) lysing solution (BD Biosciences) and FACS permeabilization solution 2 (BD
Biosciences), respectively. Antigen staining was then performed with a flavivirus-specific mouse mono-
clonal antibody (clone 4G2) (Millipore) followed by secondary staining with a goat anti-mouse IgG F(ab=)2

antibody (Invitrogen). Cells were then specifically stained for the surface markers CD45 and CD14 (for
ZIKV-infected monocytes and MDMs). Dead cells were excluded by staining with the LIVE/DEAD Fixable
Aqua dead cell stain kit (Life Technologies). For PBMCs, surface markers CD45, CD14, CD3, CD19, and
CD56 were stained prior to intracellular staining (for ZIKV-infected PBMCs). For patient samples, 100 �l
of whole blood was stained for the surface markers CD56, CD94, CD16, CD69, CD107a, NKG2D, and
NKG2A. The stained cells were subsequently incubated with FACS lysing solution (BD Biosciences) to lyse
the red blood cells. Lymphocytes were first gated to exclude the neutrophils. Subsequently, CD56� cells
were first identified and further defined with the CD94 surface marker to give three other subsets—
CD56bright CD94hi, CD56dim CD94hi, and CD56dim CD94lo (16). To specifically assess NK cell activity ex vivo,
PBMC fractions were stained for CD107a and various lineage markers (CD3, CD19, CD20, and CD14) (15)
in addition to the panel of antibodies used for patient whole-blood staining. The usage of lineage
markers excludes the presence of non-NK cells in the ensuing analysis. Stained PBMCs were fixed and
permeabilized as described above before intracellular staining of ZIKV antigen and IFN-�. All gatings
were performed on single cells.

All antibodies used were mouse anti-human antibodies and were obtained from BD Pharmingen
(CD3, CD19, CD20, CD14, CD69, CD56, CD94, NKG2D, CD107a, and IFN-�), BioLegend (CD16 and CD45),
and Miltenyi Biotec (NKG2A). Data were acquired on a Fortessa flow cytometer (BD Biosciences) with BD
FACSDiva software. Data analysis was performed using FlowJo version 9.3.2 software (Tree Star, Inc.).

Cytokine quantification using microbead-based immunoassay and data analyses. Cytokine
levels in supernatant obtained from mock- and ZIKV-infected PBMCs were measured simultaneously
using the ProcartaPlex immunoassay (Thermo Fisher Scientific) detecting 45 secreted cytokines, chemo-
kines, and growth factors, including brain-derived neurotropic factor (BDNF); eotaxin/CCL11; epidermal
growth factor (EGF); fibroblast growth factor 2 (FGF-2); granulocyte-macrophage colony-stimulating
factor (GM-CSF); growth-related oncogene alpha (GRO�)/CXCL1; hepatocyte growth factor (HGF); nerve
growth factor (NGF) beta (73); leukemia inhibitory factor (10); alpha interferon (IFN-�); IFN-�;
interleukin-1� (IL-1�); IL-1�; IL-1RA; IL-2; IL-4; IL-5; IL-6; IL-7; IL-8/CXCL8; IL-9; IL-10; IL-12p70; IL-13; IL-15;
IL-17A; IL-18; IL-21; IL-22; IL-23; IL-27; IL-31; gamma interferon-induced protein 10 (IP-10)/CXCL10; monocyte
chemoattractant protein (MCP-1/CCL2); macrophage inflammatory protein 1� (MIP-1�)/CCL3; MIP-1�/
CCL4; regulated on activation, normal T cell expressed and secreted (RANTES)/CCL5; stromal cell-derived
factor 1� (SDF-1�)/CXCL12; tumor necrosis factor alpha (TNF-�); TNF-�/lymphotoxin alpha (LTA);
platelet-derived growth factor (PDGF)-BB; placental growth factor (PLGF); stem cell factor (SCF); vascular
endothelial growth factor A (VEGF-A); and VEGF-D. Preparation of samples and reagents and immuno-
assay procedures were performed according to manufacturers’ instructions. Data were acquired using a
Luminex FlexMap three-dimensional (3D) instrument (Millipore) and analyzed using Bio-Plex Manager 6.0
software (Bio-Rad) based on standard curves plotted through a five-parameter logistic curve setting.
Levels of BDNF, FGF-2, HGF, nerve growth factor (NGF), IFN-�, IL-4, IL-5, IL-7, IL-12p70, IL-13, IL-15, IL-18,
RANTES, PDGF-BB, PLGF, and VEGF-D were below detection limit and excluded for further analysis.
Hierarchical clustering was done using TM4-MeV (http://mev.tm4.org/).

RNA-seq and differential gene expression analysis. The general approach to RNA-seq and
differential expression has been previously described (10, 74) and is detailed in brief below.

Lum et al.

March/April 2018 Volume 3 Issue 2 e00120-18 msphere.asm.org 14

 on M
ay 17, 2018 by guest

http://m
sphere.asm

.org/
D

ow
nloaded from

 

http://mev.tm4.org/
msphere.asm.org
http://msphere.asm.org/


RNA-seq. RNA samples were treated with DNase using an Ambion Turbo DNA-free kit (Ambion) and
then purified using AMPure XP beads (Agencourt). The DNase-treated RNA (2 �g) underwent Ribo-Zero
treatment using an Epicentre Ribo-Zero Gold kit (human/rat/mouse) (Epicentre) and was repurified on
AMPure XP beads. Successful RNA depletion was verified using a Qubit (Thermo Fisher Scientific) and an
Agilent 2100 Bioanalyzer (Agilent), and all of the depleted RNA was used as input material for the
ScriptSeq v2 RNA-seq library preparation protocol. RNA was amplified for 14 cycles, and the libraries were
purified on AMPure XP beads. Each library was quantified using Qubit, and the size distribution was
assessed using the AATI fragment analyzer (Advanced Analytical). These final libraries were pooled in
equimolar amounts using the Qubit and fragment analyzer data. The quantity and quality of each pool
were assessed by the fragment analyzer and subsequently by quantitative PCR (qPCR) using the Illumina
library quantification kit (Kapa Biosystems) on a Light Cycler LC480II (Roche) according to the manufac-
turer’s instructions. The template DNA was denatured according to the protocol described in the Illumina
cBot user guide and loaded at a 12 pM concentration. Sequencing was carried out on three lanes of an
Illumina HiSeq 2500 with version 4 chemistry, generating 2- by 125-bp paired-end reads.

Bioinformatics analysis. Briefly, base calling and demultiplexing of indexed reads were performed
using CASAVA version 1.8.2 (Illumina) to produce 30 samples from the five lanes of sequence data in
fastq format. The raw fastq files were trimmed to remove the Illumina adapter sequences using Cutadapt
version 1.2.1 (75). The option “-O 3” was set so that the 3= end of any read that matched the adapter
sequence by �3 bp was removed. The reads were further trimmed to remove low-quality bases using
Sickle version 1.200 with a minimum window quality score of 20. After trimming, reads of �50 bp were
removed. If both reads from a pair passed this filter, each read was included in the R1 (forward reads) or
R2 (reverse reads) file. If only one read of a read pair passed this filter, it was included in the R0 (unpaired
reads) file. The reference genome used for alignment was the human reference genome assembly GRCh38,
downloadable from the Ensembl ftp site. The reference annotation was downloaded from the Ensembl ftp
site (ftp://ftp.ensembl.org/pub/release-77/gtf/homo_sapiens/Homo_sapiens.GRCh38.77.gtf.gz). The an-
notated file contained 63,152 genes. R1/R2 read pairs were mapped to the reference sequence using
TopHat2 version 2.1.0 (76), which employs the mapper Bowtie 2 version 2.0.10 (77).

Differential gene expression and functional analysis. Mapped reads were further analyzed using
edgeR version 3.3 (78) to calculate normalized counts per million (CPM), identify genes differentially
expressed between infected and mock-infected conditions, and compare infected conditions with each
other. Correlation and principal-component analysis (PCA) plots were created in RStudio. Heat maps were
generated using GENE-E (Broad Institute; https://software.broadinstitute.org/GENE-E/). IPA was used for
gene ontology and pathway analysis. The P value associated with each identified canonical pathway was
calculated by Fisher’s exact test (right-tailed). The presence of the 27 common canonical pathways was
illustrated in a heat map generated by hierarchical clustering using TM4-MeV (79).

Identification of ZIKV variants. Bowtie 2 (77) was used to determine the mean sequence coverage.
Here, 12 of the 41 samples (including the inoculum) had a mean coverage of �10 following alignment
with the ZIKV reference genome (GenBank accession number KJ776791.2) used in this study. The
frequencies of minor variants were calculated using QuasiRecomb (80). Sequences of individual viral
proteins were compared to the Protein Data Bank using the online NCBI Protein BLAST server (https://
blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE�Proteins).
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