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Abstract— Time to digital conversion is an important task in many 

systems.  It involves the conversion of time-based signals (as 

opposed to the amplitude-based signals in analog-to-digital 

conversion) into digital numbers so that a purely digital system 

may process them.  This is widely used in rangefinders, all-digital 

phase-locked loops and quantum experiments.  In order to obtain 

high-resolution time-to-digital conversion, the generation of small 

delays is necessary.  This paper examines the viability of using the 

DSP48A1 blocks present on Xilinx FPGAs to generate these small 

delays, and ultimately concludes they are unsuitable in isolation 

due to the high differential non-linearity, but may be suitable as a 

semi-fine stage of a multi-stage TDC or when combined in an 

equivalent coding line. 

Keywords- Time-to-Digital Converters; Field-Programmable 

Gate Arrays; Xilinx; Digital Signal Processing; Delay Generation 

I.  INTRODUCTION (HEADING 1) 

A. State of the Art 

Time to digital conversion is a relatively obscure topic 
compared to the more widely known analog-to-digital 
conversion.  As such, major developments in the field are still 
relatively frequent.  Until recently, most Time-to-Digital 
Converter (TDC) designs were focused on a two-stage process 
involving a Time-to-Analog Converter (TAC) followed by an 
Analog-to-Digital Converter (ADC) [1]. These TAC-ADC 
systems obtained higher resolutions and ranges when transistors 
remained large and propagation delays remained long, but as 
process nodes became smaller, digital delay generation methods 
such as delay lines, Vernier delay lines and Vernier rings have 
surpassed TAC-ADCs in both resolution and size.  In addition, 
recent developments such as pulse-shrinking TDCs [1], Local-
Passive Interpolation (LPI) TDCs [1] and Stochastic TDCs [1] 
have further increased the resolution. 

Fundamental to all these digital delay generation methods is 
the delay element.  The specifications of the delay element 
define the resolution of the TDC, and so improvements to the 
delay generation method is an important factor in increasing size 
of the delay element is the resolution (LSB) of the delay line, 
whereas more advanced methods such as the Vernier delay lines 

use the difference between parallel elements or some other 
property.  In this paper we have investigated a new method of 
delay generation and evaluated its viability in comparison with 
other known methods. 

Traditional methods of delay generation can be split into 
three categories: digital delays, analog delays and pulse 
modification.  Digital delays utilise the inherent delay present in 
a digital component, such as an inverter (CMOS) or transmission 
gate (Pass Transistor Logic), to create a time difference.  
Examples of this include the delay line and Vernier delay line, 
which use the delay of an element and the difference between 
element delays respectively.  As the difference between element 
delays can be tuned to a much higher precision, the Vernier 
delay line is generally superior in resolution.  However, it suffers 
in conversion speed and is not applicable to all system 
architectures, such as FPGAs. 

Analog delays are formed by passing the signal through 
analog components to delay it, rather than digital ones.  These 
methods include inductive delays and switched capacitor arrays, 
of which the switched capacitor method is more popular as it can 
be easily integrated into an ASIC.  Similarly to the Vernier delay 
lines, these methods are not suitable for some architectures, and 
hence belong exclusively in the field of ASIC TDCs.  The use 
of switched capacitor arrays is most commonly seen in cyclic 
time-domain successive approximation (CTDSA) TDCs [1]. 

Pulse modification techniques involve encoding the time as 
the on time of a pulse, and then successively modifying the pulse 
until it reaches some detectable state.  Most commonly, this is 
implemented as a looped pulse shrinker, which shortens the 
pulse by a known amount until it is no longer detectable [1].  
While the linearity of this method is excellent, and careful 
selection of transistor sizes allows for excellent resolution, the 
conversion rate is relatively low for this method, and it is most 
often unsuitable for FPGAs.  

When looking specifically at FPGA-compatible methods, 
the most common method utilised appears to be delay lines, as 
there is almost always some form of delay element available on 
the FPGA.  Sometimes, an FPGA will have a suitable 
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architecture for implementing a Vernier delay line [1], and 
sometimes an element can be found which is suitable for pulse 
shrinking, but this is dependent on the particular FPGA 
architecture.  Delay lines can be generated in various ways, such 
as with the look-up tables (LUTs) configured as buffers, but the 
highest resolution found so far appears to be the carry chain [1] 
made available for addition operations. 

As FPGAs are often required to perform addition and 
subtraction, most vendors implement carry logic with a fast 
interconnect between logic blocks, as this is commonly the 
critical path, and so fast carry logic may drastically increase the 
speed of the design.  The carry logic also generally propagates 
perpendicularly to the rest of the logic interconnects, as this 
allows parallel signals which are part of the same number to have 
similar routes through the FPGA, thereby increasing the 
probability of meeting timing requirements.  These carry chains 
are also ideal for implementing fast delay lines which output a 
priority code based on the delay between the start and stop 
signals. 

Despite the importance of the generating high-resolution 
delays, there are seemingly no reports of the viability of the 
FPGA's built-in DSP48A1 block as a delay generator, despite 
the architecture suggesting that it is suitable. 

B. DSP48A1 Architecture 

Almost every DSP algorithm has MAC (Multiply 
Accumulate) operations.  In the Spartan-3A architecture, the 
DSP48A slice is available for MAC operations and it has been 
extended into the DSP48A1 slice in the Spartan-6 series. In 
Spartan-6 FPGAs, DSP48A1 slices are organized as vertical 
columns along with some additional dedicated logic and routing 
[1]. One of the most important features is the ability to cascade 
a result from one DSP48A1 slice to the next without the use of 
general fabric routing. Each DSP48A1 slice contains an 18-bit 
input pre-adder followed by an 18 x 18-bit two’s complement 
multiplier and a 48-bit sign-extended post-
adder/subtracter/accumulator, a function that is widely used in 
digital signal processing. Figure 1 shows a simplified block 
diagram of the DSP48A1. 

All these arithmetic operations are hard-wired fabricated into 
the silicon. Every arithmetic function has pipeline registers on 
its input and output. These registers are very close to the 
corresponding function logic and can be bypassed, so arithmetic 
functions (Combinational Logic) can directly connect to FPGA 
fabric. The performance of DSP48A1 is explained in [1]. 

C. Applications of efficient high-resolution delay generation 

With the development of single photon applications, high 
resolution time measurement became important in many 
different aspects of engineering and science. One of the most 
popular applications of time-to-digital converters is time of 
flight measurements such as LiDAR. In a LiDAR setup, a TDC 
is used for precisely measuring the time difference between the 
START signal of the emission and STOP signals corresponding 
to its reflections. As the resolution of the TDC increases, the 
LiDAR's capability of measuring shorter distances improves. 
This is desirable in applications such as positron emission 
tomography(PET). A high resolution TDC could also be used 
for coincidence measurements in quantum physics such as in 
Bell test experiments. In quantum physics experiments, high-
resolution time measurement techniques would be a part of 
gating the events of interest from the background noise. Apart 
from single photon applications, high resolution TDCs can also 
be found in digital phase locked loops as a part of the phase 
detector circuit. 

D. Structure 

The rest of the paper will be formatted as follows: first will 
be a section on the design of a system that uses DSP48A1 blocks 
as delay generators, which will detail how the DSP blocks can 
be used to generate 48 delays per block.  Following that is a 
section describing how the DSP blocks were tested to determine 
their viability.  After that is the results section, where the results 
of the tests are shown.  The penultimate section discusses the 
results obtained and how they relate to the performance of a 
TDC using DSP41A1 blocks.  The paper is ended with a 
conclusion which summarises the results of our experiments and 
suggests some possible uses for the DSP block delay generation. 

II. SYSTEM DESIGN 

A. Generating a delay line inside a DSP48A1 

The first task was to attempt to generate a delay line inside a 
single DSP48A1 block.  A delay line requires a single input that 
changes from 0 to 1 (or vice-versa), and multiple outputs which 
transition successively.  Preferably, it would also have 
unregistered inputs and outputs from adjacent blocks.  For this 
purpose, we chose the post-adder in the DSP block.  The benefit 
of the post-adder is the carry in and carry out connections, which 
can be configured to be unregistered.  Also, it contains the 
shortest path to the output pins of the DSP48A1.  Finally, the P 
register can be configured to provide the output discrimination 
required, thereby reducing the logic utilisation. 

To configure the DSP48A1 block, all register bypass muxes 
were used to bypass their associated registers.  The Z input to 
the post-adder was set to use the C input port, which had all 48 
bits set to 1, thereby causing the post-adder to carry any 
additional non-zero input through the internal carry chain.  The 
X input was set to use the 0 input on all DSPs except the first, 
which used the D:A:B concatenated input where B[0] is 
connected to the trigger and all other bits are connected to 0.  The 

Figure 1: Simplified block diagram of the DSP48A1 [2]. 



7th Mediterranean Conference on Embedded Computing          MECO’2018, Budva, Montenegro 

connection of B[0] to the trigger on the first DSP allows for the 
trigger to be input to the DSP carry chain, while the other DSPs 
use the carry input to trigger the later sections of the delay line. 

B. Placement on the FPGA Fabric 

The carry in and carry out are dedicated connections between 
the DSPs, which are placed column-wise.  By using the device-
native blocks in the chosen hardware description language, the 
synthesis tool is forced to use adjacent DSP blocks with minimal 
inter-DSP latency.  As a result, the delay between DSP48A1 
blocks is minimised, resulting in optimal differential linearity in 
the delay line. 

C. Triggering Logic 

In order to avoid reading out when there is no valid data in 
the delay line, some triggering logic was implemented.  The 
trigger was passed through a synchroniser which normalised it 
to the clock edge, and then the current value of the trigger was 
compared to the value of the trigger on the previous clock cycle.  
If the trigger is high on the current clock cycle and was low on 
the previous clock cycle (rising edge triggered), then this implies 
a new trigger came in and so there is valid data in the delay line.  
This is then used to enable the priority encoder and read-out 
logic, which convert the priority code to binary and transmit the 
binary to a host computer respectively. 

To do this, the trigger signal is delayed by multiple clock 
cycles so that it stays in-line with the valid conversion as it 
propagates through the synchronisers and priority encoder, 
before finally becoming the enable signal for the read-out logic, 
which is described in the Section II.D  

D. Read-Out Logic 

Read-out was performed using the parallel interface 
provided by the Opal Kelly SDK [1].  This interface allows 32-
bit quantities to be transferred to a host PC using the USB 
present on Opal Kelly FPGA carrier boards.  As the tags are 10-
bit quantities and the coarse count is not required for code 
density testing, the upper 6 bits of each word were set to 0, while 
the 10-bit bin number was stored in the lower bits of the word.  
A 10-bit quantity was required as 20 DSP blocks were 
implemented (960 bins) in order to ensure no tags exceeded the 
end of the delay line. 

The transmitted data was collected by software on the host 
PC in a comma-separated variable format, then imported into 
GNU Octave for analysis. 

III. TEST METHODOLOGY 

High-resolution and PVT-stable delay lines and capture 
registers are required for TDC applications.  As we use the 
DSP48A1's post-adder carry propagation logic (48 bits) and the 
P register as the capture register, we can expect the delay line's 
characteristics to be similar to that of a carry look-ahead adder 
(the architecture used in most adders).  The carry lookahead 
logic is defined by Equation Error! Reference source not 
found. where 𝐶𝑖 is 𝑖th carry output and it is produced by Gi =
 Ai. Bi (carry generation) or  Pi =  Ai ⊕  Bi (carry propagation). 

𝐶𝑖 = 𝐺𝑖 + 𝑃𝑖 . 𝐶𝑖−1 (1) 

We model the DSP delay line using the generic model shown 
in Figure 2.  Each buffer here corresponds to the carry 
propagation logic between one bit of the adder and the previous 
bits of the adder (and in some cases may be negative where carry 
bypassing occurs).  This allows us to use standard average delay 
and code density testing methods to determine the delay of each 
bit of the adder. 

In the average delay tests, we determine the time taken for 
the start signal to reach the final time bin (end of the last 'buffer') 
as shown in Figure 2.  This implies an output code of 
0xFFFF...FFFF and the MSB being '1'.  In the code density tests, 
we determine the propagation delay of each 'buffer' by providing 
random signals in the time domain, uniformly distributed with 
respect to the stop signal, and creating a histogram of the priority 
encoder outputs.  In the case that the stop signal is not equally 
routed (there are buffers between each bin on the stop line), the 
bin size will increase by the delay to the corresponding register, 
and decrease by the delay to the previous register. 

A. Average Delay Testing 

In the average delay test, the post-adder was set up to have 
all the bits on one of its inputs high, and all the bits on the other 
input low except the LSB, which was connected to the trigger 
signal.  As we are adding one to the maximum representable 
number, all the bits will roll around to 0 through the carry 
propagation logic.  To determine the average delay, we calculate 
the time difference between the LSB and MSB transitioning. 

To implement this, we first connected two probes from a 
1GHz oscilloscope to adjacent FPGA outputs (same IOB).  
These outputs were both connected to the LSB of a DSP block 
with the D:A:B input (through the Z-mux) being 
0xFFFFFFFFFFFF to enable the carry chain and the C input 
(through the X-mux) being 0 except the LSB, which was the 
trigger generated by an on-chip oscillator.  The probe delays 
were then adjusted to tear (align) the signals before re-routing 
one output to the MSB of the DSP block, which resulted in an 
almost identical path while including the full delay of the DSP.  
The nets were inspected post-implementation to ensure matched 
routing. 

B. Code Density Testing 

In addition to the average delay testing, code density testing 
is an important component in determining the viability of a delay 
generation method.  Even if the average delay is exceptionally 
low, a TDC is unusable unless the non-linearity characteristics 
are decent.  A good parallel to this is the linearity of an ADC.  

Figure 2: Generic model of a delay line. 
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Even if an ADC can be found to have 100 bits of resolution (well 
in excess of most modern ADC designs), this is useless if one 
bin covers half the range of the ADC while the other 1023 cover 
the other half.  In such a case, the effective resolution is at most 
2 bits.  Such an ADC is useful, however, as putting another ADC 
in parallel but offset in the voltage domain could allow the two 
ADCs to efficiently cover the entire voltage range.  On the other 
hand, this increases the area requirements.  The same can be said 
for a bad TDC; as long as the code density is decent, corrections 
can be made to cover for its weakness using another TDC in 
parallel. 

1) Linear Code Density Testing 

Code density testing is one of many techniques to measure 
the linearity of the TDC.  The code density test provides random, 
uniformly distributed signals to the TDC and stores the 
conversion results.  When provided with a uniformly random 
signal (in the time domain), the number of times a particular 
code will be output by the TDC will be proportional to the size 
of the time bin corresponding to that code.  A larger time bin 
(longer delay until the next storage element) will accumulate 
more 'hits' (number of times the corresponding bin code is 
output) whereas a smaller time bin will accumulate less hits.  
Once a suitable number of hits has been accumulated to obtain 
an accurate measure of the width of each bin, the size of time bin 
𝑖, τi, will be calculated as in Equation  (2) 

𝜏𝑖 =
𝐻𝑖×𝑇𝑐𝑙𝑘

𝐻𝑡𝑜𝑡𝑎𝑙
 (2) 

𝑇𝑖 = ∑
𝐻𝑗×𝑇𝑐𝑙𝑘

𝐻𝑡𝑜𝑡𝑎𝑙

𝑖
𝑗=0  (3) 

In Equation  (2), 𝐻𝑖  is the number of hits for bin 𝑖, 𝐻𝑡𝑜𝑡𝑎𝑙  
is the total number of hits for all bins, and 𝑇𝑐𝑙𝑘  is the period of 
the system clk (which acts as our stop signal, and so the period 
is the maximum possible time difference).  Similarly, the 
cumulative form of this equation, 𝑇𝑖 , can be used to determine 
the delay up to a certain bin (and is hence used for calibration). 

2) Cyclic Code Density Testing 

In this test, the post-adder P register is enabled and 2 
independent oscillators are used to produce a random phase drift. 
The first oscillator is similar to the average delay test and is 
connected in the same way to generate the first carry. A 1kHz 
trigger signal with a different oscillator is connected to the P 
pipeline register to capture the carry propagation randomly. In 
the capture register, invalid codes (0x000000000000 and 
0xFFFFFFFFFFFF) are removed and the rest of the codes are 
transferred to a PC via a serial interface. 

3) Subdivided Code Density Testing 

In order to eliminate the possibility of carry look-ahead logic 
eliminating some bins by forwarding the carry across 24 bins at 
once, we implemented a method which simultaneously tests 
both the lower and upper 24 bits without continuity between 
them.  In this test, a 10MHz trigger signal was input into a DSP 
block at positions 0 and 24 through the C input and Z-mux, while 
the D:A:B input and X-mux was set to 0x7FFFFF7FFFFF so 

that the carries would stop at positions 23 and 47 respectively.  
The number of cases of each output (23 and 47) being high was 
recorded on a host PC via a serial connection. 

C. Validation 

To ensure the results we achieved were accurate, we cross-
validated our results across two labs, designs and pieces of 
hardware.  The first design used linear code density testing on a 
Spartan-6 LX150 FPGA packaged by Opal Kelly [1] on a 
custom signal breakout board at the University of Bristol.  The 
other device, a Spartan-6, used a cyclic code density test at 
Quaid-i-Azam University.  If our results are to be believed, we 
expect that the individual bin sizes will not be the same, but the 
patterns in bin sizes should match.  For example, if there is a 
recurring pattern every 4 bins on one device, we would also 
expect to see a similar recurring pattern on the other device.  If 
this does not occur, then this suggests that the external 
components in the design (test input signal, read-out logic, 
system clock etc.) are interfering with the measurement and 
hence the design can be fixed to remove the effect of these 
external influences. 

IV. RESULTS 

A. Average Delay Testing 

Under testing, it was found that the delay between the two 
output signals was 800 ps (Figure 3) representing the entirety of 
the DSP delay.  As there are 48 bins, this evaluates to a mean bin 
width of 16.7 ps.  A similar test was performed, but measuring 
the time to output bit 23 rather than bit 47, which gave a relative 
delay of 400 ps, showing that the total delays in the first and 
second halves of the DSP are equal. 

 

 

 

 

Figure 3: Time difference between two output signals on a 1GHz oscilloscope. 
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B. Code Density Testing 

Histograms from the code density tests conducted at the 
University of Bristol and Quaid-i-Azam University were 
collected, with the bin widths for a single DSP block shown in 
Figure 4 and the calibration graph (cumulative bin widths) for a 
large (960 bin = 20 DSP) delay line shown in Figure 5.  The 
diagrams have been normalised to the number of hits and the 
clock period to obtain the delay times of each bin.  As the delay 
is on the y axis, a large vertical jump (large bin width) is 
undesirable (low resolution), whereas a small, non-zero vertical 
jump is desirable (high resolution).  No vertical ascension 
between bins implies a lost code, which can be ignored. 

V. DISCUSSION 

A. Average Delay Testing 

The average delay testing showed that the signals that 
emerged from the output pins of the FPGA had a difference of 
800 ps between them.  This suggests that the average delay of 
the bins is 16.7 ps.  This is a 20.5% improvement on the 
CARRY4 chain, presuming that all bins are in use (non-zero 
effective width).  However, as bins that have a zero effective 
width do not contribute to the resolution of the system (they are 
missing bins), the more missing bins we discover in the code 
density test, the lower the effective resolution. 

B. Code Density Testing 

As can be seen from the code density tests in Figure 4 and 
Figure 5, a single DSP48A1 does not create effective delay lines.  
While the average bin size per DSP is small (16.7 ps from the 
average delay testing), the bin sizes are very widely skewed, 

Figure 6: The histogram of the sub-divided test. Figure 4: A histogram of a 384k-hit  cyclic code density test. 

Figure 5: The calibration chart obtained from a histogram of a 384k-hit linear 
code density test.  The x axis is the output code, and the y axis is the time 

difference between the start and stop signals. 
Figure 7: The internal architecture of the DSP48A1 block (utilised 

components only), based on  [2]. 
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with the vast majority of bins exhibiting an effective width of 0 
ps (or so small that they could not be measured).  Meanwhile, a 
minority of bins exhibited large delays in the range of 40-170 ps 
and the few bins at the boundary of a DSP block exhibited delays 
between 200 and 350 ps.  As the missing bins (zero effective 
width) do not contribute to the resolution of the system, the 
actual resolution is 34.8 ps with a standard deviation of 51.3 ps. 

This is a significantly lower resolution (larger time 
difference) than has been achieved by the carry chains ((𝜇, 𝜎)  =
 (34 𝑝𝑠, 51 𝑝𝑠) compared with (21 𝑝𝑠, 25 𝑝𝑠)).  As a result, we 
can conclude that these devices are unsuitable for generating 
high-resolution delays (i.e acting as the final stage in a multi-
stage TDC) in isolation.  However, as they do generate a 
significant delay, they may be useful as a semi-fine stage in a 
multi-stage TDC, thereby reducing the required length of the 
fine delay line (and hence reducing the overall logic utilisation).  

Alternatively, multiple DSP blocks could be utilised in a 
parallel staggered fashion, allowing delay lines to sub-divide 
each other in an equivalent coding line.  As the resolution 
increases with the square root of the number of delay lines, 2.62 
(i.e.~3) DSP48A1 delay lines would be needed to obtain the 
same resolution as a CARRY4 chain.  The rest of this section 
will be dedicated to examining the cause of the observed delays. 

First, we observe the large bins at multiples of 48 in the linear 
test.  A comparatively large bin in a structure usually denotes 
some form of discontinuity in the logic structure, and in this case 
the discontinuity is the crossing between DSP48A1 blocks.  
Each DSP48A1 block provides 48 time bins, and then a carry 
out which is directly connected to the next DSP block.  While 
this direct connection is fast compared to most FPGA routes, it 
is still significantly slower than the routes inside the DSP block 
as the signal must travel through three configuration 
multiplexers between the post-adders of each DSP block. 

Second, we notice that the bins which are a multiple of 96 
(even multiples of 48) are larger than the odd multiples of 48.  
Unlike the odd multiples, the even multiples of 48 not only need 
to propagate between two DSP48A1 blocks, but also across a 
clocking discontinuity.  One in every four DSP interconnects is 
on a clock management tile (CMT) boundary, while another is 
bridging the CMT's dedicated clock routing area.  These jumps 
cause the multiples of 96 to have larger bins than the odd 
multiples of 48. 

Beyond this, we notice that bins which are an odd multiple 
of 24 are also relatively large.  The available documentation 
from Xilinx gives no indication as to the cause of this, and so it 
can only be presumed that there is some discontinuity in the 
internal addition logic present in the DSP48A1.  An example of 
this would be carry look-ahead logic, which in a 48-bit adder 
would forward the carry signal to multiples of 24. 

Under the split test, we see that the presence of the bins after 
bin 24 becomes much more pronounced.  This adds credibility 
to the suggestion that the missing bins are caused by carry look-
ahead logic is bypassing bins to increase adding speed, but at the 
expense of delay line differential non-linearity. 

VI. CONCLUSION 

In conclusion, we have found that the post-adder in a 
DSP48A1 block can be used to generate delays with an average 
length of 34.8 ps and a standard deviation of 51.3 ps.  This is a 
lower accuracy than the competing CARRY4 chain solutions, 
but this could be remedied by using multiple staggered 
DSP48A1 blocks in parallel.  The larger delay generated by the 
DSP48A1 blocks was found to be suitable as a semi-fine delay 
generation as would be required in a multi-stage TDC.  We 
discovered this using average delay calculation and code density 
testing. 

In future work, we would like to place multiple DSP blocks 
in parallel to enable a high-resolution, linear delay line that does 
not use the CARRY4 chains.  This could then be adopted as a 
technique for fitting extra delay lines into a multi-channel on-
chip TDC where the number of channels is limited by the 
quantity of logic elements. 
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