
 Tancock, S., Arabul, E., Dahnoun, N., & Mehmood, S. (2018). Can
DSP48A1 adders be used for high-resolution delay generation? In L.
Jozwiak, B. Lutovac, D. Jurisic, & R. Stojanovic (Eds.), 2018 7th
Mediterranean Conference on Embedded Computing (MECO 2018):
Proceedings of a meeting held 10-14 June 2018, Budva, Montenegro (pp.
370-375). Institute of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/MECO.2018.8406083

Peer reviewed version

Link to published version (if available):
10.1109/MECO.2018.8406083

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at https://ieeexplore.ieee.org/document/8406083 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/157816982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/MECO.2018.8406083
https://doi.org/10.1109/MECO.2018.8406083
https://research-information.bris.ac.uk/en/publications/can-dsp48a1-adders-be-used-for-highresolution-delay-generation(a8490a3f-b47c-437f-9ed4-8be3f8ec9135).html
https://research-information.bris.ac.uk/en/publications/can-dsp48a1-adders-be-used-for-highresolution-delay-generation(a8490a3f-b47c-437f-9ed4-8be3f8ec9135).html

7th Mediterranean Conference on Embedded Computing MECO’2018, Budva, Montenegro

Can DSP48A1 adders be used for high-resolution

delay generation?

Scott Tancock, Ekin Arabul and Naim Dahnoun

School of Computer Science, Electronic Engineering and

Engineering Mathematics, University of Bristol

Bristol, United Kingdom

scott.tancock@bristol.ac.uk, ea0534@bristol.ac.uk,

naim.dahnoun@bristol.ac.uk

Shahid Mehmood

Quaid-i-Azam University

Islamabad, Pakistan

raoshahid1580@gmail.com

Abstract— Time to digital conversion is an important task in many

systems. It involves the conversion of time-based signals (as

opposed to the amplitude-based signals in analog-to-digital

conversion) into digital numbers so that a purely digital system

may process them. This is widely used in rangefinders, all-digital

phase-locked loops and quantum experiments. In order to obtain

high-resolution time-to-digital conversion, the generation of small

delays is necessary. This paper examines the viability of using the

DSP48A1 blocks present on Xilinx FPGAs to generate these small

delays, and ultimately concludes they are unsuitable in isolation

due to the high differential non-linearity, but may be suitable as a

semi-fine stage of a multi-stage TDC or when combined in an

equivalent coding line.

Keywords- Time-to-Digital Converters; Field-Programmable

Gate Arrays; Xilinx; Digital Signal Processing; Delay Generation

I. INTRODUCTION (HEADING 1)

A. State of the Art

Time to digital conversion is a relatively obscure topic
compared to the more widely known analog-to-digital
conversion. As such, major developments in the field are still
relatively frequent. Until recently, most Time-to-Digital
Converter (TDC) designs were focused on a two-stage process
involving a Time-to-Analog Converter (TAC) followed by an
Analog-to-Digital Converter (ADC) [1]. These TAC-ADC
systems obtained higher resolutions and ranges when transistors
remained large and propagation delays remained long, but as
process nodes became smaller, digital delay generation methods
such as delay lines, Vernier delay lines and Vernier rings have
surpassed TAC-ADCs in both resolution and size. In addition,
recent developments such as pulse-shrinking TDCs [1], Local-
Passive Interpolation (LPI) TDCs [1] and Stochastic TDCs [1]
have further increased the resolution.

Fundamental to all these digital delay generation methods is
the delay element. The specifications of the delay element
define the resolution of the TDC, and so improvements to the
delay generation method is an important factor in increasing size
of the delay element is the resolution (LSB) of the delay line,
whereas more advanced methods such as the Vernier delay lines

use the difference between parallel elements or some other
property. In this paper we have investigated a new method of
delay generation and evaluated its viability in comparison with
other known methods.

Traditional methods of delay generation can be split into
three categories: digital delays, analog delays and pulse
modification. Digital delays utilise the inherent delay present in
a digital component, such as an inverter (CMOS) or transmission
gate (Pass Transistor Logic), to create a time difference.
Examples of this include the delay line and Vernier delay line,
which use the delay of an element and the difference between
element delays respectively. As the difference between element
delays can be tuned to a much higher precision, the Vernier
delay line is generally superior in resolution. However, it suffers
in conversion speed and is not applicable to all system
architectures, such as FPGAs.

Analog delays are formed by passing the signal through
analog components to delay it, rather than digital ones. These
methods include inductive delays and switched capacitor arrays,
of which the switched capacitor method is more popular as it can
be easily integrated into an ASIC. Similarly to the Vernier delay
lines, these methods are not suitable for some architectures, and
hence belong exclusively in the field of ASIC TDCs. The use
of switched capacitor arrays is most commonly seen in cyclic
time-domain successive approximation (CTDSA) TDCs [1].

Pulse modification techniques involve encoding the time as
the on time of a pulse, and then successively modifying the pulse
until it reaches some detectable state. Most commonly, this is
implemented as a looped pulse shrinker, which shortens the
pulse by a known amount until it is no longer detectable [1].
While the linearity of this method is excellent, and careful
selection of transistor sizes allows for excellent resolution, the
conversion rate is relatively low for this method, and it is most
often unsuitable for FPGAs.

When looking specifically at FPGA-compatible methods,
the most common method utilised appears to be delay lines, as
there is almost always some form of delay element available on
the FPGA. Sometimes, an FPGA will have a suitable

7th Mediterranean Conference on Embedded Computing MECO’2018, Budva, Montenegro

architecture for implementing a Vernier delay line [1], and
sometimes an element can be found which is suitable for pulse
shrinking, but this is dependent on the particular FPGA
architecture. Delay lines can be generated in various ways, such
as with the look-up tables (LUTs) configured as buffers, but the
highest resolution found so far appears to be the carry chain [1]
made available for addition operations.

As FPGAs are often required to perform addition and
subtraction, most vendors implement carry logic with a fast
interconnect between logic blocks, as this is commonly the
critical path, and so fast carry logic may drastically increase the
speed of the design. The carry logic also generally propagates
perpendicularly to the rest of the logic interconnects, as this
allows parallel signals which are part of the same number to have
similar routes through the FPGA, thereby increasing the
probability of meeting timing requirements. These carry chains
are also ideal for implementing fast delay lines which output a
priority code based on the delay between the start and stop
signals.

Despite the importance of the generating high-resolution
delays, there are seemingly no reports of the viability of the
FPGA's built-in DSP48A1 block as a delay generator, despite
the architecture suggesting that it is suitable.

B. DSP48A1 Architecture

Almost every DSP algorithm has MAC (Multiply
Accumulate) operations. In the Spartan-3A architecture, the
DSP48A slice is available for MAC operations and it has been
extended into the DSP48A1 slice in the Spartan-6 series. In
Spartan-6 FPGAs, DSP48A1 slices are organized as vertical
columns along with some additional dedicated logic and routing
[1]. One of the most important features is the ability to cascade
a result from one DSP48A1 slice to the next without the use of
general fabric routing. Each DSP48A1 slice contains an 18-bit
input pre-adder followed by an 18 x 18-bit two’s complement
multiplier and a 48-bit sign-extended post-
adder/subtracter/accumulator, a function that is widely used in
digital signal processing. Figure 1 shows a simplified block
diagram of the DSP48A1.

All these arithmetic operations are hard-wired fabricated into
the silicon. Every arithmetic function has pipeline registers on
its input and output. These registers are very close to the
corresponding function logic and can be bypassed, so arithmetic
functions (Combinational Logic) can directly connect to FPGA
fabric. The performance of DSP48A1 is explained in [1].

C. Applications of efficient high-resolution delay generation

With the development of single photon applications, high
resolution time measurement became important in many
different aspects of engineering and science. One of the most
popular applications of time-to-digital converters is time of
flight measurements such as LiDAR. In a LiDAR setup, a TDC
is used for precisely measuring the time difference between the
START signal of the emission and STOP signals corresponding
to its reflections. As the resolution of the TDC increases, the
LiDAR's capability of measuring shorter distances improves.
This is desirable in applications such as positron emission
tomography(PET). A high resolution TDC could also be used
for coincidence measurements in quantum physics such as in
Bell test experiments. In quantum physics experiments, high-
resolution time measurement techniques would be a part of
gating the events of interest from the background noise. Apart
from single photon applications, high resolution TDCs can also
be found in digital phase locked loops as a part of the phase
detector circuit.

D. Structure

The rest of the paper will be formatted as follows: first will
be a section on the design of a system that uses DSP48A1 blocks
as delay generators, which will detail how the DSP blocks can
be used to generate 48 delays per block. Following that is a
section describing how the DSP blocks were tested to determine
their viability. After that is the results section, where the results
of the tests are shown. The penultimate section discusses the
results obtained and how they relate to the performance of a
TDC using DSP41A1 blocks. The paper is ended with a
conclusion which summarises the results of our experiments and
suggests some possible uses for the DSP block delay generation.

II. SYSTEM DESIGN

A. Generating a delay line inside a DSP48A1

The first task was to attempt to generate a delay line inside a
single DSP48A1 block. A delay line requires a single input that
changes from 0 to 1 (or vice-versa), and multiple outputs which
transition successively. Preferably, it would also have
unregistered inputs and outputs from adjacent blocks. For this
purpose, we chose the post-adder in the DSP block. The benefit
of the post-adder is the carry in and carry out connections, which
can be configured to be unregistered. Also, it contains the
shortest path to the output pins of the DSP48A1. Finally, the P
register can be configured to provide the output discrimination
required, thereby reducing the logic utilisation.

To configure the DSP48A1 block, all register bypass muxes
were used to bypass their associated registers. The Z input to
the post-adder was set to use the C input port, which had all 48
bits set to 1, thereby causing the post-adder to carry any
additional non-zero input through the internal carry chain. The
X input was set to use the 0 input on all DSPs except the first,
which used the D:A:B concatenated input where B[0] is
connected to the trigger and all other bits are connected to 0. The

Figure 1: Simplified block diagram of the DSP48A1 [2].

7th Mediterranean Conference on Embedded Computing MECO’2018, Budva, Montenegro

connection of B[0] to the trigger on the first DSP allows for the
trigger to be input to the DSP carry chain, while the other DSPs
use the carry input to trigger the later sections of the delay line.

B. Placement on the FPGA Fabric

The carry in and carry out are dedicated connections between
the DSPs, which are placed column-wise. By using the device-
native blocks in the chosen hardware description language, the
synthesis tool is forced to use adjacent DSP blocks with minimal
inter-DSP latency. As a result, the delay between DSP48A1
blocks is minimised, resulting in optimal differential linearity in
the delay line.

C. Triggering Logic

In order to avoid reading out when there is no valid data in
the delay line, some triggering logic was implemented. The
trigger was passed through a synchroniser which normalised it
to the clock edge, and then the current value of the trigger was
compared to the value of the trigger on the previous clock cycle.
If the trigger is high on the current clock cycle and was low on
the previous clock cycle (rising edge triggered), then this implies
a new trigger came in and so there is valid data in the delay line.
This is then used to enable the priority encoder and read-out
logic, which convert the priority code to binary and transmit the
binary to a host computer respectively.

To do this, the trigger signal is delayed by multiple clock
cycles so that it stays in-line with the valid conversion as it
propagates through the synchronisers and priority encoder,
before finally becoming the enable signal for the read-out logic,
which is described in the Section II.D

D. Read-Out Logic

Read-out was performed using the parallel interface
provided by the Opal Kelly SDK [1]. This interface allows 32-
bit quantities to be transferred to a host PC using the USB
present on Opal Kelly FPGA carrier boards. As the tags are 10-
bit quantities and the coarse count is not required for code
density testing, the upper 6 bits of each word were set to 0, while
the 10-bit bin number was stored in the lower bits of the word.
A 10-bit quantity was required as 20 DSP blocks were
implemented (960 bins) in order to ensure no tags exceeded the
end of the delay line.

The transmitted data was collected by software on the host
PC in a comma-separated variable format, then imported into
GNU Octave for analysis.

III. TEST METHODOLOGY

High-resolution and PVT-stable delay lines and capture
registers are required for TDC applications. As we use the
DSP48A1's post-adder carry propagation logic (48 bits) and the
P register as the capture register, we can expect the delay line's
characteristics to be similar to that of a carry look-ahead adder
(the architecture used in most adders). The carry lookahead
logic is defined by Equation Error! Reference source not
found. where 𝐶𝑖 is 𝑖th carry output and it is produced by Gi =
 Ai. Bi (carry generation) or Pi = Ai ⊕ Bi (carry propagation).

𝐶𝑖 = 𝐺𝑖 + 𝑃𝑖 . 𝐶𝑖−1 (1)

We model the DSP delay line using the generic model shown
in Figure 2. Each buffer here corresponds to the carry
propagation logic between one bit of the adder and the previous
bits of the adder (and in some cases may be negative where carry
bypassing occurs). This allows us to use standard average delay
and code density testing methods to determine the delay of each
bit of the adder.

In the average delay tests, we determine the time taken for
the start signal to reach the final time bin (end of the last 'buffer')
as shown in Figure 2. This implies an output code of
0xFFFF...FFFF and the MSB being '1'. In the code density tests,
we determine the propagation delay of each 'buffer' by providing
random signals in the time domain, uniformly distributed with
respect to the stop signal, and creating a histogram of the priority
encoder outputs. In the case that the stop signal is not equally
routed (there are buffers between each bin on the stop line), the
bin size will increase by the delay to the corresponding register,
and decrease by the delay to the previous register.

A. Average Delay Testing

In the average delay test, the post-adder was set up to have
all the bits on one of its inputs high, and all the bits on the other
input low except the LSB, which was connected to the trigger
signal. As we are adding one to the maximum representable
number, all the bits will roll around to 0 through the carry
propagation logic. To determine the average delay, we calculate
the time difference between the LSB and MSB transitioning.

To implement this, we first connected two probes from a
1GHz oscilloscope to adjacent FPGA outputs (same IOB).
These outputs were both connected to the LSB of a DSP block
with the D:A:B input (through the Z-mux) being
0xFFFFFFFFFFFF to enable the carry chain and the C input
(through the X-mux) being 0 except the LSB, which was the
trigger generated by an on-chip oscillator. The probe delays
were then adjusted to tear (align) the signals before re-routing
one output to the MSB of the DSP block, which resulted in an
almost identical path while including the full delay of the DSP.
The nets were inspected post-implementation to ensure matched
routing.

B. Code Density Testing

In addition to the average delay testing, code density testing
is an important component in determining the viability of a delay
generation method. Even if the average delay is exceptionally
low, a TDC is unusable unless the non-linearity characteristics
are decent. A good parallel to this is the linearity of an ADC.

Figure 2: Generic model of a delay line.

7th Mediterranean Conference on Embedded Computing MECO’2018, Budva, Montenegro

Even if an ADC can be found to have 100 bits of resolution (well
in excess of most modern ADC designs), this is useless if one
bin covers half the range of the ADC while the other 1023 cover
the other half. In such a case, the effective resolution is at most
2 bits. Such an ADC is useful, however, as putting another ADC
in parallel but offset in the voltage domain could allow the two
ADCs to efficiently cover the entire voltage range. On the other
hand, this increases the area requirements. The same can be said
for a bad TDC; as long as the code density is decent, corrections
can be made to cover for its weakness using another TDC in
parallel.

1) Linear Code Density Testing

Code density testing is one of many techniques to measure
the linearity of the TDC. The code density test provides random,
uniformly distributed signals to the TDC and stores the
conversion results. When provided with a uniformly random
signal (in the time domain), the number of times a particular
code will be output by the TDC will be proportional to the size
of the time bin corresponding to that code. A larger time bin
(longer delay until the next storage element) will accumulate
more 'hits' (number of times the corresponding bin code is
output) whereas a smaller time bin will accumulate less hits.
Once a suitable number of hits has been accumulated to obtain
an accurate measure of the width of each bin, the size of time bin
𝑖, τi, will be calculated as in Equation (2)

𝜏𝑖 =
𝐻𝑖×𝑇𝑐𝑙𝑘

𝐻𝑡𝑜𝑡𝑎𝑙
 (2)

𝑇𝑖 = ∑
𝐻𝑗×𝑇𝑐𝑙𝑘

𝐻𝑡𝑜𝑡𝑎𝑙

𝑖
𝑗=0 (3)

In Equation (2), 𝐻𝑖 is the number of hits for bin 𝑖, 𝐻𝑡𝑜𝑡𝑎𝑙
is the total number of hits for all bins, and 𝑇𝑐𝑙𝑘 is the period of
the system clk (which acts as our stop signal, and so the period
is the maximum possible time difference). Similarly, the
cumulative form of this equation, 𝑇𝑖 , can be used to determine
the delay up to a certain bin (and is hence used for calibration).

2) Cyclic Code Density Testing

In this test, the post-adder P register is enabled and 2
independent oscillators are used to produce a random phase drift.
The first oscillator is similar to the average delay test and is
connected in the same way to generate the first carry. A 1kHz
trigger signal with a different oscillator is connected to the P
pipeline register to capture the carry propagation randomly. In
the capture register, invalid codes (0x000000000000 and
0xFFFFFFFFFFFF) are removed and the rest of the codes are
transferred to a PC via a serial interface.

3) Subdivided Code Density Testing

In order to eliminate the possibility of carry look-ahead logic
eliminating some bins by forwarding the carry across 24 bins at
once, we implemented a method which simultaneously tests
both the lower and upper 24 bits without continuity between
them. In this test, a 10MHz trigger signal was input into a DSP
block at positions 0 and 24 through the C input and Z-mux, while
the D:A:B input and X-mux was set to 0x7FFFFF7FFFFF so

that the carries would stop at positions 23 and 47 respectively.
The number of cases of each output (23 and 47) being high was
recorded on a host PC via a serial connection.

C. Validation

To ensure the results we achieved were accurate, we cross-
validated our results across two labs, designs and pieces of
hardware. The first design used linear code density testing on a
Spartan-6 LX150 FPGA packaged by Opal Kelly [1] on a
custom signal breakout board at the University of Bristol. The
other device, a Spartan-6, used a cyclic code density test at
Quaid-i-Azam University. If our results are to be believed, we
expect that the individual bin sizes will not be the same, but the
patterns in bin sizes should match. For example, if there is a
recurring pattern every 4 bins on one device, we would also
expect to see a similar recurring pattern on the other device. If
this does not occur, then this suggests that the external
components in the design (test input signal, read-out logic,
system clock etc.) are interfering with the measurement and
hence the design can be fixed to remove the effect of these
external influences.

IV. RESULTS

A. Average Delay Testing

Under testing, it was found that the delay between the two
output signals was 800 ps (Figure 3) representing the entirety of
the DSP delay. As there are 48 bins, this evaluates to a mean bin
width of 16.7 ps. A similar test was performed, but measuring
the time to output bit 23 rather than bit 47, which gave a relative
delay of 400 ps, showing that the total delays in the first and
second halves of the DSP are equal.

Figure 3: Time difference between two output signals on a 1GHz oscilloscope.

7th Mediterranean Conference on Embedded Computing MECO’2018, Budva, Montenegro

B. Code Density Testing

Histograms from the code density tests conducted at the
University of Bristol and Quaid-i-Azam University were
collected, with the bin widths for a single DSP block shown in
Figure 4 and the calibration graph (cumulative bin widths) for a
large (960 bin = 20 DSP) delay line shown in Figure 5. The
diagrams have been normalised to the number of hits and the
clock period to obtain the delay times of each bin. As the delay
is on the y axis, a large vertical jump (large bin width) is
undesirable (low resolution), whereas a small, non-zero vertical
jump is desirable (high resolution). No vertical ascension
between bins implies a lost code, which can be ignored.

V. DISCUSSION

A. Average Delay Testing

The average delay testing showed that the signals that
emerged from the output pins of the FPGA had a difference of
800 ps between them. This suggests that the average delay of
the bins is 16.7 ps. This is a 20.5% improvement on the
CARRY4 chain, presuming that all bins are in use (non-zero
effective width). However, as bins that have a zero effective
width do not contribute to the resolution of the system (they are
missing bins), the more missing bins we discover in the code
density test, the lower the effective resolution.

B. Code Density Testing

As can be seen from the code density tests in Figure 4 and
Figure 5, a single DSP48A1 does not create effective delay lines.
While the average bin size per DSP is small (16.7 ps from the
average delay testing), the bin sizes are very widely skewed,

Figure 6: The histogram of the sub-divided test. Figure 4: A histogram of a 384k-hit cyclic code density test.

Figure 5: The calibration chart obtained from a histogram of a 384k-hit linear
code density test. The x axis is the output code, and the y axis is the time

difference between the start and stop signals.
Figure 7: The internal architecture of the DSP48A1 block (utilised

components only), based on [2].

7th Mediterranean Conference on Embedded Computing MECO’2018, Budva, Montenegro

with the vast majority of bins exhibiting an effective width of 0
ps (or so small that they could not be measured). Meanwhile, a
minority of bins exhibited large delays in the range of 40-170 ps
and the few bins at the boundary of a DSP block exhibited delays
between 200 and 350 ps. As the missing bins (zero effective
width) do not contribute to the resolution of the system, the
actual resolution is 34.8 ps with a standard deviation of 51.3 ps.

This is a significantly lower resolution (larger time
difference) than has been achieved by the carry chains ((𝜇, 𝜎) =
 (34 𝑝𝑠, 51 𝑝𝑠) compared with (21 𝑝𝑠, 25 𝑝𝑠)). As a result, we
can conclude that these devices are unsuitable for generating
high-resolution delays (i.e acting as the final stage in a multi-
stage TDC) in isolation. However, as they do generate a
significant delay, they may be useful as a semi-fine stage in a
multi-stage TDC, thereby reducing the required length of the
fine delay line (and hence reducing the overall logic utilisation).

Alternatively, multiple DSP blocks could be utilised in a
parallel staggered fashion, allowing delay lines to sub-divide
each other in an equivalent coding line. As the resolution
increases with the square root of the number of delay lines, 2.62
(i.e.~3) DSP48A1 delay lines would be needed to obtain the
same resolution as a CARRY4 chain. The rest of this section
will be dedicated to examining the cause of the observed delays.

First, we observe the large bins at multiples of 48 in the linear
test. A comparatively large bin in a structure usually denotes
some form of discontinuity in the logic structure, and in this case
the discontinuity is the crossing between DSP48A1 blocks.
Each DSP48A1 block provides 48 time bins, and then a carry
out which is directly connected to the next DSP block. While
this direct connection is fast compared to most FPGA routes, it
is still significantly slower than the routes inside the DSP block
as the signal must travel through three configuration
multiplexers between the post-adders of each DSP block.

Second, we notice that the bins which are a multiple of 96
(even multiples of 48) are larger than the odd multiples of 48.
Unlike the odd multiples, the even multiples of 48 not only need
to propagate between two DSP48A1 blocks, but also across a
clocking discontinuity. One in every four DSP interconnects is
on a clock management tile (CMT) boundary, while another is
bridging the CMT's dedicated clock routing area. These jumps
cause the multiples of 96 to have larger bins than the odd
multiples of 48.

Beyond this, we notice that bins which are an odd multiple
of 24 are also relatively large. The available documentation
from Xilinx gives no indication as to the cause of this, and so it
can only be presumed that there is some discontinuity in the
internal addition logic present in the DSP48A1. An example of
this would be carry look-ahead logic, which in a 48-bit adder
would forward the carry signal to multiples of 24.

Under the split test, we see that the presence of the bins after
bin 24 becomes much more pronounced. This adds credibility
to the suggestion that the missing bins are caused by carry look-
ahead logic is bypassing bins to increase adding speed, but at the
expense of delay line differential non-linearity.

VI. CONCLUSION

In conclusion, we have found that the post-adder in a
DSP48A1 block can be used to generate delays with an average
length of 34.8 ps and a standard deviation of 51.3 ps. This is a
lower accuracy than the competing CARRY4 chain solutions,
but this could be remedied by using multiple staggered
DSP48A1 blocks in parallel. The larger delay generated by the
DSP48A1 blocks was found to be suitable as a semi-fine delay
generation as would be required in a multi-stage TDC. We
discovered this using average delay calculation and code density
testing.

In future work, we would like to place multiple DSP blocks
in parallel to enable a high-resolution, linear delay line that does
not use the CARRY4 chains. This could then be adopted as a
technique for fitting extra delay lines into a multi-channel on-
chip TDC where the number of channels is limited by the
quantity of logic elements.

REFERENCES

[1] Opal Kelly, “Opal Kelly Front Panel SDK,” Opal Kelly, 2014. [Online]. Available:

https://www.opalkelly.com/products/frontpanel/. [Accessed 19 February 2018].

[2] Xilinx, “Spartan-6 FPGA DSP48A1 Slice User Guide (UG389),” 2014. [Online].

Available: https://www.xilinx.com/support/documentation/user_guides/ug389.pdf

[Accessed 19 February 2018].

[3] Opal Kelly, “Opal Kelly XEM6010,” Opal Kelly, 2014. [Online]. Available:

https://www.opalkelly.com/products/xem6010/. [Accessed 19 February 2018].

[4] Xilinx, “Spartan-6 FPGA Data Sheet: DC and Switching Characteristics (DS162),”

2015. [Online]. Available: https://www.xilinx.com/support/documentation/

data_sheets/ds162.pdf. [Accessed 19 February 2018].

[5] S. Alahdab, A. Mäntyniemi and J. Kostamovaara, “A time-to-digital converter

(TDC) with a 13-bit cyclic time domain successive approximation interpolator

with sub-ps-level resolution using current DAC and differential switch,” in 2013

IEEE 56th International Midwest Symposium on Circuits and Systems

(MWSCAS), 2013.

[6] Y. Liu, U. Vollenbruch, Y. Chen, C. Wicpalek, L. Maurer, Z. Boos and R. Weigel,

“Multi-stage pulse shrinking time-to-digital converter for time interval

measurements,” in 2007 European Microwave Integrated Circuit Conference,

2007.

[7] K. Cui, Z. Ren, X. Li, Z. Liu and R. Zhu, “A High-Linearity, Ring-Oscillator-

Based, Vernier Time-to-Digital Converter Utilizing Carry Chains in FPGAs,” in

IEEE Transactions on Nuclear Science, 2017.

[8] R. Narasimman, A. Prabhakar and N. Chandrachoodan, “Implementation of a 30

ps resolution time to digital converter in FPGA,” in 2015 International Conference

on Electronic Design, Computer Networks Automated Verification (EDCAV),

2015.

[9] M. Kanoun, Y. Berube-Lauziere and R. Fontaine, “High precision time-to-

amplitude converter for diffuse optical tomography applications,” in 2008 3rd

International Conference on Design and Technology of Integrated Systems in

Nanoscale Era, 2008.

[10] J. S. Tandon, S. Komatsu, T. J. Yamaguchi and K. Asada, “A comparative study

of body biased time-to-digital converters based on stochastic arbiters and

stochastic comparators,” in 2016 14th IEEE International New Circuits and

Systems Conference (NEWCAS), 2016.

[11] M. S. Kim, Y. B. Kim and K. K. Kim, “All-digital phased-locked loop with local

passive interpolation time-to-digital converter based on a tristate inverter,” in 2012

IEEE 55th International Midwest Symposium on Circuits and Systems

(MWSCAS), 2012.

[12] Y. J. Park and F. Yuan, “A 12.88 MS/s 0.28 pJ/conv.step 8-bit stage-interleaved

pulse-shrinking time-to-digital converter in 130 nm CMOS,” in 2015 IEEE 58th

International Midwest Symposium on Circuits and Systems (MWSCAS), 2015.

