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The Gravitational Stability of Lenses in Magma Mushes:
Confined Rayleigh-Taylor Instabilities
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1School of Earth Sciences, University of Bristol, Bristol, UK, 2Now at Department of Geological Sciences, University of
Canterbury, Christchurch, New Zealand

Abstract In the current paradigm, magma primarily exists in the crust as a crystalline mush
containing distributed melt lenses. If a melt-rich (or fluid) lens is less dense than the overlying mush,
then Rayleigh-Taylor (RT) instabilities will develop and could evolve into spheroids of ascending melt.
Due to contrasting melt-mush rheologies, the theoretical RT instability wavelength can be orders of
magnitude larger than the magmatic system. We explored how this confinement affects the gravitational
stability of melt lenses through laboratory experiments with pairs of liquids with one layer much thinner
and up to 2.2 ⋅ 105 times less viscous than the other; we extended the viscosity ratio to 106 with linear
stability analysis. We found the growth rate of a bounded RT instability is approximately Δ𝜌gD

6𝜋𝜇2
, where

Δ𝜌 is the difference in density between the fluids, g is gravity, D is the container diameter, and 𝜇2 is the
viscosity of the thicker viscous layer. This differs from the unbounded case, where the growth rate also
depends on the thickness and viscosity of the thin, low-viscosity layer. Applying the results to melt lenses
in magmatic mushes, we find that for the ranges of expected rheologies, the timescales for development
of the instability, and the volumes of packets of rising melt generated span very wide ranges. They are
comparable with the frequencies and sizes of volcanic eruptions and episodes of unrest and so suggest that
RT instabilities in mush systems can cause episodic volcanism.

1. Introduction

A major challenge of modern volcanology concerns subsurface magma transport and accumulation. Concep-
tual models are emerging that depict subsurface systems as large uneruptible crystalline networks (mushes)
containing heterogeneously distributed pockets of eruptible magma and exsolved volatiles that can extend
deep in the crust and down to the mantle (e.g., Bachmann & Huber, 2016; Cashman et al., 2017). The
dynamics of igneous mush systems has become a dominant theme in contemporary magma physics (e.g.,
Bergantz et al., 2017; Dufek & Bachmann, 2010; Parmigiani et al., 2014) and a key feature of interpretations of
geophysical, geochemical, and petrological data (e.g., Jaxybulatov et al., 2014; Putirka, 2017).

One aspect of igneous mush dynamics is the development of buoyancy instabilities related to intrusion of
new magma or segregation of melt- or fluid-rich layers within a mush, leading to magma or fluid ascent
through the mush. Magmas, melts, and fluids are commonly less dense than the overlying mush; therefore,
Rayleigh-Taylor (RT) instabilities develop naturally wherever buoyant layers form. However, for some condi-
tions (e.g., sufficiently high mush viscosity) the growth rate may be sufficiently slow that other processes (e.g.,
solidification due to cooling) dominate.

The viscosity contrast between a buoyant layer and an igneous mush is typically very large. For example,
if we consider mushes with effective viscosities from 1013 Pa⋅s for melt-rich mush (∼40% melt) to 1017 Pa⋅s
for melt-poor mush (<10% melt, Costa et al., 2009; Lejeune & Richet, 1995), and melt (magma) lenses with
viscosities of 1−105 Pa⋅s (basalt to wet rhyolite), then the viscosity ratios are of order 108 –1017. There is a the-
ory for RT instabilities for infinite horizontal layers with very high viscosity ratios (Whitehead & Luther, 1975),
which has been verified in experiments with viscosity ratios of up to a few hundred. Although never tested
experimentally, this theory should be applicable to the much higher viscosity ratios expected in lens-mush
magmatic systems. However, a consequence of the high viscosity ratios is that the horizontal dimension of a
magma reservoir is commonly much less than the theoretical fastest-growing wavelength assuming an infi-
nite horizontal layer (Figure 1). Thus, it is necessary to consider cases in which the buoyant layer is confined
by boundaries separated by lengths much less than the optimum wavelength. The purpose of this study
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Figure 1. Sketch of an eruptible melt-rich layer within a much more viscous crystal mush. Rayleigh-Taylor instabilities
arise due to density difference; however, the theoretical wavelength of instability 𝜆c may be much larger than the melt
layer diameter D.

is to address this issue through experimental and theoretical approaches and then to apply the results
to understanding RT instabilities in igneous mushes. The suggestion that RT instabilities can control the
frequency of volcanic eruptions is explored.

2. Mush-Melt RT Instabilities
2.1. RT Instabilities
A RT instability occurs when a dense fluid overlies a less dense fluid. Such instabilities can arise in magmatic
systems when a layer of buoyant melt is trapped within a denser crystalline mush. The full dynamics of RT
instability are too complex to be described analytically. Nonetheless, linear stability analysis (LSA) provides
good insight into the early stage, during which small initial perturbations of the interface grow exponentially
(Waddell et al., 2001).

Mush-melt RT instabilities involve very high viscosity ratios. The relevant low Reynolds number RT instability
formalism for such high viscosity contrasts was developed by Whitehead and Luther (1975). They analyzed the
case of a thin layer of light Newtonian fluid (density 𝜌1, viscosity 𝜇1) below a deep layer of denser Newtonian
fluid (𝜌2, 𝜇2); both fluids are horizontally infinite (Figure 1). In this scenario, for a free slip boundary condition
(BC) below the thin layer, and a large viscosity ratio (𝜀 = 𝜇2

𝜇1
≫ 1), there exists a fastest-growing mode, the

critical mode, with wavelength 𝜆c and growth rate nc given by

𝜆c =
4𝜋

2.88
h𝜀1∕3, (1)

nc = 0.232
gΔ𝜌h
𝜇2

𝜀1∕3, (2)

where h is the thickness of the thin layer and Δ𝜌 = |𝜌2 − 𝜌1| is the density difference. It is also assumed that
the wave-like perturbations are small, with amplitude less than ∼ 0.4𝜆c. These equations have been modified
to investigate the thickening of a buoyant layer at a fixed rate (i.e., constant dh

dt
; de Bremond d’Ars et al., 1995).

The theory has been tested and verified experimentally and numerically for viscosity ratios up to 𝜀 = (102)
(de Bremond d’Ars et al., 1995; Whitehead & Luther, 1975).

Equations (1) and (2) assume that both layers are horizontally infinite, but for a finite domain, for sufficiently
large h and 𝜀, the theoretical fastest-growing wavelength, 𝜆c, will be greater than the extent of the layers
and so is not physically possible. Whether the domain is finite or infinite, all perturbations of all wavelengths
will grow but the instability will develop with the wavelength that grows fastest. So we need to consider the
growth rate of all modes with wavelengths equal to or smaller than the horizontal extent of the layers. In
general the growth rate of a mode with wavelength 𝜆 and dimensionless wave number K = 4𝜋h

𝜆
is (Whitehead

& Luther, 1975):

n =
gΔ𝜌h
K𝜇1

[
cosh K − 1 + 𝜀(sinh K − K)

sinh K + K + 2𝜀 cosh K + 𝜀2(sinh K − K)

]
. (3)

SEROPIAN ET AL. 3594
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Figure 2. Normalized growth rate n(K)
nc

as a function of dimensionless wave number K , for 𝜀 = 106. Any mode with

K < KD(gray area) cannot form because its wavelength is greater than the diameter of the container. As an example we
illustrate this for KD = 0.13, which corresponds to h

D
= 0.01. For this case, the critical mode (Kc) cannot form. For large K ,

n(K)
nc

= 1
0.232

𝜀−1∕3K−1 = 0.0431K−1 (see text for details).

The normalized function n(K)
nc

= 𝜀2∕3

0.232K

[
cosh K−1+𝜀(sinh K−K)

sinh K+K+2𝜀 cosh K+𝜀2(sinh K−K)

]
is plotted in Figure 2 for 𝜀 = 106. It reaches

a maximum at Kc =
4𝜋h
𝜆c

, such that n(Kc) = nc (equation (2)). For K ≫ Kc and 𝜀 ≫ 1, the growth rate decreases
with increasing K , according to

n(K)
nc

≈ 1
0.232𝜀1∕3

K−1. (4)

If the RT instability occurs in a container with horizontal dimension D < 𝜆c, the tank walls will prevent the
growth of all modes with K < KD = 4𝜋h

D
. Graphically, any mode within the gray shaded area in Figure 2 is

inaccessible. Thus, in the presence of lateral boundaries with KD > Kc (i.e., 𝜆c >D), the fastest allowed growth
rate is n(KD). It is useful to define a confinement parameter 𝛽 = 𝜆c

D
, such that the system is confined for 𝛽 > 1.

Using the definitions of 𝛽 and 𝜆c, we can rewrite KD = 2.88𝛽𝜀−1∕3, therefore yielding

n(KD) =
nc

0.668𝛽
=

Δ𝜌gD
4𝜋𝜇2

. (5)

This suggests that, in the case of a laterally confined RT instability, the growth rate is independent of both the
thin layer thickness h and the viscosity ratio 𝜀, though equation (5) requires experimental validation.

2.2. Are Mush-Melt Systems Confined?
The application of equations (1) and (2) to magmatic systems requires that melt layers can be considered
horizontally infinite. To assess the condition for which this assumption is valid, we compute the confinement
parameter 𝛽 = 𝜆c

D
for natural magmatic systems. A system will be confined (or “clipped”; Burgisser & Bergantz,

2011) for 𝛽 > 1, but it can be considered unconfined when 𝛽 ≤ 1.

We examine the confinement of three example scenarios: (a) a silicic, (b) an andesitic, and (c) a basaltic system,
with viscosities and densities as indicated in Table 1. For each of the three systems, we calculate 𝛽 for a range
of melt layer widths (diameters if a circular lens) 500 ≤ D ≤ 2⋅104 m and heights 0.1 ≤ h ≤ 1, 000 m (Figure 1),
which encompass typical values assumed in theoretical models (e.g., Annen et al., 2015; Bachmann & Bergantz,
2004) and consistent with estimates from geophysical surveys of natural systems (e.g., Lees, 1992; Tarasewicz
et al., 2012). The majority of mush-melt systems are laterally confined (Figure 3). In fact, for the rheologies
explored (Table 1), even an extremely wide (D = 20 km) layer of silicic (viscous) melt would be confined if
thicker than 4 m. This result suggests that we should not simply apply equations (1) and (2) to typical lenses

SEROPIAN ET AL. 3595
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Table 1
Parameters Used for a Silicic, an Andesitic, and a Basaltic System

Symbol Description Value used Unit

− − Silicic Andesitic Basaltic −
𝜇1 Melt shear viscosity 105 3 ⋅ 102 10 Pa⋅s

𝜇2 Mush shear viscosity 1014 1014 1014 Pa⋅s

𝜀 Viscosity ratio 109 3 ⋅ 1011 1013 −
𝜌1 Melt density 2,300 2,500 2,800 kg/m3

Δ𝜌a Density difference 300 300 300 kg/m3

Note.𝜇1, Scaillet et al. (1998) & Murase and McBirney (1973);𝜇2, Lejeune and Richet (1995)
& Caricchi et al. (2007); 𝜌1, Murase and McBirney (1973) & Annen et al. (2006);Δ𝜌, Whitney
and Stormer (1985).
aWe keep Δ𝜌 = 300 kg/m3 constant as density variations are negligible compared to
viscosity variations.

in magma mushes because the mechanical constraints from the side boundaries will prevent the growth of
the critical mode with wavelength 𝜆c. Instead, we expect the dynamics of the confined RT instability to be
given by the fastest mode whose wavelength fits within the layer width. Therefore, we need a modified theory
for RT instability that accounts for wall effects.

3. Materials and Methods
3.1. Fluids
To model mush-melt RT instabilities, we perform high viscosity contrast and laterally bounded experiments
in cylindrical tanks, at low Reynolds number. We use glucose syrup (42DE-GL0106 from Ragus) as our viscous
fluid and aqueous potassium carbonate (K2CO3) solutions as our low-viscosity fluids. Physical properties of
these two fluids are summarized in Table 2 at both 18 and 8∘C. Both fluids are Newtonian, and viscosity ratios
in our experiments are in the interval 4.7 ⋅ 104 ≤ 𝜀 ≤ 2.2 ⋅ 105, a range which extends previous experimental
data to much higher ratios.

Viscosity measurements were performed on a HAAKE RheoStress 1 rheometer (Thermo Fisher Scientific), with
a concentric cylinders sensor system. Glucose viscosity at 8∘C was too high to be measured directly as the
rheometer was not calibrated to such high values. Instead, we measured viscosity from 18 to 28∘ C, and,
assuming an Arrhenius model, we fitted an exponential curve through these data and extrapolated it down to
8∘C. We measured glucose density via Archimedes’ principle, by weighing a calibrated 10-cm3 sinker (Mettler
Toledo) in both air and glucose. The very low viscosity of the K2CO3 solutions allowed us to measure density
by weighing 200 ml of solution in a volumetric flask.

Figure 3. Confinement factor for a silicic, an andesitic, and a basaltic system. The red lines indicate where 𝛽 = 1,
whereas the black lines show 𝛽 = 100. The systems are confined for 𝛽 > 1.
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Table 2
Density and Viscosity of the Glucose Syrup and the Potassium Carbonate Solutions Used at 8
and 18∘ C

Fluid Density (kg/m3) Viscosity (Pa⋅s)

8∘ C 18∘ C 8∘ C 18∘ C

Glucose syrup 1,450 ± 5 1,435 ± 5 1,530–2,000 300–480

K2CO3 solution 1,440–1,550 ± 1 0.009 ± 0.001 0.007 ± 0.001

3.2. Experimental Methods
We use two tank sizes to investigate the effect of lateral confinement. All tanks are made of transparent
Perspex and are cylindrical to avoid corner effects.
3.2.1. Narrow Tank Experiments
The narrowest tanks have a diameter D = 5.00 ± 0.02 cm and height H = 40.00 ± 0.05 cm (Figure 4). Three
tanks of this geometry were made in order to efficiently run concurrent experiments. The confinement factors
(𝛽 = 𝜆c

D
) for experiments in these tanks are 10 ≤ 𝛽 ≤ 210; hence, wall effects are likely to be very important in

all experiments with D = 5 cm.

We conducted experiments in two temperature-controlled rooms, at 18∘C (laboratory) and 8∘C (cold room),
to sample a wider range of viscosity ratios. We first pour more than 30 cm of glucose syrup into the tank, cover
the top of the tank, and leave it to rest until all the air bubbles have escaped. The uppermost part of the syrup
usually dehydrates and stiffens. We thus remove this stiff layer a few minutes before starting the experiment.
This is long enough for the disturbed interface to flatten but short enough to avoid significant drying. The
experiment is started by delicately pouring dyed K2CO3 solution on top of the glucose layer. Pouring takes
a few seconds, which is much faster than the time for an RT instability to develop (always >3 min). This con-
figuration (viscous fluid underneath) is flipped compared to magmatic systems with a buoyant lens under a
more viscous mush. Nonetheless, the dynamics of the instability will be identical because the driving force,
buoyancy, is independent of which fluid is on top of the other; only the density difference Δ𝜌 is important
(Whitehead & Luther, 1975). All experiments are recorded with a fixed camera.

In most experiments, there is air directly above the K2CO3 solution, forming a free-slip BC above. To check the
influence of the BC, we repeated some experiments with a no-slip upper BC by placing a circular perspex lid
on top of the K2CO3 layer just after pouring it. The lid diameter is 0.4 mm less than the tank to allow air escape
during placement.

Figure 4. Diagram of a narrow tank experimental setup.

3.2.2. Wide Tank Experiments
We perform similar experiments in a wide tank with diameter D = 28.70 ± 0.05 cm
and height H = 39.20±0.05 cm, achieving 1.2 ≤ 𝛽 ≤ 6.9. Although 𝛽 > 1, we expect
wall effects to be small and our results to approach the theoretical predictions of
Whitehead and Luther (1975). The experimental procedure is identical to the narrow
tank case, with the exception that we pour the K2CO3 solution through a nozzle with
seventy-two 1.5-mm-diameter holes to reduce disturbance of the interface. Again,
we conduct experiments at both 18 and 8∘C. We, however, did not run any no-slip
upper BC experiment with the wide tank.

3.3. Linear Stability Analysis
To complement our experimental investigation, we perform an linear stability analy-
sis (LSA), based on the work of Sweeney et al. (2013). They theoretically investigated
RT instabilities in a narrow, finite cylinder (no-slip BC), but their published results
cannot be directly applied to our scenario for two reasons. First, they only examined
cases where the two fluid layers have equal thicknesses, and second the viscosity
ratios considered are too low (𝜀 ≤ 102). We use their numerical routines to reproduce
our experimental conditions and to extend results to higher 𝛽 values than achieved
in the laboratory. Full technical details can be found in Sweeney et al. (2013).
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Table 3
Summary of Experiments Performed and Corresponding Linear Stability Analysis Results in Order of Increasing 𝛽

Exp Δ𝜌 𝜇2
𝜇1

h 𝛽
nc

nobs
Comment nc

nobs

− (±5 kg/m3) − (±0.05 cm) − (Exp) − (LSA)

46 6 66,000 ± 5,000 0.2 1.2 ± 0.3 1.2 ± 1.0 Wide Tank 1.8

45 22 220,000 ± 14,000 0.2 1.8 ± 0.4 1.9 ± 0.7 Wide Tank 2.2

41 12 55,000 ± 5,000 1.2 6.9 ± 0.4 4.0 ± 1.8 Wide Tank 7.7

4 50 53,000 ± 5,000 0.3 10 ± 2 15 ± 3 11

15 15 53,000 ± 5,000 0.3 10 ± 2 14 ± 6 11

39 67 66,000 ± 5,000 0.3 10 ± 2 10 ± 2 No slip 12

31 65 66,000 ± 5,000 0.5 18 ± 2 19 ± 3 20

14 35 53,000 ± 5,000 0.8 26 ± 2 28 ± 5 29

5 50 53,000 ± 5,000 0.8 26 ± 2 33 ± 5 29

20 50 53,000 ± 5,000 0.8 26 ± 2 30 ± 4 29

21 12 66,000 ± 5,000 0.8 26 ± 2 21 ± 9 29

38 44 66,000 ± 5,000 0.8 28 ± 2 36 ± 6 No slip 38

42 52 220,000 ± 14,000 0.6 31 ± 3 24 ± 3 No slip 35

25 50 66,000 ± 5,000 1 35 ± 2 46 ± 6 39

7 15 53,000 ± 5,000 1.4 46 ± 2 40 ± 14 51

8 15 53,000 ± 5,000 1.4 46 ± 2 43 ± 15 51

13 35 53,000 ± 5,000 1.4 46 ± 2 60 ± 9 51

22 50 66,000 ± 5,000 1.3 46 ± 2 62 ± 7 51

44 12 47,000 ± 5,000 1.6 50 ± 3 49 ± 21 No slip 56

27 67 66,000 ± 5,000 1.6 56 ± 2 68 ± 7 63

9 15 53,000 ± 5,000 2 65 ± 2 52 ± 18 73

3 50 53,000 ± 5,000 2 66 ± 3 49 ± 7 73

2 116 53,000 ± 5,000 2 66 ± 3 65 ± 8 73

12 17 166,000 ± 11,000 1.4 67 ± 3 61 ± 19 75

11 30 166,000 ± 11,000 1.6 77 ± 3 85 ± 15 86

30 60 66,000 ± 5,000 2.3 81 ± 3 120 ± 13 90

35 44 66,000 ± 5,000 2.3 81 ± 3 113 ± 15 No slip 90

40 52 220,000 ± 14,000 1.7 89 ± 3 65 ± 7 No slip 99

19 50 166,000 ± 11,000 1.9 91 ± 3 61 ± 8 102

28 65 220,000 ± 14,000 1.8 94 ± 3 88 ± 8 105

36 53 220,000 ± 14,000 2 105 ± 3 109 ± 15 117

18 12 75,000 ± 10,000 3.1 114 ± 6 100 ± 45 127

32 52 220,000 ± 14,000 2.3 121 ± 4 98 ± 11 134

43 52 220,000 ± 14,000 2.4 126 ± 4 110 ± 13 No slip 140

6 12 53,000 ± 5,000 4 131 ± 5 87 ± 38 146

37 51 220,000 ± 14,000 2.7 142 ± 4 121 ± 13 158

29 65 220,000 ± 14,000 2.9 152 ± 4 155 ± 14 170

33 52 220,000 ± 14,000 2.9 152 ± 4 164 ± 18 170

24 50 220,000 ± 14,000 3.4 178 ± 4 151 ± 16 199

26 59 220,000 ± 14,000 4 210 ± 5 278 ± 26 234

Note. All symbols are defined in the text. Unless indicated by “Wide Tank”, all experiments were performed in a narrow
tank with D = 5.00 ± 0.02 cm. The final column indicates nc

nobs
for nc calculated by equation (2) and nobs determined by

linear stability analysis.
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Table 4
Summary of Parameters Used in the Additional Linear
Stability Analysis Performed and Resulting Growth Rates

D (cm) h (cm) 𝜀 𝛽
nc

nobs

100 2.5 104 2.3 3.05

100 3.75 104 3.5 4.34

100 5 104 4.7 5.67

100 6.25 104 5.9 7.01

100 7.5 104 7.0 8.35

2 2.3 106 500 560

2 4.6 106 1,000 1,180

1 4.6 106 2,000 2,230

1 9.2 106 4,000 4,470

1 11.5 106 5,000 5,590

1 18.5 106 8,000 9,120

1 23 106 10,000 11,280

Note. We kept Δ𝜌 = 50 kg/m3 constant in all the runs.
Results are plotted as “Complementary LSA” in Figure 7.

4. Results

We conducted a total of 40 experiments, sampling the range 1.2 ≤ 𝛽 ≤ 210. The viscosity ratios (4.7 ⋅ 104 ≤

𝜀 ≤ 2.2 ⋅ 105) are more than 2 orders of magnitude higher than previous large viscosity contrast RT experi-
ments (e.g., de Bremond d’Ars et al., 1995; Huppert et al., 1984). A summary of the experimental parameters
and corresponding results is presented in Table 3. We performed an LSA for each set of experimental param-
eters (Table 3). To complete and extend our data set, we also carried out LSA in the ranges 2.3 ≤ 𝛽 ≤ 7.0 and
500 ≤ 𝛽 ≤ 10, 000, with sets of parameters that have not been or could not be experimentally investigated.
The conditions and results for these additional LSA runs are summarized in Table 4. We thus obtain theoret-
ical growth rates for the confined RT instabilities considered, which can be compared to our experimental
observations and to unconfined theory.

Figure 5 shows the time series of two typical experiments in a narrow tank: one at room temperature with air
above (Figure 5a) and one at 8∘ C with a no-slip upper BC (Figure 5b). Regardless of the tank size or the BC, the
overall dynamics are similar. First, a single, small protrusion of K2CO3 solution forms at the interface between
the two fluids. The protrusion grows into an ellipsoidal to spheroidal pocket of solution. When all of the initial

Figure 5. Time series of the initial stage of (a) experiment 25, at 18∘ C with h = 1 cm, Δ𝜌 = 50 kg/m3, 𝜀 = 6.6 ⋅ 104, and 𝛽 = 35 and (b) experiment 40, at 8∘ C
with h = 1.7 cm, Δ𝜌 = 52 kg/m3, 𝜀 = 2.2 ⋅ 105, 𝛽 = 89 and a no-slip boundary condition. The initial interfaces are highlighted and an example of how amplitude
is measured is provided.
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Figure 6. Amplitude of the perturbation as a function of time for experiment 25 (Figure 5a). An exponential curve is
fitted through the first data points and a line is fitted through the last ones. Equations of best fit are provided.

volume has been drawn into this spheroid, it sinks as a single pocket of fluid. The dimensions of this pocket
of fluid stay constant, until it reaches the bottom of the tank.

The location of the initial protrusion is sensitive to asperities on the syrup surface or disturbance induced by
pouring the K2CO3 solution; hence, the protrusion is sometimes initially slightly off centered (Figure 5b for
instance). Replicate experiments show that these deviations do not significantly affect the results: The growth
rate of the protrusion is similar, and the K2CO3 solution layer always becomes thickest near the center of the
tank well before it evolves into a spheroid sinking through the syrup.

The amplitude of the perturbation, defined as the vertical distance from the initial liquid-liquid interface loca-
tion to the bottom of the protrusion (see Figure 5a), was measured as a function of time for each experiment
(Figure 6). For all experiments there is an initial exponential increase in amplitude before transitioning to
linear growth. This transition corresponds to the stage at which linearized stability theory (e.g., Whitehead &
Luther, 1975) is no longer valid. We therefore obtain an exponential fit of the form y(t) = Aenobst for the initial
growth of each experiment. The nobs parameter in the exponential then corresponds to the growth rate of our
experimental RT instability and can be compared to theoretical unconfined predictions.

Figure 7. Ratio of theoretical unconfined growth rates nc from Whitehead and Luther (1975) to our experimental and
analytical confined growth rates nobs as a function of confinement parameter 𝛽 . The red line represents nc

nobs
= 𝛽 and the

horizontal black line indicates nc = nobs. The symbol and color code is used to distinguish different experimental
conditions. The crosses represent linear stability analysis (LSA) results reproducing experimental conditions whereas the
stars show complementary LSA runs which have no experimental counterpart (Table 4).
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Figure 7 displays the ratio nc

nobs
as a function of the confinement parameter 𝛽 for both experiments and LSA,

where nc is the theoretical unbounded critical growth rate from equation (2). The no-slip experiments are
indistinguishable from the free-slip ones, indicating that the top BC only has a minor influence on the growth
rate. Both the experimental and analytical results follow a linear trend of nc

nobs
≈ 𝛽 , although for 𝛽 ≲ 10, the

slope of the LSA data trend decreases. The linear best fit through the experimental data is nc

nobs
= (0.93 ±

0.03)𝛽 + (0.15 ± 0.07). Similarly, a fitted line through the LSA points for 𝛽 > 10 is nc

nobs
= (1.0009 ± 0.0002)𝛽 +

(0.0454 ± 0.0005).

In summary, our results show that bounded growth rates (nobs) are reduced compared to the unbounded
theoretical values (nc) by approximately a factor of 𝛽 . For simplicity, in our applications to magmatic system
we take nc

nobs
= 𝛽 , which is within 10% of the lines of best fit to our data (Figure 7) and introduces negligible

error compared to the uncertainties on the magma and mush properties that affect RT instabilities.

5. Discussion
5.1. Confined RT Instability Dynamics
Our experimental results with 1.2 ≤ 𝛽 ≤ 210 and 4.7 ⋅ 104 ≤ 𝜀 ≤ 2.2 ⋅ 105 demonstrate that the dynam-
ics of a confined RT instability is qualitatively similar to the unconfined case. Indeed, the instability starts
with an exponential growth, followed by a linear growth (e.g., Figure 6), a phenomenon well documented for
the unbounded case (e.g., Waddell et al., 2001). Moreover, the shape of the perturbations is similar to pre-
vious experimental studies (e.g., Waddell et al., 2001; Whitehead & Luther, 1975; Wilkinson & Jacobs, 2007).
Our instabilities differ from the unbounded case because only a single protrusion forms, as opposed to mul-
tiple, uniformly spaced bulges, as observed by Whitehead and Luther (1975) and de Bremond d’Ars et al.
(1995) for instance.

Our experimental and analytical results indicate that as 𝛽 approaches unity, there is a transition in the instabil-
ity growth rate from nc

nobs
= 𝛽 when the system is bounded towards nc = nobs, characteristic of an unbounded

(𝛽 ≪ 1) system (i.e., nobs matches the theoretically predicted value for a laterally infinite system). Based on
these results, we estimate a characteristic RT instability timescale, that is, the time for the instability amplitude
to increase by a factor of e (≈ 2.72), by

𝜏RTI =

{ 1
nc

= 𝜇2

0.232gΔ𝜌h
𝜀−1∕3 if 𝛽 ≤ 1,

𝛽

nc
= 6𝜋𝜇2

Δ𝜌gD
if 𝛽 > 1.

(6)

In contrast to the unbounded case, the confined timescale does not depend on either the initial layer thickness
h or the viscosity ratio 𝜀 because the instability wavelength is set by D. Rather, the controlling parameters are
the diameter of the layer D, the viscosity of the upper layer 𝜇2, and the density contrast between the fluids
Δ𝜌. Comparing equations (5) and (6), we notice that our experimental growth rates are a factor of 3/2 slower
than estimated with the linear stability theory of Whitehead and Luther (1975) for 𝜆 = D. This is most likely
because the tank walls add a no-slip BC (i.e., will exert significant drag on the fluids) that is not accounted for
in equation (5).

5.2. Application to Igneous Systems
There are multiple mechanisms where buoyant layers can form within igneous mush systems. One mecha-
nism is by replenishment with new magma spreading out within or at the base of a mush. Initially, the new
magma layer may intrude as a denser layer at the base of the reservoir or at its neutral buoyancy level within
the reservoir. In either case the magma layer may become less dense with time by, for example, crystalliza-
tion and differentiation with dense components segregating to the base of the flow. Volatile exsolution can
also increase the buoyancy of the layer (Huppert et al., 1982). Additionally, the overlying mush may be heated
from below (e.g., Burgisser & Bergantz, 2011; Couch et al., 2001) or be fluxed by volatiles released from the
replenishing magma layer (Bachmann & Bergantz, 2006) to develop a zone of reduced density. Another mech-
anism of layer formation is through dynamic melt percolation due to mush compaction, which can result
in formation of melt-rich regions. One-dimensional models of porous media flow and compaction predict
the development of multiple melt-rich regions (e.g., Jackson et al., 2003; Solano et al., 2012). Intrinsically,
1-D models cannot include RT instabilities of growing melt layers. Likewise, exsolved magmatic volatiles can
migrate through mushes and accumulate as fluid layers (Christopher et al., 2015). Each of the above scenarios
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Figure 8. Confined Rayleigh-Taylor instability timescale as a function of melt layer diameter and mush viscosity.

for melt- or fluid-layer generation could be modeled individually and in detail, but this is beyond the scope
of the current paper. Here we investigate the stability of buoyant magma layers of fixed thickness or grow-
ing at a fixed rate to provide a first-order understanding of the likely timescales and length scales that can
be expected. Our analysis is restricted to RT instablities; we have not explored the potential importance
of melt-mush flow mechanisms and smaller-scale instabilities related to the porous or brittle nature of the
mush, which could develop along with or instead of RT instabilities (e.g., Connolly & Podladchikov, 2013;
Oppenheimer et al., 2015; Sandnes et al., 2011; Schmeling et al., 2017; Scott & Stevenson, 1984, 1986).

Figure 8 presents estimates of confined RT instability timescales for a range of mush viscosities 𝜇2 and melt
layer diameters (or widths if not circular) D relevant to igneous systems. We use the instability timescale
defined in equation (6), with 𝛽 calculated as 𝜆c∕D using 𝜆c defined in equation (1), and physical parame-
ter values listed in Table 1. The wide range of calculated timescales (101 –104 years) match the variability of
timescales observed for volcanic processes, from small and frequent events to large and rare events (e.g.,
caldera forming eruptions). On the other hand, the very long timescales involved with the slowest insta-
bilities imply that other processes (e.g., solidifaction by cooling) could occur faster and inhibit the onset
of RT instability.
5.2.1. Comparison to Cooling Timescale
First, we consider a case where there is a strong temperature difference between the melt and the mush and
compare our RT instability timescale to a characteristic cooling timescale. Such a scenario could occur when
a cold mush system is replenished by hot magma from depth. In this case, if the cooling timescale is shorter
than the RT instability timescale, the melt layer will freeze before an instability can develop. For simplicity, we
assume cooling occurs via conduction only and define a characteristic cooling timescale 𝜏cool =

h2

𝜅
, where h is

the melt layer thickness and 𝜅 is the thermal diffusivity. We use 𝜅 = 6 ⋅ 10−7 m2/s (Annen et al., 2006; Romine
et al., 2012; Whittington et al., 2009).

Figure 9 shows the lines where 𝜏cool = 𝜏RTI as h and D are varied and for two mush viscosities. Above these lines,
RT instabilities have time to develop, whereas under the lines, the melt layer will freeze before the instability
develops significantly. The results are dramatically different depending on which mush viscosity is considered.
For a melt-rich mush (𝜇2 = 1013 Pa⋅s), RT instabilities develop sufficiently quickly that the required thickness
for the instability to develop faster than conductive cooling is only 1.4–8.9 m, depending upon the layer
diameter. This range, however, becomes 140–900 m for a near-solidus mush (𝜇2 = 1017 Pa⋅s). The mush
rheology therefore exerts a critical control on the necessary thickness to develop instability and hence the
volume of eruptible material ascending through the mush as a result of the instability.

This simple analysis omits two potentially important but opposing mechanisms: (a) we only consider cool-
ing via conduction and ignore convection, which can speed up cooling, and (b) the hot intrusion can reheat
the mush, thus decreasing its viscosity and speeding up RT development. To get some insight about when
convection may occur, we calculate the Rayleigh number Ra = g𝜌1𝛼ΔTh3

𝜅𝜇1
, where 𝛼 is the thermal expansion of

the melt and ΔT is the temperature difference between the melt and the mush. We use 𝛼 = 5 ⋅ 10−5 K−1 and
ΔT = 100 K and densities and viscosities for the three compositions considered in Table 1 (e.g., Bachmann &
Bergantz, 2006; Degruyter & Huber, 2014; Huber et al., 2010; Jackson et al., 2003). Taking Ra = 27 𝜋4

4
≈ 657.5
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Figure 9. Isolines 𝜏cool = 𝜏RTI as a function of melt layer width and thickness and for two mush viscosities. Above these
lines, there is sufficient time for the Rayleigh-Taylor instability (RTI) to grow, whereas under the lines, the melt layer will
freeze before the instability develops significantly.

as the critical value for the onset of convection (Turcotte & Schubert, 1982), this calculation suggests that all
the layers previously considered would convect, except for extremely thin silicic layers (h < 49 cm ). There-
fore, the cooling timescale could be faster than assumed in Figure 9, which would raise the 𝜏cool = 𝜏RTI lines
to greater h for a given D. Concerning reheating of the mush, Burgisser and Bergantz (2011) showed that RT
instabilities could lead to significant mush overturn (“unzipping”), yet their analysis is restricted to low mush
viscosities (𝜇2 = 106 −1012 Pa⋅s) and considers high temperature differences (ΔT = 45–500 K). Therefore, the
importance of this mechanism has yet to be tested for our scenario.

5.2.2. Comparison to Accumulation Timescale
The previous discussion assumes that melt accumulation into a layer occurs much faster than the insta-
bility timescale, such that a melt lens of any thickness is a feasible starting condition for considering RT
instabilities. Next, we relax this assumption and explore the relation between melt accumulation and RT
instability timescales.

De Bremond d’Ars et al. (1995) investigated the case of a horizontally extensive buoyant layer that thickens and
a constant rate, ḣ = dh

dt
. They showed that blobs of buoyant fluid form and rise away from the base when the

layer growth rate ḣ
h

and the instability growth rate 1
𝜏RTI

are equal. For the formation of a new layer (i.e., starting

with h = 0), the layer growth rate ḣ
h

is initially very large and then monotonically decreases as h increases. Thus,
for any given melt input rate ḣ, there exists a maximum layer thickness beyond which melt will be removed
faster via RT instabilities than it is added. We can estimate this thickness, the corresponding magma volume,
and the time required to assemble it for a range of parameters. First, we calculate the time at which ḣ

h
=

1
𝜏RTI

. We can then compute the layer thickness using the constant melt input rate and corresponding volume,
assuming a cylindrical shape. We use the same criterion as de Bremond d’Ars et al. (1995) but account for
lateral confinement when relevant.

Figure 10 shows the accumulation time and associated melt volume for a silicic melt under a melt-rich mush
(𝜇2 = 1013 Pa⋅s; Figure 10a) and a near-solidus mush (𝜇2 = 1017 Pa⋅s; Figure 10b), as a function of the layer
diameter D and the melt input rate ḣ. The chosen range of input rates ḣ span values from magma accumulation
models and field studies (e.g., Karakas et al., 2017; White et al., 2006). The kinks in the lines for melt input rates
of ḣ = 0.1, 1, 10 m/year in Figure 10a correspond to the transition from confined to unconfined instability
regime with increasing D. For conditions where the RT instability is not confined (i.e., 𝜆 < D), the accumulation
times are independent of D but depend on ḣ (forming horizontal lines in the upper panel of Figure 10a). In
confined scenarios (some combinations of ḣ and D in Figure 10a and all conditions plotted in Figure 10b), the
accumulation times are independent of ḣ, hence the collapse into a single line for a given 𝜇2. The choice of
mush viscosity has a major impact on the results and allows us to recover a large range of timescales (0.3–4 ⋅
104 years). The corresponding volumes range from 105 up to 1012 m3.

Our calculations suggest that RT instabilities could play an important role in controlling the size and fre-
quency of volcanic events. A working hypothesis is that volcanic eruptions and episodes of volcanic unrest are
the consequences of these instabilities. The calculated timescales and volumes are comparable with natural
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Figure 10. Time before the onset of instability and accumulated volume in the case of a linearly growing buoyant layer of silicic melt under (a) a melt-rich mush
and (b) a near-solidus mush. The kinks in the lines in (a) for ḣ = 0.1, 1, and 10 m/year correspond to a change from confined to unconfined instability regime with
increasing melt layer width. There are no kinks in (b) because for the higher mush viscosity, Rayleigh-Taylor instabilities are confined for the full range of
scenarios plotted.

volcanic values (e.g., Pyle, 2015) and span the full range between small mafic eruptions (e.g., Strombolian
type) to the largest magnitude eruptions (e.g., caldera-forming eruptions and flood basalts). The time needed
for an instability to develop allows melt to accumulate in large layers and corresponds to a dormant period
(e.g., Rougier et al., 2018; Sheldrake et al., 2016), whereas the instability may destabilize the system and pro-
duce a period of unrest or an eruption. Additionally, successive instabilities without eruption could yield larger
accumulated volumes (e.g., Sparks & Cashman, 2017).
5.2.3. Crystal Mush Rheology
A limitation in the application of our experimental and theoretical results to natural systems is the assumption
of Newtonian mush rheology. Our experiments involved Newtonian fluids, but natural crystal mushes are
generally shear-thinning and may have a yield strength, that is, a minimum stress required for flow to occur
(e.g., Hoover et al., 2001; Kerr & Lister, 1991; Saar et al., 2001). With Newtonian fluids, an RT instability will
always develop in response to a denser fluid overlying a less dense fluid, although in some scenarios it will
grow slowly enough that it can be neglected over the timescale of interest. The same is true of shear-thinning
fluids; here the relevant viscosity for the early stage of the instability is the (high) viscosity in the limit of the
shear rate approaching 0. With a yield strength, however, the buoyant force from the melt layer Δ𝜌gh has to
exceed the mush yield strength 𝜏0; otherwise, the mush will act as a solid (e.g., elastic) body, preventing the
growth of the RT instability, akin to initiation of thermal convection of a fluid with a yield strength (Balmforth &
Rust, 2009). True yield strengths (i.e., a minimum stress for any flow to occur) may not exist (e.g., Barnes, 1999);
however, if the effective viscosity of a mush at low stresses is extremely large such that it has an apparent yield
strength, then the instability will grow so slowly as to be negligible unless Δ𝜌gh>𝜏0.

We can estimate the minimum thickness required for an RT instability to develop when the mush has a yield
strength as hmin = 𝜏0

Δ𝜌g
. For mush yield strengths in the range 𝜏0 = 105 –106 Pa (Castruccio et al., 2013;

Lejeune & Richet, 1995) and Δ𝜌 = 300 kg/m3, we find hmin = 34–340 m. This crude estimate suggests that
the required thickness to overcome a yield strength could be of the same order of magnitude as typical melt
layer thicknesses. Mush strength could thus facilitate the accumulation of melt lenses by impeding RT insta-
bility development for the thinnest layers. This effect could be enhanced if crystals have grown together and
bonded in a stagnant mush, producing a yield strength greater than 106 Pa.
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6. Conclusion

Rayleigh-Taylor instabilities occur naturally in magmatic systems when buoyant melt (or magmatic volatile
phase) is trapped underneath a denser crystalline mush. For a wide range of expected viscosities, the large
viscosity contrast between the mush and melt lens means that the theoretical fastest-growing wavelength
is unfeasibly large and so the wavelength of the instability is the largest available: the diameter of the lens.
This lateral confinement means that the growth rate of the instability is reduced compared to the theoretical
unconfined scenario. Importantly, if confined, the instability growth rate no longer depends on the thickness
or viscosity of the lens; rather, it depends only on the diameter of the lens, the viscosity of the mush and the
density contrast between the lens and mush. The thickness of the lens will, however, play a role if the mush has
an apparent yield strength because the instability will only initiate if the buoyancy stress, which is proportional
to the lens thickness, is sufficient to overcome the yield strength. Thickness also matters in scenarios where
the melt is hotter than the mush, as thinner lenses will cool more quickly, allowing less time for RT instability
development before the magma is too crystalline to flow.

A fully developed confined RT instability transforms the melt lens into a spheroid of melt, which ascends
through the mush. A lens of melt can only exist if it thickens faster than melt is removed by a RT instability. So
both the timescale for transforming a lens into a rising spheroid and the volume of the spheroid will depend
on the rate of input of melt into the lens as well as its diameter, the viscosity of the mush, and the density
contrast between the lens and mush. We postulate that RT instabilities may play a role in regulating the size
and frequency of volcanic eruptions and volcanic unrest. Using feasible ranges of the relevant parameters,
we calculate timescales and volumes that span small, frequent mafic eruptions to the largest and much rarer
caldera-forming and flood basalt eruptions. Also, multiple episodes of layer instability without eruption can
lead to accumulations of larger magma volumes and provide one explanation of volcanic unrest.

In a magmatic system composed of a vertically extensive mush containing multiple melt lenses, can the rise of
a blob of melt or volatiles trigger a feedback to cause large-scale destabilitization? The growth rate of a laterally
confined RT instability in a Newtonian mush does not depend on the thickness of the melt lens. So the ascent
of a blob of melt into a more shallow lens will not cause an accelerated destabilization of that lens unless: (a)
it causes the diameter of the lens to increase (and so increases the wavelength of the RT instability) or (b) it
increases the thickness of the lens such that its buoyancy stress overcomes the yield strength of the mush
above it. Mush rheology therefore is important for controlling where melt (and magmatic volatile phases)
accumulate in layers, how much melt accumulates, and how frequently packets of melt are released.
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