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Nomenclature

A, U, V, Σ = matrices used in the singular value decomposition

A, S = tensors adopted in the high singular value decomposition

B = number of intervals into which the locus of bifurcation points is divided

cψ, cδ, cβ = damping coe�cient of ψ, δ and beta DoF

EX = mean of the objective function f due to a change in the de�ned set of factors X

f = objective function adopted in the sensitivity analysis

F z = vertical force acting on the landing gear

Iψ, Iδ, Iβ = inertia of ψ, δ and beta DoF

kψ, kδ, kβ = sti�ness coe�cient of ψ, δ and beta DoF

uλ = unit vector

L, kt, h = tyre relaxation length and vertical sti�ness, length of contact region and

Mψ,Mδ,Mβ = moments acting on the the landing gear with respect to the three dynamics ψ, δ, β

n = number of factors considered in the sensitivity analysis

N = dimension of the adopted sampling plane

p = angle used to orient the landing gear

q = generalized coordinates

rL, rR = radius of the left and right wheel

Ui = unfolding matrix adopted in the high order singular value decomposition

uλ = unit vector along the wheel axle projected on the �rst two dimensions

V,VLCF,VRCF = forward velocity for the landing gear system and lateral velocity of left and right wheels

V (Y ), VX = total variance of the objective function f(X) and variance due to a change in the de�ned set X

X i = factors considered in the sensitivity analysis

Xi = set of factors X for which just the value of Xi is changed

X∼i = set of factors X for which all the values are changed but the one for Xi

Y = output of the evaluated objective function f

β = DoF describing the rotation on the landing gear about the two attachment points

δ = DoF expressing the bending of the landing gear's oleo piston in the side-stay plane

λ = state of the lateral slip (meters) for the tyre model

λi = singular values

µ = sidestay plane

ψ = DoF describing the rotation of the landing gear's wheel/axle assembly about the local axis z
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I. Introduction

The certi�cation of real industrial sized systems requires the accurate prediction of the dynamic

behaviour throughout the entire design operation envelope. As structures are being made more

e�cient, for instance through weight reduction or modern manufacturing techniques that reduce

the number of separate components, the e�ects of nonlinear behaviour are becoming increasingly

important. Consequently, there is a need to develop methods that can predict accurately the non-

linear dynamical behaviour and assess the e�ect of variations in the design and uncertainty in the

operating parameters. In the aerospace �eld there is particular interest in the nonlinear phenomena

of Limit Cycle Oscillations (LCOs) and Shimmy [1�5].

The prediction of nonlinear dynamic behaviour using full size numerical models can be extremely

time consuming and, as the characteristics are initial condition dependent, requires simulated testing

considering all possible states which is computationally prohibitive. Applying the same brute force

approach for the characterisation of the e�ects of system parameter uncertainty on the response

increases the computational requirement by many orders of magnitude. There are several ways that

analyses can be made more feasible, including the generation of reduced order models which retain

the main characteristics of interest; however, investigation of the nonlinear behaviour would still

require a substantial amount of blind testing.

An alternative is to employ continuation and bifurcation analyses, which are powerful means to

investigate the system stability, and to study the occurrence of multiple paths in the possible equi-

librium solutions. Bifurcation is a phenomenon that is common in several dynamical systems and

can be described as a sudden qualitative change in the system behaviour due to small variations in

system parameters. Here we focus on Limit Cycle Oscillations (LCOs), a particular e�ect that can

occur only in non-linear systems, which are isolated closed trajectories characterized by periodical

solutions for the states of the systems, i.e. the response of the system results to be bounded and

periodical. LCOs can be stable, half-stable or unstable and arise following the occurrence of a so-

called Hopf bifurcation. Hopf bifurcations can occur in systems with at least two states and occur

when the real part of a pair of complex eigenvalues of the Jacobian matrix of the linearised system

changes sign following some system parameter variation.
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There are several techniques that can be used to perform bifurcation analysis [6, 7] over the entire

design envelope rather than resorting to a Monte Carlo random search, resulting in a considerable

saving in computational time. Branch and bounds methods, numerical and experimental continua-

tion approaches �nd a numerical and experimental solution respectively [8], whilst non-linear normal

forms can be selected if an analytic solution is sought [9]. All these methods can be adopted to

identify equilibrium branches of the bifurcation diagrams (including steady-state bifurcation points,

such as pitchfork and saddle-node bifurcations, and Hopf bifurcations). However, not all of them

solve periodical solutions (e.g. Limit Cycle Oscillation (LCO)): continuation, experimental and,

ideally, pure Monte Carlo random search and non-linear normal forms can be exploited. In the case

of periodical solutions, Harmonic Balance methods have also been adopted for the identi�cation of

LCOs in the aereolastic and aerodynamics �elds [1�3, 10�13]. In the present paper continuation

analysis is used.

A further important consideration is the uncertainty that is always present in real-life structures

resulting, for example, from variations in the materials, manufacturing processes and operating con-

ditions. Such deviations can cause signi�cant changes in the behaviour of a wide range of systems

and there is currently much interest in �nding e�cient ways of quantifying the e�ects of uncertainty

[14] [15]. The traditional approach to deal with these variations is to model the system behaviour in

a deterministic manner assuming no errors in the model, as seen in Fig. 1, and to then add a safety

margin. Such a simple methodology tends to produce overdesigned structures. With the require-

ment to manufacture more e�cient (e.g. lighter) structures it is apparent that non-deterministic

approaches need to be used which consider both aleatory and epistemic forms [15] of uncertainty.

Both stochastic and/or interval approaches can be applied depending on the uncertainties present.

In real systems typically both kinds of uncertainties exist, so it is desirable to develop approaches

that combine stochastic and interval methodologies in a computationally e�cient manner. A fur-

ther bene�t of applying Uncertainty Quanti�cation (UQ) analysis is that it is possible to determine

which are the parameters whose changes have the greatest e�ect on the system behaviour, and also

to enable robust design optimisation to be performed.

In the last decade, researchers have started to look at the e�ect of parametric uncertainty (structural
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Fig. 1 Approaches in a design process.

and aerodynamic) for conventional and composite aircraft structures on the occurrence of �utter,

and also the amplitude and frequency of LCOs for nonlinear aeroelastic systems [3, 14, 16�20]. For

these studies, expensive time simulation studies have primarily been used and there is a need to use

more e�cient UQ methods.

The aim of this paper is to present a new methodology to e�ciently perform the uncertainty quan-

ti�cation and sensitivity analysis of the bifurcation diagrams characterizing the behavior of a multi-

dimensional nonlinear system. Con�dence bounds are de�ned for the possible occurrence of LCOs

in the presence of parametric uncertainty. These bounds are the loci of the Hopf bifurcation points

and determine subdivision of the parameter space of interest. The methodology is implemented

in Matlab, through the development of a tool that exploits the Dynamical System Toolbox [21], a

Matlab interface with AUTO, the software used to perform numerical continuation analyses [22].

The uncertainty propagation has been performed through the development of an improved version

of a SVD-based method adopting geometrical considerations which has already been used to predict

the gust lengths that cause critical correlated aircraft loads in presence of parametric uncertainty

[23�25]. The e�ect of parameter uncertainty is determined through the construction of surrogate
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models upon which the sensitivity analysis and uncertainty quanti�cation can be applied.

The novel methodology is demonstrated by considering a representative landing gear model and ex-

amining the e�ect of uncertainty in a range of structural parameters on the occurrence of `shimmy'.

It is shown how it is possible to e�ciently de�ne the operating ranges within which shimmy may

occur. The approach is validated through comparison with extensive numerical simulations.

II. Case study and bifurcation analysis

The case study presented in this paper to demonstrate the developed methodology relates to

the occurrence of limit cycle oscillations in a representative nonlinear aircraft landing gear system.

Uncertainty quanti�cation and sensitivity analyses are applied to the locus of the bifurcation plots,

characterizing the mechanism for the loss of stability of equilibria.

A. Landing gear model

The analytic landing gear model is the one presented by Howcroft [26] representing a dual-wheel

main landing gear. The ground/tire interface is the source of nonlinearities that characterize the

forces generated at such an interface. These forces are included in the considered model, however

the free-play and wheel gyroscopic e�ects are omitted. The de�ection of the landing gear structure

is modeled in terms of three degrees of freedom (Fig. 2) and an additional DoF is introduced for

the tyre dynamics. There are seven states, since the equations for the �rst three DoFs are of second

order while the last is of �rst order. The degrees of freedom are:

1. torsional, ψ, describing the rotation of the wheel/axle assembly about the local axis z;

2. in-plane, δ, expressing the bending of the oleo piston in the side-stay plane. This DoF is

approximated as a rotation about a point at a distance Lδ from the axle;

3. out-of-plane, β, describing the rotation of the landing gear about the two attachment points;

4. lateral tyre displacement, λ, which is represented adopting the straight tangent model [27].

Since the sidestay plane µ has been �xed to zero, the words longitudinal and lateral are adopted to

refer to the out-of-plane and in-plane DoF of the landing gear. The di�erential equations describing
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the dynamic evolution of these states are:

Dynamics of Torsional DoF

Iψψ̈ + cψ

(
ψ̇ + β̇ sin p

)
+ kψ (ψ + β sin p) = Mψ (, q̇) (1)

Dynamics of Lateral DoF

Iδ δ̈ + cδ δ̇ + kδδ = Mδ (q, q̇) (2)

Dynamics of Longitudinal DoF

Iβ0 β̈ cos2 p+
[
cβ β̇ + cψ

(
ψ̇ + β̇ sin p

)
sin p

]
+ [kββ + kψ (ψ + β sin p) sin p] = Mβ (q, q̇) (3)

Tyre Model

λ̇+
V

L
λ+

1

2
(VLCF + VRCF ) · uλ = 0 (4)

Further information on this model and the considered assumptions are provided in [26]; the

nominal values of the parameters of this model are given in appendix VI.

Fig. 2 Torsional ψ, lateral δ and longitudinal β degrees of freedoms. (XYZ) and (xyz) are the

global and local coordinate systems.
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B. Bifurcation Analysis

The implementation of bifurcation analysis entails the solution of all the steady states of the

system in the parameter range of interest, along with a determination of their stability. Changes in

local stability as a parameter varies are then assessed using bifurcation theory to infer the mecha-

nisms governing the global behavior.

The results obtained from the bifurcation analyses can be graphically visualized and the plots

are called bifurcation diagrams. On such diagrams the steady state behavior can be traced against

design variables together with maximum amplitude of self-oscillations, if they occur, as well as the

combinations of design variable values at which the system has a qualitative or topological change

in its behavior.

Adopting numerical continuation, which is the technique considered here, it is �rst necessary

to de�ne the set of parameters to be varied in order to investigate possible changes in stability of

equilibrium solutions; these parameters are called bifurcation parameters. Then equilibrium solu-

tions need to be determined in terms of the variation of one of the selected bifurcation parameters,

detecting the occurrence of possible bifurcation points such as Hopf bifurcations. In the presence of

such critical points, the locus of bifurcation points can be investigated as more than one parameter

changes, and shown directly on two parameter bifurcation diagrams instead of considering several

one parameter bifurcation diagrams varying from one to the other the value of the second con-

sidered bifurcation parameter. Moreover, if the bifurcation point is a Hopf bifurcation, then limit

cycle oscillations occur and the maximum amplitude and period characterizing the relative periodic

response of the system can be determined. In addition to the bifurcation parameters, the variation

of other parameters can be considered.

Having considered the shimmy in the landing gear as the case study, the selected bifurcation

parameters are the forward velocity V and the vertical force Fz along the main structure of the

landing gear, as these parameters experience a considerable variation during take-o� and landing.

- The variation of the vertical force Fz is strictly related to the loading condition (for instance

lift relative to weight during take-o�, landing or taxing). In the present paper, an upper force

limit of 4 · 105 N is considered.
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- The forward velocity V during a landing manoeuvre must be in agreement with the certi�ca-

tion; tables provided in an International Civil Aviation Organization (ICAO) document [28]

indicate the speci�ed range of handling speeds for each category of aircraft to perform the

manoeuvres speci�ed. These speed ranges are assumed for use in calculating airspace and

obstacle clearance requirements for each procedure. Taking into account the information pro-

vided by ICAO, a range of interest 0−100 m/s for the forward velocity V has been considered

in the analysis.

Moreover, the aim of the analysis is to investigate the variation of occurrence of Hopf bifurcation

points in the operational parameter space usually considered for ground manouevres, i.e. in the (Fz,

V ) space. Having de�ned Fz and V as bifurcation parameters, the variation of the locus of Hopf

bifurcation points in the de�ned operational parameter space can be investigated as other parameters

change. Figure 3 shows deterministic bifurcation diagrams in terms of one bifurcation parameter

and maximum amplitude for the periodic solution; Figure 4 shows a locus of hopf bifurcation points,

including both Hopf points in �gure 3, in the two-parameter bifurcation diagram. The analysis has

been performed using AUTO as the continuation and bifurcation software [22]. In order to clarify the

possibility of considering changes in other parameters, Figures 3 and 4 present bifurcation diagrams

in one (the forward velocity V ) and two parameters (the forward velocity V and the vertical force

Fz) for both a set of nominal values for all the parameters characterizing the landing gear model,

and also a set of values in which three structural parameters (Iψ, cψ, L) are changed. The velocity

at which Hopf bifurcation occurs and the maximum amplitude of the periodic solutions di�er for

the two cases.

Looking at Figure 4, unstable equilibrium solutions characterize all the points in the convex

region, i.e. above the relevant locus of Hopf bifurcation points, and here LCOs (shimmy phenomena)

occur.

The methods to be considered in order to track the change of the locus of Hopf bifurcation

points is presented in section III.
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Fig. 3 Deterministic bifurcation diagrams in the forward velocity V , with periodic branches

obtained for nominal and varied structural parameters values. The dot points are used to

underline where the Hopf bifurcations occur and the color is related to the relative bifurcating

limit cycle. The Hopf bifurcations of the two periodic branches overlapped at low velocity.

0 10 20 30 40 50 60 70 80 90 100
V (m/s)

1

2

3

4

F
z(

N
)

×105
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NO LCO

LCO

Fig. 4 Deterministic bifurcation diagrams in two parameters obtained for the design factors

�xed to their nominal values and also for a case where three structural parameters are changed.

III. Methodology

Figure 5 presents the �ow process chart of the methodology to de�ne con�dence bounds for the

sought delimitation-branches. This approach allows the development of a suitable sampling plane

for both sensitivity analysis (SA) and uncertainty quanti�cation (UQ), running AUTO, performing

bifurcation analysis, systematically evaluating the in�uence of parameters on the analysed landing
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gear model adopting the Sobol' indices as sensitivity metrics and then performing UQ in terms of

parameters `signi�cant' for the system.

For Sensitivity Analysis (SA)
- Sobol` Sequence

For Uncertainty Quantification (UQ)
- Latin Hypercube Sampling (LHS)

Dynamical System
Characterization

- For each sampling point

Run AUTO
- Numerical Continuation

Sampling Plane
Store Data

Sensitivity Analysis (SA) 
- Custom-made Objective function evaluation

- Construction of Surrogate Model
- Sobol` Indices

(subsection III.B for methodology  and IV.A for results) 

Analysis of Main effect and Total effect Indices
(subsection III.B for methodology  and IV.A for results) 

Uncertainty Quantification (UQ)
- SVD/HOSVD feature selection

- Construction of Surrogate Model
(subsection III.C for methodology  and IV.B for results)

Fig. 5 Flow process chart of the tool developed to perform SA and UQ in terms of bifurcation

diagrams using AUTO.

In order to perform both the sensitivity and uncertainty analysis, a suitable description of the

bifurcations is needed. In the following subsections, the adopted description of the analyzed locus

of points, the sensitivity metrics and the method to perform UQ are presented.

A. Description of interesting branch

The delimitation of the occurrence of LCO in the 2-parameter space (V ,Fz), is described con-

sidering a �xed number of points B + 1 for all the considered sampling points (both training and

validation). These points are obtained dividing each branch into B equal intervals. In this subsec-

tion, an illustration of the description adopted for the sought branches is shown (Fig. 6). In this

example B is �xed equal to 20 and each line is a 2-parameter continuation of Hopf bifurcations

obtained at a particular sampling point.
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Fig. 6 Example of the description adopted for the sought branches to perform both the

Sensitivity Analysis and the Uncertainty Quanti�cation.

B. Sensitivity Analysis

SA has its origin in the design of experiments (DOE), which was introduced in order to evaluate

the input/output (I/O) relation in the presence of variation in factors, which can be both parametric

(such as structural features) and non parametric (such as environmental conditions). `Sensitivity

analysis studies the relationships between information �owing in and out of the model' [29]. SA is

directly correlated to and is a means to cope with the uncertainty. As remarked by Saltelli [29],

there is not a `universal recipe' that explains how to conduct a SA and which measures should

be adopted. The decision for the method and sensitivity measures to be adopted depends on the

particular problem, model and accepted computational cost.

In the analyzed problem, the most signi�cant parameters are sought to perform UQ in terms

of the locus of Hopf bifurcation points and for this aim sensitivity metrics that capture non-linear

dynamical behaviour and high order interaction are desirable. For this reason the main e�ect Si and

the total e�ect indices STi
have been selected. These are part of the global SA methods and are able
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to correlate the variation in the objective function of interest f(X) with the variation in n selected

factors (X1, X2, ..., Xn) exploiting statistical means and usually adopting a sampling approach. In

particular, Si measures the variation in f due to a change in just one factor Xi and the sum of all

the indices
∑n
i=1 Si is less or equal to 1. STi

measures the variation in the objective functions f

due to the change in all the factors rather than Xi and the sum of all the indices
∑n
i=1 STi must be

greater than or equal to 1. The equality occurs only in the case of a perfect additive model and in

that case
∑n
i=1 Si = 1. There are as many main or total e�ect indices as the number n of selected

factors X . Saltelli has emphasized the importance of STi [29]-[32], which measures the total e�ects

(i.e. �rst and higher order iterations) of factor Xi, especially in the presence of a very large number

of factors.

The main Si and total e�ects STi are obtained as [30]

Si =
VXi

(EX∼i
(Y |Xi))

V (Y )
(5)

STi =
EX∼i

(VXi (f |X∼i))

V (Y )
= 1− VX∼i

(EXi (Y |X∼i))

V (Y )
(6)

where Y is the output of the objective function of interest f , EX(·) and VX(·) are the mean and

variance of argument (·) over Xi, while EX∼i
(·) and VX∼i

(·) are the mean and variance of all factors

but Xi. X∼i and Xi stand for the set of factors X for which all the values are changed but the one

for Xi and just the value of Xi is varied, respectively. V (Y ) is the total variance of the objective

function f(X) .

In order to e�ciently perform the SA, a computational approach that allows a simultaneous

computation of Si and STi
has been adopted and the indices are evaluated using a surrogate model

(obtained via Blind Kriging [33]-[35] ) developed for each selected objective function f , trained and

validated with a suitable number of sampling points, adopting Sobol' sequences (also known as LP τ

sequences) as the quasi-Monte Carlo algorithms [29]. An analytical evaluation of such indices is

feasible only for simple systems, which is not the case here. The considered numerical computation

has been presented by Saltelli in [30] [37] to which the reader can refer for further information. Here
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it is worth mentioning that there are 12 possible combinations [38] to calculate the total variance

V (Y ). In the present analysis, all of these combinations have been considered and compared in

order to �nd out the one that gives the most coherent result with respect to the stated properties

of the indices and with the lowest computational time for convergence.

In order to consider the importance of the design parameters, and so determine the Sobol' indices,

it is important to select suitable functions f , used as `objective' functions for the Sobol' indices.

For the landing gear system f has been de�ned having �xed the two parameters that are considered

as the operating ones due to their importance for the dynamics of a landing gear system: the

forward velocity V and the vertical force on the landing gear Fz. The qualitative change in the

solution branches can be captured if the objective functions describe both variation in the shape

and translation of the interesting branches. To this end the branches are divided into an equal

number of intervals B as discussed in IIIA; an example of the stated division and the qualitative

change aimed to be detected is shown in Fig. 7, �xing B equal to 12 and labeling with b the

points used for the discretization (b = 1, ..., B+ 1). The �gure shows that the starting point for the

bifurcation diagrams presents the same value for the vertical force Fz; in fact the continuation in

two parameters is performed starting and ending the bifurcation branches always at the same value

for the vertical force Fz.

To capture the qualitative change of the locus of bifurcation points in the two parameter space

identi�ed by V and Fz, two kinds of objective functions have been selected:

1. for each determined segment on the analysed branches, the approximated slope is taken as an

objective function to capture changes in the shape of the analysed branch

f1bi1...is
(Xi1...is) =

∂Fz
∂V

(Xi1...is)

∣∣∣∣
b

' ∆Fz
∆V

(Xi1...is)

∣∣∣∣
b

b = 1...B 1 ≤ i1 < ... < is ≤ NP(7)

2. at the �rst determined Hopf bifurcation point, i.e. at which the continuation has been switched

in two parameters, the velocity Vb=1 = V1 is considered as an objective function to discuss

translations of the interesting branch. It is worth mentioning that the variation in terms of

the vertical force Fz could also be considered but this is not necessary here since the same
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Fig. 7 Variations to be considered to capture the qualitative change in the solution branches

in the parameter space of interest.

value has been adopted for all the bifurcation diagrams.

f2i1...is
(Xi1...is) = V1 (i1...is) 1 ≤ i1 < ... < is ≤ NP (8)

where NP is the number of analyzed parameters and s is the number of factors changed to evaluate

the variation in the objective function. In total B + 1 objective functions are considered. The

objective functions related to the change in the shape, which are B, have to be considered as a

whole since since they all describe the change in the shape of the solution branch of interest. Thus,

for each identi�ed branch the mean of the main and total e�ect indices in terms of all the B objective

functions related to the shape have been considered.

If a signi�cant topology variation of the bifurcation diagram occurs when changing a particular

parameter, then this should be considered as an operating parameter. Once the SA is accomplished,

then the UQ can be performed in terms of the most in�uential uncertain parameters. In the

following subsection the adopted technique is presented. It is based upon the same principles
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characterizing the already tested technique developed by the authors to predict and propagate

parametric uncertainties in terms of correlated time-history quantities [23].

C. Uncertainty Quanti�cation

The Uncertainty Quanti�cation has been performed using a speed-up process already imple-

mented by the authors to propagate uncertainty in terms of correlated aircraft loads [23�25]. The

speed-up process has been developed using the Singular Value/High Order Singular Value Decom-

position (SVD/HOSVD) and surrogate modelling technique. Then, a geometric based approach has

been developed to determine the outer bounds for the occurrence of shimmy and probabilistically

described occurrence of Hopf bifurcation points in the (Fz, V ) parameter space.

The SVD/HOSVD is considered here for feature extraction. In particular, the terms to be re-

tained in order to speed up the process are identi�ed by �xing the maximum acceptable error caused

by the rank reduction. Once this error is chosen, the energy `captured' by the reduced matrix/tensor

(captured energy criterion [39]) and the singular values to be retained can be identi�ed. The stated

energy is linked with the Frobenius norm and is adopted by the captured energy criterion to identify

the rank reduction. The new method overcomes the di�culties in identifying the best rank reduction

using the SVD/HOSVD. Indeed the energy criterion tackles the issue purely mathematically and the

physics of the analyzed problem is lost. The captured energy criterion consists of selecting enough

singular values of the matrix of interest, the unfolding matrix A(1) for the considered HOSVD [25],

such that the sum of their squares is a certain percentage T of the total sum of the squared values.

The reason for such a decision is that the resulting matrix `captures' T% of the Frobenius norm

of the full matrix, which is correlated with the energy. In the method proposed here, the singular

values characterizing the SVD or the HOSVD are automatically obtained once the stated maximum

acceptable error is de�ned; moreover, the percentage T% can also be obtained to prove that the

threshold one should consider for T% is not absolute and often di�cult to be known a priori. The

authors have considered an iterative procedure; the number of singular values is increased, and so

the percentage T%, and the rank reduction coherently updated until the desired maximum error is

met. Finally, regarding the error metric, the Mean Average Percentage Error (MAPE) is considered

and the average is in terms of all the considered training points.
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Regarding the geometric based method, Figure 8 presents the steps that need to be followed.

1. the lower and upper bounds of the locus of Hopf bifurcation points are automatically iden-

ti�ed thanks to geometric considerations and discretized in an equal number of points; the

corresponding points are indexed with the same number.

2. directions of interest are de�ned as the line connecting the points with the same index and at

the lower and upper bound.

3. the SVD/HOSVD based method [23�25] is then considered to determine loci of Hopf bifurca-

tions for an arbitrary number of points in the sampling plane de�ned in terms of the uncertain

parameters. Thus, considering the intersection of the determined locus of Hopf bifurcations

with the direction of interest, a probabilistic description in terms of the locus of Hopf bifur-

cation points can be drawn.

Fig. 8 Steps to be followed to apply the geometrical based method.

After having evaluated N loci of Hopf bifurcation points using the SVD/HOSVD based method,
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�rst the worst lower and upper bounds for the locus of Hopf bifurcation points are determined and

discretized in the selected B + 1 points. Thus, the directions of interest are identi�ed by the

pairs of points at the lower and upper bounds at the same index of discretization. Ultimately, the

intersections between the N generated loci of Hopf bifurcations and each of the de�ned directions

of interest are determined. Thus, probability density functions (PDFs) and cumulative density

functions (CDFs) are de�ned along each direction of interest and in terms of the distance of the

determined intersecting points from the points on the same direction of interest and on the lower

bound. A locus of Hopf bifurcation points for a desired quantile value can be identi�ed.

Thanks to the geometrical based method, the probabilistic description keeps information of the

correlation between the selected bifurcation parameters along the direction of interest.

IV. Application and Results

The methodology developed to deal with uncertainty in complex systems are applied here to a

landing gear model. First, the validation of the surrogate models adopted in the SA and the main

and total e�ect indices are discussed. Then the validation of the surrogate models adopted in the

SVD/HOSVD based method and the output given by the uncertainty propagation will be presented.

A. Sensitivity Analysis

The parameters and relative range considered to perform the SA, i.e. calculate the main and

total e�ect indices, are shown in Table 1. Log-uniform and uniform probability distributions have

been adopted if the variation of the analysed parameter is greater than or less than one order of

magnitude, respectively. This choice is due to a lack of information about the parametric uncertainty

[29]. For the sake of completeness, Table 1 shows which probability distribution has been adopted

for each parameter.

The parameters that have not been considered in the SA are those related to:

- the longitudinal DoF β, since the side stay angle µ (also known as horizontal attachment point

orientation angle) has been �xed equal to zero (as if it was a nose landing gear) and in such

a con�guration the longitudinal dynamics is less in�uential [40];

- the parameters characterizing the adopted straight tangent model for the tyre, since the whole
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Table 1 Parameters and the range of values adopted in the Sensitivty Analysis

Parameter Label Maximum Minimum Units PDF

sti�ness coe�cient of ψ DoF kψ 963000 837000 N m rad−1 log-uniform

sti�ness coe�cient of δ DoF kδ 6420000 5580000 N m rad−1 log-uniform

inertia of ψ DoF Iψ 107 93 kg m2 uniform

inertia of δ DoF Iδ 428 372 kg m2 uniform

damping coe�cient of ψ DoF cψ 1284 1116 N m s rad−1 log-uniform

damping coe�cient of δ DoF cδ 535 465 N m s rad−1 log-uniform

radius of the left wheel rL 0.59 0.5487 m uniform

radius of the right wheel a rR 0.59 0.5487 m uniform

tyre relaxation length L 0.5671 0.4929 m uniform

length of contact region h 0.2889 0.2511 m uniform

vertical sti�ness of tyres kt 1716280 1491720 N m−1 log-uniform

a A di�erent tyre tread wear level is allowed for the two wheels, represented by two separate values of their radii.

model itself is made on an assumption and so would require an uncertainty analysis on its

own;

- geometrical distances that are well de�ned during the design process and di�cult to change
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during the life of an aircraft, for instance the half track width or the caster length.

In order to determine the desired main and total e�ect indices, the dimension N of the matrices

characterizing Saltelli's technique (subsection III B) has been �xed equal to 15; thus 195 continua-

tions in V and Fz have been computed using AUTO to identify the locus of Hopf bifurcation in the

(V , Fz) parameter space. Then, �xing B, the number of discrete partial derivatives, equal to 20, the

obtained data have been post-processed thus identifying the pairs (V , Fz) related to B+ 1 points of

each branch. Thus, surrogate models for the selected objective functions u (slope and translation,

subsection III B eq. (7) and (8) ) have been constructed using Sobol' sequences as a quasi-Monte

Carlo sampling plane.

The obtained surrogate models have been validated considering 10 validation points. The

MAPE in all the slopes for the �rst objective functions is always less than 3.9 · 10−1 and the

one in terms of the variation of the forward velocity for the second objective functions is 6.95 ·10−2.

It is apparent that the trained surrogate model replicates the actual objective functions with

high accuracy.

Using the surrogate models, Saltelli's technique has been adopted to evaluate the main and

total e�ect indices. All the 12 combinations to determine the total variance V have been considered

(subsection III B) and compared, adopting di�erent numbers of evaluations of the surrogate models

to test the performance in terms of convergence. Two of the considered combinations give the best

convergence and are given by

V̂ =
1

N − 1

N∑
j=1

f2 (A)− f̂20 (9)

V̂ =
1

N − 1

N∑
j=1

f2 (B)− f̂ (10)

where f̂20 = 1
N

∑N
j=1 f (A) f (B).

Finally, considering the �rst of the best two combinations (eqn. (9)), the main and total e�ect

indices are evaluated for both the considered objective functions in order to select the parameters
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to be adopted for the UQ, i.e. those most in�uential; both the objective functions show that Iψ, cψ

and L are the most in�uential parameters.

This is illustrated in the bar plot of the total e�ect indices for all the parameters (Fig. 9). For

the sake of conciseness, just the mean of the adopted index related to the slope-objective functions

is shown, that is

STi
=

1

B

B∑
b=1

(STi
)b (11)
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Fig. 9 Comparison of the in�uence of each parameter on the output considering the mean of

the total e�ect STi related to the slope objective function.

The obtained results are totally coherent with the shimmy phenomenon: shimmy is primarily

related to the tyre characteristics and, for the analysed branch, to the torsional dynamics. In fact,

looking at the LCOs generated by each of the analysed points on all the determined branches, the

torsional state ψ always presents the greatest amplitude and is almost in phase with the state λ

of the tyre dynamics; this means that the torsional mode is dominant in the LCOs. It can be also
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noticed that the period of the LCOs is in practice always around that characterizing the linearised

torsional mode: the period of the LCOs is always about 6 − 7 · 10−2 sec and the damped natural

period of the linearised torsional mode is 6.76 · 10−2 sec.

On the basis of this SA, the validation of the surrogate models and the determined con�dence

bounds are provided in the following subsection.

B. Uncertainty Quanti�cation

The performed UQ in terms of the delimitation-branches of the occurrence of LCOs has been

performed in terms of the three most in�uential parameters, Iψ, cψ and L, whose range and proba-

bility distribution have been discussed in subsection IVA and shown in Table 1.

The loci of Hopf bifurcation points are discretized using 31 points. The surrogate model adopted

for the uncertainty quanti�cation is Blind Kriging. As stated in section III C the percentage T%

and the singular values (surrogate models) to be retained using the SVD and the HOSVD reduction

can be determined after having �xed the maximum acceptable error due to the rank reduction. The

error metric is the Mean Average Percentage Error (MAPE), whose maximum value is �xed equal

to 0.1%. Tables 2 shows the percentage T% and the singular values, i.e. the rank reduction and the

number of surrogate models, to be retained in order to ful�ll the desired accuracy (MAPE ≤ 0.1)

having considered the SVD or the HOSVD. The analysis shows that more surrogate models are

required if the SVD is adopted as the reduced rank is higher. Moreover, the presented results show

that the proposed method to identify the rank reduction is more valid and `stable' than the energy

captured criterion. In fact, it is apparent that a-priori such a high percentage of energy T% could

not have been easily predicted as a threshold at all. The word `stable' is used here to characterize

the proposed method in the meaning that changing the data set, the technique always works well

in identifying the desired rank reduction even if the corresponding energy-threshold T% changes.

SVD Fz SVD V HOSVD

T (%) 100− 10−6 100− 10−5 100− 10−13

N model 5 6 10

Table 2 Comparison of rank reduction required using the SVD and the HOSVD having �xed

the maximum acceptable error.
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The adopted iterative code to select the right number of singular values to be retained (and

surrogate models to be trained) gives very good results. 100 and 1000 are the number of sampling

points used to train and validate the adopted surrogate models respectively. The mean of the MAPE

in all the discretized points in terms of the forward velocity V and the vertical load Fz is less than

1.98% and 0.26% if the SVD is considered, and less than 2.5% and 0.26% if the HOSVD is adopted.

Regarding the propagation of the uncertainties, �gure 10 shows the determined lower and upper

bounds adopting either the SVD or the HOSVD and these are validated using a Monte Carlo

Simulation (MCS) with 1000 points. Looking at the obtained results for the uncertainty propagation

it is apparent that there is just a slight lack of accuracy in terms of the forward velocity where the

slope of the locus of Hopf bifurcation is almost constant. In these points the maximum MAPE for

V is 6% on the upper bound and 3.7% on the lower bound, for both the SV D and the HOSV D.

Without considering such points the MAPE for V and F is always less than 2%. Moreover, �gure

10 shows also the direction of interest considered and two example of PDFs along such a direction.

The PDFs are related to the two directions of interest the arrows are pointing at. The PDFs are �rst

obtained in terms of the distance from the lower bound of the locus of Hopf bifurcations along the

stated direction of interest, then can be projected in terms of the selected bifurcation parameters

(the forward velocity V and vertical force Fz as shown in �gure 10.

Adopting the probabilistic approach, one can select the lower and upper quantiles and then

identify the uncertain `tube' in which the locus of Hopf bifurcations lies. The bounds of such an

uncertain `tube' are the lines corresponding to those obtained for the selected quantiles. For the

sake of simplicity, eleven values for the quantiles have been selected and presented in Figure 11,

considering only the SVD based method. The HOSVD gives almost the same results. There is a

lack of accuracy in the tail of the PDFs along the direction of interest for quantiles greater than

0.99. Thus the validation has been done considering quantiles less than 0.99 (Fig. 11).

The mean of the MAPE for (V , Fz) determined for all the considered quantiles is less than

(0.89%, 0.28%) and (0.87%, 0.29%) considering the SVD and HOSVD, respectively.

The performed uncertainty quanti�cation shows similar results if the SVD or the HOSVD tech-

niques are adopted. The HOSVD required one less surrogate models for the same �xed maximum
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acceptable MAPE. Using the geometrical based method and the SVD/HOSVD technique, a re-

duction of 95% of the computational time compared to MCS is achieved whilst maintaining a good

accuracy.

NO LCO

LCO

LCO

LCO

Fig. 10 Lower and upper bound for the locus of Hopf bifurcation. The results obtained using

the SV D, HOSV D and MCS (actual) are presented together with the adopted probabilistic

description.

V. Conclusions

The paper has presented a novel approach to quantify the e�ect of uncertainties on multi-

dimensional nonlinear systems, and in particular to identify the most in�uential parameters and

to e�ciently determine the con�dence bounds of the bifurcation branches de�ning the regions of

possible Limit Cycle Oscillations. The methodology has been demonstrated successfully on the

occurrence of shimmy of a representative model of an aircraft landing gear, and comprises a Singular

Value Decomposition based approach to determine surrogate models of the e�ect of the di�erent

system parameters on the shimmy onset speed. The proposed method to detect the number of
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NO LCO

LCO

Fig. 11 Validation of the interval and quantile con�dence bounds determined with the SVD

based developed method. The results obtained through MCS are considered as the actual

ones.

singular values to be retained is able to capture the physics behind the data set, in contrast of the

mainly mathematical energy capture criterion. Comparison with Monte Carlo Simulations shows an

excellent accuracy of the new approach and a reduction of almost 95% of the required computation

time. Finally, it is worth remarking that the current approach dealt with system for which the

topology in the analysed range of parameters doesn't change; if this occur then an extension of

the developed method can be considered. A possible idea the authors have been considering is to

perform a categorization of the topological behaviour and subdivide the range of variation of the

parameters accordingly.

VI. Appendix

Table 3 provides the nominal values adopted for parameters characterizing the adopted dual-

wheel landing gear model [26].
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Table 3 Nominal landing gear parameters.

µ 0.0 rad/s

Iψ 100.0 kg m2

cψ 1200.0 N m s rad−1

kψ 9.0× 105 N m rad−1

Iδ 400.0 kg m2

cδ 500.0 N m s rad−1

kδ 6.0× 106 N m rad−1

Iβ0 5000.0 kg m2

cβ 2.0× 104 N m s rad−1

kβ 1.0× 107 N m rad−1

L 0.53 m

ρ 0.0 rad

φ0 −0.1175 rad

Lβ 2.818 m

Lδ 0.6 m

rL = rR = r 0.59 m

hL = hR = h 0.27 m

e 0.0 m

a 0.46 m

kt 1.604× 106 N m−1

λ 1 m

cλ 3000.0 N m2rad−1

kλ 0.01 rad−1

kα 1.3256 m

αm 0.1571 rad
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